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Abstract. A system of coupled nonlinear Schrödinger equations arising in nonlinear
optics is considered. The existence of periodic pulses as well as the stability and in-
stability of such solutions are studied. It is shown the existence of a smooth curve of
periodic pulses that are of cnoidal type. The Grillakis, Shatah and Strauss theory is set
forward to prove the stability results. Regarding instability a general criteria introduced
by Grillakis and Jones is used. The well-posedness of the periodic boundary value prob-
lem is also studied. Results in the same spirit of the ones obtained for single quadratic
semilinear Schrödinger equation by Kenig, Ponce and Vega are established.

1. Introduction

The interest on nonlinear properties of optical materials have attracted the attention

of Physicists and Mathematicians in the recent years. It has been suggested that by

exploiting the nonlinear response of matter, the bit-rate capacity of optical fibres can be

increased substantially and so it will allow a great improvement in the speed and economy

of data transmission and manipulation.

In non-centrosymmetric materials, i.e., those which do not posses inversion symmetry

at the molecular level, the lowest order nonlinear effects originate from the second-order

susceptibility χ(2); this means that the nonlinear response of the matter to the electric field

is quadratic (see [10], [20]). Quadratic nonlinearities are long known to be responsible for

phenomena such as “second-harmonic generation” (frequency doubling), whereby laser
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light with frequency ω can be partially converted to light of frequency 2ω upon passing

it through a crystal with χ(2) response (see [25]). So, such materials are of importance in

parametric wave interactions, in ultra-fast all-optical signal processing, as well as long-

distance communications (see [12], [25] for more physics or engineering information on

χ(2)).

The phenomena of interest in two dimensions, space + time, (pulse propagation in

fibres) is described by the following system of two coupled nonlinear Schrödinger equations

{
iwt + rwxx − θw + w̄v = 0,

iσvt + svxx − αv + 1
2
w2 = 0.

(1.1)

This is obtained from the basic χ(2) second-harmonic generation equations (SHG) of type

I (see [25]). The complex functions w = w(x, t) and v = v(x, t) represent respectively

the envelopes amplitudes of the first and second harmonics of an optical wave. So, (1.1)

describes the interaction of these harmonics. We have r, s = ±1. The signs of r and

s are determined by the signs of the dispersions/diffractions (temporal/spatial cases,

respectively). The constant σ measures the ratios of the dispersions/diffractions. The real

parameters θ and α are dimensionless, with α incorporating the wave-vector mismatch

between the two harmonics ([4], [6]).

An important issue for optical communication in a nonlinear regime is the understand-

ing of the so-called, “solitary-waves”: standing or travelling waves, which are localized

solutions for (1.1) of the form

w(x, t) = eiγtφ(x), v(x, t) = e2iγtψ(x) (1.2)

where φ, ψ : R 7→ R. When we specify the boundary conditions φ, ψ → 0 as |x| → +∞,

these solutions are called “pulses”. Here we are interested in “periodic pulses”, namely,

φ, ψ that satisfy periodic boundary conditions φ(n)(0) = φ(n)(L), ψ(n)(0) = ψ(n)(L), for

every n ∈ N and fixed period L.

In the case r = s = 1 and θ, α > 0, which is the most interesting regime from a physics

and engineering viewpoint, the pulses satisfy the ordinary differential equations
{
−φ′′ + θ0φ− φψ = 0,

−ψ′′ + α0ψ − 1
2
φ2 = 0,

(1.3)
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with

θ0 = θ + γ and α0 = α+ 2σγ.

It is well known that for the explicit value of θ0 = α0 = ±1 and φ = ±
√

2ψ, system (1.3)

possesses the exact real pulse solutions

φ(x) = ± 3√
2

sech2
(x

2

)
, ψ(x) = ±3

2
sech2

(x
2

)
, (1.4)

found by a number of authors ([6], [20]). In [8], by using methods of the calculus of

variations (the mountain pass theorem and concentration-compactness arguments), the

existence of pulses was proved for all values of α0 > 0 and θ0 = 1. Regarding the shape of

solutions for (1.3) some numerical ([11], [9], [8], [6]) and analytic results ([8], [27]) have

been obtained. In [27] a description of the profile of solutions for (1.3) was given by using

the framework of homoclinic bifurcation theory. Here the existence and uniqueness up to

reflection ((φ, ψ) 7→ (−φ, ψ)), of solutions which possess a multiple number of “humps”

(peaks or troughs), called “multipulses” or “N -pulses”, was proved for α0 < θ0 and α0

sufficiently near to θ0. These solutions were generated from a homoclinic bifurcation

arising near a semi-simple eigenvalue scenario. For α0 ≧ θ0 and α0 close to θ0, it was also

proved that multipulses solutions do not exist (see [11], [27] for numerical simulations for

the existence of multipulses). We also note that in [27] it was shown the existence of a

C1 branch of 1-pulses for (1.3) parameterized by α0, for α0 close to 1, which contains

the explicit solution (1.4) at α0 = 1. In [28], the stability and instability of the orbit

generated by 1-pulses or multipulses (φ, ψ) of (1.3) found in [27], namely,

O(φ,ψ) = {(eisφ(x+ x0), e
2isψ(x+ x0))| x0, s ∈ R}, (1.5)

were studied. Through the use of the Grillakis, Shatah and Strauss theory ([16],[17]),

conditions were derived for the nonlinear stability or instability of the 1-pulses. Moreover,

by the application of an instability criterion due to Grillakis [15] (see also Grillakis [14]

and Jones [19]), it was proved the remarkable fact that the N -pulses are unstable by the

flow of the coupled nonlinear Schrödinger system (1.1).

In this paper our main interest is the study of the existence, stability and instability

of “periodic pulses” of (1.1).
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For the parameter regime θ0 = α0, we establish the existence of a family of non-trivial

periodic solutions of (1.3). More precisely, Let θ > 0 fixed, under the following conditions

i) γ >
4π2

L2
− θ,

ii) α, σ > 0 such that α+ 2σγ = θ + γ, and

iii) φ =
√

2 ψ,

(1.6)

we obtain ψ = ψγ satisfying the differential equation

ψ′′(ξ) − (θ + γ)ψ(ξ) + ψ2(ξ) = 0, ξ ∈ R, (1.7)

such that

γ ∈ (
4π2

L2
− θ,+∞) 7→ ψγ ∈ H1

per([0, L])

is a smooth branch of solutions. Moreover, the profile of each ψγ is a cnoidal wave, that

is,

ψ(ξ) = ψ(ξ; β1, β2, β3) = β2 + (β3 − β2)cn
2
[√β3 − β1

6
ξ; k

]
, (1.8)

where cn(·; k) represents a Jacobi elliptic function of modulus k, the βi’s are smooth

function of γ satisfying β1 < 0 < β2 < β3, Σβi = 3(θ + γ)/2 and

k2 =
β3 − β2

β3 − β1
.

This family of solutions for (1.8) are positive periodic pulses, which are even, monoton-

ically decreasing between the maximum ψ(0) = β3 (humps) and the positive minimum

ψ(L
2
) = β2 (troughs).

We also will show the existence of other periodic solutions for the system (3.2) depend-

ing on the parameter α.

Concerning the nonlinear stability of the orbit (1.5), we show that it is stable in

H1
per([0, L]) × H1

per([0, L]) by the periodic flow of the system (1.1). We derive our re-

sult from the Grillakis, Shatah and Strauss theory ([16]) and the Floquet theory applied

to the periodic eigenvalue problem for the Jacobian form of Lamé’s equation





d2Λ

dx2
+ [ρ− 12k2 sn2(x; k)]Λ = 0

Λ(0) = Λ(2K), Λ′(0) = Λ′(2K),
(1.9)

where sn(·; k) is a Jacobi elliptic function and K = K(k) is the complete elliptic integral

of the first kind.
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We also show that the orbit

S(φ,ψ) = {(
√

2eiγsψγ(x), e
2iγsψγ(x))| s ∈ R}, (1.10)

is unstable in H1
per([0, 2L]) × H1

per([0, 2L]). To obtain this result we employ the theory

of Grillakis in [15]. This seems to be the first proof of instability of periodic pulses

in a nonlinear Schrödinger-type system (see Angulo [3] for the study of the instability of

periodic travelling waves solutions in the case of the focusing cubic Schrödinger equation).

In the framework of Grillakis-Shatah-Strauss, it is needed to have global or local well-

posedness for the system under consideration. In our case, it will be enough to have a

well-posedness theory in the spaces Hs([0, L])×Hs([0, L]) for s ≥ 1 due to the conserved

quantities

F(t) :=

∫ [
|w(x, t)|2 + 2σ|v(x, t)|2

]
dx = F(0) (1.11)

and

H(t) :=

∫ [
r|wx(x, t)|2 + s|vx(x, t)|2

+ θ|w(x, t)|2 + α|v(x, t)|2 −ℜ(w2v̄)(x, t)
]
dx = H(0)

(1.12)

where ℜ denotes the real part.

Here we establish a local and global theory for the periodic IVP (1.1) in Hs([0, L]) ×
Hs([0, L]) for s ≥ 0. To prove the local result we use the Fourier restriction spaces or Xs,b

spaces introduced by Bourgain in [5] and bilinear estimates introduced by Kenig, Ponce

and Vega [22] to study the IVP associated to the Korteweg-de Vries equation. More

precisely, we will use the approach given by Kenig, Ponce and Vega [23] to study the

following nonlinear Schrödinger equations,

∂tu = i∂2
xu+Nj(u, u), x ∈ R (T), t ∈ R, (1.13)

where Nj(u, u), j = 1, 2, 3, is a quadratic polynomial, i.e. N1(u, u) = u2, N2(u, u) = uu,

and N3(u, u) = u2.

In this work we are interested in the nonlinearities N1 and N2. To explain the results

in [23] regarding these nonlinearities we need the next definition.

Definition 1.1. Let A be space of functions f such that

(i) f : T × R → C.

(ii) f(x, ·) ∈ S for each x ∈ T.
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(iii) f(·, t) ∈ C∞(T) for each t ∈ R.

For s, b ∈ R we define the space Ys,b to be the completion of A with respect to the norm

‖F‖Ys,b
= ‖〈n〉s〈τ − n2〉b F̂ (n, τ)‖ℓ2nL2

τ
. (1.14)

For F ∈ Ys,b consider the bilinear operators

B1(F, F ) = F 2 (1.15)

and

B2(F, F ) = FF . (1.16)

Kenig, Ponce and Vega in [23] showed that given s ∈ (−1/2, 0] there exists b ∈ (1/2, 1)

such that

‖B1(F, F )‖Ys,b−1
≤ c‖F‖2

Ys,b
(1.17)

and that for s < −1/2 and any b ∈ R the estimate (1.17) fails.

On the other hand, given any s < 0 and any b ∈ R they showed that the estimate

‖B2(F, F )‖Ys,b−1
≤ c‖F‖2

Ys,b
(1.18)

fails.

These estimates yield sharp local well-posedness for the periodic boundary value prob-

lem associated to (1.13) for data in Hs(T), s > −1/2 when the nonlinearity is N1 and in

Hs(T), s ≧ 0, for the nonlinearity N2.

When σ = 1, we can reproduce the estimates (1.17) and (1.18) for any s ≥ 0 and some

b ∈ (1/2, 1) for system (1.1). These are the main estimates to obtain our local results.

We shall observe that for σ 6= 1 we can prove estimates (1.17) and (1.18) for s > −1/2

and some b ∈ (1/2, 1). This latter result will appear somewhere else.

To establish global results Hs(T)×Hs(T), s ≥ 0 it is sufficient to use the local theory

and the conserved quantity (1.11).

The plan of this paper is as follows: in Section 2, we establish the local and global

theory for the periodic boundary value problem associated to (1.1). The existence of

periodic pulses of the kind described in (1.2) will be shown in Section 3. Next we will

show the existence of periodic solutions for the system (1.3) which are not necessarily of

cnoidal type. The stability of the periodic pulse will be discussed in Section 5. Finally,

in Section 6, the instability results will be established.
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Before leaving this section we want to introduce some notation needed along this work.

Notation. For any complex number z ∈ C, we denote by ℜ z and ℑ z the real part and

imaginary part of z, respectively.

For s ∈ R, the Sobolev space Hs
per([0, L]) consists of all periodic distributions f such

that ‖f‖2
Hs = L

∞∑
k=−∞

(1 + k2)s|f̂(k)|2 < ∞. For simplicity, we will use the notation

Hs([0, L]) in several places.

We will use F (ϕ, k) to denote the normal elliptic integral of first type (see [7]), that is,

for y = sinϕ
y∫

0

dt√
(1 − t2)(1 − k2t2)

=

ϕ∫

0

dθ√
1 − k2 sin2 θ

= F (ϕ, k). (1.19)

The normal elliptic integral of the second type, i.e.

y∫

0

√
1 − k2t2

1 − t2
dt =

ϕ∫

0

√
1 − k2 sin2 θ dθ (1.20)

will be denoted by E(ϕ, k). In both cases k ∈ (0, 1) is called the modulus and ϕ the

argument. When y = 1, we denote F (π/2, k) and E(π/2, k) by K = K(k) and E = E(k),

respectively.

The Jacobian elliptic functions denoted by sn(u; k), cn(u; k) and dn(u; k), respectively,

are defined via the previous elliptic integrals. More precisely, let

u(y1; k) := u = F (ϕ, k), (1.21)

then y1 = sinϕ := sn(u; k) = sn(u) and

cn(u; k) :=
√

1 − y2
1 =

√
1 − sn2(u; k),

dn(u; k) :=
√

1 − k2y2
1 =

√
1 − k2sn2(u; k),

(1.22)

requiring that sn(0; k) = 0, cn(0; k) = 1 and dn(0; k) = 1.
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2. Well-posedness Theory

In this section we show local and global results for the periodic IVP,





iwt + wxx − θ w + wv = 0 x ∈ [0, L], t ∈ R,

iσvt + vxx − α̃ v + 1
2
w2 = 0,

w(x, 0) = w0(x), v(x, 0) = v0(x)

(2.1)

where θ, α̃ ∈ R and σ > 0, in the periodic Sobolev space Hs([0, L]) × Hs([0, L]). To

simplify our analysis we will use L = 2π.

We first rewrite (2.1) as





iwt + wxx − θ w + wv = 0 x ∈ [0, L], t ∈ R,

ivt + a vxx − α v + a
2
w2 = 0,

w(x, 0) = w0(x), v(x, 0) = v0(x)

(2.2)

where a = 1/σ and α = α̃/σ.

Next we consider the equivalent integral system of equations associated to (2.2). Let

ψ be a C∞
0 (R) function with suppψ ⊂ (−2, 2) such that ψ(t) = 1, for t ∈ [−1, 1]. Let

ψT (·) = ψ(·/T ).






w(t) = ψTW (t)w0 − i ψT
t∫

0

W (t− t′)w v(t′) dt′

v(t) = ψTV (t)v0 − ia
2
ψT

t∫
0

V (t− t′)w2(t′) dt′,

(2.3)

where W (t) = eit(∂
2
x+θ) and V (t) = eit(a∂

2
x+α) are the corresponding Schrödinger generators

(unitary groups) associated to the linear problem.

To give the statement of our results we need the following definition.

Definition 2.1. Let A be space of functions f such that

(i) f : [0, L] × R → C.

(ii) f(x, ·) ∈ S for each x ∈ [0, L].

(iii) f(·, t) ∈ C∞([0, L]) for each t ∈ R.

For s ∈ R we define the space Xs,b to be the completion of A with respect to the norm

‖f‖Xs,b
= ‖〈n〉s〈τ − n2 − θ〉b f̂(n, τ)‖ℓ2nL2

τ
. (2.4)
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Similarly, for s ∈ R and a > 0 we define the space Xa
s,b to be the completion of A with

respect to the norm

‖f‖Xa
s,b

= ‖〈n〉s〈τ − a n2 − α〉bf̂(n, τ)‖ℓ2nL2
τ
. (2.5)

The local well-posedness theory is as follows.

Theorem 2.2. Let s ≥ 0, a > 0 and b > 1/2. For any (w0, v0) ∈ Hs([0, L]) ×Hs([0, L]),

there exist T = T (‖(w0, v0)‖Hs×Hs) > 0, and a unique solution of the IVP (2.2) in the

time interval [−T, T ] such that

(w, v) ∈ C([−T, T ] : Hs([0, L]) ×Hs([0, L])), (ϕTw, ϕTv) ∈ Xs,b ×Xa
s,b. (2.6)

Moreover, for any T ′ ∈ (0, T ), the map (w0, v0) 7→ (w(t), v(t)) is Lipschitz from a

neighborhood of Hs([0, L])×Hs([0, L]) to C([−T, T ] : Hs([0, L])×Hs([0, L]))∩Xs,b×Xa
s,b.

Remark 2.3. If a 6= 1 the above result in Theorem 2.2 holds for s > −1/2.

Once we have proved Theorem 2.2 it is not difficult to show the next global result.

Theorem 2.4. Let (w0, v0) ∈ Hs([0, L]) × Hs([0, L]), s ≥ 0. Then the solutions (w, v)

given in Theorem 2.2 can be extended to any interval of time.

Proof of Theorem 2.4. The result is deduced using the conserved quantity
∫ (

|w(x, t)|2 + 2σ|v(x, t)|2
)
dx =

∫ (
|w0(x)|2 + 2σ|v0(x)|2

)
dx. (2.7)

and Theorem 2.2. �

To establish Theorem 2.2 we need a series of lemmas. We begin with the next result.

Lemma 2.5. Let s ∈ R, b > 1/2, then

‖ψTW (t)w0‖Xs,b
≤ c ‖w0‖Hs , (2.8)

‖ψTV (t)v0‖Xa
s,b

≤ c ‖v0‖Hs , (2.9)

and

‖ψT
t∫

0

W (t− t′)F (t′) dt′‖Xs,b
≤ cT γ ‖F‖Xs,b−1

, (2.10)
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‖ψT
t∫

0

V (t− t′)F (t′) dt′‖Xa
s,b

≤ cT γ ‖F‖Xa
s,b−1

(2.11)

where W (t) and V (t) are defined above and γ > 0.

Proof. For a proof of this see for instance [5], [23]. �

The key estimates to deal with the nonlinear terms are next.

Lemma 2.6. For s ≥ 0 and a > 0 we have

‖w v‖Xs,−1/2
≤ c ‖w‖Xs,1/2

‖v‖Xa
s,1/2

. (2.12)

and

‖w2‖Xa
s,−1/2

≤ c ‖w‖2
Xs,1/2

. (2.13)

Remark 2.7. If a 6= 1 the estimate (2.12) holds for s > −1/2. For any a > 0, the

estimate (2.13) is satisfied for s > −1/2.

As in [23] the next corollary follows from the proof of Lemma 2.6.

Corollary 2.8. Let b > 1/2 with 1 − b, b′ > 3/8, then

‖w v‖Xs,1−b
≤ c ‖w‖Xs,b′

‖v‖Xa
s,b′
, (2.14)

and

‖w2‖Xa
s,1−b

≤ c ‖w‖2
Xs,b′

. (2.15)

The next lemmas will be useful in the proof of Lemma 2.6. The first one was proved

in [23], that is,

Lemma 2.9. If γ > 1/2. Then

sup
n∈Z, τ∈R

∑

n1∈Z

1

(1 + |τ ± n1(n− n1)|)γ
<∞. (2.16)

Lemma 2.10. Let s ≥ 0, and let

A(n, τ, a) :=
〈n〉s

〈τ − n2 − θ〉1/2
(∑

n1∈Z

∞∫

−∞

〈n1〉−2s〈n− n1〉−2s

〈τ1 − an2
1 − α〉〈τ − τ1 + (n− n1)2 + θ〉 dτ1

)1/2

,

A1(n1, τ1) :=
1

〈n1〉s〈τ1 − n2
1 − α〉1/2

(∑

n∈Z

∞∫

−∞

〈n〉2s〈n− n1〉−2s

〈τ − n2 − θ〉〈τ − τ1 + (n− n1)2 + θ〉 dτ
)1/2

,
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and

B(n, τ, a) :=
〈n〉s

〈τ − an2 − α〉1/2
(∑

n1∈Z

∞∫

−∞

〈n1〉−2s〈n− n1〉−2s

〈τ1 − n2
1 − θ〉〈τ − τ1 − (n− n1)2 − θ〉 dτ1

)1/2

.

Then

sup
n∈Z, τ∈R

A(n, τ, a) ≤ c, (2.17)

sup
n1∈Z, τ1∈R

A1(n1, τ1) ≤ c, (2.18)

and

sup
n∈Z, τ∈R

B(n, τ, a) ≤ c. (2.19)

Proof. We will only give an sketch of the proof of inequality (2.17). The proofs of the

estimates (2.18) and (2.19) follow a similar argument so we will omit them.

Using that s ≥ 0 and the change of variables x = τ1 − an2
1 − α we obtain

A(n, τ, a) ≤ c

〈τ − n2 − θ〉1/2
(∑

n1∈Z

∞∫

−∞

dτ1
〈τ1 − an2

1 − α〉〈τ − τ1 + (n− n1)2 + θ〉
)1/2

≤ sup
n∈Z,τ∈R

(∑

n1∈Z

ln(2 + |τ + n2 − n1(2n− (1 − a)n1) + (θ − α)|)
1 + |τ + n2 − n1(2n− (1 − a)n1) + (θ − α)|

)1/2

.

(2.20)

An application of Lemma 2.9 yields the result. �

Proof of Lemma 2.6. We begin by proving the bilinear estimate (2.12).

We consider first the case a = 1. Let f(n, τ) = 〈n〉s〈τ − an2 − α〉1/2|v̂(n, τ)| and

g(n, τ) = 〈n〉s〈τ + n2 + θ〉1/2|ŵ(n, τ)|.
Then from the definition (2.1), the Cauchy-Schwarz inequality, Fubini’s theorem and

(2.17) in Lemma 2.10 it follows that,

‖w v‖Xs,−1/2
≤ sup

n∈Z, τ∈R

A(n, τ, a)‖f‖ℓ2nL2
τ
‖g‖ℓ2nL2

τ

≤ c ‖w‖Xs,1/2
‖v‖Xa

s,1/2
.

(2.21)
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Now we consider a = 1. A duality argument combined with Lemma 2.10 gives

‖w v‖Xs,−1/2
≤

∑

n∈Z

〈n〉s
∞∫

−∞

h(n, τ) dτ

〈τ − n2 − θ〉

×
(∑

n1∈Z

∞∫

−∞

g(n− n1, τ − τ1)f(n1, τ1)

〈n− n1〉s〈τ − τ1 + (n− n1)2 + θ〉1/2〈n1〉s〈τ1 − n2
1 − α〉1/2 dτ1

≤ sup
n1∈Z, τ1∈R

A1(n1, τ1)‖f‖ℓ2nL2
τ
‖g‖ℓ2nL2

τ
‖h‖ℓ2nL2

τ

≤ c ‖w‖Xs,1/2
‖v‖Xa

s,1/2
.

(2.22)

This implies inequality (2.12).

Next we prove the estimate (2.13). We use the definition of the space Xa
s,−1/2, the

Cauchy-Schwarz inequality and Lemma 2.10 to obtain

‖w2‖Xa
s,−1/2

≤ sup
n∈Z, τ∈R

B(n, τ, a)‖g‖2
ℓ2nL

2
τ

≤ c ‖w‖2
Xs,1/2

,
(2.23)

This finishes the proof of Lemma 2.6. �

Proof of Theorem 2.2. We follow similar argument as those in [23]. We define the metric

space of functions

XM := {(w, v) ∈ Xs,b ×Xa
s,b : |||(w, v)||| = ‖w‖Xs,b

+ ‖v‖Xa
s,b

≤M}. (2.24)

For (w, v) ∈ XM we define the operators





Φ1(w, v)(t) = ψ1W (t)w0 + i ψT
t∫

0

W (t− t′)w v(t′) dt′

Φ2(w, v)(t) = ψ1V (t)v0 + iσ
2
ψT

t∫

0

V (t− t′)u2(t′) dt′.

(2.25)

Applying Lemma 2.5 and Corollary 2.8 we have

‖Φ1(w, v)‖Xs,b
≤ c‖w0‖Hs + c T γ‖w‖Xs,b

‖v‖Xa
s,b

≤ c‖w0‖Hs + cT γM2
(2.26)

and

‖Φ2(w, v)‖Xa
s,b

≤ c‖v0‖Hs + c T γ‖w‖2
Xs,b

≤ c‖v0‖Hs + cT γM2.
(2.27)



NONLINEAR SCHRÖDINGER EQUATIONS 13

Taking M ≥ 2c(‖w0‖Hs + ‖v0‖Hs) and T such that cT γM < 1/2 we have that the

map (Φ1(w, v),Φ2(w, v)) : XM 7→ XM is well defined. Similarly, one can prove that

(Φ1(w, v),Φ2(w, v)) is a contraction on XM . From the contraction mapping principle

we deduce the existence of a unique fixed point for (Φ1(w, v),Φ2(w, v)) which solves the

problem. To finish the proof we use standard arguments thus we omit the details. This

completes the proof of Theorem 2.2. �

3. Existence of cnoidal waves solutions

In this section we establish the existence theory of a smooth curve of periodic travelling

wave solutions to the χ(2) SHG equations (1.1) of the form

w(x, t) = eiγtφ(x), v(x, t) = e2iγtψ(x) (3.1)

where φ, ψ : R 7→ R. Substituting (3.1) in (1.1) (with r = s = 1) we obtain the system of

ordinary differential equations
{
−φ′′ + (θ + γ)φ− φψ = 0,

−ψ′′ + (α + 2σγ)ψ − 1
2
φ2 = 0.

(3.2)

We are interested in solutions of (3.2) satisfying θ + γ = α + 2σγ. Thus if we consider

φ =
√

2ψ we reduce our analysis to study the equation

ψ′′(ξ) − (θ + γ)ψ(ξ) + ψ2(ξ) = 0, ξ ∈ R, (3.3)

with the periodic boundary conditions ψ(n)(0) = ψ(n)(L) for every n ∈ N and fixed period

L. We note that our approach will give us just a family of positive periodic solutions with

fundamental period L. We also observe that the pair (φ, ψ) ≡ (−
√

2ψ, ψ) is a solution of

(3.2).

Before stating our main result regarding the existence of solutions for (3.3) we will

list some elementary properties satisfied for the Jacobian elliptic functions defined in the

introduction which will be useful in our analysis.

Let K(k) and E(k) be as in (1.19)–(1.20). Then

(i) K(0) = E(0) = π/2, E(1) = 1 and K(1) = +∞.

(ii) For k ∈ (0, 1), K ′(k) > 0, K ′′(k) > 0, E ′(k) < 0 and E ′′(k) < 0 with

dK

dk
=
E − k′2K

kk′2
,

dE

dk
=
E −K

k
,

d2E

dk2
= −1

k

dK

dk
= −E − k′2K

k2k′2
. (3.4)
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(iii) For k ∈ (0, 1), E(k) < K(k), E(k) + K(k) and E(k)K(k) are strictly increasing

functions.

Next we establish the existence theory of periodic solutions for (3.3) of cnoidal type

with wave velocity r ≡ θ + γ > 0. From (3.3) we have that ψ satisfies the first-order

equation

[ψ′]2 =
2

3
[−ψ3 +

3r

2
ψ2 + 3Bψ] =

2

3
(ψ − β1)(ψ − β2)(β3 − ψ), (3.5)

where βi, i = 1, 2, 3, are the real zeros of the polynomial Fψ(t) = −t3 + 3r
2
t2 + 3Bψ.

Therefore, we must have the relations

3r0 =
3∑

i=1

βi, 0 =
∑

i<j

βiβj , 3Bψ =
3

Π
i=1

βi, (3.6)

for r0 = r/2. We assume without losing generality that β1 < β2 < β3. From the first and

second relations in (3.6) we deduce that

−β1 =
β2β3

β2 + β3
= β2 + β3 − 3r0. (3.7)

Thus β2, β3 belong to the rotated ellipse Ξ(r0),

Ξ(r0) : β2
2 + β2

3 + β2β3 − 3r0(β2 + β3) = 0. (3.8)

Then, since β2 < β3 it follows that 0 < β2 < 2r0 < β3 < 3r0. Moreover, β2 ≦ ψ ≦ β3

which implies that ψ must be a positive solution.

Next, by taking ζ ≡ ψ/β3, we see that (3.5) becomes

[ζ ′]2 =
2β3

3
(ζ − η1)(ζ − η2)(1 − ζ),

where ηi = βi/β3, i = 1, 2. “If we take the crest of the wave to be at ξ = 0, ζ(0) = 1”.

Next we define a further variable χ via the relation ζ2 = 1 + (η2 − 1) sin2 χ, and so we get

that

(χ′)2 =
β3

6
(1 − η1)

[
1 − k2 sin2 χ

]
,

where k2 = 1−η2
1−η1

. Note that 0 < k2 < 1. Then, for l = β3

6
(1 − η1), we obtain

F (χ; k) =

∫ χ(ξ)

0

dt√
1 − k2 sin2 t

=
√
l ξ. (3.9)
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The left-hand side of (3.9) is just the standard elliptic integral of the first kind and

thus from the definition of the Jacobi elliptic function y = sn(u; k) (1.21) it follows that

sinχ = sn(
√
l ξ; k). Hence

ζ = 1 + (η2 − 1)sn2 (
√
l ξ; k).

Therefore, since sn2u + cn2u = 1, we “arrive” to the so-called cnoidal wave solution

associated to equation (3.3)

ψ(ξ) = ψ(ξ; β1, β2, β3) = β2 + (β3 − β2)cn
2
[√β3 − β1

6
ξ; k

]
, (3.10)

where the βi’s satisfy (3.6) and

k2 =
β3 − β2

β3 − β1
.

Next, since cn2(·; k) has fundamental period 2K(k) then ψ has fundamental period Tψ

given by

Tψ ≡ 2
√

6√
β3 − β1

K(k). (3.11)

Now, we see that the period Tψ depends a priori on the wave velocity r. More precisely,

Tψ >

√
2π√
r0
.

In fact, we first express Tψ as a function of β2 and r0. Since for every β2 ∈ (0, 2r0) there

is a unique β3 ∈ (2r0, 3r0) such that (β2, β3) ∈ Ξ(r0), it follows that 2β3 = 3r0 − β2 +√
9r2

0 − 3β2
2 + 6r0β2. Hence by defining β1 ≡ 3r0 − β2 − β3 we obtain for

g(β2, r0) ≡
√

9r2
0 − 3β2

2 + 6r0β2, and k2(β2, r0) =
1

2
+

3(r0 − β2)

2g(β2, r0)
(3.12)

that g(β2, r0) = β3 − β1 and

Tψ(β2, r0) =
2
√

6√
g(β2, r0)

K(k(β2, r0)).

Then by fixing r0 > 0, we have Tψ(β2, r0) → +∞, as β2 → 0, and Tψ(β2, r0) →
√

2π/
√
r0,

as β2 → 2r0. Since the map β2 ∈ (0, 2r0) 7→ Tψ(β2, r0) is strictly decreasing (see proof of

Theorem 3.1 below) we deduce that Tψ >
√

2π/
√
r0.

The analysis above allows us to obtain a cnoidal wave solution for equation (3.3) with

an arbitrary fundamental period L. Indeed, for a wave velocity r > 4π2/L2 there is,

for r0 = r/2, a unique β2,0 ∈ (0, 2r0) such that Tψ(β2,0, r0) = L. Thus, for β3,0 such
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that (β2,0, β3,0) ∈ Ξ(r0), we have that the cnoidal wave ψ(·) = ψ(·; β1,0, β2,0, β3,0) with

β1,0 = 3r0 − β2,0 − β3,0, has fundamental period L and satisfies (3.3) with θ + γ = r.

We also note that the cnoidal wave ψ(·; β1, β2, β3) in (3.10) can be seen as a function

depending only on r and β2, ψr(·; β2(r)).

Next we show the existence of a smooth curve of cnoidal waves solutions for the equation

(3.3). In other words, we show that at least locally the choice of β2,0(r0) above depends

smoothly on r0.

Theorem 3.1. Let L > 0 be arbitrary but fixed. Consider r0 > 2π2

L2 and the unique

β2,0 ∈ (0, 2r0) such that

2
√

6 K(k(β2,0, r0))√
g(β2,0, r0)

= L.

Then,

(1) there exist an interval J(r0) around r0, an interval B(β2,0) around β2,0, and a

unique smooth function Γ : J(r0) 7→ B(β2,0), such that Γ(r0) = β2,0 and

2
√

6√
g(β2, λ)

K(k(β2, λ)) = L, (3.13)

where λ ∈ J(r0), β2 = Γ(λ), and k(β2, λ), g(β2, λ) are defined in (3.12). Moreover,

J(r0) = (2π2

L2 ,+∞).

(2) Let θ > 0. Then for γ ∈ (4π2

L2 − θ,+∞) and λ(γ) = (θ + γ)/2 the cnoidal wave

solution

ψγ(·) ≡ ψλ(γ)(·; β2(λ(γ)))

has fundamental period L and satisfies equation (3.3). Moreover, the mapping

γ ∈
(4π2

L2
− θ,+∞

)
7→ ψγ ∈ Hn

per([0, L])

is a smooth function.

Proof. We will apply the implicit function theorem to prove the results. First, we consider

the open set Ω = {(β2, λ) : λ > 2π2

L2 , β2 ∈ (0, 2λ) } ⊆ R2 and define Φ : Ω → R by

Φ(β2, λ) =
2
√

6√
g(β2, λ)

K(k(β2, λ)) − L (3.14)
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where g(β2, λ) and k2(β2, λ) are defined in (3.12). By hypotheses Φ(β2,0, r0) = 0. Now we

show that ∂Φ
∂β2

(β2,0, r0) < 0. In fact, by using the relations, 18λ2 = g2(2 − 2k2 + 2k4),

∂g

∂β2
=

3(λ− β2)

g
,

∂k

∂β2
= −9λ2

kg3

and the differential relation
dK

dk
=
E − k′2K

kk′2
,

where k′2 = 1 − k2, we have formally that,

∂Φ

∂β2

< 0 ⇔ −18λ2dK

dk
< g2(2k2 − 1)kK

⇔ 18λ2E > [18λ2 − k2(2k2 − 1)g2]k′
2
K

⇔ (2 − 2k2 + 2k4)E > (2 − 3k2 + k4)K. (3.15)

Next, since E +K is a strictly increasing function we have that

(2 − k2)E > 2(1 − k2)K, k ∈ (0, 1).

Moreover, from the definition of the complete elliptical integrals E and K it follows that

(k2 − 1)K ≦ (2k2 − 1)E, k ∈ (0, 1).

So we obtain from (3.15) that ∂Φ
∂β2

(β2, λ) < 0 for every (β2, λ) ∈ Ω.

Therefore, there is a unique smooth function, Γ, defined in a neighborhood J(r0) of

r0, such that Φ(Γ(λ), λ) = 0 for every λ ∈ J(r0). So, we get (3.13). Finally, since r0 was

arbitrarily chosen in the interval I = (2π2

L2 ,+∞), it follows that Γ can extend to I. This

completes the proof of the theorem. �

Corollary 3.2. Let Γ : J(r0) 7→ B(β2,0) be the map given by Theorem 3.1. Then,

β2(λ) ≡ Γ(λ) is a strictly decreasing function in J(r0). Moreover, the modulus function

k2(λ) =
1

2
+

3(λ− β2(λ))

2g(β2(λ), λ)
, (3.16)

where g was defined in (3.12), is a strictly increasing function.

Proof. From (the proof of) Theorem 3.1 we have Φ(Γ(λ), λ) = 0, then dΓ
dλ

= − ∂Φ/∂λ
∂Φ/∂β2

.

Hence, we only need to show that ∂Φ/∂λ < 0. In fact, from (3.12) and the relation
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kg3 dk
dλ

= 9λβ2 we have

∂Φ

∂λ
< 0 ⇔ 6λβ2

dK

dk
< gk(3λ+ β2)K ⇔ 6λβ2E < [gk2(3λ+ β2) + 6λβ2]k

′2K. (3.17)

Now, since gk2(3λ + β2) + 6λβ2 = g2/2 + g(3λ + β2)/2 implies 6λβ2 < g(3λ + β2)k
′2, it

follows from the inequality E < K and (3.17) that ∂Φ
∂λ
< 0.

Finally, from the definition of k and g we obtain

dk

dλ
=

9λ

kg3
(β2 − λβ ′

2) > 0.

This completes the proof. �

4. Spectral analysis

The study of the spectra of the following matrix differential operators LR and LI given

by

LR =

(
− d2

dx2 + (θ + γ) − ψ −φ
−φ − d2

dx2 + (α + 2σγ)

)
, (4.1)

and

LI =

(
− d2

dx2 + (θ + γ) + ψ −φ
−φ − d2

dx2 + (α+ 2σγ)

)
, (4.2)

where the pair (φ, ψ) is a solution of equation (3.2), is crucial for the stability and in-

stability analysis of the periodic traveling waves solutions found in the previous section.

In what follows, σ(L) will denote the spectrum of a linear operator L. It is well known

that it can be decomposed into the essential spectrum σess(L) and the discrete spectrum

σdisc(L), where σdisc(L) = σ(L) − σess(L) (see [26]). So, σdisc(L) consists of all isolated

eigenvalues of finite multiplicity, it means that the eigenspace (geometric) associated to

each eigenvalue is finite dimensional. We recall that in the case of L being self-adjoint the

algebraic multiplicity of an eigenvalue coincides with the dimension of the eigenspace.

In the analysis of the self-adjoint operator LR when (φ, ψ) = (−
√

2ψ, ψ), with ψ

being the cnoidal wave solution for (3.3) given by Theorem 3.1, the understanding of the

following periodic eigenvalue problem
{

Lcnζ ≡ (− d2

dx2 + (θ + γ) − 2ψ)ζ = λζ

ζ(0) = ζ(L), ζ ′(0) = ζ ′(L),
(4.3)

is necessary. The following theorem contains useful information regarding the operator

Lcn.
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Theorem 4.1. Let θ > 0, γ ∈ (4π2

L2 − θ,+∞) and ψ = ψγ be the cnoidal wave solution of

(3.3) given by Theorem 3.1. Then, the linear operator Lcn in (4.3) defined on H2
per([0, L])

has its first three eigenvalues simple, being the eigenvalue zero the second one with eigen-

function ψ′. Moreover, the remainder of the spectrum is constituted by a discrete set of

eigenvalues which are double.

Theorem 4.1 is a consequence of the Floquet theory (see [24]). For the sake of clearness

in the exposition we will list some basic facts of this theory.

From the theory of compact symmetric operators (4.3) determines that σ(Lcn) =

σdisc(Lcn) = {λn |n = 0, 1, 2, · · · } with λ0 ≦ λ1 ≦ λ2 ≦ · · · , where a double eigen-

value is counted twice and λn → ∞ as n → ∞. We denote by ζn the eigenfunction

associated to the eigenvalue λn. By the conditions ζ(0) = ζ(L), ζ ′(0) = ζ ′(L), ζn can be

extended to the whole of (−∞,∞) as a continuous differentiable function with period L.

From the Floquet theory, we know that the periodic eigenvalue problem (4.3) is related

to the following semi-periodic eigenvalue problem considered on [0, L]
{

Lcnξ = µξ

ξ(0) = −ξ(L), ξ′(0) = −ξ′(L),
(4.4)

which is also a self-adjoint problem and therefore its spectrum, σsm(Lcn), is given by

σsmdisc(Lcn) = {µn |n = 0, 1, 2, 3, · · · }, with µ0 ≦ µ1 ≦ µ2 ≦ · · ·, where double eigenvalues

are counted twice and µn → ∞ as n→ ∞. We denote by ξn the eigenfunction associated

to the eigenvalue µn. Then we have that the equation

Lcnf = γf (4.5)

has a solution of period L if and only if γ = λn, n = 0, 1, 2, . . . . Similarly, it has a solution

of period 2L if and only if γ = µn, n = 0, 1, 2, · · · . If all solutions of (4.5) are bounded

we say that they are stable; otherwise, we say that they are unstable. The Oscillation

Theorem (see [24]) guarantees that the distribution of the eigenvalues λi, µi, is as follows:

λ0 < µ0 ≦ µ1 < λ1 ≦ λ2 < µ2 ≦ µ3 < λ3 ≦ λ4 · · · . (4.6)

The intervals (λ0, µ0), (µ1, λ1), · · ·, are called intervals of stability. At the endpoints

of these intervals the solutions of (4.5) are, in general, unstable. This is true for γ = λ0

(λ0 is always a simple eigenvalue). The intervals, (−∞, λ0), (µ0, µ1), (λ1, λ2), (µ2, µ3), · · · ,
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are called intervals of instability, omitting however any interval which is absent as a

result of having a double eigenvalue. The interval of instability (−∞, λ0) will always be

present. We note that the absence of an instability interval means that there is a value of

γ for which all solutions of (4.5) have either period L or semi-period L. In other words,

coexistence of solutions of (4.5) with period L or period 2L occurs for that value of γ.

We end this brief review by describing how is determined the number of zeros of ζn

and ξn. Indeed,

(i) ζ0 has no zeros in [0, L].

(ii) ζ2n+1 and ζ2n+2 have exactly 2n+ 2 zeros in [0, L).

(iii) ξ2n and ξ2n+1 have exactly 2n+ 1 zeros in [0, L).

(4.7)

Proof of Theorem 4.1. Since Lcnψ
′ = 0 and ψ′ has 2 zeros in [0, L) then the eigenvalue 0

is either λ1 or λ2. We will show that 0 = λ1 < λ2 and thus zero is simple. In fact, for

Tηζ(x) ≡ ζ(ηx) with η2 = 6/(β3 − β1) we have for Λ ≡ Tηζ that






d2

dx2
Λ + [ρ− 12k2 sn2(x)]Λ = 0

Λ(0) = Λ(2K), Λ′(0) = Λ′(2K),
(4.8)

where for r = γ + θ,

ρ = −6[r − λ− 2β3]

(β3 − β1)
.

The second order differential equation in (4.8) is called the Jacobian form of Lamé’s equa-

tion. Now, from Floquet theory it follows that (4.8) has exactly 4 intervals of instability

which are (−∞, ρ0), (µ′
0, µ

′
1), (ρ1, ρ2), (µ

′
2, µ

′
3) (where µ′

i, i ≧ 0, are the eigenvalues as-

sociated to the semi-periodic problem determined by Lamé’s equation). Therefore, the

eigenvalues ρ0, ρ1, ρ2 are simple and the rest of eigenvalues ρ3 ≦ ρ4 < ρ5 ≦ ρ6 < · · · satisfy

that ρ3 = ρ4, ρ5 = ρ6, · · · , that is, they are double eigenvalues.

For the sake of clearness in our exposition and further study of instability in section 5,

we will explicitly determine these eigenvalues and its corresponding eigenfunctions. We

start by noting that ρ1 = 4 + 4k2 is an eigenvalue to (4.8) with eigenfunction Λ1(x) =

cn(x) sn(x) dn(x) = β · Tηψ′(x) which implies that λ = 0 is a simple eigenvalue to (4.3)
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with eigenfunction ψ′. Now from Ince ([18]) we have that the Lamé polynomials,

Λ0(x) = dn(x)[1 − (1 + 2k2 −
√

1 − k2 + 4k4 ) sn2(x)],

Λ2(x) = dn(x)[1 − (1 + 2k2 +
√

1 − k2 + 4k4 ) sn2(x)]
(4.9)

with period 2K(k) are the associated eigenfunctions to the others two eigenvalues ρ0, ρ2

given by

ρ0 = 2 + 5k2 − 2
√

1 − k2 + 4k4, ρ2 = 2 + 5k2 + 2
√

1 − k2 + 4k4. (4.10)

Since Λ0 has no zeros in [0, 2K] and Λ2 has exactly 2 zeros in [0, 2K), it follows that Λ0 is

the eigenfunction associated to ρ0 which will be the first eigenvalue to (4.8). Since ρ0 < ρ1

for every k2 ∈ (0, 1), we obtain from (3.12) the relation −β1(1 + k2) = (2 − k2)β3 − 3r/2

and so

6λ0 = ρ0(β3 − β1) + 12(
r

2
− β3) = 3

β3 − r
2

k2 + 1
ρ0 + 12(

r

2
− β3) < 0. (4.11)

Therefore λ0 is the first negative eigenvalue to Lcn with eigenfunction ζ0(x) = Λ0(
1
η
x).

Now, since ρ1 < ρ2 for every k2 ∈ (0, 1), we obtain that

6λ2 = 3
β3 − r

2

k2 + 1
ρ2 + 12(

r

2
− β3) > 0. (4.12)

Hence λ2 is the third eigenvalue to Lcn with eigenfunction ζ2(x) = Λ2(
1
η
x).

Next, we can see that

µ′

0 = 5 + 2k2 − 2
√

4 − k2 + k4, µ′

1 = 5 + 5k2 − 2
√

4 − 7k2 + 4k4

are the first two eigenvalues to Lamé’s equation in the semi-periodic case, with associated

eigenfunctions given by

ξ0,sm(x) = cn(x)[1 − (2 + k2 −
√

4 − k2 + k4 ) sn2(x)]

ξ1,sm(x) = 3sn(x) − (2 + 2k2 −
√

4 − 7k2 + 4k4 ) sn3(x) (4.13)

respectively. Since µ′
0 < µ′

1 < 4k2 + 4, the equality

µ′

i = −6
(r − µi − 2β3)

β3 − β1
(4.14)

implies that the first three associated instability intervals to Lcn are (−∞, λ0), (µ0, µ1),

(0, λ2). Finally, since the functions ξ2,sm(x) = cn(x)[1 − (2 + k2 +
√

4 − k2 + k4 ) sn2(x)]

and ξ3,sm(x) = 3sn(x)− (2+2k2 +
√

4 − 7k2 + 4k4 ) sn3(x) have three zeros in [0, 2K) and

are eigenfunctions of Lamé’s equation with eigenvalues µ′
2 = 5+2k2 +2

√
4 − k2 + k4 and
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µ′
3 = 5 + 5k2 + 2

√
4 − 7k2 + 4k4, it follows from (4.14) that the last instability interval of

Lcn is (µ2, µ3). This finishes the proof of Theorem 4.1. �

The next result will be necessary in the study of the nonlinear instability of the periodic

travelling waves (eiγtφ, e2iγtψ), (φ, ψ) = (−
√

2ψγ , ψγ), by perturbations with twice the

fundamental period.

Theorem 4.2. Let θ > 0, γ ∈ (4π2

L2 − θ,+∞) and ψ = ψγ be the cnoidal wave solution

of (3.3) given by Theorem 3.1 with fundamental period L. Then, the linear operator Lcn

in (4.3) defined on H2
per([0, 2L]) has its first four eigenvalues simple, being the eigenvalue

zero the fourth one with eigenfunction ψ′. Moreover, if Φ1,Φ2 denote the eigenfunctions

associated to the second and third eigenvalues then Φi ⊥ ψ.

Proof. Since ψ′ has 4 zeros in [0, 2L) and Lcnψ
′ = 0 on [0, 2L], it follows from (4.7) and

relation (4.12) that zero is the fourth eigenvalue for Lcn on [0, 2L] and it is simple.

On the other hand, from the proof of Theorem 4.1 we have that the first three eigen-

values for Lcn in H2
per([0, 2L]) are λ0, µ0, µ1. Here λ0 is determined by the relation (4.11)

with associated eigenfunction

Φ0(x) = dn(x/η)[1 − (1 + 2k2 −
√

1 − k2 + 4k4 ) sn2(x/η)], (4.15)

η2 = 6/(β3 − β1). Meanwhile, µ0 and µ1 are determined by the relation (4.14) with

eigenfunctions

Φ1(x) = cn(x/η)[1 − (2 + k2 −
√

4 − k2 + k4 ) sn2(x/η)],

Φ2(x) = 3 sn(x/η) − (2 + 2k2 −
√

4 − 7k2 + 4k4 ) sn3(x/η),
(4.16)

respectively.

Using the relation
∫ 4K

0
cn2k+1(x) dx = 0 for every k ≧ 0, and the fact that sn2k+1

and sn2k+1 cn2 are odd periodic functions with period 4K, we deduce that Φ1 and Φ2 are

orthogonal to ψ. This finishes the proof of the theorem. �

Now we are ready to describe the spectra of the self-adjoint operator LR and LI when

(φ, ψ) = (−
√

2ψ, ψ) and ψ = ψγ is given by Theorem 3.1.

Theorem 4.3. Let θ > 0, γ ∈ (4π2

L2 − θ,+∞) and ψ = ψγ be the cnoidal wave solution

of (3.3) given by Theorem 3.1 with fundamental period L. Then, for α, σ > 0 such that

α + 2σγ = θ + γ we have:
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(1) The linear operator LR in (4.1) defined in L2
per([0, L]) with domain H2

per([0, L])

has exactly one negative eigenvalue which is simple, zero is an eigenvalue simple

with eigenfunction (2ψ′/3,
√

2ψ′/3). Moreover, the remainder of the spectrum is

constituted by a discrete set of eigenvalue.

(2) The linear operator LI in (4.2) defined in L2
per([0, L]) with domain H2

per([0, L])

has no negative spectrum at all, zero is an eigenvalue simple with eigenfunction

(
√

2ψ/2, ψ). Moreover, the remainder of the spectrum is constituted by a discrete

set of eigenvalue.

Proof. The main point of the proof is to show that LR and LI can be diagonalized under

a similarity transformation. In fact, consider

AR =

(
1

√
2/2

−
√

2/3 2/3

)
,

then we have ARLRA
−1
R = LDR, where

LDR =

(
− d2

dx2 + (θ + γ) − 2ψ 0

0 − d2

dx2 + (θ + γ) + ψ

)
.

Note that since ψ is positive the operator LP ≡ − d2

dx2 +(θ+γ)+ψ is strictly positive and

σ(LP ) ≧ θ+γ. Now, let ~f = (f, g)t be such that LDR
~f = ~0, then Lcnf = 0 and LP g = 0.

Hence g ≡ 0 and from Theorem 4.1 f = βψ′. Then the kernel of LDR is generated by

(ψ′, 0)t. Hence the kernel of LR is generated by (2ψ′/3,
√

2ψ′/3)t.

Now let λ < 0 and ~f = (f, g)t such that LDR
~f = λ~f , then g ≡ 0 and Lcnf = λf .

Thus, from Theorem 4.1 we have that λ = λ0 (see (4.11)) and f = βζ0. Therefore LR has

exactly a negative eigenvalue which is simple with eigenfunction (2ζ0/3,
√

2ζ0/3)t.

Next we analyze LI . Let

AI =

(
1 −

√
2/2√

2/3 2/3

)
,

then we have AILIA
−1
I = LDI , where

LDI =

(
− d2

dx2 + (θ + γ) + 2ψ 0

0 − d2

dx2 + (θ + γ) − ψ

)
.

Since the top left entry in LDI is a strictly positive operator the basic part of its spectrum

depends exclusively on L = − d2

dx2 + (θ + γ) − ψ. Since Lψ = 0 and ψ > 0 it follows from
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(4.7) that zero is the first eigenvalue for L and it is simple. Then LI has no negative

eigenvalues and the kernel is generated by (
√

2ψ/2, ψ)t.

Finally, Weyl’s essential spectral theorem implies that the remainders of the spectrum

of LR and LI are discrete. This finishes the proof. �

5. Existence of other solutions

In section 3, we established the existence of periodic pulses for the system (3.2) of the

form φγ =
√

2 ψγ provided that for θ > 0 fixed we have the conditions γ > 4π2

L2 − θ and

α + 2σγ = θ + γ, for α, σ > 0. Here, the map γ 7→ ψγ is a smooth curve of cnoidal

waves. Next, we show the existence of other family of periodic traveling wave solutions

(φ, ψ) for (3.2) but depending on the parameter α. So, we first choose an arbitrary pair

(α0, σ) such that α0 + 2σγ = θ + γ and we define G : R ×H2
per,e([0, L]) ×H2

per,e([0, L]) 7→
L2
per,e([0, L]) × L2

per,e([0, L]) as

G(α, φ, ψ) = (−φ′′ + (θ + γ)φ− φψ,−ψ′′ + (α + 2σγ)ψ − φ2/2), (5.1)

where Hs
per,e([0, L]) denotes the set of even, L-periodic-Sobolev distributions of order s ∈

R. So, by Theorem 3.1 we have that G(α0,
√

2 ψγ, ψγ) = (0, 0). Moreover, it is not

difficult to see that the Fréchet derivative G ≡ ∂G
∂(φ,ψ)

(α0,
√

2 ψγ , ψγ) = LR, with LR

defined in (4.1) with α changed by α0. Next, we will prove that G is a bijection from

H2
per,e×H2

per,e → L2
per,e×L2

per,e. We start with the injectivity. From Theorem 4.3,Ker(G) =

[(2ψ′
γ/3,

√
2ψ′

γ/3)t]. Since ψ′
γ is an odd function it follows immediately that Ker(G) =

{(0, 0)t} over H2
per,e×H2

per,e. Now, we prove that G is a surjective map onto L2
per,e×L2

per,e.

Indeed, from Weyl’s essential theorem it is easy to see that the essential spectrum of G

is empty. Hence, σ(G) = σdisc(G). Therefore 0 ∈ ρ(G), where ρ is used to denote the

resolvent set of an operator. Hence G is surjective.

Finally, since G is a C1-map on an open neighborhood of the point (α0,
√

2 ψγ , ψγ), it

follows from the Implicit Function Theorem that there exist δ > 0, and a unique C1-map

α ∈ (α0 − δ, α0 + δ) 7→ Φα = (φα, ψα)

such that G(α,Φα) = (0, 0). So, we obtain that Φα is a solution of (3.2). Moreover, since

G(α, φ, ψ) depends analytically on α, the map α 7→ Φα is analytic as well.
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6. Nonlinear Stability

In this section we will study the properties of stability and instability of the periodic

traveling wave found in Section 3. The framework for stability will be that set by Grillakis,

Shatah and Strauss in [17]. We start by rewriting system (1.1) as a real Hamiltonian

system. Let w = P + iQ, v = R+ iS, then H in (1.12) can be rewritten as

H(P,R,Q, S) =
1

2

∫ {
r[(P ′)2 + (Q′)2] + s[(R′)2 + (S ′)2] + θ(P 2 +Q2)

+ α(R2 + S2) − 2PQS − P 2R+Q2R
}
dx

(6.1)

and F in (1.11) as

F(P,R,Q, S) =
1

2

∫
P 2 +Q2 + 2σ(R2 + S2) dx. (6.2)

Therefore, system (1.1) for u = (P,R,Q, S)t has the form

∂u

∂t
= JH′(u(t)) (6.3)

where J = (aij) is the skew-symmetric linear operator defined as a13 = 1, a24 = 1/σ, and

aij = 0 for (i, j) 6= (1, 3), (2, 4), (3, 1), (4, 2).

The system (1.1) has two basic symmetries:

1. Translation in x: if (w(x, t), v(x, t)) is solution then (w(x + x0, t), v(x + x0, t))

is also a solution for every x0 ∈ R. This transformation will be denoted by the

one-parameter group of unitary operators Ttr(x0).

2. Phase (or rotational): if (w(x, t), v(x, t)) is solution then (eisw(x, t), e2isv(x, t))

is also a solution for every s ∈ R. This transformation will be denoted by the

one-parameter group of unitary operators Tp(s).

The differential of these groups (the infinitesimal generators) are T ′
tr(0) = ∂/∂x and

T ′
p(0) = i, respectively.

The notion of stability or instability we will use is as follows:

Definition 6.1. Let X = H1
per([0, L])×H1

per([0, L]). A travelling wave solution for (1.1),

Ψ(x, t) = (eiγtφ(x), e2iγtψ(x)), is orbitally stable in X if for every ǫ > 0 there exists a

δ > 0, such that if z0 ∈ X and ‖z0 − (φ, ψ)‖X < δ, then the solution z(t) = (w(t), v(t)) of
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(1.1) with z(0) = z0 exists for all t and

sup
t∈R

inf
s, r∈R

‖z(t) − Tp(s)Ttr(r)(φ, ψ)‖X < ǫ.

Otherwise, we said that Ψ is X-unstable.

Observe that (φ, ψ) is a solution of (3.2) if and only if

H′(φ, ψ, 0, 0) + γF′(φ, ψ, 0, 0) = 0. (6.4)

Then, from Theorem 3.1 we have the existence of a smooth curve de cnoidal wave solutions

γ 7→ (φγ, ψγ) = (
√

2ψγ , ψγ) which are critical points of H + γF. Next, we define

Lγ = H′′(φ, ψ, 0, 0) + γF′′(φ, ψ, 0, 0) =

(
LR 0
0 LI

)
, (6.5)

where LR,LI are as in (4.1), (4.2), respectively. From Theorem 4.3 and its proof we have

that :

a) For ~f = (2ψ′/3,
√

2ψ′/3, 0, 0) and ~g = (0, 0,
√

2ψ/2, ψ), the set Z = {k1
~f + k2~g :

k1, k2 ∈ R} is the kernel of Lγ .

b) For ~h = (2ζ0/3,
√

2ζ0/3, 0, 0) we have that Lγ has exactly a negative eigenvalue λ0

and N = {k~h : k ∈ R} is the negative eigenspace of Lγ .

c) Applying Weyl’s essential spectral theorem we deduce the existence of a closed

subspace, P , such that < Lγu, u >≧ η‖u‖2
X, for u ∈ P , with η > 0.

From a) – c) we obtain the following orthogonal decomposition for XR = [H1
per([0, L])]4,

XR = N ⊕ Z ⊕ P. (6.6)

Let θ > 0, γ ∈ Ω = (4π2

L2 − θ,+∞), and α, σ > 0 such that α + 2σγ = θ + γ. Denoting

~ψγ = (
√

2ψγ , ψγ, 0, 0), where ψγ is given by Theorem 3.1, we define d : Ω 7→ R by

d(γ) = H(~ψγ) + γ F(~ψγ). (6.7)

The stability result for (1.1) reads as follows.

Theorem 6.2 (Stability). Let θ > 0, γ ∈ (4π2

L2 − θ,+∞), and α, σ > 0 such that

α + 2σγ = θ + γ. Then for ψγ given by Theorem 3.1 we have that the periodic travelling

waves Ψγ(x, t) = (
√

2eiγtψγ(x), e
2iγtψγ(x)) are orbitally stable.
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Proof. Since ~ψγ satisfies (6.4), XR has the decomposition in (6.6) and the initial value

problem associated to system (1.1) is globally well-posed in X, the proof of the theorem

follows from the abstract Stability Theorem in [17] provided that the number of negative

eigenvalues of Lγ, n(Lγ), be equal to the number of positive eigenvalues of d′′, p(d′′),

respectively. Since Lγ has exactly one negative eigenvalue which is simple it will be

sufficient to show that d′′(γ) > 0. Indeed, from (6.4) we have that d′(γ) = F(~ψγ). Then

from (3.3) and ψγ = ψλ(γ) with λ(γ) = (θ + γ)/2, we obtain

d′(γ) = 2(1 + σ)λ(γ)

∫ L

0

ψλ(γ)(x) dx ≡ 2(1 + σ)H(λ(γ)).

Thus d′′(γ) > 0 if and only if H(λ) = λ
∫ L

0
ψλ(x) dx is a strictly increasing function for

λ ∈ (2π2/L2,+∞).

To prove the last statement we start by obtaining an explicit expression for G(λ) =
∫ L

0
ψλ(x) dx. From (3.10), (3.13) and [7] we obtain for k = k(λ) (see (3.16)) that

∫ L

0

ψλ(x) dx = β2L+ 2
√

6
√
β3 − β1[E − k′

2
K] = β2L+ 24

K

L
[E − k′

2
K].

Next, we express β2 as a function of k and K. First, we show that 18λ2 = 2g2(1−k2 +k4).

Indeed, from (3.12) we have g(2k2−1) = 3(λ−β2) and g2 = 9λ2−3β2
2 +6λβ2. Therefore,

g2(2k2 − 1)2 + 3g2 = 36λ2 which proves our affirmation. Now using (3.12) and (3.13) we

obtain

β2 = g
(λ
g
− 2k2 − 1

3

)
=

8K2

L2
[
√

1 − k2 + k4 + 1 − 2k2].

Therefore,

G(λ) =
8K2

L
[
√

1 − k2 + k4 + k2 − 2] +
24

L
KE ≡ J0(k(λ)).

Since J0 is a strictly increasing function of the parameter k and dk
dλ

(λ) > 0 by Corollary

3.2, we have then that

d

dλ
H(λ) = G(λ) + λ

dJ0(k)

dk

dk

dλ
> 0.

This completes the proof of the theorem. �

Remark 6.3. The periodic solutions found in section 5 are also stable. Indeed, Theorem

4.3 and the classical perturbation theory for closed operators (see [21] section IV-2, [1],

[2]) allows us to show that the operators in (4.1) and (4.2) with (φ, ψ) = (φα, ψα) have
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the same spectrum that the ones for α = α0, for α closed to α0. Similarly, we can deduce

from Theorem 6.2 that the function d(γ) is strictly convex for α closed to α0.

7. Nonlinear Instability

In this section we are interested in studying the instability properties of the periodic

travelling wave solutions Ψγ(x, t) = (
√

2eiγtψγ(x), e
2iγtψγ(x)) with ψγ being the cnoidal

wave solutions with fundamental period L found in Theorem 3.1. More precisely, we will

prove that in the “world” of the periodic functions of period 2L, Ψγ is unstable by the

flow generated by the equation (1.1).

The study of nonlinear instability for periodic traveling waves of equation (1.1) will be

based in the analysis of instability of the zero solution for the linearization of (1.1) around

the orbit {Tp(γt)(φ, ψ, 0, 0) : t ∈ R}. The vector (φ, ψ, 0, 0) satisfies (6.4). We note that

the transformation Tp in terms of (P,Q,R, S) is

Tp(s)





P
R
Q
S



 =





cos(s) 0 − sin(s) 0
0 cos(2s) 0 − sin(2s)

sin(s) 0 cos(s) 0
0 sin(2s) 0 cos(2s)









P
R
Q
S



 .

Then the differential of Tp (the infinitesimal generator) is the skew-symmetric linear

operator defined as T ′
p(0) = (aij) with a13 = −1, a24 = −2, and aij = 0 for (i, j) 6=

(1, 3), (2, 4), (3, 1), (4, 2). To obtain the linearization of (1.1) we proceed as follows: For

v = (U, V, T,W )t and Φ = (φ, ψ, 0, 0)t define

v = Tp(−γt)u− Φ.

Then, using the relations Tp(s)T
′
p(0) = T ′

p(0)Tp(s), Tp(s)Tp(−s) = I, Tp(−s)JTp(s) = J ,

H′(Tp(s)u) = Tp(s)H
′(u), J−1T ′

p(0)u = −F′(u), and the equalities (6.3) and (6.4) we

obtain
dv

dt
= J [H′(v + Φ) + γF′(v + Φ))

= J [H′′(Φ)v + γF′′(Φ)v + H′(Φ) + γF′(Φ) +O(‖v‖2)]

= JLγv + J O(‖v‖2) = JLγv +O(‖v‖2)

(7.1)

where in the last inequality we have used that J is a bounded operator.

It is well known that if JLγ has a finitely many eigenvalues with strictly positive real

part then the zero solution of (7.1) is unstable (see appendix of [14] for a proof of this
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or Theorem 6.1 in [17]). Thus, we are obtaining the nonlinear instability of the orbit

{Tp(γt)Φ : t ∈ R} from an associated linear instability result.

We note that from Weyl’s essential spectrum [26], we have that the essential spectrum

of JLγ is empty. Moreover, from Lemma 5.6 and Theorem 5.8 in [17] we have that

the spectrum of JLγ is symmetric with respect to both the real and imaginary axes.

Furthermore, from (6.6) the number of eigenvalues of JLγ in the half-closed quarter

plane {λ ∈ C : ℜλ < 0,ℑλ ≧ 0} is at most n(Lγ), the number of negative eigenvalues of

Lγ .

Several criteria to show the instability of the zero solution for a general equation of the

form (7.1) have been established, see for instance the works of Jones [19], Grillakis [14],

[15], and Grillakis, Shatah, Strauss [17]. We will use the general criterion shown in [15].

Before establishing our results, we would like to comment that the Instability Theorem

established in [17] cannot be applied in our situation. In fact, if n(Lγ) denotes the number

of negative eigenvalues of Lγ and p(d′′) denotes the number of positive eigenvalues of d′′,

then the criterion states that if n(Lγ) − p(d′′) is odd, then the periodic traveling wave is

unstable. In our case, it is clear that d′′(γ) > 0. From the last section we know that n(Lγ)

depends essentially on those of the operator LR in (4.1). Thus, it is sufficient to analyze

the equivalent operator LDR. From the proof of Theorem 4.1 we have that the operator

Lcn in (4.3) on [0, 2L] has exactly three negatives eigenvalues λ0, µ0, µ1 given by (4.11)–

(4.14) with associated 2L-periodic eigenfunction Φ0,Φ1,Φ2 in (4.15)–(4.16), respectively.

Hence n(Lγ) − p(d′′) = 3 − 1 = 2, which is even.

Theorem 7.1 (Instability). Let θ > 0, γ ∈ (4π2

L2 − θ,+∞), and α, σ > 0 such that

α + 2σγ = θ + γ. Then for ψγ given by Theorem 3.1 we have that the orbit

{Tp(γt)(
√

2ψγ(x), ψγ(x)) : t ∈ R}
is H1

per([0, 2L]) ×H1
per([0, 2L])-unstable by the flow of equation (1.1).

Proof. The idea of the proof is to apply Theorem 2.6 in [15]. This will allow us to prove

that JLγ has exactly two pairs of real non-zero eigenvalues. Then we will obtain the

nonlinear instability of the zero solution for the equation (7.1) which will imply our claim.

The functional-analytic approach given in [15] start by writing

Y ≡ [ker(LR) ∪ ker(LI)]
⊥ = [(2ψ′/3,

√
2ψ′/3), (

√
2ψ/2, ψ)]⊥,
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where in the last equality we have used Theorem 4.3. Let us denote by L̂R the restriction

of LR to Y and by L̂−1
I the restriction of L−1

I to Y , then Grillakis’s theorem guarantees

that JLγ has exactly

max {n(L̂R), n(L̂−1
I )} − d(C(L̂R) ∩ C(L̂−1

I ))

± pairs of real eigenvalues. Here C(L) = {y ∈ Y :< Ly, y >< 0} denotes the negative

cone of the operator L, and d(C(L)) denotes the dimension of the maximal subspace of

Y that is contained in C(L).

We first prove that n(L̂R) = 2. Indeed, note that if y ∈ Y ∩D(LR), y 6= 0, and L̂Ry =

λy for λ < 0, then λ must be a negative eigenvalue of LR and so n(L̂R) ≦ n(LR) = 3,

where in the last equality we used Theorem 4.2. Therefore, the possible eigenvalues of

L̂R are λ0, µ0, µ1, determined in the proof of Theorem 4.1 with associated eigenfunctions

~Φ0 = (2Φ0/3,
√

2Φ0/3), ~Φ1 = (2Φ1/3,
√

2Φ1/3), ~Φ2 = (2Φ2/3,
√

2Φ2/3),

respectively. Φi are given by (4.15) and (4.16). Next we will see which ~Φi belongs to Y .

It is immediate that ~Φ0 /∈ Y since
∫

Φ0ψ dx > 0. By Theorem 4.2, we have that Φ1,Φ2

are orthogonal to ψ. Therefore, µ0, µ1 are exactly the negative eigenvalues for L̂R.

Since LI is a strictly positive operator on Y it follows immediately that n(L̂−1
I ) = 0

and C(L̂−1
I ) = ∅. Therefore, JLγ has two pairs of real eigenvalues. This completes the

proof of the theorem. �
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