ANALYSIS OF NITROGEN AND STEAM INJECTION
IN A POROUS MEDIUM WITH WATER

J. BRUINING AND D. MARCHESIN

ABSTRACT. We formulate conservation laws governing steam and nitrogen injection in a
one-dimensional porous medium containing water. Compressibility, heat conductivity and
capillarity are neglected. We study the condensation front and shock waves arising in the
flow.

We find that there are four possible types of solutions for the initial and boundary con-
ditions of interest. We describe a simple construction in the temperature saturation plane
that determines the complete solution for the given conditions.

Applications of the theory developed here are in clean up of soil contaminated with non-
aqueous phase liquids. We show that a substantial cold gaseous zone develops in all solutions
of practical interest, thus counteracting downward migration of the pollutant.

1. INTRODUCTION

The continuing widespread occurrence of contamination due to spills and leaks of organic
materials such as petroleum products which occur during their transport, storage and dis-
posal causes problems for our high-quality ground-water resources. In spite of increased
awareness of the environmental impacts of oil spills it appears to be impossible to avoid
these accidents. Organic pollutants are referred to as non-aqueous phase liquids (NAPL),
which may have a density smaller than water (LNAPL) or larger than water (DNAPL).
Traditional clean up methods of these spills such as pump-and-treat are slow because diffu-
sion/dissolution are the main removal mechanisms. Long clean up times particularly occur
for highly heterogeneous conditions [13],[23].

Removal of contaminants with steam is an alternative. Steam injection is widely studied
in Petroleum Engineering [33],[31], [12]. Steam injection leads to an expanding heated zone,
separated from the original cold zone by a short transition zone, where most of the steam
condenses. The transition zone is often considered as a front, the so-called steam condensa-
tion front. Steam can also clean parts that are indirectly heated by conduction. Therefore
the effect of heterogeneity is smaller because the conductivity is much less heterogeneous
than the permeability. Consequently steam is able to recover organic pollutants from highly
impermeable parts and is able to reduce the amount of oil left to virtually zero. None of
the other techniques known today is able to compete with these two advantages of steam.
There is an abundant literature on experimental [15] and theoretical [14] modeling of steam
injection for clean up and oil recovery.
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There are, however, a number of problems with steam that are still not optimally solved.
One problem is that steam at normal boiling temperatures completely destroys the ecosys-
tem. Another is the downward migration of DNAPL as it accumulates near the steam
condensation front [2], b[25]. In both cases simultaneous injection of steam with nitrogen
or air is able to alleviate the problem. Simultaneous injection of a non-reactive gas lowers
the temperature of the steam at a given total pressure, because the water pressure becomes
lower. A lower water pressure leads to a lower boiling point. Therefore less energy is required
to heat up the soil to a lower temperature. The important feature that leads to a reduction
of downward movement is the possible formation of a cold gaseous zone downstream of the
steam condensation front. Such a gaseous zone does not occur when pure steam is injected.
The mechanism that counteracts downward displacement is that the condensing NAPL’s are
spread out in the gaseous zone, which reduces its relative permeability and hence the rate
at which it moves downward. This mechanism has been investigated both theoretically and
experimentally [16], [24]. However, it has not been investigated whether a downstream cold
gaseous zone will always exist for all possible conditions. The existence of such a zone is a
prerequisite to counteract downward movement. In the same way there can be conditions
such that a downstream cold gaseous zone exists, but it is very short. It is also important
to know that optimal conditions to counteract downward movement can be maintained even
after heat loss effects.

In order to investigate whether a sufficiently large cold gaseous zone will be present for all
possible conditions it is useful to obtain a complete set of solutions for a representative system
of model equations. Such a representative system can consist of the component mass balance
equations and the energy balance equation supplemented with Darcy’s law of multi-phase
flow. For a distribution of components among the phases we may assume thermodynamic
equilibrium. In a 1-D setting, diffusional processes such as molecular diffusion, dispersion,
thermal conduction and capillary effects are usually small and can be disregarded. Therefore
the model equations only contain an accumulation term and a convection term. We will refer
to the model equations with only accumulation and convection terms as equations in the
hyperbolic framework.

By a complete set of solutions we understand all types of solutions that are qualitatively
different. A well known example of solutions that are qualitatively different for steam injec-
tion in oil reservoirs is presented in the classical paper by Mandl and Volek [18], who show
that below a critical (non-zero) steam quality the steam condensation front ceases to exist
and a steam drive is converted to a hot water drive.

Recent developments in the theory of bifurcations occurring in systems of hyperbolic
conservation equations have led to a methodology to find all qualitatively different solutions.
A review of the theory is summarized for a petroleum engineering audience in an appendix
of [19]. In order to keep the problem tractable we consider steam-nitrogen flow in the fully
saturated zone and ignore the presence of the NAPL contaminant. We leave this for future
work. The solutions of the steam-nitrogen flow problem can be conveniently illustrated
graphically in the temperature, water saturation (7, S,,) space. In this phase diagram all
types of solutions can be shown and bifurcation conditions are curves in this space. These
curves are loci where wave speeds become equal or attain maximum values. Whenever a
solution path crosses such a bifurcation curve a new type of solution is expected. Because
many model parameters are fixed e.g. the temperature dependence of the densities and
viscosities and other parameters such as porosity and residual saturations show only small
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FIGURE 2.1. Schematic representation of one of the possible saturation and

temperature profiles during steam/nitrogen injection in an originally water
filled core.

variations the topological structure of the phase diagram is in this case representative for all
conditions. Indeed even various expressions of relative permeabilities will lead to the same
type of diagram.

In Section 2 we will describe the model for steam-nitrogen injection. We will formulate
the equations in the hyperbolic frame work. We will prove some important properties of
the solution of the equations. In Section 3 we will formulate the Hugoniot conditions at
the steam condensation front. In Section 4 we discuss the rarefactions and shocks away
from condensation. In Section 5 we determine the structure of the Riemann solutions and
in Section 6 we show the phase diagrams of a solution for an initially water saturated core.
Appendix A contains a table explaining all the symbols. Moreover Appendix A summarizes
all relevant dependencies of physical properties on temperature. Some calculations relevant
for the main change in wave sequence appear in Appendix B.

2. THE MODEL FOR WATER DISPLACEMENT BY MIXED STEAM AIR INJECTION

2.1. Physical considerations. We consider the injection of water, steam, and nitrogen or
other non-reactive gas in a linear core originally filled with water (see Fig. 2.1). The core
consists of sand with constant porosity ¢ and permeability k. The core is horizontal and we
disregard the effects of gravity. Transverse capillary pressure diffusion is sufficiently large
to guarantee a uniform saturation over the cross-section. The displacement is considered to
occur at constant pressure, in the sense that we disregard any effect on the thermodynamic
properties or fluid viscosities due to flow induced pressure variations.

In the core we find two wide regions viz. a hot region and a cold region as well as a
short steam condensation zone, which we call steam condensation front. Regions are further
subdivided into zones according to the phases present. In each of the regions there can be two-
phase or single phase flow. We will assume local thermodynamic equilibrium in each of the
wide regions. This means that in the two-phase zones the temperature is determined by the
partial pressure of the steam and is given by an empirical relation. Non-equilibrium effects
can occur in the transition zones between the wide regions, but an explicit mathematical
description of the transition zone can be avoided in the current treatment. If a superheated
gaseous mixture were injected at the beginning of the hot zone, this beginning zone would
be of a single phase region. The temperature in the the hot zone will lie below the injection
temperature. The cold zone will be at the original reservoir temperature.
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In two-phase flow regions the gaseous phase consists of nitrogen and steam, whereas the
liquid phase consists only of water. The gases exhibit ideal behavior. Consequently we
disregard any heat of mixing effect between the gases and assume that the volumes of the
gases are additive, i.e., there is no volume contraction effect upon mixing. We disregard any
dissolution of nitrogen in the water. We assume that the viscosity of the gaseous phase is
independent of composition, but we take the gaseous phase temperature dependence into
account. The liquid water viscosity depends only on the temperature and we describe it
by a correlation for pure water viscosity. In the two-phase regions we apply Darcy’s law
for multiphase flow. We use power law relative permeabilities. Capillary forces are ignored.
The density of water depends on temperature, but it is independent of the total pressure.

In the single phase zones only water flows. The water has the same properties as described
above for the two-phase region.

2.2. The mass balance evolution equations. The conservation of mass of each com-
ponent in each phase is given by the following equations, which express liquid water mass
balance, steam mass balance in the gaseous phase, and nitrogen mass conservation in the
gaseous phase (see for notation [8]):

0 0
a(SDPWSw) + %(Pwuw) = Gg—a,w>

0 0
E(@pgwsg) + %(pgwugw) = —lQg—a,w,

0 0
a((ppgnsg) + %(pgnugn) = 0. (2'1)

In these equations S,, is the water saturation, i.e., the fraction of the pores filled with
water and S, is the gas saturation. Furthermore u, is the Darcy velocity of water, and
Jg—aw 15 the condensation rate. We use pg, to denote the concentration of steam in the
gaseous phase, i.e., the mass of steam per unit volume. In the same way we define the
concentration of nitrogen pg,. We also define the flow rate of steam as ug,. This flow rate
consists of a contribution due to the Darcy velocity of the gas u, and a contribution due
to diffusion. The flow rate of nitrogen is given as u,,, and it also consists of a contribution
due to the Darcy velocity and a contribution due to diffusion. This diffusion contribution
is ignored here as it will be further elaborated in another paper. Hence it is assumed that
Ugw = Ugn = Uy is the volume averaged Darcy velocity.

2.2.1. Fractional flow formulation. Darcy’s law of multiphase flow relates pressure gradient
in a fluid with its Darcy velocity ([9]):
Opw dp
vpr U= gy
where the water and gas mobilities are A\, = kkyy/ 1y and Ay = kk,g/ 1.

If capillary pressure is neglected, the pressure difference between p,, and p, can be ignored.
In this case the flow functions f,,, f, denote the fractional flows and are defined by ([9]):

Aw A
fuw

= ——— and =—7
Aw + A Jo Aw + A
thus the Darcy velocities are

Uy = —

(2.2)

Uy = Ufy, Uy =ufy, (2.3)
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FIGURE 2.2. Fractional volumes of steam 1)y, and nitrogen 14, as functions

of temperature. The convexity of the curves is such that condensation will
occur in shocks rather than in rarefactions.

where
U = Uy + Ug (2.4)
is the total Darcy velocity. Egs. (2.1) become
0 0
5 (PPwSu) + o (uow fu) = dgraw, (2.5)
0 0
ot (PPguwSy) + or (ubgwfg) = —dg—ram, (2.6)
0 0
a (@pgnsg) + % (U'pgnfg) = 0. (2-7)

2.2.2. Physical properties of fluids. Nitrogen and steam in the gaseous phase are assumed
to behave as ideal gases. In particular the mass densities of these gases can be written as

_ My prot _ MnNpiot

Pgw = RT ’ Pgn = RT ’

where My, My are the molecular weights of water and nitrogen respectively and R is the

gas constant. The capital W and N as subscript of p emphasize that these are densities of

the pure components. Since in ideal gas behavior assumed in this work, there are no volume

effects due to mixing; similarly, the enthalpy changes due to mixing of the gas components
are zero. Therefore the volumes of the components are additive:

Low 4 Pom . (2.9)
Pgw PgN

(2.8)

Using Eq. (2.9), the concentration of steam pg,, and of nitrogen p,, in the mixture can be
expressed in terms of the pure phase densities pgy, pgn as

Pgw = pgwwgun Pgn = pgngn- (2-10)
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This equation can be regarded as defining the volume fractions 14, and 1)y, of steam and
nitrogen in the gaseous phase. (See Fig. 2.2.) The entire two-phase thermodynamic behavior
is specified by the equilibrium condition between water and steam given by Eq. (A.8) and
the densities pg,, pgn are computed using (A.9).

All other properties relevant to the computation are summarized in Appendix A.

2.3. The energy evolution equation. The conservation of enthalpy is given as

0
57 (Hr + 0Supwhw + S (pgwhaw + ponhn) )

0
+ a(uwpwhw + g (pgwhgw + pgnhgn)) = 0. (2.11)

The basis of using this equation can be found in [3] (page 323, Table 10.4-1, Eq. R) and [1]
page 144, footnote). It uses the assumption (see section 2.1) that as to the thermodynamic
quantities the system is at constant pressure. Upscaling issues regarding the equations in
porous media can be found in [20].

The enthalpies h are all per unit mass and depend on temperature and pressure (see
Appendix A). The enthalpy of water in the gaseous phase is hgw, and hy is the enthalpy of
water in the liquid aqueous phase while i,y is the enthalpy of nitrogen in the gaseous phase.
In Equation (2.11) thermal conductivity has been disregarded, as we are in the hyperbolic
framework.

Remark 2.1. The volume fractions 94, = pguw/pew and Ygn = pgn/pen add up to one (see
Equation (2.9)) so that the four equations (2.5)—(2.7), (2.11) carry four unknowns, namely,
the condensation rate g4, the water saturation S,, the temperature 7', and the total
velocity u. Clearly we have S; = 1 — Sy, and pgy = pgu(T), pgn = pgn(T’) for a given total
pressure Pio;.

2.3.1. Sensible and latent parts of steam enthalpy. In Eq. (2.11), we split the enthalpy of
steam hgy into a sensible part A7y, and a latent part A evaluated at the reference temperature
T:

how = hiw + A. (2.12)

We substitute Eq. (2.12) into Eq. (2.11). The terms that contain the factor A in the
resulting equation are:

0 0 -
A (E (pSgpgw) + %(ugpgw)) = Ag—a,w;

where we have used the steam balance Equation (2.6) to obtain the right hand side of this
equation. Hence Eq. (2.11) can be rewritten as the final equation

% (Hy + ©SwHw + ¢Sy (HJy + Hyn)) + (%(uwHW +ug (H}, + Hgn)) = AMgyaw- (2.13)
2.3.2. The condensation rate equation. The precise form of g4, is not required in the
hyperbolic framework. In this context, it suffices to know that the condensation rate q4_,q
is a nonnegative quantity that vanishes outside the region spanned by the SC'F'.

The quantity A in (2.13) represents the heat required to obtain steam at temperature
T from liquid water at reference temperature 7 and hence it is positive below the critical
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pressure. It can be shown that for two-phase flow the temperature is constant precisely
where g4, = 0 identically.

2.4. The equations in the hyperbolic framework. The equations in hyperbolic frame-
work disregard diffusion, capillary terms, as well as heat conductivity. They are appropriate
for the study of rarefaction waves as well as for the condensation and shock waves for shock
waves and for condensation waves [32]. From Egs. (2.5)-(2.7), we obtain

Q

0 0
& (QDPWSw) + 8_3: (uprw) - 8—x’ (2'14)
0 0 QR
hdl - =—-—° 2.1
ot (PPguwSy) + 9z (upguw fy) or’ (2.15)
0 0
ot (0PgnSg) + o (upgnfy) =0, (2.16)
where we have introduced cumulative condensation rate Q(z,t) as
%(w,t) = Qgamw, such that Q(z — —oo,t) =0. (2.17)
From Egs. (2.17) and (2.13) we obtain
0 s 0 . = 0Q
5 (Hr + @(HwSu + HyS)) + a—x(u(Hwa +Hf,) = A (2.18)

In the hyperbolic framework, the equations for steam and air injection are (2.14)-(2.18).

Remark 2.2. bBy manipulating Eq. (2.14)-(2.16) and (2.18), it can be shown that the
thermal velocity for zero gg_,q.4, is

APH — Cwio+Cofy (2.19)
Cr + o(Cw Sy + CySy)
In general for non-zero gy_,q. the expression of ATH s different. We will find it useful to

define A\TH = (p/u)ATH.

3. THE RANKINE-HUGONIOT CONDITIONS FOR THE STEAM CONDENSATION FRONT

The Rankine-Hugoniot conditions are the mathematical expressions for a balance equation
(e.g. mass balance or energy balance) at a shock i.e. position in space where we have
a discontinuous change of variables (see Eq. 2.18 in reference [32]). An example is the
shock in the Buckley-Leverett problem. The Rankine-Hugoniot conditions relate the state
upstream and downstream of any shock (including the steam condensation front) with its
speed.

3.1. Formulation of the Rankine-Hugoniot conditions. The Hugoniot equations at
the steam condensation front are obtained from Egs. (2.14)-(2.17). The velocity v°°¥ is the
velocity of the steam condensation front. Here (+) denotes the state at right (downstream)
of the shock, while (—) denotes the state at the left (or upstream).

— o5 ((owSw)™ = (pwSw) ) + (upw fu) ™ — (upw fu) = Q, (3.1)
o0 T (04w Se)t = (PguwSy) ) + (upgwfs) ™ — (upgufy)” = —Q, (3.2)
—u¢F ((pgnsg)+ — (pgnSg)f) + (Upgnfg)+ — (upgnfy) =0. (3.3)
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In Egs. (3.1) and (3.2) we have used the fact that @~ = 0 by the definition in Eq. (2.17).
The Hugoniot condition for the energy is derived in the same way from Eq. (2.18):

_ 4SCF ((Hr + o(HwSw + HS) " — (Hy + ¢(HwSw + H;Sg)))

+ (w(Hw fo + Hf)) " = (u(Hw fo + Hif,)) ™ = AQ. (3.4)

The four equations (3.1), (3.2), (3.3) and (3.4) are all linear in terms of u™, QT v5°F.
Therefore we choose three equations (two appropriate combinations of the mass balance
equations and the energy equation) to obtain the values of u*,QT,v ‘Y in Section 3.2.
Then in Section 3.3.1 we use the remaining mass balance equation as a non-linear equation

for S.
Remark 3.1. Equation (3.4) can be simplified by the use of constant heat capacities:
—ov T (Cr /o +CwSy +Cy S, ) +u (Cwfy +Cy fy) —AFQT/ (T —T7) =0, (3.5)
where the abbreviation A, = A.(T) is given by
A=A+ (cqw — ew)(T = T). (3.6)

Without loss of generality it can be assumed that H, H;+ are zero and H,, HJ™ are
enthalpies with respect to 7.

The term A. approximates the heat required to convert liquid water at temperature 71" to
steam at the same temperature. It is a positive quantity (see the following remark).

Remark 3.2. We are only interested in temperatures 7" and 7~ below the critical temper-
ature T, i.e. the temperature at which the physical difference between the liquid and its vapor
ceases to exist. Below the critical temperature the heat of evaporation A (T') = (A+hS,, —hw)
is positive, while at the critical point it vanishes: A (7;.) = 0, and v5¢F = XTH (=) = \TH (1),
i.e., the speed of the steam condensation front, the thermal characteristic speeds at the left
and right become equal. Taking the limits 7t — 7~ — 0 with 77 < T~ < T, in Eq. (3.4),
that is the same as in Eq. (3.5), @ — 0 and we observe that for subcritical temperatures
MH (=) < ATH (=) and ATH (+) < AT (4). Here A\T# is defined as

MH(T) = lim 09, (3.7)

T+T- 5T

Remark 3.3. Sometimes it is useful to consider all possible solutions (7F, S}, u™) of the
Rankine-Hugoniot conditions for a fixed left state (7, S, ,u~) when the shock speed varies.
This is a one parameter family of points in the temperature-saturation-velocity space, which
is called the Hugoniot curve for (7, S, ,u~). One of its main features is that it determines
between which waves the shock exists. Another feature is that it determines conditions for
which the generic features of a solution changes i.e. when bifurcations occur.[19].

3.2. Independence of the secondary variables on S;. Assume that we are given values
for T—,S;, and T". In the solution of the equations (3.1), (3.2), (3.3) and (3.4) for a steam
condensation front, we will show that the secondary variables v°¢F, u*, Q1 are determined
independently of the value of S;}. To do so, we divide equations (3.1), (3.2) and (3.3) by u ",
and introduce

o0 = &, at = —, QF = (3.8)
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Note that pg,, = 0 at the normal boiling temperature of water.
Dividing each of the resulting equation by the corresponding density p;}, and concentra-
tions pf,, P, We obtain:

- )+
- (SJ - p—%’w) o5 + fat — QT w y (3.9)
Pw W Pw
Pow o - QT Py,
- (s; s ) R (3.10)
gw gw qw
Pon o\ ~ - Pgn .
- (s; - %, ) WO 4 fut =2 (3.11)
We add equations (3.9) and (3.10), as well as (3.9) and (3.11), obtalning:
w ~ ~ ]‘ w
(o) (o o
,0 gw pgw pW pW gw
n ~ ~ I - W o _n —
(_ S +Pg Sg>vSCF+u+—TQ+:p—yfw+pL+g- (3_13)
pW gn pW 1%%4 pgn

We supplement the two linearly independent equations above by the following rewritten
version of the energy conservation equation (3.4). We multiply Eqgs. (3.1), (3.2), (3.3) by
their respective enthalpies Ay, gy, by, and subtract from Eq. (3.4), obtaining

AH 55T Z ATQH = AJy T, (3.14)
where the heat of evaporation At at temperature T is defined by
AT =A+h, —hiy (3.15)

and we abbreviated the enthalpy content of the medium AH_>*, the enthalpy flux AJ;™"
as follows:

AH, "= (H — H)/¢ + pw(hiy — b)) Sy, + (gu(hgw — higily) + Pgn(hgy — hgn)) Sy,
AJ;I,—i— = ple(h h+ )f + (pgw(h;W - hZ‘*V_V) + pgn(th h’;_N)) f_ (316)

Eqs. (3.12), (3.13) and (3.14) are a linear system in three variables 55°F, 4t, Q*, with
coefficients and right hand side that do not depend on S;}. Therefore these variables do not
depend on S;.

Remark 3.4. One consequence of the calculation in this Section is that we can consider 7',
S, as primary variables and 95¢F, 4t, Q1 as secondary variables. That is, we study the
Rankine-Hugoniot relations for (T*,S;}), (T, S,) in the (T, S,) plane without worrying
about the secondary variables; the latter are computed at the end of the calculation.

3.3. Condensation solution of the Rankine-Hugoniot system. We are given values
for T~, S, and T". Now we solve Egs. (3.12), (3.13) and (3.14) as a linear system in the
three variables 7°¢F 4T, Q. Subtracting (3.12) from (3.13) we obtain after reordering:

Pow  Pgn\ a—~scr , 1 A¢  (Pow Pgn) ,—
(L - %) 0T = (L - %) I (3.17)

Pagw  Pan Paw  Pan
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We use Eq. (3.17) to extract QT and substitute in equation (3.14) obtaining
AH_ T o o cw  Paon AJ;T
m_ 4ot Pgw _ Pgn S| 95 = pt Pow _ Pon fo+ =2 (3.18)
At Y \P P/ TN\ P/ AT

Notice that for TT = T~ the coefficient of °°F is zero, so the solution described in this
Section 3.3 is only valid for 7% # T~. In Appendix B we prove that the coefficients of 75¢*
in Eq. (3.18) and (3.17) are positive in our case, where T < T~

The coefficient of °°F in Eq. (3.18) is easily seen to be the determinant of the system
(3.12)—(3.14). If this coefficient is assumed to be non-zero, 95" is determined. Substitution
into (3.17) provides the value of @*. Finally we obtain from Eq. (3.13) the value of u*.
Where the coefficient of #°°% is zero a bifurcation will occur (i.e. at 7+ = 7). So away
from the bifurcation the system can be solved uniquely.

3.3.1. Calculation of S;;. We have found the quantities #5¢F, 4+, Q*. We divide Eq. (3.9)
by @t and we rearrange, obtaining:
T i | Pl + QT = pySuvYr

+) — S—I—

(3.19)

The graph of the right hand side is a straight line in a S, f.F plot, which has at most three
intersections with the graph of f,,(S;}). Each intersection of the two graphs is a point in the
Hugoniot curve in the (71, S;) plane. As Tt varies each intersection generates a part of
the Hugoniot curve. Tangency of the two graphs makes two parts coalesce: the number of
intersections changes by two, originating a fold in the Hugoniot curve.

At the end of this procedure, we have completed the calculation of the quantities ¥
v, Q+ with possibly several values of the quantity S, corresponding to a given value for
T-,S, and TT # T~. If we plot all values of S for 7" in the range of temperatures of
interest, we obtain the non-isothermal branch of the Hugoniot curve.

Examples of non-isothermal Hugoniot curves are shown in Fig. 3.1.

SCF
)

3.3.2. Isothermal solution of the Rankine-Hugoniot system. When we substitute Tt =1T-
into Eq. (3.14) we obtain the simple equation ATQ1 = 0. Therefore QT = 0. Hence we
obtain from (3.13) that @™ = 1. Setting 77 = T, in addition to Qt =0, 4t =1 in Egs.
(3.1), (3.2), and (3.3) we obtain the equivalent forms of the Rankine-Hugoniot condition for
the Buckley-Leverett equation with no condensation:

(St-Sa)o" = fi—fa,  (SE=S,)0" =ff— 4. (3.20)

This equation shows that for T+ = T, any (7", S*) lies in the RH locus of (T, S,)).
For a given S, Eq. (3.20) furnishes 9%%. We call this the isothermal or “Buckley-Leverett”

branch of the Hugoniot curve; obviously, it does not involve condensation and it contains
(T, 85)-

Remark 3.5. The state (I, S,) is also contained in the Hugoniot branch that describes
the steam condensation front. As we see in Fig. 3.1 by drawing the isothermal branch as a
vertical line through each point (7, S,,), besides intersecting at this point these two branches
often intersect at another one. In examples I-IV in this figure, there are two intersections.
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FIGURE 3.1. Hugoniot curves for (—) states (77, S,,), represented by solid cir-
cles with I = (350, 0.2), IT = (355, 0.22), III = (359.5,0.259), IV = (360, 0.33),
V = (360, 0.42), VI=(360, 0.6), VII=(360, 0.8), VIII=(365,0.9). We also show
the coincidence curve (dashed). The dotted parts are inadmissible because
they correspond to evaporation. The thin parts are inadmissible because they
violate the entropy condition (3.23). The thick parts are the admissible (+)
states of the steam condensation front.

3.3.3. The coincidence curve. If the isothermal and thermal Hugoniot branches intersect
twice for a given temperature, we can change the (—) saturation and bring the intersection
points together without changing the temperature. This is shown in example III of Fig. 3.1.
The set of points generated in this way is called the coincidence curve, also displayed in this
figure.

Notice that there is no coincidence curve for temperatures exceeding the boiling tempera-
ture of water at the prevailing pressure. This is so because as the (—) temperature increases
to the boiling temperature, there will be only one intersection for the Hugoniot branches
(the (—) state). Examples V - VIII show only one intersection for a vertical line through
(T, 55)-

3.4. Admissible parts of the Hugoniot curve. For a given (—) state, in general not all
points in the Hugoniot curve represent actual shocks. For instance if characteristics emanate
from the shock rather than impinge on it. This would for instance occur in a Buckley-
Leverett problem if we would try a solution consisting of a rarefaction, a constant state, a
shock and a constant state as opposed to a rarefaction, a shock and a constant state. In
this case we consider the following. When 7" = T, we have, according to Eq. (3.7), that
vS¢F = ATH_ For instance, (+) states near the (—) state such that v5¢F > \T#(—) are good
approximations to states on a rarefaction curve [19]. (Equation (3.7) defines ATH). In our
case, this rarefaction curve represents evaporation rather than condensation waves, because
it has temperatures Tt exceeding T, see the dotted parts of I, II and IV in Fig. 3.1. For
this reason, the part of the Hugoniot curve with 7" > T~ is inadmissible.
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The following Lax entropy condition must also be satisfied:

9 < NBE(4), (3.21)
where \PZ(T) is defined by
3 af
BUT) = 2 (T, Sy) - 22
worr) = 2 1, (3.2

If there are two solutions satisfying the Hugoniot conditions (3.1), (3.2), (3.3), (3.4), it
turns out that only one of them satisfies (3.21). One can verify that in our case the other Lax
entropy inequality condition for admissibility is violated. Namely, the following is violated
sometimes:

IO < N\BL(-), (3.23)

3.4.1. Ezxamples of non-isothermal Hugoniot curves. In Fig. 3.1 we show Hugoniot curves
for eight different (—) states (indicated by solid circles.) The Hugoniot curves are not drawn
below the connate water saturation S,, = S,. because such states are inaccessible under
normal flow.

Many non-isothermal Hugoniot curves have a fold point, a point where they have a vertical
tangent in a (7, .S) plane; one can show that (7, S,)) is a fold point if and only if it belongs
to the coincidence curve.

Upstream states in the thin parts of the curve have the additional property that the steam
condensation front velocity is larger than the saturation wave velocity and do not satisfy the
entropy condition (3.23). That is, they do not lead to admissible solutions, as it is well
explained elsewhere [32].

States F on the Hugoniot curve which satisfy the entropy condition marginally i.e., those
satisfying the following entropy equality will be shown to have important role in Riemann
solutions:

F3¢F = \BL(-). (3.24)

One can prove that points E tends to points (—) as the latter tends to the coincidence
curve. Thus, for points (—) on or above the coincidence curve, the inadmissible part of the
Hugoniot curve from (—) to E disappears. This is considered the most important feature of
the coincidence curve.

4. NON-CONDENSATION ELEMENTARY WAVES

Considering Gibbs’s phase rule and the constant pressure conditions there are two degrees
of freedom for single phase gas flow (temperature, composition) and one degree of freedom
(temperature) when two phases are present. From the hydrodynamic point of view the
saturation is an additional degree of freedom.

4.1. Two-phase flow. As discussed in Section 2.3.2, if the temperature changes there is
a non-zero source term. Self-similar solutions in this case are shock waves (the steam con-
densation fronts are studied in another section) or rarefaction waves, which correspond to
evaporation, so they are not studied in this work.

If the temperature does not change, all concentrations are constant and the flow reduces to
the classical two-phase Buckley-Leverett problem with a gas phase of constant composition.
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The isothermal Buckley-Leverett flow admits shocks, rarefactions, or rarefaction-shocks.
The shock speed is v?" = (o/u)9B”, where vP" was already defined in Eq. (3.20). The
(scaled) rarefaction speed was already defined in Eq. (3.22).

4.2. Hot isothermal gas-water shocks. We describe shocks that separate regions with
two-phase flow from regions with single phase liquid flow, both at high temperature. Such
hot isothermal gas-water (higw) shocks are a limiting case of two-phase flow, so they have
to occur at constant temperature as explained before. Their speed is

Uhigw,zﬁfuj_]‘zgfi_ ,T)/higw:fi_‘
Sy —1 ¢S;’ Sy

(4.1)

4.3. Single phase liquid flow. An accurate description of this flow can be found in [6]. For
simplicity, we describe liquid flow under the good approximation that thermal expansivity
of water is negligible (the same is true for rock). Thus, the balance equations (2.14), (2.16),
(2.18) reduce to

0 0
PoPw + o (upw) = 0, (4.2)
O (H, + oHy) + 2 (uHy) = 0 (4.3)
ot r T @y (%U w) =VU. .

Based on (4.2), one can show that du/0x = 0. We also ignore the temperature dependence
of the water and rock heat capacities per unit volume Cy, C, and disregard liquid water
and rock expansivity, so that the wave of interest in the water becomes a thermal contact
discontinuity [6]. (This follows from Eq. (4.3).)

Typically this wave exists as a cooling discontinuity between hot water with temperature
T and water at initial reservoir saturation with temperature 7°; its speed can be written as

TH Cw ~TH — P

TH
= U . 4.4
uCT + QDCW ’ UU ( )

v
On the other hand, we have verified numerically that in the condensation Hugoniot curve
the following inequality is always satisfied for a sequence of states (=), (+), I:

ﬁSCF(_’+) > T)TH(_{UI)’ (4'5)

where I denotes the initial state.

5. DETERMINATION OF THE STRUCTURE OF THE RIEMANN SOLUTIONS

Speed equality of different waves typically represents resonance and generates bifurcations.
Hence the loci where such equalities occur are called bifurcation loci. If they are curves, they
are called bifurcation curves.

Whenever a solution path crosses a bifurcation curve, locally the Riemann solution be-
comes qualitatively different. When a solution path crosses the same set of curves the overall
qualitative behavior will be similar. Therefore it is important to study the bifurcation curves.
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5.1. The Hugoniot barrier. It is possible to show that there is at most one condensation
front. Whether there is one or none depends on the injection conditions. When there is no
condensation front the downstream liquid region is separated from the upstream two-phase
region by an isothermal wave, the Hot Isothermal Steam Water (hisw) shock described in
Section 4.2. (Our upstream conditions are always two phase and we are excluding evapora-
tion. Thus, non-isothermal conditions contradict the absence of a condensation front.

From the inequality (4.5), there is no thermal wave downstream of the steam condensa-
tion front. Thus, when there is a condensation front, its downstream temperature is the
initial temperature of the reservoir. The upstream (left) temperature 7~ is the injection
temperature because there is no condensation.

5.1.1. Presence or absence of a steam condensation front. In the presence of a steam con-
densation front it is useful to separate the solution in three parts: two isothermal two-phase
regions separated by the steam condensation front. The isothermal parts can be described
exactly as the Buckley-Leverett theory of two-phase flow: the solutions consist of constant
states, rarefactions and shocks.

Let us consider the case when the SCF speed is so large that it equals the cooling con-
tact discontinuity speed. We expect this bifurcation to represent the boundary between
configurations containing either SC'F' shocks or cooling discontinuities. We will show that
the remarkable speed equalities (5.1)—(5.2) hold along this bifurcation curve. Beyond this
bifurcation curve the SC'F' is absent.

This bifurcation was already studied for the case of pure steam injection in [5].

5.1.2. Speed equalities. We will consider states (—) and (+) related by RH conditions for

which the total amount of mass transfer and of heat generated is zero. We set Q" to zero in
Egs. (3.17) and (3.18); From the first one we obtain the first of the equalities in (5.1). The
second one follows from (3.18) and from Remark B.1:

FSCF _ fo _ AJy™
Sy AHR"

9

(5.1)

Taking the limit as 7T — T~ into (5.1), we see that (7, S;;) satisfy the following equation
in (7, 5) space (see Egs. (3.16) and (2.19)):
f 9 _3TH
= =) —-). 5.2
=N (5.2
We see that the (—) states of SCF with @ = 0 belong to the locus defined by Eq. (5.2).
We obtain @ from Eq. (3.13) setting QT = 0. We replace 9°“F using the first equality
(5.1) into Eq. (3.10). We see that S satisfies

ut S sor
— 2 = ; 5.3
U~ S; v (5-:3)

Egs. (5.2) and (5.3) are the same as u™ f,/ — v S =0, u™ f; — pv°°F S = 0. Hence
the (+) state also belongs to the locus (5.2). Thus all Hugoniot curves starting on the locus
(5.2) belong to the locus (5.2). Two consequences can be drawn from this fact. First, no
Hugoniot curve can cross the locus (5.2), so we call it the Hugoniot barrier. The second
consequence follows from taking the limits of the (4) and (—) states on the Hugoniot barrier
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as they approach each other: thermal rarefaction curves with ¢ = 0 also belong to the
Hugoniot barrier. Therefore thermal rarefaction curves do not cross the barrier.

We have found a curve in (7, S) space for which the cumulative condensation Q7 is zero.
This curve acts as a barrier for thermal Hugoniot curves. Along it 9°°F equals f,/S, both
upstream and downstream.

Conversely, first consider a thermal shock with speed 0°¢F = f~/S_". Using this equality
into (3.17) we see that @T = 0. So the thermal shock belongs to the Hugoniot barrier.
Second, consider a thermal shock with speed 7°¢F = AJI,:[’Jr JAH>*. Using this equality
into (3.14) we see that QT = 0. So again the thermal shock belongs to the Hugoniot barrier.
Third, assume the equality of f, /S, and AJy 't JAH*. This condition gives fy =aS;
and AJzt = aAH >t with a > 0. Substitution into Eq. (3.18) leads to 7°¢F = fy/Sy =
AJy Y JAH,*. Based on these two facts and Eq. (3.18), we conclude that the equality of
any two of the three quantities v5¢*, f/S>, and AJ;" /AH_ '+ implies that we are on the
Hugoniot barrier.

5.2. Bifurcation curves involving a steam condensation front. In Section 5.1 the
solutions did not contain a steam condensation front. Here we study bifurcation curves for
solutions that contain a steam condensation front.

5.2.1. The entropy curve. Given the injection saturation and temperature 7~ and the initial
temperature 7% both S, and S; need to be determined to define the steam condensation
front completely. For this reason it is very useful to construct the following entropy curve,
which represents (7t,S.) values for which the SCF between (T~,S,) and (T",S]) has
its speed v5¢F coinciding with the Buckley-Leverett speed at the (—) state. This curve is
obtained by substituting Eq. (3.24) into (3.18), obtaining an explicit formula for S . It is
easy to verify that this curve always intersects the coincidence curve at (7", S,,).

In Figure 6.1 this curve is drawn for 7~ = 360K. The entropy curve is almost superim-
posed on the coincidence curve for our example. The reason is that both curves satisfy the
condition (3.24) and for the low water saturations involved small changes in the upstream
water saturation have a large effect on the saturation wave velocity. So even if the steam
condensation front velocities for the full solution curve and the coincidence curve are very
different a small saturation change will be able to compensate for this effect.

5.2.2. The Welge curve. This bifurcation is determined by the Welge tangency condition if
the initial water saturation is S,, = 1. It reads

8fw . 1- fw
0S8, 1-25,
The common value of the equality (5.4) is the Welge speed 5"V ELGE,

(5.4)

Remark 5.1. Another consequence of the speed equalities in Section 5.1.2 is that if the
state (—) lies on the Hugoniot barrier, then taking the limit as 77 — T~ in (5.1) leads to

A"
MNH ()= lim 39" = lim JI{+
T+—T- T+-7- AHy

=30 (). (5.5)

Thus we see that the geometric possibility of isothermal rarefaction wave preceding an in-
finitesimal SC'F' changes at the Hugoniot barrier.
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FiGUurReE 6.1. Construction of solution for injection conditions B; =
(T-,S,) = (360, S,.). The upstream (left) Buckley-Leverett part of the so-
lution is drawn between the injection point and and consists of a rarefaction
part until the steam condensation front is reached. (If the injection saturation
is above the connate water saturation a constant state precedes the rarefaction
part.) From B; to E; of the Hugoniot curve there is a shock also called the
steam condensation front. Finally the curve follows the downstream Buckley-
Leverett part from to the initial condition I = (T, S) = (335.1,1.0). The
other lines are discussed in the text.

Remark 5.2. Equating v°°F from the two equations (5.1), (5.3) we see that along the
Hugoniot barrier the following equality holds:
ut _ S5 Jy

_ + o_-
u ‘f? t;g
6. RIEMANN SOLUTION FOR AN INITIALLY WATER-SATURATED CORE

Remark 6.1. With fixed T, as S, decreases to zero, 79¢F increases to the speed of the

thermal wave in the pure liquid, AT#; this fact follows from the convexity of pg, (T). It is
useful for the first, second, and third cases.

6.1. First case. We claim that for very low water saturation at the injection point, we have:
7T > ABL(-), (6.1)

(This follows from the fact that at S; = Sy, we have A\BY (=) = %(ch) = 0, while

79¢F > 0). Eq. (6.1) for the injection saturation defines the first case. The initial condition
denoted as I in Figure (6.1), which defines the initial saturation S,, = 1 and the initial
temperature 7™ (in our example we choose T = 335.1K). It can be shown that the
downstream (right) shock temperature T+ = T™.

First we draw the entropy curve associated with the given injection temperature 7%
(here T = 360 K). It has been shown above that T = T~ the upstream (left) shock
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temperature. Now we want to determine the saturation of the upstream (left) shock state
(—)1. We draw a vertical line through I. The intersection of this line with the entropy curve
determines the saturation S;;. A horizontal line transports this saturation value to determine
the state (—); = (T'~, S,). In our example (T, S;)) = (360, 0.2). The first case requires that
the injection saturation satisfies S? < S, . Indeed S, satisfies all Hugoniot conditions and
the entropy tangency condition (5.4). The Hugoniot curve starting at state (—); intersects
the vertical line at the state E;. Upstream of point (—); we have isothermal conditions and
we can apply the classical Buckley-Leverett theory.

The solution (see Figure 6.1) is a wave sequence consisting of a constant state, a rarefaction
part at 7" and subsequently the steam condensation front. Downstream of the steam con-

densation front there will be the constant state E, followed by a Buckley-Leverett rarefaction

and shock up to the state I. All of this is indicated by the path B, o (=) 5S¢k B, AT

If the injection saturation is equal to the connate water saturation the path B; — (—); has
no constant state.

Downstream of the SCF, i.e., in F; I T there is a constant state followed by a Buckley-
Leverett rarefaction wave until we attain the cold isothermal gas-water shock (cigw) with

speed
,Ucz'gw — U’_ (&) ’?)migw — U,_ (&) , (62)
© \Sg/ 1o U \Sy/ o

to the initial state where the gas saturation goes to zero. This cigw shock appears in cases
one to three.

The separation between the first and second cases is the coincidence locus described in
Section 5.2.1.

6.2. Second case. The water saturation at the injection point is high enough so that the
velocity of the steam condensation front satisfies the following inequalities for 5"V X¢F defined
in Equation (5.4)

6WELGE < ,6SCF < S\BL(_)‘ (63)

Figure 6.2 shows a number of cases that differ in the left state only as to the injection
saturation. In all of these cases there is a constant state from the injection condition indicated
by B to the left point (—) (just upstream) of the steam condensation front. (Of course, B
and (—) coincide.) In Case 2, the left state (—); lies below the entropy curve. (This means
that part of the Hugoniot curve does not represent admissible solutions and hence it is

represented by a thin line). For Case 2 the solution path (or wave sequence) typically is

By~ (—)2SC—>F (+)26ﬂ>sf . Case 2 comprises all solutions with Hugoniot curves such as the

ones belonging to Bs, starting below the coincidence curve, and to Bj, starting above the
coincidence curve. All solutions for this case, which do not intersect the Welge curve to the

right of the vertical straight line, follow the same pattern.

These solutions have a constant state B — (—), the steam condensation front (—) 58

(+), a constant state, a rarefaction and a shock to the initial state I, (+) 5" 1.

The second and third cases are separated by the Welge curve described in Section 5.2.2.

6.3. Third case. Figure 6.2 shows also the case with Hugoniot curves, such as the one
belonging to By, that do intersect the Welge curve left of B and to the right of the vertical
straight line. Because we crossed the Welge curve a bifurcation has occurred. Indeed for
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FiGure 6.2. Construction of solution for injection conditions B, =
(r-,S,) = (360,0.25), B = (I",S,) = (360,0.6), By = (T,S,) =
(360, 0.85) represented by solid circles. There is a constant state between the
injection condition and the left state of the steam condensation front (SCF')
denoted by (—),. The SCF is from (—), to (+),, i.e. the right state of the

SCF. For the initial condition I there follows a constant state, a rarefaction
and a shock.

(4)4—1 the rarefaction disappeared as can be easily verified from a classical Buckley-Leverett

construction using fractional flow curves. The complete wave sequence is a constant state

B -5 (—), then the steam condensation front (—) 58 (+), a constant state and finally a

shock to the initial condition I, (+) <=3 I.
Figure 6.3 shows two examples of injections also representative of Case 3, with very high
water saturations with solutions starting at Bs, Bg. The Welge curve is not visible be-

cause it is well below S,, = 0.97. The solution path for injection conditions Bs is given by

Bs—55(—)525 (4), <531 Tt is analogous for B.

The third and fourth cases are separated by the Hugoniot barrier described in Section 5.1.

6.4. Fourth case. The water saturation at the injection point is so high that at the injection
temperature the isothermal gas-water (higw) shock speed satisfies

phigw(—) < ATH(-). (6.4)

If the inequality (6.4) is satisfied we will have no steam condensing at the front where the
temperature is reduced. Instead we have a higw shock followed by a cooling discontinuity
as given by Eq. (4.4). Between the injection point and the front where the temperature is
reduced now there is a hot two phase zone and a hot single phase zone.

An example of the fourth case is the solution with initial condition By is on the other
side of the Hugoniot barrier curve. (See Figure 6.3.) This means that the Buckley-Leverett

gas-water shock is slower than the speed of a temperature wave carried by pure liquid water

so there is no steam condensation front. The solution path is B; — (=); — () cod T,
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Ficure 6.3. Construction of solution for injection conditions Bs =
(T-,S,) = (360,0.975), Bs = (T—,S,) = (360,0.99), B; = (T~,S,) =
(360,0.997). The curves Bs, Bg start and remain below the barrier curve. For
Bs, Bg there are a constant state, the steam condensation front, a constant
state and a shock to I. For B; we have a constant state, a hot isothermal gas
water shock and a thermal contact discontinuity to I.

In this case there will be a shock from (—), following the vertical arrow also called the hot
1sothermal gas-water shock and a horizontal arrow representing the cooling discontinuity.

7. CONCLUSIONS

1. A method is presented with which all qualitatively different solutions can be found. A
bifurcation, i.e. a qualitatively different solution, can occur when the solution crosses
bifurcation loci (where wave velocities become equal).

2. For an initial state where the porous medium is fully saturated with water four different
types of solutions are found, depending on the injection conditions. This general pattern
is independent of realistic variations of the physical quantities.

3. Three of these solutions contain a cold gaseous zone downstream of the steam con-
densation front. Such a zone is considered a prerequisite for the avoiding downward
movement of the pollutants (DNAPL’s).

4. The fourth solution, for which the gas saturation disappears upstream of the temper-
ature wave, only occurs for impractical injection conditions. Moreover, the presence
of injected nitrogen greatly reduces the region in phase space where there is no steam
condensation front. This region corresponds to less than 0.01 nitrogen saturation, as
shown in Fig. 6.3.
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APPENDIX A. PHYSICAL QUANTITIES; SYMBOLS AND VALUES

In this Appendix we summarize the values and units of the various quantities used in the
computation and empirical expressions for the various parameter functions. For convenience
we express the heat capacity of the rock C? in terms of energy per unit volume of porous
medium per unit temperature i.e. the factor 1 — ¢ is already included in the rock density. All
other densities, concentrations are expressed in terms of mass per unit volume of the phase.
All enthalpies per unit mass are with respect to the enthapies at the reference temperature
of the components in their standard form. All heat capacities are at constant pressure. All
enthapies per unit mass are zero for the component in its standard form at the reference
temperature.



22

BRUINING AND MARCHESIN

Table A. Summary of physical input parameters and variables

Physical quantity Symbol Value Unit
Heat capacities per unit mass cw, Cow,Con | LI, dZQTW, dZQTN [J/(kgK)]
Water heat capacity Cw dHyw /dT [J/(m3K)]
Steam, N, heat capacity Cow, Cyn dIEW, dl;%” [J/(m3K)]
Effective rock heat capacity C 2.029 x 10° [J/(m*K)]
Water, steam fractional functions Jw, g Eq. (2.2). [m3/m?3]
Steam /N, enthalpy per unit mass hgw, hgn Eq. A3,A.4 [J/kg]
Steam /N, enthalpy H,w pgw (T)hgw (T) [J/m3]

Hox pux (Dhyy(T) 3/m]
Partial steam/N, enthalpy H,, Pgw(T)hgw (T) [J/m3]

H,, pon (1o (T) [3/m]
Rock enthalpy H, C.(T-T) [J/m3]
Water enthalpy Hy ow (T)hw (T) [J/m?]
Porous rock permeability k 1.0 x 10712 [m?]
Water, steam relative permeabilities | Ky, krq Eq. (A.11) . [m?/m3]
Pressure Diot 1.0135 x 103 [Pa]
Mass condensation rate Qg—aw Eq. 2.1 [kg /(m3s)]
Cumulative mass condensation Q Eq. (2.17). [kg /m?]
Water, steam saturations Sw, Sy Dependent variables. [m3/m3]
Connate water saturation Swe 0.15 [m?/m3]
Water injection saturation Sing [m?/m3]
Temperature T Dependent variable. K]
Reservoir temperature T 293. K]
Injection temperature T 293 — 373. K]
Water, steam phase velocity Uny, Ug Eq. (2.3). [m3/(m?s)]
Total Darcy velocity u Uy + Ug. [m?/(m?s)]
Total injection velocity u'™ w4+ it [m3/(m?s)]
SCF velocity v5OF : [m/s]
Water, steam viscosity P fhg Eq. (A.6), Eq. (A.7). [Pa s
Steam, nitrogen concentrations Pgw; Pgn Eq. (A.9) [kg/m3]
Pure water, steam, nitrogen densities | pw, pgw, pgn | 1000,Eqgs.(2.8) . [kg/m?]
Rock porosity 7 0.38 [m?/m3]
Water evaporation heat A Eq. (2.12),(A.5). [J/kg]

A.1. Temperature dependent properties of steam and water. We use reference [29]
to obtain all the temperature dependent properties below. The water and steam densities
used to obtain the enthalpies are defined at the bottom. First we obtain the boiling point
T°? at the given pressure p, i.e.

T = 280.034 + 9(14.0856 + 0(1.38075 + o(—0.101806 + 0.0190170))),

(A.1)

where ¢ = log(p) and p is the pressure in [k Pa]. The evaporation heat [J/kg] is given as a
function of the temperature 7" at which the evaporation occurs. We use atmospheric pressure

(p = 101.325 [k Pa]) in our computations.
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The liquid water enthalpy h,(7) [J/kg] as a function of temperature is approximated by
ho(T) = 2.36652 x 107 — 3.66232 x 10°T + 2.26952 x 10372 — 7.303657 + 1.30241 x 10 *T*

—1.22103 x 10 °T° + 4.70878 x 10" 9T° — h,,. (A.2)
The steam enthalpy hgw|[J/kg| as a function of temperature is approximated by

how (T) = —2.20269 x 107 + 3.65317 x 10°T — 2.25837 x 10°T? + 7.3742T"
—1.33437 x 10727 4 1.26913 x 107°7° — 4.9688 x 107°7° — h,,. (A.3)

The nitrogen enthalpy hyn[J/kg| as a function of temperature is approximated by
hon (T) = 975.0T + 0.0935T% — 0.476 x 107 "T* — hy. (A.4)

The enthalpies A, (T) , hyn (T) vanish at a reference temperature T = 293K. For the latent
heat A(T')[J/kg] or evaporation heat we obtain

A(T) = (7.1845 x 10" + 1.10486 x 10'°T — 8.8405 x 10"T” + 1.6256 x 10°T° — 121.377T4)%.
(A.5)

The temperature dependent liquid water viscosity p,, [Pas] is approximated by

27.1038  23527.5  1.01425 x 107  2.17342 x 10°  1.86935 x 10!
[ = —0.0123274 + - + - + .

T T2 T3 T 15
(A.6)
We assume that that the viscosity of the gas is independent of the composition.
T\ 06
g =1.8264x107° <ﬁ> : (A7)

The water saturation pressure as a function of temperature is given as

P = 103(—175.776 + 2.29272T — 0.01139537% + 0.0000262787°

—0.00000002737267* + 1.13816 x 10~''7°)? (A.8)
The corresponding concentrations pgy,, pgrn are calculated with the ideal gas law

) _ MW psat ) B MN (ptot_psat) (A 9)
v RT " RT ’ '
where as the pure phase densities are given in Egs. (2.8) where the gas constant R =
8.31[J/mol/ K]
The liquid water density as a function of the temperature T'[K] is given as

pV(T) = 3786.31 — 37.2487T + 0.196246T° — 5.04708 x 10~*T*

+6.29368 x 10 "T* — 3.08480 x 10 °7°. (A.10)

We use, however, p" (T') = 1000 in the computations for convenience.
For simplicity the liquid water density is assumed to be constant at 998.2.kg/m?
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A.2. Constitutive relations. The relative permeability functions £,,, and k,, are consid-
ered to be power functions of their respective saturations [10], i.e.

KL, ou=Sue " k; Sy=5gr_\" for Sy < Sy <1
Swe—Sgr 1—Swe—Saor we > Pw > 1,
krw — { (1 0 g ) ,krg { ( 1 g ) fOI' Sw < ch. (Al]_)

For the computations we take n,, = 2 and n, = 2. The end point permeabilities k;,,, k7, are

0.5 and 0.95 respectively. The connate water saturation S, is given in the table.

APPENDIX B. SPEED EQUALITIES AT THE HUGONIOT BARRIER

Introducing the following abbreviations

Cw = pw (hw = hiv) . Cg = pgu(hgw — hgiy) + Pgn(hgy — gn),

we obtain for the speed of the cooling discontinuity wave in the water

~TH _ pw (hw — hiy) _ Cw
v = — = ) (B.1)
(Hy — HY) Jo+pw (b — b))  Cr/o+Cw
We use Eq. (3.16)
e Cwiy, +Cof-
Ady™ _  Cwlw Gyl (B.2)

AHyn"  C/o+CwS, +CiSy

We equate v from Eq. (B.1) and the speed of the hot isothermal gas water shock given
by (4.1) and obtain the second equality below

1—fo f;  Cw Cw +Cif, Cwfo +Cofy
1-S; S CJ/o+Cw C/g0+CW+CS T CJo+CwSs +CsS,

9

The third equality is obtained by multiplying the second fraction by C; and adding it to the
third fraction. For the fourth equality we multiply the first fraction by Cy, add the fourth
fraction and simplify.

Remark B.1. By procedures similar to the one above we reach the following conclusion.
;. aggt
Sg_ Y AH,;,_’+ Y

Consider the wave speeds: and 97 if any of the two are equal, then the three

are equal.

Remark B.2. We show that T # T~ implies that Zg’“ Z-"" is non-zero. Using Egs. (2.9),
gw an
(2.8), and (2.10) we can write

Pow P T (Paw oo PP ) T [ Y=Y ) oy
Phw  Pin T~ Pgw P Pgn Pgn T- (1_ gw) p

where we use Figure 2.2 to see that 1y, is a monotone function of temperature. The final
quantity is positive for our case with 77 < T .



NITROSTEAM 25

DIETZ LABORATORY, CENTRE OF TECHNICAL GEOSCIENCE, MIINBOUWSTRAAT 120, 2628 RX DELFT,
THE NETHERLANDS
E-mail address: J.Bruining@citg.tudelft.nl

INSTITUTO DE MATEMATICA PURA E APLICADA, ESTRADA DoNA CASTORINA 110, 22460-320 Rio
DE JANEIRO, RJ, BRAZIL
E-mail address: marchesiQimpa.br



