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ABSTRACT. We derive explicit equations for the maximal function fields F'
over Fpen given by F' = F2n(X,Y) with the relation A(Y) = f(X), where
A(Y) and f(X) are polynomials with coefficients in the finite field Fy2n, and
where A(Y") is g-additive and deg(f) = ¢ + 1. We prove in particular that
such maximal function fields F are Galois subfields of the Hermitian function
field H over Fgen (i.e., the extension H/F' is Galois).
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1. INTRODUCTION

By a curve we mean a smooth, geometrically irreducible projective curve de-
fined over a finite field. The main result in this theory is a celebrated theorem
of A. Weil bounding the number of rational points on the curve; i.e., points with
all coordinates in the finite field. This theorem is equivalent to the validity of
the Riemann Hypothesis in this situation of curves over finite fields. Curves with

many rational points over finite fields have interesting applications in Coding
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Theory, Cryptography, Finite Geometry etc. (see for example [T-V], [S], [H],
IN-X)).

Let F, be the finite field with ¢ elements and ¢ > 1. For the number #X (F )
of IF¢-rational points of a curve A" defined over IF« of genus g(&’) , the Hasse-Weil
upper bound states that

#X(Fe) < 1+ ¢ +29(X)q"”.

This fundamental result was proved by H. Hasse for elliptic curves and, for higher
genus curves, it was proved by A. Weil. A curve X’ over Fy with £ = 2n and
n > 1 is called maximal if its number of rational points attains the Hasse-Weil
upper bound above. The most important example of a maximal curve over I n
is the Hermitian curve H, which can be given by the plane affine equation

X+l — zd* +Z

A large class of maximal curves consists of quotients of the Hermitian curve (see
[G-S-X]). It is useful for applications to have explicit equations for maximal
curves. Our aim here is to describe by explicit equations certain particular maxi-
mal curves (see Equation (1.1) below) and then conclude that they are quotients
of the Hermitian curve (see Section 3).

The theory of algebraic curves is essentially equivalent to the theory of function
fields. From now on, we are going to use the language of function fields and our
basic reference for function fields is [S]. For example the Hermitian curve
corresponds to the Hermitian function field H where H = F2n (X, Z) with the
relation X' ™! = 79" + Z.

We call a polynomial A(T') € F[T] g-additive if it is of the form

A(T) = aoT + ayT9+ - - + a,, T9.

Let f(T') € F2n[T] be a polynomial of degree ¢" 4 1 and let A(T) € F2n[T] be a
g-additive polynomial of degree ¢". In this paper we consider function fields F
of the particular form below

(1.1) F =Fz(X,Y) with f(X) = A(Y).

Using some results from coding theory, we characterize in Theorem 2.3 the poly-
nomials f(T') € Fpn[T] of degree ¢"™ + 1 and the monic g-additive polynomials
A(T) € Fpen[T] such that the function field F' in (1.1) is maximal. The char-
acterization of A(T) is done in terms of its image V' = {A(y) : y € Fpn} (see
also Corollary 2.5) and we have essentially that f(7) = 77 *!. Theorems 3.12
and 3.14 give an explicit description of maximal function fields F' of the form
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(1.1) as a fibre product of m suitable intermediate function fields Fy,. .. ,F,, with
Fpen(X) C Fy,...,F, C F, where Fy,..., F,, are also maximal function fields

of the form (1.1) satisfying [F} : Fpen(X)] = -+ = [F), : Fpen(X)] = ¢. In this
way for a maximal function field F' of the form (1.1), we prove that F'is a Galois
subfield of the Hermitian function field H and we determine the Galois group
Aut(H/F) explicitly. Moreover in Theorem 3.17 we give a condition for maximal
function fields F of the form (1.1) to be the same (see also Corollary 3.18).

This paper is closely connected with [A-G] and [G-K-M] (see Remarks 3.3
and 3.19). The emphases here is on obtaining explicit equations for maximal
function fields F' given as in (1.1) above. To obtain such explicit equations we
consider the trace map from F . to the subfield IF, and we use it to describe
V = {A(y) : y € Fpn}, which is an F,-linear space naturally attached to the
additive polynomial A(T) (see Corollary 2.5 and Section 3).

Throughout the paper Tr denotes the trace map from ¢ or Fy2. onto F,.

2. CHARACTERIZATION OF POLYNOMIALS

In this section using some results from coding theory we characterize the poly-
nomials f(T') € Fpn[T] of degree ¢" + 1 and the monic g-additive polynomials
A(T) € Fpn[T] such that the function field in (1.1) is maximal. The results and
the methods developed in this section are used in Section 3.

The following result from linear algebra will be a useful tool to get explicit
polynomial equations.

Proposition 2.1. Let V' C F, be an F,-linear subspace of codimension m. There
exist Y1, ..., Ym € Fye \ {0} such that for x € Fe

(2.1) z €V <<= Tr(niz) = = Tr(ymz) = 0.

Moreover for {vi,...,vm} C Fy, the Fy-linear subspace {x € Fp : Tr(nz) =
-+ Tr(ymw) = 0} is of codimension m in F e if and only if {1, -+, ym} 15 linearly
independent over IF,.

Proof. Let {au,...,c4—m} be a basis of V and (cu,...,—m,B1,...,0m) be an
ordered basis of F,. Note that Tr defines an [ -bilinear form on Fp.. Let
(af,...,a5_,,, 0%, ..., 0;) be the corresponding dual basis using the bilinear form
given by Tr (see also [L-N, Section 2.3]). Then it follows from the definition that
M= /Bik7 s Ym = /B:n, SatiSfy (21)

Assume that for {yi,...,9m} € Fyp, the F,-linear subspace V = {z € Fy :
Tr(y12) = - -+ = Tr(ymx) = 0} is of codimension m. Then the map @ : F,, — Fy*
given by x — (Tr(1z), - - -, Tr(yma)) is onto. If {1, ..., 7} is linearly dependent
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over F,, then without loss of generality we can assume that v, = c;y1 +--- +

Cm—1Ym—1 With ¢1,...,¢cpn1 € Fy. Therefore if Tr(yz) = - -+ = Tr(ym-12) = 0,
then Tr(y,,#) = 0. This implies that (0,---,0,1) € F* is not in the image
of ®, which is a contradiction. Conversely assume that {v1,...,7,} is linearly

independent over IF,. Note that V' = Ker® and as the image of ® is an F,-
linear subspace of Fi", we have dim V' > £ —m. Let (y1,...,%m, 51, -, Be-m) be
an ordered basis of Fy and (vf,...,7,,01, - ,5;_,) be the corresponding dual
basis with respect to the bilinear form given by Tr. For x = c;7f + -+ + ey, +
i+ +di-wf_,, €V, wehave c; = = ¢, = 0. Therefore dimV < {—m,
which implies that V' is of codimension m. OJ

Remark 2.2. One can show that for two m-tuples (v1,...,vm) and (1, ..., %m)

of elements from [F satisfying (2.1), there exists an invertible m x m matrix C
M M

over I, such that : =C- :

Tm Tm

Now we give our characterization of the polynomials.

Theorem 2.3. Let f(T') € Fpen[T] be a polynomial of degree ¢" + 1. Let A(T)

F,2n [T be a monic q-additive polynomial of degree ¢™. Let F' = F2n(X,Y") be the

algebraic function field with the relation below

Then F' is mazimal over IFpn if and only if the following three conditions hold:
1.) The polynomial A(T') is separable and it splits in Fjon.

LetV = {A(y) : y € Fpn}, then'V is an Fy-linear subspace in Fpen of codimension
m. Let (y1,...,%m) be an m-tuple of elements from Fpn \ {0} such that for
x € Fpen (cf. Proposition 2.1)

z €V << Tr(nz) = = Tr(ymz) = 0.

Denote by v =v1 and by a; = vit1/y for 0 <i <m — 1.

2.) We have ay,...,am—1 € Fgn and {1,a4,...,am_1} is linearly independent
over F,. In particular m < n.
3.) We have f(T) = fo +uT7**, where fo € {A(y) : y € Fpon} and

uy +u? y? =0.
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Proof. The genus of the function field F'is ¢" (g™ — 1)/2 and the field F' is maximal
if and only if the number of rational places of F' is

q"(¢"™ —1)
2

Then F is maximal if and only if for each # € F 2. the polynomial A(T) — f(x) €
[F2n [T] has ¢™ distinct roots in F2n. We denote the coefficients of f(7') € Fon[T]
as below

1+q2n+2 qn:1+q2n+m‘

q"+1 q"+1

f(T) = Z o, T', and we let f(T) = Z o T
=0 i=1

Assume that F' is maximal. Then A(T)— f(0) = A(T) — ap has ¢ distinct roots
in Fpn. Let yo € Fpen with g = A(yo) and let Y =Y —y, € F. We have
F =Tz (X,Y), where

FX) = A®Y).

Therefore A(T') — f(x) € Fpen[T] has ¢™ distinct roots in F2n for each 2 € Fpn.
As f(0) = 0, in particular A(T) is separable and it splits in F,2.. Let I be the
subset of {1,...,¢" + 1} such that i € I <= «; # 0. Note that ¢" + 1 € I and
01 Let I ={iy,...,ip} with1 <i3 <...<i,=¢g"+1and S(I) be the
[F,-linear space below

S(I) = {BT" + -+ BT : Br,..., B € Fgon ).

Note that the dimension of S(I) is equal to 2nh. Let w be a generator of the
multiplicative group of Fan, t = ¢** — 1 and ¥ be the F-linear map

U S(I) - F

9(T) — (Tr('ylg(w)), s Tr(ygt)), .. , Tr(ymg(w)), . .. ,Tr('ymg(wt))) .

As the polynomial A(T) — f(z) € Fp2n[T] has ¢™ distinct roots in F,2 for each
z € F 20, we have that f(z) € V = {A(y) : y € Fjon} for each z € F2n. By the
definition of the map ¥, this implies that f(7") € KerW, and hence KerW¥ # {0}.
Let C' be the image of the map W. We observe that C' is the dual of the ad-
ditive code over [, corresponding to I and (7i,...,7n) (see [B, Section 5]).
For 1 < i < ¢*, we have |{i¢/ mod (¢"*—1):0<j<2n—1}| = 2n and
H(qn +1)¢” mod (¢ —1):0<j < 2n— 1}} = n. Therefore using [B, Theo-
rems 19 and 21| we obtain that

dimg, C = (h — 1)2n + nr,
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where 7 is the rank of the m x 2 matrix

nmoW
2 Y
| Y W
over F2n. We have r € {1,2} and
71:1<1:>m:10ra1:E7...7am_1:7—mEIFqn.
gt gt

If r = 2, then dimr,C = 2nh and hence Ker¥ = {0}, which is a contradiction.

Since r = 1 , we have

dimp, Ker¥ = 2hn — dimp, C = n.
For v = =, it is not difficult to observe that for each u € F2n satisfying
(2.2) uy +ul 1 =0,
the polynomial uT9" ! € Ker¥. The number of u € Fpn satisfying (2.2) is ¢"
and hence Ker¥ = {uT?" ™ € Fpn[T] : uy +u? 47 = 0}.This proves item 3.).
Conversely, using the transitivity of traces ( see Remark 3.1) it is now also clear

that if the items 1.), 2.) and 3.) hold, then the function field F' is maximal. This
completes the proof. O

We develop further tools, which will be used in Section 3.

Lemma 2.4. Let Ai[T], A3[T] € F[T] be monic q-additive polynomials both of
degree ¢™ and both splitting in Fpe. If {A1(y) 1y € Fpe} = {A2(y) : y € Fye}, then
Ay (T) = Ax(T).

Proof. Assume that {A;(y) : y € Fpe} = {A2(y) : y € Fpe} and let A(T) =
A(T) — Ay(T). If Ay(T) # As(T), then A(T) is a g-polynomial of degree ¢"
with h < m. Moreover the Fg-linear space {A(y) : y € F} is a subspace of the
IF,-linear space {A:1(y) : y € Fe}, since {A;(y) : y € Fpe} = {Aa2(y) : y € Fpe}.
This implies that {y € F, : A(y) = 0} is an [F,-linear space of dimension at least
m, which is a contradiction since h < m. O]

Note that for 0 < m < /¢, the number of m-dimensional IF-linear subspaces of
[F,e is given by the formula below:

(-1 (¢ —q)-(—q¢"")
(gm—1)(gm—q)--- (g™ —qm 1)
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This formula also implies that the number of [F-linear subspaces in F . of dimen-
sion m is equal to the number of subspaces of codimension m. Further we note
that there is a one to one correspondence between the m-dimensional IF -linear
subspaces of F, and the monic g-additive polynomials in F[T] of degree ¢™
splitting in F . Hence using also Lemma 2.4 we obtain the following corollary.

Corollary 2.5. For each Fy-linear subspace V in F of codimension m, there
exists a uniquely determined monic q-additive polynomial A(T) € F . [T'] of degree
q™ (splitting in F ) such that

V= {A(y) :yEIqu}.

Remark 2.6. Let 7, u € Fpn \ {0} with uy + (uy)? = 0. Assume that
{1,a1,...,am-1} C Fyn is linearly independent over F,. Let A(T) be the monic
g-additive polynomial of degree ¢™ such that (see Corollary 2.5)

z € {A(y) 1y €Fpen} < Tr(yz) = Tr(a1yz) = - - - = Tr(ap-17z) = 0,

and fo € {A(y) : y € Fpen}. By Theorem 2.3, the function field F' = F2n (X, Y),
where fo+uX? ! = A(Y) is a maximal function field. Let X = X, yy € F 2. such
that A(yo) = fo, Y =uw 9" (Y —y) € F, ¥ = wy and A(T) = u A (u"/9"T).
Then F is also equal to the function field F2n(X,Y), where X9t = A(Y),
5+ 47" = 0 and A(T) is the monic g-additive polynomial of degree ¢™ such that

z€{A(y) :y € Fpn} < Tr(yz) = Tr(a17z) = - - - = Tr(amm-172) = 0.

3. GALOIS SUBCOVERS OF THE HERMITIAN FUNCTION FIELD

In this section using fibre products of some explicitly given maximal function
fields, we represent a maximal function field F' of the form (1.1) as a Galois
subfield of the Hermitian function field H, explicitly.

Throughout this section we fix a root v of 7% +7'. Any maximal function field
F of the form (1.1) corresponds to an F,-linearly independent set {ci,...,cn} C
Fn such that for the monic g-additive polynomial A(7T') satisfying

(3.1 xze{A(y):yeFpen} <<= Tr(cyzr) = =Tr(enyx) =0,

the maximal function field F is equal to the field F' = F2n(X,Y’), where we have
the relation X7t = A(Y) (cf. Remark 2.6).

Remark 3.1. The transitivity Tfu?q2n /Fy = TrF . /F, © Tr]Fq2n /P Of the traces im-
plies that if (3.1) holds, then the set {A(y) : y € Fp2n} contains Fyn.
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Proposition 3.2. Let {ci,...,cn} C Fpn be an Fy-linearly independent subset.
Let A(T) € Fpn[T] be the monic g-polynomial of degree ¢ satisfying (3.1). We
further have that A(T) € Fyn[T).

Proof. Using Corollary 2.5, let B(T') € F;»[T| be the monic g-additive polynomial
of degree ¢ such that

T €{B(2): 2 €Fp} & Trp . /5, (c17) = - - = Trg . jp, (CmT) = 0.

m—1

Let B(T) =T +b,T7"" + .-+ + b, _1T9+ b, T and for 1 < i < m define a; =
by . Note that (y)@ D@ =D = (=1)¢~1 = 1 for each 1 < i < m and hence

the monic g-polynomial A(T) =T7" + ;77" + -+ + a1 T + a,,T € Fu[T).
It is not difficult to observe that

r€{A(y):yeFa} < (yz+7172%) € {B(2) : 2 € Fn}.
Indeed the map sending y € Fj2n to A TRER AT = F,» is onto and for each
z, y € Fpn and 2z = 47"y + 47" " y4" € Fyn we have
= A(y) < vz +v7 37 = B(2).
Therefore
r€{A) :y €EFpn} <= Tr(ciyz) = -+ = Tr(cpyz) =0,
since Tr(c;yx) = Trr,, /v, (ci(yz + 77 27")) for 1 < i < m. We complete the proof

using the uniqueness of A(T") from Corollary 2.5. O

Remark 3.3. Proposition 3.2 shows that if F' = F2.(X,Y) with X7" ™ = A(Y)
is a maximal function field, then the monic g-additive polynomial A(T") has co-
efficients in Fyn. This fact was used as a hypothesis in Section 4 of [G-K-M] and
we could then proceed as in [G-K-M] to show that F' is a Galois subfield of the
Hermitian function field H (i.e., the field extension H/F is Galois). In what fol-
lows we prove that F'is a Galois subfield of H by exhibiting an explicit equation
for the function field F.

Recall that the Hermitian function field H over F2n is given by H = FF2n (X, Z),
where we have the relation X7 ! = Z¢" 4 7.

Lemma 3.4. Assume thatn = m. For any F,-linearly independent set {cy,...,c,} C

Fyn, the corresponding monic q-additive polynomial of degree " is T* + T, and
hence the Hermitian function field is the only maximal function field of the form
(1.1) in this case.
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Proof. Let {ci,...,cn} € Fyn be an F,-basis of Fpn. Let V' be the Fy-linear
subspace in F2» such that

z €V <= Tr(ayx) = Tr(cyyz) = - - - = Tr(cpyz) = 0.
By Proposition 2.1, the F,-dimension of V' is n. Moreover for ¢, € F;» we have
Tr(cyz) = Trp,. /F, ((’y - ’yqn) cx) =0,

and hence V = Fyn. It is well known that Fyn = {yqn +y:y e qun}, and the
uniqueness of 77" + T follows from Corollary 2.5. OJ

Remark 3.5. Lemma 3.4 also follows from [R-S] since the genus of the corre-
sponding maximal function field is ¢"(¢"™ — 1)/2 in this case.

For each root a of T7" + T, let 1, be the automorphism of H over F.(X)
given by
Vo(Z2) =Z 4+ a and P (X) = X.
For roots ay, oy of T7" + T, we have Yoy © Vay = Vay © Va; = Yoy tas, and
G={ty:0" +a=0}

is the group Aut(H/F;.n(X)) of automorphisms of H fixing F2n(X). In partic-
ular the group G is a one dimensional IF »-linear space generated by ., and the
extension H/F - (X) is an abelian (Galois) extension.

For each p € Fyn \ {0}, let B,(T) and C,(T") be the monic g-additive polyno-

mials below

Bu(T) =T — (uy)"*"'T, and

1 2

C

W(@) =TT 4 ()T HITT™ oo (uy) M.
Lemma 3.6. For each p € Fyn \ {0}, we have
T" +T =B,0C,=C,0B,,
and hence the polynomials B, and C,, split in IFn.
Proof. The proof follows from direct computations. O]
Remark 3.7. For iy, po € Fyn \ {0}, we have

Oul (T) = O,uz (T) — 1“1/'“2 € IFQ'
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Let P be a subset of Fy» consisting of % elements and corresponding to the
projective space of dimension n — 1 over F,.
For each p1 € Fyn \ {0}, let G, be a subgroup of G defined by

G, = {¢o : ais a root of C,(T)}.
Note that G, is an F -linear subspace of G of codimension 1.

Remark 3.8. The set of all codimension one F,-linear subspaces of the group G
is {G, : p € P}. For each F,-linear subspace V' C G of codimension m, there
exists {p1,. .., m} C P such that

V=G,Nn---NG,,.
In general, {y1, ..., tm} is not unique.

Lemma 3.9. For a subset {p1,...,pum}t C Fopn \ {0}, if the F,-linear subspace
Nz, Gy, is of codimension m in G, then {u1,..., un} is linearly independent
over F,.

Proof. For i € Fyn \ {0}, let C,, = (uy)/9C,,. Note that for ui, us € Fy2n with
1+ pa # 0 we have C, 1\, = C, +C,,. Moreover for u € Fyu\ {0}, a € F,\ {0}
and o € F2n we have

Cula) =0+ C,(a) =0 < Cuu(a) =0.

Assume that {{1,..., ft,} is linearly dependent over F,. By passing to a sub-
set, we can assume without loss of generality that pu; = asps + - - - + @i, With
as, ..., a, € F,\{0} and that the sum of any nonempty subset of {aapia, . . ., Gmfim}
is nonzero. For a € Fn with Cy,(a) = --- = C,, (a) = 0 we have C,,,,(a) =
coo=C4y (@) =0 and hence

Oul (Oé) = 6#1 (Oé) = Oazm (Oé) +oot 6am,um (Oé) = 0.

Then G,, € (-, G,, and hence ", G,, is of codimension smaller or equal to
m — 1 in GG, which is a contradiction. O]

Remark 3.10. In Theorem 3.14 we will prove the converse of Lemma 3.9.

Lemma 3.11. For each p € P, the fized subfield of the Hermitian function field
H corresponding to G, is Fpn(X,Y), where

Xt = B,(Y).
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Proof. For 1, € G,, we have by definition that C,(«a) = 0. The function ¥ =
C.(Z) of the Hermitian function field H is invariant under this subgroup G,, of
G. In fact we have

ba(Y) = 9o (Cu(2)) = Cu(Z + @) = Cu(Z) + Cula) =Y.
Now since the fixed field of G, has degree ¢ over [F2.(X) and the polynomial B,

is of degree q, we conclude the proof. O]

Using Lemma 3.11 we obtain the following theorem.

Theorem 3.12. Form <n—1, let V C G be the Fy-linear subspace of codimen-
sion m such that

V=GN NGy,

where {p1, ..., wm} C P. The fized subfield of H corresponding to the linear space
V is given by Fpen (X, Y1 ,...,Ys,), where

XU+ = Bm(yl)v

X't =B, (V).

LetW ={a:C, () = =C,, (o) =0} and let Cy = [[ ey (T— ) € Fean[T].
There exists a uniquely determined monic q-polynomial By (T) € Fyn[T'] of degree
g™ such that T +T = By o Oy, and moreover we have that the function field
Fen(X,Y1,...,Y,,) is also equal to the field F2n(X,Y), with X"t = By (Y).

Proof. Let 11 be any of p1, ...,y Since the polynomial Cy divides Cy, there
exists a uniquely determined monic g-additive polynomial D € Fpn[T] such that
C, = DoCy (cf. [G-K-M, Theorem 3]). As Cy divides the polynomial 77" +
T, similarly, we have a uniquely determined monic ¢-additive polynomial By &€
F 20 [T such that 79" + T = By o Cy. It then follows that By = B, o D; in fact
we have

By (Cy)=T" +T=B,0C, =[B,oD](Cy).

The equality By = B, o D implies that the function field F 2 (X,Y) with the
relation X?"*! = By (Y') contains the compositum of the function fields associated
to G, as in Lemma 3.11. Moreover using Proposition 3.2 we further have that
By € Fyn[T] and this finishes the proof. O

Lemma 3.13. For each p € Fyn \ {0} we have

z €{B,(y):y € Fpn} <= Tr(uyz) = 0.
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Proof. Using Hilbert’s Theorem 90 we have
wyz € {y! —y 1y € Fpn} <= Tr(uyz) = 0.

The proof follows from the observation that

(S =nsyeFal = (B0 iy e Fpu).

O

Theorem 3.14. For each {p1, ..., ftm} C Fon such that {p1, ..., um} is linearly
independent over IF,, we have the following:

1.) For each x € Fpen we have
x € ﬂ {Bu,(y) y €Fpn} <= Tr(pyz) = = Tr(umyz) = 0.
i=1

2) V=G, Nn---NG,, is an F,-linear subspace of codimension m in G.
3.) For the monic g-additive polynomial By € F[T] of degree ¢ defined in
Theorem 3.12, we have

z€{By(y):y €Fpn} = Tr(yz) = = Tr(umyx) = 0.

Proof. The proof of item 1.) follows directly from Lemma 3.13. Next we consider
items 2.) and 3.). Assume that the codimension of V' in G is m. Then the monic
g-additive polynomial By € Fn [T defined in Theorem 3.12 is of degree ¢™. It is
clear that m < m. If we have the inclusion below

(32 (Buy) -y € Fgn} € (\{But) 19 € Fyn).

then the codimension of {By (y) : y € Fpen} in Fp2n is greater or equal to m. As
the degree of By is ¢™, we also have that the codimension of {By (y) : y € Fpen}
in Fg2n is smaller or equal to m. Therefore if (3.2) holds, then m < codimension
of {Bv(y):y € Fen} < m and hence m = m. Moreover (3.2) also implies that
{Bv(y):y € Fpen} =" {Bu.(y) : y € Fan}. So we just have to prove (3.2). As
in the proof of Theorem 3.12, for 1 < ¢ < m there exists a uniquely determined
monic g-additive polynomial D; € Fpn [T such that By = B,,, o D;. This implies
that {Bv (y) : y € Fpen} C{B,,(y) : y € Fpn} for each 1 <4 < m, and this proves
the inclusion in (3.2). Using Proposition 3.2 we further get that By € F [T,
and hence we have completed the proof. O]
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Remark 3.15. Using Theorem 2.3, Theorem 3.12 and Theorem 3.14, we obtain
that all maximal function fields of the form (1.1) are Galois subfields of the Her-
mitian function field. There is a correspondence between the maximal function
fields of the form (1.1) and the F,-linear subspaces of Fj». Fixing a root 7 of
T9" + T, any maximal function field of the form (1.1) determines an F,-linear
subspace of Fy» spanned by {ci,...,cn} C Fyn satistying (3.1) (cf. Theorem 2.3,
Remarks 2.2 and 2.6). Again fixing a root  of 79" + T we have conversely that
any [Fg-linear subspace of Fy» determines a maximal function field of the form
(1.1) (cf. Lemma 3.9, Theorems 3.12 and 3.14).

Remark 3.16. Note that our results improve and complete Theorem 7 of [G-K-M].
Apart from giving explicit equations for the maximal function fields in (1.1), we
do not assume here that the additive g-polynomial A(7") has its coefficients in
IF»; rather, this is a result that we prove here in Proposition 3.2.

The correspondence of Remark 3.15 is not one-to-one. In the next theorem
we give a sufficient condition which implies the existence of distinct F,-linear
subspaces of F,» corresponding to the same maximal function field.

For ;1 € Fy» \ {0}, we note that

(3.3) B.T) =] (T— ¢ )
celFy ('uf)/)a

Theorem 3.17. Let {p1,...,ttm}, {v1,.. . Vm} € Fyn be two F,-linearly inde-
pendent sets. If there exists a nonzero element o in Fyn such that the F,-linear

subspaces spanned by {apy, -+, apm} and by {v1, ... ,vn} are the same, then the
corresponding mazimal function fields of {p1, ..., pm} and of {v1, ... ,vm} are the
same. If m belongs to {1,n—1}, then for any two F,-linearly independent subsets
of size m in Fyn, there exists such a nonzero element o in Fyn. Hence the mazimal
functions fields of the form (1.1) are uniquely determined when m € {1,n — 1}.

Proof. Let U = -, Gy, and V. = ()_, G,,. The subgroups U and V are Fg-
linear subspaces of codimension m in G (cf. Theorem 3.14). The fixed subfields
of H corresponding to U and V are Fpen(X,Y1,...,Y,,) and Fpen (X, Z4,...,Z,,)
respectively, where for 1 <7 <m

e (Y; - L) , and X7t = (Zi - #)
I;F[ (pay)*e I;F[ (vim)¥/e

(cf. Theorem 3.12 and (3.3) ). Let W; and W5 be the F-linear spaces spanned by
{p,. .., pm} and {v1, ..., vy} respectively. Assume that there exists a € Fyn\{0}
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such that Wo = {aw : w € Wi}. Let B € Fpn \ {0} such that 7" = a,
_ X - Y; .
X = E € Fq2n(X) and Y; = m € Fq2n(X,Yi,...,Ym) for 1 S 7 S m. Then we

have F2n (X, Y1,...,Y,,) =Fen(X, Y1, ...,Y,,), where

X+ = H (Y;_ ¢ ;) = By, (Y;), for 1 <i <m.
= (apiy)s

As W, = {aw : w € Wi}, we also have Foen (X, Y1, ..., V) = Fpen(X, Z1, .. ., Zin).
It remains to prove the assertions for the case m € {1,n — 1}. For an F,-linear
subspace W in Fy» of dimension m with 1 <m <n —1, let A be the polynomial
A =Tlpew (T —w) in Fu[T). For o € Fyn \ {0}, the set W = {aw : w € W}
is also an F,-linear subspace of dimension m in F,.. Similarly let A be the
monic g-additive polynomial A = [], (T — w) in F[T]. Note that W = W
if and only if A = A. Since A is a monic g-additive polynomial we have
A=T" +a, 1T "+ +a,T9+a,T, where ag, . . ., Gpm_1 € Fgn. Moreover A is
separable and hence ag # 0. By definition of W and A, we have A(T) = o A (£)
and hence A = T9" + "7 "q,, T + -+ a?"lqoT. If W = W then
A = A, hence 9" lay = ao and then o € F,m as ag # 0. This implies that for
1 <m <n—1with ged(m,n) =1, if W = W then a € F, = Fjn N F,m. Hence
for 1 <m < n —1 with ged(m,n) =1, W = W if and only if o € F, \ {0}. For
1<m <n-—1,let S, denote the set of all distinct FF,-linear subspaces of F,» of
dimension m. The multiplicative group Fy» \ {0} acts on S,, and the action of
aeFgpn\{0}is

(3.4) WeSn—W={ow:weW}eS,.

It follows from the discussion above that in the cases m =1 and m = n — 1, each

orbit of this action on S,, has size qu.

size of S,, is also qqn_—_ll. Hence this action in (3.4) is transitive if m is 1 or n — 1,

Moreover if m is 1 or n — 1, then the

which completes the proof. O]
Corollary 3.18. The function fields Fpn(X,Y) with X' = A(Y) , where
YAY) =Y — ')/%Y or yA(Y) = Ay ’)/%an_Q + .-+ »an%yq + ,an%ly

are the only mazimal function fields of the form (1.1) if m =1 orm =n — 1,
respectively.

Proof. For m =1 it is enough to observe that

x € {yq — ’y%_ly RS Iﬁ‘qzn} < Tr(yz) =0
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(cf. Lemma 3.13). Similarly for m =n — 1 we have

n—1 l_l n—2 ;—1 ;—1
:L-E{yq +f)/q yq +"-+’)/qn_2 yQ+,)/qn—1 y:yEFan}
n—1

<= Tr(cyz) =0 for each c satisfying c+c¢?+---+¢? =0,

which completes the proof. O]

Remark 3.19. Consider the case m = n — 1 in Corollary 3.18 ; i.e., consider the
maximal function field F' over [F2» given by the equation
A X = YT Ay T AT Y AT Y,

Setting Y7 = vY/7"'Y we have that F = Fp2n (X, Y1) with the relation qun_l +
qun_Q + ...+ Y +Y; = X", The uniqueness result about this function field F
given in Corollary 3.18 also follows from Theorem 5.11 of [A-G]. Here the proof
is much simpler since we assume that the function field F' is of the form (1.1),
which essentially says that the extension F/Fn(X) is a Galois extension ( see
also Theorem 4.10 of [A-G]).
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