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Abstract. We derive explicit equations for the maximal function fields F

over Fq2n given by F = Fq2n(X, Y ) with the relation A(Y ) = f(X), where

A(Y ) and f(X) are polynomials with coefficients in the finite field Fq2n , and
where A(Y ) is q-additive and deg(f) = qn + 1. We prove in particular that

such maximal function fields F are Galois subfields of the Hermitian function

field H over Fq2n (i.e., the extension H/F is Galois).

Keywords: Finite field, maximal curve, additive polynomial.

1. Introduction

By a curve we mean a smooth, geometrically irreducible projective curve de-

fined over a finite field. The main result in this theory is a celebrated theorem

of A. Weil bounding the number of rational points on the curve; i.e., points with

all coordinates in the finite field. This theorem is equivalent to the validity of

the Riemann Hypothesis in this situation of curves over finite fields. Curves with

many rational points over finite fields have interesting applications in Coding
1
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Theory, Cryptography, Finite Geometry etc. (see for example [T-V], [S], [H],

[N-X]).

Let Fq be the finite field with q elements and f ≥ 1. For the number #X (Fq )
of Fq -rational points of a curve X defined over Fq of genus g(X ) , the Hasse-Weil
upper bound states that

#X (Fq ) ≤ 1 + qf + 2g(X )qf/2.
This fundamental result was proved by H. Hasse for elliptic curves and, for higher

genus curves, it was proved by A. Weil. A curve X over Fq with f = 2n and

n ≥ 1 is called maximal if its number of rational points attains the Hasse-Weil
upper bound above. The most important example of a maximal curve over Fq2n
is the Hermitian curve H, which can be given by the plane affine equation

Xqn+1 = Zq
n

+ Z.

A large class of maximal curves consists of quotients of the Hermitian curve (see

[G-S-X]). It is useful for applications to have explicit equations for maximal

curves. Our aim here is to describe by explicit equations certain particular maxi-

mal curves (see Equation (1.1) below) and then conclude that they are quotients

of the Hermitian curve (see Section 3).

The theory of algebraic curves is essentially equivalent to the theory of function

fields. From now on, we are going to use the language of function fields and our

basic reference for function fields is [S]. For example the Hermitian curve H
corresponds to the Hermitian function field H where H = Fq2n(X,Z) with the
relation Xqn+1 = Zq

n
+ Z.

We call a polynomial A(T ) ∈ Fq [T ] q-additive if it is of the form
A(T ) = a0T + a1T

q + · · ·+ amT qm.
Let f (T ) ∈ Fq2n[T ] be a polynomial of degree qn + 1 and let A(T ) ∈ Fq2n [T ] be a
q-additive polynomial of degree qm. In this paper we consider function fields F

of the particular form below

F = Fq2n(X, Y ) with f(X) = A(Y ).(1.1)

Using some results from coding theory, we characterize in Theorem 2.3 the poly-

nomials f(T ) ∈ Fq2n[T ] of degree qn + 1 and the monic q-additive polynomials
A(T ) ∈ Fq2n [T ] such that the function field F in (1.1) is maximal. The char-

acterization of A(T ) is done in terms of its image V = {A(y) : y ∈ Fq2n} (see
also Corollary 2.5) and we have essentially that f (T ) = T q

n+1. Theorems 3.12

and 3.14 give an explicit description of maximal function fields F of the form
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(1.1) as a fibre product of m suitable intermediate function fields F1,. . . ,Fm with

Fq2n(X) ⊆ F1, . . . , Fm ⊆ F , where F1, . . . , Fm are also maximal function fields

of the form (1.1) satisfying [F1 : Fq2n(X)] = · · · = [Fm : Fq2n(X)] = q. In this

way for a maximal function field F of the form (1.1), we prove that F is a Galois

subfield of the Hermitian function field H and we determine the Galois group

Aut(H/F ) explicitly. Moreover in Theorem 3.17 we give a condition for maximal

function fields F of the form (1.1) to be the same (see also Corollary 3.18).

This paper is closely connected with [A-G] and [G-K-M] (see Remarks 3.3

and 3.19). The emphases here is on obtaining explicit equations for maximal

function fields F given as in (1.1) above. To obtain such explicit equations we

consider the trace map from Fq2n to the subfield Fq and we use it to describe
V = {A(y) : y ∈ Fq2n}, which is an Fq-linear space naturally attached to the
additive polynomial A(T ) (see Corollary 2.5 and Section 3).

Throughout the paper Tr denotes the trace map from Fq or Fq2n onto Fq.

2. Characterization of polynomials

In this section using some results from coding theory we characterize the poly-

nomials f(T ) ∈ Fq2n[T ] of degree qn + 1 and the monic q-additive polynomials
A(T ) ∈ Fq2n [T ] such that the function field in (1.1) is maximal. The results and
the methods developed in this section are used in Section 3.

The following result from linear algebra will be a useful tool to get explicit

polynomial equations.

Proposition 2.1. Let V ⊆ Fq be an Fq-linear subspace of codimension m. There
exist γ1, . . . , γm ∈ Fq \ {0} such that for x ∈ Fq

x ∈ V ⇐⇒ Tr(γ1x) = · · · = Tr(γmx) = 0.(2.1)

Moreover for {γ1, . . . ,γm} ⊆ Fq , the Fq-linear subspace {x ∈ Fq : Tr(γ1x) =

· · ·Tr(γmx) = 0} is of codimension m in Fq if and only if {γ1, · · · , γm} is linearly
independent over Fq.

Proof. Let {α1, . . . ,αf−m} be a basis of V and (α1, . . . ,αf−m, β1, . . . , βm) be an
ordered basis of Fq . Note that Tr defines an Fq-bilinear form on Fq . Let

(α∗1, . . . ,α
∗
f−m, β

∗
1 , . . . , β

∗
m) be the corresponding dual basis using the bilinear form

given by Tr (see also [L-N, Section 2.3]). Then it follows from the definition that

γ1 = β∗1 , . . . , γm = β∗m satisfy (2.1).
Assume that for {γ1, . . . , γm} ⊆ Fq , the Fq-linear subspace V = {x ∈ Fq :

Tr(γ1x) = · · · = Tr(γmx) = 0} is of codimension m. Then the map Φ : Fq → Fmq
given by x )→ (Tr(γ1x), · · · ,Tr(γmx)) is onto. If {γ1, . . . , γm} is linearly dependent
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over Fq, then without loss of generality we can assume that γm = c1γ1 + · · · +
cm−1γm−1 with c1, . . . , cm−1 ∈ Fq. Therefore if Tr(γ1x) = · · · = Tr(γm−1x) = 0,
then Tr(γmx) = 0. This implies that (0, · · · , 0, 1) ∈ Fmq is not in the image

of Φ, which is a contradiction. Conversely assume that {γ1, . . . , γm} is linearly
independent over Fq. Note that V = KerΦ and as the image of Φ is an Fq-
linear subspace of Fmq , we have dimV ≥ f−m. Let (γ1, . . . , γm, β1, . . . , βf−m) be
an ordered basis of Fq and (γ∗1 , . . . , γ∗m,β∗1 , · · · , β∗f−m) be the corresponding dual
basis with respect to the bilinear form given by Tr. For x = c1γ∗1 + · · ·+ cmγ∗m +
d1β∗1 + · · ·+df−mβ∗f−m ∈ V , we have c1 = · · · = cm = 0. Therefore dimV ≤ f−m,
which implies that V is of codimension m.

Remark 2.2. One can show that for two m-tuples (γ1, . . . ,γm) and (γ̄1, . . . , γ̄m)

of elements from Fq satisfying (2.1), there exists an invertible m×m matrix C

over Fq such that

 γ1
...

γm

 = C ·
 γ̄1

...

γ̄m

 .
Now we give our characterization of the polynomials.

Theorem 2.3. Let f(T ) ∈ Fq2n[T ] be a polynomial of degree qn + 1. Let A(T ) ∈
Fq2n [T ] be a monic q-additive polynomial of degree qm. Let F = Fq2n(X, Y ) be the
algebraic function field with the relation below

f (X) = A(Y ).

Then F is maximal over Fq2n if and only if the following three conditions hold:

1.) The polynomial A(T ) is separable and it splits in Fq2n .

Let V = {A(y) : y ∈ Fq2n}, then V is an Fq-linear subspace in Fq2n of codimension
m. Let (γ1, . . . , γm) be an m-tuple of elements from Fq2n \ {0} such that for
x ∈ Fq2n(cf. Proposition 2.1)

x ∈ V ⇐⇒ Tr(γ1x) = · · · = Tr(γmx) = 0.

Denote by γ = γ1 and by ai = γi+1/γ for 0 ≤ i ≤ m− 1.
2.) We have a1, . . . , am−1 ∈ Fqn and {1, a1, . . . , am−1} is linearly independent

over Fq. In particular m ≤ n.
3.) We have f (T ) = f0 + uT

qn+1, where f0 ∈ {A(y) : y ∈ Fq2n} and

uγ + uq
n

γq
n

= 0.
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Proof. The genus of the function field F is qn(qm − 1)/2 and the field F is maximal
if and only if the number of rational places of F is

1 + q2n + 2
qn(qm − 1)

2
qn = 1 + q2n+m.

Then F is maximal if and only if for each x ∈ Fq2n the polynomial A(T )−f (x) ∈
Fq2n [T ] has qm distinct roots in Fq2n. We denote the coefficients of f (T ) ∈ Fq2n [T ]
as below

f(T ) =

qn+13
i=0

αiT
i, and we let f̄(T ) =

qn+13
i=1

αiT
i.

Assume that F is maximal. Then A(T )−f (0) = A(T )−α0 has qm distinct roots
in Fq2n . Let y0 ∈ Fq2n with α0 = A(y0) and let Ȳ = Y − y0 ∈ F . We have
F = Fq2n(X, Ȳ ), where

f̄ (X) = A(Ȳ ).

Therefore A(T )− f̄ (x) ∈ Fq2n[T ] has qm distinct roots in Fq2n for each x ∈ Fq2n .
As f̄(0) = 0, in particular A(T ) is separable and it splits in Fq2n . Let I be the
subset of {1, . . . , qn + 1} such that i ∈ I ⇐⇒ αi W= 0. Note that qn + 1 ∈ I and
0 W∈ I . Let I = {i1, . . . , ih} with 1 ≤ i1 < . . . < ih = qn + 1 and S(I) be the

Fq-linear space below

S(I) =
\
β1T

i1 + · · ·+ βhT
ih : β1, . . . , βh ∈ Fq2n

�
.

Note that the dimension of S(I) is equal to 2nh. Let w be a generator of the

multiplicative group of Fq2n, t = q2n − 1 and Ψ be the Fq-linear map
Ψ : S(I)→ Fmtq

g(T ) )→ D
Tr(γ1g(w)), . . . ,Tr(γ1g(w

t)), . . . . . . ,Tr(γmg(w)), . . . ,Tr(γmg(w
t))
i
.

As the polynomial A(T ) − f̄(x) ∈ Fq2n[T ] has qm distinct roots in Fq2n for each
x ∈ Fq2n , we have that f̄(x) ∈ V = {A(y) : y ∈ Fq2n} for each x ∈ Fq2n. By the
definition of the map Ψ, this implies that f̄(T ) ∈ KerΨ, and hence KerΨ W= {0}.
Let C be the image of the map Ψ. We observe that C is the dual of the ad-

ditive code over Fq corresponding to I and (γ1, . . . ,γm) (see [B, Section 5]).
For 1 ≤ i ≤ qn, we have

ee{iqj mod (q2n − 1) : 0 ≤ j ≤ 2n − 1}ee = 2n andee{(qn + 1)qj mod (q2n − 1) : 0 ≤ j ≤ 2n− 1}ee = n. Therefore using [B, Theo-

rems 19 and 21] we obtain that

dimFq C = (h− 1)2n + nr,
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where r is the rank of the m× 2 matrix
γ1 γq

n

1

γ2 γq
n

2
...

...

γm γq
n

m


over Fq2n. We have r ∈ {1, 2} and

r = 1 ⇐⇒ m = 1 or a1 =
γ2
γ1
, . . . , am−1 =

γm
γ1
∈ Fqn .

If r = 2, then dimFqC = 2nh and hence KerΨ = {0}, which is a contradiction.
Since r = 1 , we have

dimFq KerΨ = 2hn − dimFq C = n.

For γ = γ1, it is not difficult to observe that for each u ∈ Fq2n satisfying
uγ + uq

n

γq
n

= 0,(2.2)

the polynomial uT q
n+1 ∈ KerΨ. The number of u ∈ Fq2n satisfying (2.2) is qn

and hence KerΨ = {uT qn+1 ∈ Fq2n[T ] : uγ + uqnγqn = 0}.This proves item 3.).

Conversely, using the transitivity of traces ( see Remark 3.1) it is now also clear

that if the items 1.), 2.) and 3.) hold, then the function field F is maximal. This

completes the proof.

We develop further tools, which will be used in Section 3.

Lemma 2.4. Let A1[T ], A2[T ] ∈ Fq [T ] be monic q-additive polynomials both of
degree qm and both splitting in Fq . If {A1(y) : y ∈ Fq } = {A2(y) : y ∈ Fq }, then
A1(T ) = A2(T ).

Proof. Assume that {A1(y) : y ∈ Fq } = {A2(y) : y ∈ Fq } and let A(T ) =
A1(T ) − A2(T ). If A1(T ) W= A2(T ), then A(T ) is a q-polynomial of degree qh

with h < m. Moreover the Fq-linear space {A(y) : y ∈ Fq } is a subspace of the
Fq-linear space {A1(y) : y ∈ Fq }, since {A1(y) : y ∈ Fq } = {A2(y) : y ∈ Fq }.
This implies that {y ∈ Fq : A(y) = 0} is an Fq-linear space of dimension at least
m, which is a contradiction since h < m.

Note that for 0 ≤ m ≤ f, the number of m-dimensional Fq-linear subspaces of
Fq is given by the formula below:D

qf − 1i Dqf − qi · · · Dqf − qm−1i
(qm − 1) (qm − q) · · · (qm − qm−1) .
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This formula also implies that the number of Fq-linear subspaces in Fq of dimen-
sion m is equal to the number of subspaces of codimension m. Further we note

that there is a one to one correspondence between the m-dimensional Fq-linear
subspaces of Fq and the monic q-additive polynomials in Fq [T ] of degree qm

splitting in Fq . Hence using also Lemma 2.4 we obtain the following corollary.

Corollary 2.5. For each Fq-linear subspace V in Fq of codimension m, there

exists a uniquely determined monic q-additive polynomial A(T ) ∈ Fq [T ] of degree
qm (splitting in Fq ) such that

V =
\
A(y) : y ∈ Fq

�
.

Remark 2.6. Let γ, u ∈ Fq2n \ {0} with uγ + (uγ)qn = 0. Assume that

{1, a1, . . . , am−1} ⊆ Fqn is linearly independent over Fq. Let A(T ) be the monic
q-additive polynomial of degree qm such that (see Corollary 2.5)

x ∈ {A(y) : y ∈ Fq2n} ⇐⇒ Tr(γx) = Tr(a1γx) = · · · = Tr(am−1γx) = 0,
and f0 ∈ {A(y) : y ∈ Fq2n}. By Theorem 2.3, the function field F = Fq2n(X, Y ),
where f0+uX

qn+1 = A(Y ) is a maximal function field. Let X̄ = X, y0 ∈ Fq2n such
that A(y0) = f0, Ȳ = u−1/q

m
(Y − y0) ∈ F , γ̄ = uγ and Ā(T ) = u−1A

D
u1/q

m
T
i
.

Then F is also equal to the function field Fq2n(X̄, Ȳ ), where X̄qn+1 = Ā(Ȳ ),

γ̄ + γ̄q
n
= 0 and Ā(T ) is the monic q-additive polynomial of degree qm such that

x ∈ {Ā(y) : y ∈ Fq2n} ⇐⇒ Tr(γ̄x) = Tr(a1γ̄x) = · · · = Tr(am−1γ̄x) = 0.

3. Galois Subcovers of the Hermitian function field

In this section using fibre products of some explicitly given maximal function

fields, we represent a maximal function field F of the form (1.1) as a Galois

subfield of the Hermitian function field H, explicitly.

Throughout this section we fix a root γ of T q
n
+T . Any maximal function field

F of the form (1.1) corresponds to an Fq-linearly independent set {c1, . . . , cm} ⊆
Fqn such that for the monic q-additive polynomial A(T ) satisfying

x ∈ {A(y) : y ∈ Fq2n} ⇐⇒ Tr(c1γx) = · · · = Tr(cmγx) = 0,(3.1)

the maximal function field F is equal to the field F = Fq2n(X,Y ), where we have
the relation Xqn+1 = A(Y ) (cf. Remark 2.6).

Remark 3.1. The transitivity TrFq2n/Fq = TrFqn/Fq ◦ TrFq2n/Fqn of the traces im-
plies that if (3.1) holds, then the set {A(y) : y ∈ Fq2n} contains Fqn.
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Proposition 3.2. Let {c1, . . . , cm} ⊆ Fqn be an Fq-linearly independent subset.
Let A(T ) ∈ Fq2n [T ] be the monic q-polynomial of degree qm satisfying (3.1). We
further have that A(T ) ∈ Fqn[T ].

Proof. Using Corollary 2.5, let B(T ) ∈ Fqn [T ] be the monic q-additive polynomial
of degree qm such that

x ∈ {B(z) : z ∈ Fqn} ⇐⇒ TrFqn/Fq(c1x) = · · · = TrFqn/Fq (cmx) = 0.
Let B(T ) = T q

m
+ b1T

qm−1 + · · ·+ bm−1T q + bmT and for 1 ≤ i ≤ m define ai =

biγ
1
qi
−1
. Note that (γ)(q

n−1)(qi−1) = (−1)qi−1 = 1 for each 1 ≤ i ≤ m and hence

the monic q-polynomial A(T ) = T q
m
+ a1T

qm−1 + · · ·+ am−1T q + amT ∈ Fqn[T ].
It is not difficult to observe that

x ∈ {A(y) : y ∈ Fq2n} ⇐⇒
D
γx+ γq

n

xq
ni ∈ {B(z) : z ∈ Fqn}.

Indeed the map sending y ∈ Fq2n to γ1/qmy+ γq
n−m
yq

n ∈ Fqn is onto and for each
x, y ∈ Fq2n and z = γ1/q

m
y + γq

n−m
yq

n ∈ Fqn we have
x = A(y) ⇐⇒ γx+ γq

n

xq
n

= B(z).

Therefore

x ∈ {A(y) : y ∈ Fq2n} ⇐⇒ Tr(c1γx) = · · · = Tr(cmγx) = 0,
since Tr(ciγx) = TrFqn/Fq

D
ci(γx+ γq

n
xq

n
)
i
for 1 ≤ i ≤ m. We complete the proof

using the uniqueness of A(T ) from Corollary 2.5.

Remark 3.3. Proposition 3.2 shows that if F = Fq2n(X, Y ) with Xqn+1 = A(Y )

is a maximal function field, then the monic q-additive polynomial A(T ) has co-

efficients in Fqn. This fact was used as a hypothesis in Section 4 of [G-K-M] and
we could then proceed as in [G-K-M] to show that F is a Galois subfield of the

Hermitian function field H (i.e., the field extension H/F is Galois). In what fol-

lows we prove that F is a Galois subfield of H by exhibiting an explicit equation

for the function field F .

Recall that the Hermitian function fieldH over Fq2n is given byH = Fq2n(X,Z),
where we have the relation Xqn+1 = Zq

n
+ Z.

Lemma 3.4. Assume that n = m. For any Fq-linearly independent set {c1, . . . , cn} ⊆
Fqn, the corresponding monic q-additive polynomial of degree qn is T q

n
+ T , and

hence the Hermitian function field is the only maximal function field of the form

(1.1) in this case.
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Proof. Let {c1, . . . , cn} ⊆ Fqn be an Fq-basis of Fqn. Let V be the Fq-linear
subspace in Fq2n such that

x ∈ V ⇐⇒ Tr(c1γx) = Tr(c2γx) = · · · = Tr(cnγx) = 0.

By Proposition 2.1, the Fq-dimension of V is n. Moreover for c, x ∈ Fqn we have

Tr(cγx) = TrFqn/Fq
DD
γ + γq

ni
cx
i
= 0,

and hence V = Fqn. It is well known that Fqn =
\
yq

n
+ y : y ∈ Fq2n

�
, and the

uniqueness of T q
n
+ T follows from Corollary 2.5.

Remark 3.5. Lemma 3.4 also follows from [R-S] since the genus of the corre-

sponding maximal function field is qn(qn − 1)/2 in this case.

For each root α of T q
n
+ T , let ψα be the automorphism of H over Fq2n(X)

given by

ψα(Z) = Z + α and ψα(X) = X.

For roots α1, α2 of T
qn + T , we have ψα1 ◦ ψα2 = ψα2 ◦ ψα1 = ψα1+α2, and

G = {ψα : αqn + α = 0}

is the group Aut(H/Fq2n(X)) of automorphisms of H fixing Fq2n(X). In partic-
ular the group G is a one dimensional Fqn-linear space generated by ψγ and the
extension H/Fq2n(X) is an abelian (Galois) extension.
For each µ ∈ Fqn \ {0}, let Bµ(T ) and Cµ(T ) be the monic q-additive polyno-

mials below

Bµ(T ) = T
q − (µγ)1/q−1T, and

Cµ(T ) = T
qn−1 + (µγ)1/q

2−1/qT q
n−2
+ · · ·+ (µγ)1/qn−1/qT.

Lemma 3.6. For each µ ∈ Fqn \ {0}, we have
T q

n

+ T = Bµ ◦ Cµ = Cµ ◦Bµ,

and hence the polynomials Bµ and Cµ split in Fq2n .

Proof. The proof follows from direct computations.

Remark 3.7. For µ1, µ2 ∈ Fqn \ {0}, we have

Cµ1(T ) = Cµ2(T ) ⇐⇒ µ1/µ2 ∈ Fq.
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Let P be a subset of Fqn consisting of q
n−1
q−1 elements and corresponding to the

projective space of dimension n − 1 over Fq.
For each µ ∈ Fqn \ {0}, let Gµ be a subgroup of G defined by

Gµ = {ψα : α is a root of Cµ(T )}.

Note that Gµ is an Fq-linear subspace of G of codimension 1.

Remark 3.8. The set of all codimension one Fq-linear subspaces of the group G
is {Gµ : µ ∈ P}. For each Fq-linear subspace V ⊆ G of codimension m, there

exists {µ1, . . . , µm} ⊆ P such that

V = Gµ1 ∩ · · · ∩Gµm .

In general, {µ1, . . . , µm} is not unique.

Lemma 3.9. For a subset {µ1, . . . , µm} ⊆ Fqn \ {0}, if the Fq-linear subspace)m
i=1Gµi is of codimension m in G, then {µ1, . . . , µm} is linearly independent

over Fq.

Proof. For µ ∈ Fqn \ {0}, let Cµ = (µγ)1/qCµ. Note that for µ1, µ2 ∈ Fq2n with
µ1+µ2 W= 0 we have Cµ1+µ2 = Cµ1+Cµ2. Moreover for µ ∈ Fqn \{0}, a ∈ Fq \{0}
and α ∈ Fq2n we have

Cµ(α) = 0 ⇐⇒ Cµ(α) = 0 ⇐⇒ Caµ(α) = 0.

Assume that {µ1, . . . , µm} is linearly dependent over Fq. By passing to a sub-
set, we can assume without loss of generality that µ1 = a2µ2 + · · ·+ amµm with
a2, . . . , am ∈ Fq\{0} and that the sum of any nonempty subset of {a2µ2, . . . , amµm}
is nonzero. For α ∈ Fq2n with Cµ2(α) = · · · = Cµm(α) = 0 we have Ca2µ2(α) =
· · · = Camµm(α) = 0 and hence

Cµ1(α) = Cµ1(α) = Ca2µ2(α) + · · ·+ Camµm(α) = 0.

Then Gµ1 ⊆
)m
i=2Gµi and hence

)m
i=1Gµi is of codimension smaller or equal to

m− 1 in G, which is a contradiction.

Remark 3.10. In Theorem 3.14 we will prove the converse of Lemma 3.9.

Lemma 3.11. For each µ ∈ P , the fixed subfield of the Hermitian function field
H corresponding to Gµ is Fq2n(X,Y ), where

Xqn+1 = Bµ(Y ).
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Proof. For ψα ∈ Gµ, we have by definition that Cµ(α) = 0. The function Y =

Cµ(Z) of the Hermitian function field H is invariant under this subgroup Gµ of

G. In fact we have

ψα(Y ) = ψα (Cµ(Z)) = Cµ (Z + α) = Cµ(Z) + Cµ(α) = Y.

Now since the fixed field of Gµ has degree q over Fq2n(X) and the polynomial Bµ
is of degree q, we conclude the proof.

Using Lemma 3.11 we obtain the following theorem.

Theorem 3.12. For m ≤ n−1, let V ⊆ G be the Fq-linear subspace of codimen-
sion m such that

V = Gµ1 ∩ · · · ∩Gµm,
where {µ1, . . . , µm} ⊆ P . The fixed subfield of H corresponding to the linear space

V is given by Fq2n(X, Y1 , . . . , Ym), where

Xqn+1 = Bµ1(Y1),
...

Xqn+1 = Bµm(Ym).

LetW = {α : Cµ1(α) = · · · = Cµm(α) = 0} and let CV =
�

α∈W (T−α) ∈ Fq2n [T ].
There exists a uniquely determined monic q-polynomial BV (T ) ∈ Fqn[T ] of degree
qm such that T q

n
+ T = BV ◦ CV , and moreover we have that the function field

Fq2n(X, Y1, . . . , Ym) is also equal to the field Fq2n(X, Y ), with Xqn+1 = BV (Y ).

Proof. Let µ be any of µ1, . . . , µm. Since the polynomial CV divides Cµ, there

exists a uniquely determined monic q-additive polynomial D ∈ Fq2n[T ] such that
Cµ = D ◦ CV (cf. [G-K-M, Theorem 3]). As CV divides the polynomial T

qn +

T , similarly, we have a uniquely determined monic q-additive polynomial BV ∈
Fq2n [T ] such that T q

n
+ T = BV ◦ CV . It then follows that BV = Bµ ◦D; in fact

we have

BV (CV ) = T
qn + T = Bµ ◦ Cµ = [Bµ ◦D] (CV ) .

The equality BV = Bµ ◦ D implies that the function field Fq2n(X, Y ) with the
relationXqn+1 = BV (Y ) contains the compositum of the function fields associated

to Gµ as in Lemma 3.11. Moreover using Proposition 3.2 we further have that

BV ∈ Fqn [T ] and this finishes the proof.
Lemma 3.13. For each µ ∈ Fqn \ {0} we have

x ∈ {Bµ(y) : y ∈ Fq2n} ⇐⇒ Tr(µγx) = 0.
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Proof. Using Hilbert’s Theorem 90 we have

µγx ∈ {yq − y : y ∈ Fq2n} ⇐⇒ Tr(µγx) = 0.

The proof follows from the observation thatF
1

µγ
(yq − y) : y ∈ Fq2n

k
= {Bµ(y) : y ∈ Fq2n} .

Theorem 3.14. For each {µ1, . . . , µm} ⊆ Fqn such that {µ1, . . . , µm} is linearly
independent over Fq, we have the following:

1.) For each x ∈ Fq2n we have

x ∈
m<
i=1

{Bµi(y) : y ∈ Fq2n} ⇐⇒ Tr(µ1γx) = · · · = Tr(µmγx) = 0.

2.) V = Gµ1 ∩ · · · ∩ Gµm is an Fq-linear subspace of codimension m in G.

3.) For the monic q-additive polynomial BV ∈ Fqn[T ] of degree qm defined in
Theorem 3.12, we have

x ∈ {BV (y) : y ∈ Fq2n} ⇐⇒ Tr(µ1γx) = · · · = Tr(µmγx) = 0.

Proof. The proof of item 1.) follows directly from Lemma 3.13. Next we consider

items 2.) and 3.). Assume that the codimension of V in G is m̄. Then the monic

q-additive polynomial BV ∈ Fqn[T ] defined in Theorem 3.12 is of degree qm̄. It is
clear that m̄ ≤ m. If we have the inclusion below

{BV (y) : y ∈ Fq2n} ⊆
m<
i=1

{Bµi(y) : y ∈ Fq2n} ,(3.2)

then the codimension of {BV (y) : y ∈ Fq2n} in Fq2n is greater or equal to m. As
the degree of BV is q

m̄, we also have that the codimension of {BV (y) : y ∈ Fq2n}
in Fq2n is smaller or equal to m̄. Therefore if (3.2) holds, then m ≤ codimension
of {BV (y) : y ∈ Fq2n} ≤ m̄ and hence m = m̄. Moreover (3.2) also implies that

{BV (y) : y ∈ Fq2n} =
)m
i=1 {Bµi(y) : y ∈ Fq2n}. So we just have to prove (3.2). As

in the proof of Theorem 3.12, for 1 ≤ i ≤ m there exists a uniquely determined

monic q-additive polynomial Di ∈ Fq2n [T ] such that BV = Bµi ◦Di. This implies
that {BV (y) : y ∈ Fq2n} ⊆ {Bµi(y) : y ∈ Fq2n} for each 1 ≤ i ≤ m, and this proves
the inclusion in (3.2). Using Proposition 3.2 we further get that BV ∈ Fqn[T ],
and hence we have completed the proof.
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Remark 3.15. Using Theorem 2.3, Theorem 3.12 and Theorem 3.14, we obtain

that all maximal function fields of the form (1.1) are Galois subfields of the Her-

mitian function field. There is a correspondence between the maximal function

fields of the form (1.1) and the Fq-linear subspaces of Fqn. Fixing a root γ of
T q

n
+ T , any maximal function field of the form (1.1) determines an Fq-linear

subspace of Fqn spanned by {c1, . . . , cm} ⊆ Fqn satisfying (3.1) (cf. Theorem 2.3,
Remarks 2.2 and 2.6). Again fixing a root γ of T q

n
+ T we have conversely that

any Fq-linear subspace of Fqn determines a maximal function field of the form
(1.1) (cf. Lemma 3.9, Theorems 3.12 and 3.14).

Remark 3.16. Note that our results improve and complete Theorem 7 of [G-K-M].

Apart from giving explicit equations for the maximal function fields in (1.1), we

do not assume here that the additive q-polynomial A(T ) has its coefficients in

Fqn; rather, this is a result that we prove here in Proposition 3.2.

The correspondence of Remark 3.15 is not one-to-one. In the next theorem

we give a sufficient condition which implies the existence of distinct Fq-linear
subspaces of Fqn corresponding to the same maximal function field.
For µ ∈ Fqn \ {0}, we note that

Bµ(T ) =
�
c∈Fq

X
T − c

(µγ)
1
q

~
.(3.3)

Theorem 3.17. Let {µ1, . . . , µm}, {ν1, . . . , νm} ⊆ Fqn be two Fq-linearly inde-
pendent sets. If there exists a nonzero element α in Fqn such that the Fq-linear
subspaces spanned by {αµ1, · · · ,αµm} and by {ν1, . . . , νm} are the same, then the
corresponding maximal function fields of {µ1, . . . , µm} and of {ν1, . . . , νm} are the
same. If m belongs to {1, n−1}, then for any two Fq-linearly independent subsets
of size m in Fqn, there exists such a nonzero element α in Fqn. Hence the maximal
functions fields of the form (1.1) are uniquely determined when m ∈ {1, n− 1}.

Proof. Let U =
)m
i=1Gµi and V =

)m
i=1Gνi . The subgroups U and V are Fq-

linear subspaces of codimension m in G (cf. Theorem 3.14). The fixed subfields

of H corresponding to U and V are Fq2n(X, Y1, . . . , Ym) and Fq2n(X,Z1, . . . , Zm)
respectively, where for 1 ≤ i ≤ m

Xqn+1 =
�
c∈Fq

w
Yi − c

(µiγ)1/q

W
, and Xqn+1 =

�
c∈Fq

w
Zi − c

(νiγ)1/q

W
(cf. Theorem 3.12 and (3.3) ). LetW1 andW2 be the Fq-linear spaces spanned by
{µ1, . . . , µm} and {ν1, . . . , νm} respectively. Assume that there exists α ∈ Fqn\{0}
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such that W2 = {αw : w ∈ W1}. Let β ∈ Fq2n \ {0} such that βqn+1 = α,

X̄ =
X

β
∈ Fq2n(X) and Ȳi = Yi

α1/q
∈ Fq2n(X, Y1, . . . , Ym) for 1 ≤ i ≤ m. Then we

have Fq2n(X, Y1, . . . , Ym) = Fq2n(X̄, Ȳ1, . . . , Ȳm), where

X̄qn+1 =
�
c∈Fq

X
Ȳi − c

(αµiγ)
1
q

~
= Bαµi(Ȳi), for 1 ≤ i ≤ m.

AsW2 = {αw : w ∈W1}, we also have Fq2n(X̄, Ȳ1, . . . , Ȳm) = Fq2n(X,Z1, . . . , Zm).
It remains to prove the assertions for the case m ∈ {1, n − 1}. For an Fq-linear
subspace W in Fqn of dimension m with 1 ≤ m ≤ n− 1, let A be the polynomial
A =
�
w∈W (T − w) in Fqn[T ]. For α ∈ Fqn \ {0}, the set W = {αw : w ∈ W}

is also an Fq-linear subspace of dimension m in Fqn . Similarly let A be the

monic q-additive polynomial A =
�
w̄∈W (T − w̄) in Fqn[T ]. Note that W = W

if and only if A = A. Since A is a monic q-additive polynomial we have

A = T q
m
+am−1T q

m−1
+· · ·+aqT q+a0T , where a0, . . . , am−1 ∈ Fqn . Moreover A is

separable and hence a0 W= 0. By definition ofW and A, we have A(T ) = αq
m
A
D
T
α

i
and hence A = T q

m
+ αq

m−qm−1am−1T q
m−1

+ · · · + αq
m−1a0T . If W = W then

A = A, hence αq
m−1a0 = a0 and then α ∈ Fqm as a0 W= 0. This implies that for

1 ≤ m ≤ n − 1 with gcd(m,n) = 1, if W = W then α ∈ Fq = Fqn ∩ Fqm . Hence
for 1 ≤ m ≤ n − 1 with gcd(m,n) = 1, W = W if and only if α ∈ Fq \ {0}. For
1 ≤ m ≤ n− 1, let Sm denote the set of all distinct Fq-linear subspaces of Fqn of
dimension m. The multiplicative group Fqn \ {0} acts on Sm and the action of
α ∈ Fqn \ {0} is

W ∈ Sm )→W = {αw : w ∈ W} ∈ Sm.(3.4)

It follows from the discussion above that in the cases m = 1 and m = n− 1, each
orbit of this action on Sm has size

qn−1
q−1 . Moreover if m is 1 or n − 1, then the

size of Sm is also
qn−1
q−1 . Hence this action in (3.4) is transitive if m is 1 or n− 1,

which completes the proof.

Corollary 3.18. The function fields Fq2n(X, Y ) with Xqn+1 = A(Y ) , where

γA(Y ) = γY q − γ
1
qY or γA(Y ) = γY q

n−1
+ γ

1
qY q

n−2
+ · · ·+ γ

1
qn−2 Y q + γ

1
qn−1 Y

are the only maximal function fields of the form (1.1) if m = 1 or m = n − 1,
respectively.

Proof. For m = 1 it is enough to observe that

x ∈
+
yq − γ

1
q
−1y : y ∈ Fq2n

�
⇐⇒ Tr(γx) = 0
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(cf. Lemma 3.13). Similarly for m = n − 1 we have
x ∈
+
yq

n−1
+ γ

1
q
−1yq

n−2
+ · · ·+ γ

1
qn−2−1yq + γ

1
qn−1−1y : y ∈ Fq2n

�
⇐⇒ Tr(cγx) = 0 for each c satisfying c+ cq + · · ·+ cqn−1 = 0,

which completes the proof.

Remark 3.19. Consider the case m = n− 1 in Corollary 3.18 ; i.e., consider the
maximal function field F over Fq2n given by the equation

γX1+qn = γY q
n−1
+ γ1/qY q

n−2
+ ...+ γ1/q

n−2
Y q + γ1/q

n−1
Y.

Setting Y1 = γ1/q
n−1
Y we have that F = Fq2n(X,Y1) with the relation Y q

n−1
1 +

Y q
n−2

1 + ...+Y q1 +Y1 = γX1+qn . The uniqueness result about this function field F

given in Corollary 3.18 also follows from Theorem 5.11 of [A-G]. Here the proof

is much simpler since we assume that the function field F is of the form (1.1),

which essentially says that the extension F/Fq2n(X) is a Galois extension ( see
also Theorem 4.10 of [A-G]).
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