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1 Instituto de matemática Pura e Aplicada - IMPA, Estrada Dona Castorina 110,
Rio de Janeiro, 22460-320, Brazil.

2 Department of Mathematical Sciences, Worcester Polytechnic Institute, 100
Institute Rd, Worcester, MA 01609, USA.

Summary. We consider an elliptic optimal control problem in two dimensions, in
which the control variable corresponds to the Neumann data on a boundary segment,
and where the performance functional is regularized to ensure that the problem is well
posed. A finite element discretization of this control problem yields a saddle point
linear system, which can be reduced to a symmetric positive definite Hessian system
for determining the control variables. We formulate a robust preconditioner for this
reduced Hessian system, as a matrix product involving the discrete Neumann to
Dirichlet map and a mass matrix, and show that it yields a condition number bound
which is uniform with respect to the mesh size and regularization parameters. On
a uniform grid, this preconditioner can be implemented using a fast sine transform.
Numerical tests verify the theoretical bounds.

Key words: Optimal control, elliptic Neumann problem, fast sine transform,
saddle point problem, regularization, preconditioners.

1 Introduction

Elliptic control problems arise in various engineering applications [Lio81]. We
consider a problem in which the “control” variable u(.) corresponds to the
Neumann data on a boundary segment, and it must be chosen so that the
solution y(.) to the elliptic equation with Neumann data u(.) closely matches
a specified “target” function ŷ(.). To determine the “optimal” control, we
employ a performance functional which measures a square norm error between
ŷ(.) and the actual solution y(.), and the control variable is sought so that it
minimizes the performance functional [BG05, HN06, MSE07, Lio81]. However,
this results in an ill-posed constrained minimization problem, which can be
regularized by adding a small Tikhonov regularization term to the performance
functional. We discretize the regularized optimal control problem using a finite
element method, and this yields a saddle point system [BG05, HA01, PBC06].
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In this paper, we formulate a robust preconditioner for the symmetric
positive definite Hessian system for the control variables, obtained by block
elimination of the saddle point system. In § 2, we formulate the elliptic optimal
control problem and its discretization. In § 3, we derive the Hessian system
and formulate our preconditioner as a symmetric matrix product involving
the discrete Neumann to Dirichlet map and a mass matrix. We show that it
yields a condition number bound that is independent of the mesh size and the
regularization parameters. On a uniform grid, we describe a fast sine transform
(FST) implementation of it. Numerical results are presented in § 4.

2 Optimal Control Problem

Let Ω ⊂ R2 be a polygonal domain and let Γ be an edge of its boundary ∂Ω.
We consider the problem of determining a Neumann control data u(·) on Γ
such that the solution y(·) to the following problem with forcing term f(·):

−∆y(x) = f(x), in Ω
∂y(x)

∂n = u(x), on Γ
y(x) = 0, on ∂Ω\Γ

(1)

minimizes the following performance functional J(y, u):

J(y, u) ≡ 1
2

(
‖y − ŷ‖2

L2(Ω) + α1 ‖u‖2
L2(Γ ) + α2 ‖u‖2

H−1/2(Γ )

)
, (2)

where ŷ(·) ∈ L2(Ω) is a given target, and α1, α2 ≥ 0 denote regularization
parameters. Later in the paper we also consider the case where ‖y − ŷ‖L2(Ω)

in (2) is replaced by ‖y − ŷ‖L2(Γ ). The term ‖u‖H−1/2(Γ ) denotes the dual

Sobolev norm associated with H
1/2
00 (Γ ). We let H1

D(Ω) denote the subspace
of H1(Ω) consisting of functions vanishing on D ≡ (∂Ω \ Γ ).

To obtain a weak formulation of the minimization of (2) within set (1),
we employ the function space H1

D(Ω) for y(·) and H−1/2(Γ ) for u(·). Given
f ∈ L2(Ω), define the constraint set Vf ⊂ V ≡ H1

D(Ω)×H−1/2(Γ ):

Vf ≡
{
(y, u) ∈ V : A(y, w) = (f, w) + < u,w >, ∀w ∈ H1

D(Ω)
}
, (3)

where the forms are defined by:
A(y, w) ≡

∫
Ω
∇y · ∇w dx, for y, w ∈ H1

D(Ω)
(f, w) ≡

∫
Ω
f(x)w(x) dx, for w ∈ H1

D(Ω)

< u,w > ≡
∫

Γ
u(x)w(x) dsx, for u ∈ H−1/2(Γ ), w ∈ H1/2

00 (Γ ).

(4)

The constrained minimization problem then seeks (y∗, u∗) ∈ Vf satisfying:

J(y∗, u∗) = min J(y, u).
(y, u) ∈ Vf

(5)
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To obtain a saddle point formulation of (5), introduce p(·) ∈ H1
D(Ω) as a

Lagrange multiplier function to enforce the constraints. Define the following
Lagrangian functional L(·, ·, ·):

L(y, u, p) ≡ J(y, u) + (A(y, p)− (f, p) − < u, p >) , (6)

for (y, u, p) ∈ H1
D(Ω)×H−1/2(Γ )×H1

D(Ω). Then, the constrained minimum
(y∗, u∗) of J(., .) can be obtained from the saddle point (y∗, u∗, p∗) of L(·, ·, ·),
where (y∗, u∗, p∗) ∈ H1

D(Ω)×H−1/2(Γ )×H1
D(Ω) satisfies:

sup
q
L(y∗, u∗, q) = L(y∗, u∗, p∗) = inf

(y,u)
L(y, u, p∗). (7)

For a discussion on the wellposedness of problem (7), see [MSE07, Lio81].
To obtain a finite element discretization of (5), choose a quasi-uniform

triangulation τh(Ω) ofΩ. Let Vh(Ω) ⊂ H1
D(Ω) denote the P1-conforming finite

element space associated with the triangulation τh(Ω), and let Vh(Γ ) ⊂ L2(Γ )
denote its restriction to Γ . A finite element discretization of (5) will seek
(y∗h, u

∗
h) ∈ Vh(Ω)× Vh(Γ ) such that:

J(y∗h, u
∗
h) = min J(yh, uh)

(yh, uh) ∈ Vh,f

(8)

where the discrete constraint space Vh,f ⊂ Vh ≡ Vh(Ω)×Vh(Γ ) is defined by:

Vh,f = {(yh, uh) ∈ Vh : A(yh, wh) = (f, wh) + < uh, wh >, ∀wh ∈ Vh(Ω)} .

Let ph ∈ Vh(Ω) denote discrete Lagrange multiplier variables, and let
{φ1(x), . . . , φn(x)} and {ψ1(x), . . . , ψm(x)} denote the standard nodal basis
functions for Vh(Ω) and Vh(Γ ), respectively. Expanding yh, uh and ph with
respect to its finite element basis, yields:

yh(x) =
n∑

i=1

yi φi(x), uh(x) =
m∑

j=1

ui ψi(x), ph(x) =
n∑

l=1

pl φl(x), (9)

and seeking the discrete saddle point of L(·, ·, ·), yields the linear system:MΩ 0 AT

0 G BT

A B 0


y

u
p

 =

 f1
f2
f3

 , (10)

where the sub-matrices MΩ , A and Q (to be used later), are defined by:
(MΩ)ij ≡

∫
Ω
φi(x)φj(x) dx, for 1 ≤ i , j ≤ n

(A)ij ≡
∫

Ω
∇φi(x) · ∇φj(x) dx, for 1 ≤ i , j ≤ n

(Q)ij ≡
∫

Γ
ψi(x)ψj(x) dsx, for 1 ≤ i , j ≤ m,

(11)
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and the forcing vectors are defined by (f1)i =
∫

Ω
ŷ(x)φi(x) dx, for 1 ≤ i ≤ n

with f2 = 0, and (f3)i =
∫

Ω
f(x)φi(x) dx for 1 ≤ i ≤ n. Matrix MΩ of

dimension n corresponds to a mass matrix on Ω, and matrix A to the stiffness
matrix. Matrix Q of dimension m corresponds to a lower dimensional mass
matrix on Γ . Matrix B will be defined in terms of Q, based on an ordering
of nodal unknowns in y and p with nodes in the interior of Ω ordered prior
to the nodes on Γ . Denote such block partitioned vectors as y =

(
yT

I ,y
T
B

)T

and p =
(
pT

I ,p
T
B

)T , and define B of dimension n×m as BT =
[
0 QT

]
, and

define matrix G of dimension m, representing the regularizing terms as:

G ≡ α1Q+ α2

(
BTA−1B

)
. (12)

3 Preconditioned Hessian System

The algorithm we shall consider for solving (10) will be based on the solution
of the following Hessian system for the discrete control u. It is the Schur
complement system obtained by block elimination of y and p in system (10):(

G+BTA−TMΩA
−1B

)
u = f2 −BTA−T f1 +BTA−TMΩA

−1f3. (13)

The Hessian matrix H ≡
(
G+BTA−TMΩA

−1B
)

is symmetric and positive
definite of dimensionm, and system (13) can be solved using a PCG algorithm.
Each matrix vector product with G+BTA−TMΩA

−1B will require the action
of A−1 twice per iteration (this can be computed iteratively, resulting in a
double iteration). Once u has been determined, we obtain y = A−1 (f3 −Bu)
and p = A−T

(
f1 −MΩA

−1f3 +MΩA
−1Bu

)
.

The task of finding an effective preconditioner for the Hessian matrix H is
complicated by the presence of the parameters α1 ≥ 0 and α2 ≥ 0. As noted in
[MSE07], when α1 or α2 is large (or equivalently, when λmin(G) is sufficiently
large), then G is spectrally equivalent to H and therefore G will be an effective
preconditioner for H, while when both α1 and α2 are small (or equivalently,
when λmax(G) is sufficiently small), then the matrix (BTA−TMΩA

−1B) will
be an effective preconditioner for H. For intermediate values of αi, however,
neither limiting approximation may be effective. In the special case when we
replace ‖y − ŷ‖L2(Ω) in (2) by ‖y − ŷ‖L2(Γ ), then matrix MΩ is replaced by
MΓ ≡ blockdiag(0, Q) and we shall indicate a preconditioner for H, uniformly
effective with respect to α1 > 0 or α2 > 0.

The preconditioner we shall formulate for H will be based on spectrally
equivalent representations of G and (BTA−TMA−1B), for special choices of
the matrix M . Lemma 1 below describes uniform spectral equivalences be-
tween G, (BTA−1B), (BTA−TMΩA

−1B) and one or more of the matrices Q
and S−1, where S =

(
AΓΓ −AT

IΓA
−1
II AIΓ

)
denotes the discrete Dirichlet to

Neumann map. Properties of S have been studied extensively in the domain
decomposition literature [TW05].
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Lemma 1. Let Ω ⊂ R2 be a convex domain. Then, the following equivalences:

(BTA−1B) = QS−1Q

(BTA−TMA−1B) = QS−1QS−1Q when M = MΓ

(BTA−TMA−1B) � QS−1QS−1QS−1Q when M = MΩ ,

(14)

will hold with constants independent of h, where S = (AΓΓ − AT
IΓA

−1
II AIΓ ),

MΓ = blockdiag(0, Q) and MΩ is the mass matrix on Ω.

Proof. The first statement is a trivial calculation. To prove the second, use:

A−1 =

[
A−1

II +A−1
II AIΓS

−1AT
IΓA

−1
II −A−1

II AIΓS
−1

−S−1AT
IΓA

−1
II S−1

]
.

Employing this and using the block matrix structure of B yields:

A−1Bu =

[
−A−1

II AIΓS
−1Qu

S−1Qu

]
.

Substituting this expression yields that BTA−TMΓA
−1B = QS−1QS−1Q .

To prove the third equivalence, let uh denote a finite element control function
defined on Γ with associated nodal vector u. Let vh denote the Dirichlet
data associated with the Neumann data uh, i.e. with associated nodal vector
v = S−1Qu. When M = MΩ , then uT (BTA−TMA−1B)u will be equivalent
to ‖Evh‖2

L2(Ω), where Evh denotes the discrete harmonic extension of the
Dirichlet boundary data vh into Ω with associated nodal vector A−1Bu. When
Ω is convex, H2(Ω) elliptic regularity will hold for (1) and a result from
[Pei88] shows that ‖Evh‖2

L2(Ω) is spectrally equivalent to ‖vh‖2
H−1/2(Γ )

. In
matrix terms, the nodal vector associated with the discrete Dirichlet data
vh will be v = S−1Qu, given by the discrete Neumann to Dirichlet map.
For vh ∈ H−1/2(Γ ), it will hold that ‖vh‖2

H−1/2(Γ )
is spectrally equivalent to

vTQTS−1Qv, and in turn equivalent to uTQTS−1QTS−1QS−1Qu and the
third equivalence follows, since QT = Q and S−T = S−1. ut

As a consequence, we obtain the following uniform spectral equivalences.

Lemma 2. Let Ω ⊂ R2 be a convex domain. Then, the following equivalences
will hold for the Hessian matrix H ≡

(
G+BTA−TMA−1B

)
:

H = H0 ≡ α1Q+ α2QS
−1Q+QS−1QS−1Q, when M = MΓ

H � H0 ≡ α1Q+ α2QS
−1Q+QS−1QS−1QS−1Q, when M = MΩ ,

(15)
with constants independent of h, α1 and α2.

H0 will be our model preconditioner for H. To obtain an efficient solver for
H0, in applications we shall replace Q and S by Q0 � Q and S0 � S. However,
since a product of matrices is involved, caution must be exercised in the choice
of Q0 and S0. Bounds independent of h and αi will be retained only under
additional regularity assumptions or the commutativity of Q, S, Q0 and S0.
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3.1 An FST based preconditioner H̃ � H0 for H

If Ω ⊂ R2 is rectangular and the grid is uniform, and Γ is one of the four
edges forming ∂Ω, then the Dirichlet to Neumann map S (hence S−1) and the
mass matrix Q will be diagonalized by the discrete Sine Transform F , where:

(F )ij =

√
2

m+ 1
sin(

i j π

m+ 1
) for 1 ≤ i, j ≤ m,

see [TW05]. Regularity theory shows that the Dirichlet to Neumann map
S satisfies S � S0 ≡ Q1/2

(
Q−1/2LQ−1/2

)1/2
Q1/2 � ‖ · ‖2

H
1/2
00 (Γ )

, where L

denotes a discretization of the Laplace-Beltrami operator LB = − d2

ds2
x

on Γ

with homogeneous Dirichlet conditions, see [TW05]. For a uniform grid, the
Laplace-Beltrami matrix is L = h−1 tridiag(−1, 2,−1), and it is diagonalized
by the sine transform F with L = FΛLF

T , where the diagonal matrix ΛL has
entries ΛL(ii) = 4 (m+ 1) sin2( i π

2 (m+1) ). For a uniform grid, the mass matrix
satisfies Q = Q0 ≡ h

6 tridiag(1, 4, 1) and it is also diagonalized by F , satisfying
Q0 = FΛQ0F

T for ΛQ0(ii) = 1
3 (m+1) (3− 2 sin2( i π

2 (m+1) )). Thus, we obtain:

S � S0 ≡ FΛS0F
T = F

(
Λ

1/4
Q0
Λ

1/2
L Λ

1/4
Q0

)
FT

Q = Q0 = FΛQ0F
T .

Since matrices S, Q, S0 and Q0 are diagonalized by F on a uniform grid, these
matrices commute. As a result, it can be verified that H̃ � H0 � H:

H̃ � F
(
α1 ΛQ0 + α2 Λ

2
Q0
Λ−1

S + Λ3
Q0
Λ−2

S

)
FT , when M = MΓ

H̃ � F
(
α1 ΛQ0 + α2 Λ

2
Q0
Λ−1

S + Λ4
Q0
Λ−3

S

)
FT , when M = MΩ ,

(16)

with bounds independent of h and αi. The eigenvalues of H̃−1 can be found
analytically, and the action of H̃−1 can be computed at low cost using FST’s.

4 Numerical Experiments

We present numerical tests of control problem (2) on the two-dimensional unit
square (0, 1)×(0, 1). Neumann conditions are imposed on Γ = (0, 1)×{0}, and
homogeneous Dirichlet conditions are imposed on the remaining sides of ∂Ω,
with forcing term f(x, y) = 0 in Ω. We consider a structured triangulation on
Ω with mesh parameter h = 2−N , where N is an integer denoting the number
of refinements. We test different values for the relaxation parameters α1 and
α2, for the mesh size h, and for mass matrix M . In all numerical experiments,
we run PCG until the preconditioned l2 initial residual is reduced by a factor
of 10−9. We use the FST based preconditioner described in (16).
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Table 1. Number of PCG iterations and (condition) for α2 = 0 and M = MΩ .

N \ α1 1 (0.1)2 (0.1)4 (0.1)6 0

3 3 (1.02) 5 (1.65) 7 (1.60) 6 (1.44) 7 (1.54)
4 3 (1.02) 5 (1.63) 9 (1.95) 6 (1.29) 7 (1.56)
5 3 (1.02) 5 (1.63) 8 (2.00) 7 (1.50) 7 (1.56)
6 3 (1.02) 5 (1.64) 8 (2.01) 6 (1.86) 6 (1.55)
7 3 (1.02) 5 (1.64) 8 (2.00) 6 (1.96) 5 (1.51)

Table 2. Number of PCG iterations and (condition) for α1 = 0 and M = MΩ .

N \ α2 1 (0.1)2 (0.1)4 (0.1)6 0

3 7 (2.15) 6 (1.45) 7 (1.50) 7 (1.53) 7 (1.54)
4 8 (2.26) 7 (1.71) 7 (1.45) 7 (1.56) 7 (1.56)
5 7 (2.24) 7 (1.84) 6 (1.32) 7 (1.56) 7 (1.56)
6 5 (2.03) 7 (1.95) 5 (1.33) 6 (1.52) 6 (1.55)
7 4 (1.82) 6 (1.76) 5 (1.40) 5 (1.44) 5 (1.51)

Table 3. Number of CG iterations and (condition) for α2 = 0 and M = MΩ .

N \ α1 1 (0.1)2 (0.1)4 (0.1)6 0

3 7 (2.75) 7 (6.80) 8 (351) 8 (2.2+3) 8 (2.3+3)
4 9 (2.97) 9 (7.47) 15 (448) 23 (1.6+4) 23 (2.4+4)
5 7 (3.03) 8 (7.64) 16 (468) 35 (3.8+4) 53 (2.0+5)
6 6 (3.04) 6 (7.69) 12 (472) 39 (4.6+4) 106 (1.6+6)
7 4 (3.05) 5 (7.70) 11 (473) 34 (4.7+4) 162 (1.3+7)

Table 4. Number of PCG iterations and (condition) for α2 = 0 and M = MΓ .

N \ α1 1 (0.1)2 (0.1)4 (0.1)6 0

3 3 (1.01) 4 (1.17) 4 (3.96) 4 (5.08) 4 (5.09)
4 2 (1.00) 4 (1.07) 7 (2.73) 8 (5.64) 8 (5.72)
5 2 (1.00) 3 (1.02) 7 (1.76) 11 (5.44) 11 (5.75)
6 2 (1.00) 3 (1.00) 5 (1.29) 12 (4.69) 13 (5.78)
7 2 (1.00) 3 (1.01) 4 (1.10) 8 (3.14) 10 (5.65)

Tables 1 and 2 list results on runs with M = MΩ and target function
ŷ(x, y) = 1 on [1/4, 3/4] × [0, 3/4] and equal to zero otherwise. We list the
number of PCG iterations and in parenthesis the condition number estimate
for the preconditioned system. As expected from the analysis, the number of
iterations and the condition number remain bounded, and when no precondi-
tioning is used, the problem becomes very ill-conditioned for small regulariza-
tion αi; see Table 3. In Tables 4 and 5 we report the results for M = MΓ with
target function ŷ(x, 0) = 1 on [1/4, 3/4]×{0}, and equal to zero otherwise. As
before, the number of iterations and the condition number remain bounded.
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Table 5. Number of PCG iterations and (conditon) for α1 = 0 and M = MΓ .

N \ α2 1 (0.1)2 (0.1)4 (0.1)6 0

3 4 (2.29) 4 (3.99) 4 (5.08) 4 (5.09) 4 (5.09)
4 8 (2.41) 8 (3.81) 8 (5.68) 8 (5.72) 8 (5.72)
5 8 (2.37) 9 (3.25) 11 (5.66) 11 (5.75) 11 (5.75)
6 7 (2.33) 8 (2.84) 12 (5.57) 13 (5.78) 13 (5.78)
7 5 (2.09) 6 (2.45) 9 (5.24) 10 (5.64) 10 (5.65)

5 Conclusions

We have introduced a robust preconditioner for the Hessian matrix in a class
of elliptic optimal control problems. We have shown that the Hessian matrix
is spectrally equivalent to a composition of the discrete Laplace-Beltrami and
mass matrices. For a uniform grid, these matrices are simultaneously diago-
nalized by a fast sine transform. The resulting preconditioner is optimal with
repect to the mesh size and relaxation parameters. Numerical results confirm
the robustness of the preconditioner.

References

[BG05] G. Biros and O. Ghattas. Parallel Lagrange-Newton-Krylov-Schur
methods for PDE-constrained optimization. I. The Krylov-Schur
solver. SIAM J. Sci. Comput., 27(2):687–713, 2005.

[HA01] E. Haber and U. M. Ascher. Preconditioned all-at-once methods
for large, sparse parameter estimation problems. Inverse Problems,
17(6):1847–1864, 2001.

[HN06] M. Heinkenschloss and H. Nguyen. Neumann-Neumann domain
decomposition preconditioners for linear-quadratic elliptic optimal
control problems. SIAM J. Sci. Comput., 28(3):1001–1028, 2006.

[Lio81] J.-L. Lions. Some methods in the mathematical analysis of systems
and their control. Kexue Chubanshe (Science Press), Beijing, 1981.

[MSE07] T. P. Mathew, M. Sarkis, and Schaerer C. E. Analysis of block
matrix preconditioners for elliptic optimal control problems. Numer.
Lin. Alg. Appl., 14(4):257–279, 2007.

[PBC06] E. Prudencio, R. Byrd, and X-C. Cai. Parallel full space SQP
Lagrange-Newton-Krylov-Schwarz algorithms for PDE-constrained
optimization problems. SIAM J. Sci. Comput., 27(4):1305–1328,
2006.

[Pei88] P. Peisker. On the numerical solution of the first biharmonic equa-
tion. RAIRO Modél. Math. Anal. Numér., 22(4):655–676, 1988.

[TW05] A. Toselli and O. B. Widlund. Domain decomposition methods—
algorithms and theory, volume 34 of Springer Series in Computa-
tional Mathematics. Springer-Verlag, Berlin, 2005.


