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Summary. We describe an iterative algorithm for the solution of a large scale
linear-quadratic parabolic optimal control problem. Unlike Ricatti equation based
methods, we determine the control variable by an iterative procedure which solves a
large saddle point system obtained by an all at once discretization strategy involving
the state (primal) variables, the control variables and the adjoint (dual) variables. We
derive a reduced symmetric indefinite linear system involving the control variables
and auxiliary variables, and solve it using a preconditioned MINRES iteration, with
a symmetric positive definite block diagonal preconditioner based on the parareal
algorithm. Theoretical and numerical results show that the preconditioned algorithm
has adequate convergence properties and parallel scalability.

1 Introduction

In this paper, we describe a block matrix iterative algorithm for solving an
“all at once” discretization of a linear-quadratic parabolic optimal control
problem (OCP) on a finite time interval, see [1, 3, 6]. The problem we con-
sider seeks to determine a control function parameterizing the forcing term
in a parabolic equation, so that the solution to the parabolic equation closely
matches a given “tracking” function in a finite time interval. Formally this
yields a constrained minimization problem in which the quadratic functional
whose minimum is sought, is a square norm of the difference between the so-
lution to the parabolic equation and the tracking function with appropriate
regularization, while the linear constraint requires the state variable to solve
the parabolic equation. The classical approach for determining the solution
to a linear-quadratic optimal control problem consists of solving the Ricatti
or Silvester equations, derived by an application of the Pontryagin maximum
principle. However, this approach can be prohibitively expensive when the
number of state variables is large. Instead, we employ an iterative algorithm
to determine the solution to a combined spatial and temporal discretization
of the optimal control problem, which yields a large saddle point system.
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The spatial discretization of the parabolic equation is obtained by the
finite element method, and its temporal discretization by the backward Eu-
ler scheme [1]. Using a reduction approach employed in [7, 6], we obtain a
symmetric positive definite reduced system for the unknown control variables
(with low dimension in realistic situations). This system can be solved using
the CG method, but requires inner-outer iteration. To overcome this draw-
back, we introduce an auxiliary variable resulting in a symmetric indefinite
ill-conditioned system. We employ a symmetric positive definite block diago-
nal preconditioner [6] based on the parareal algorithm of [4] and an iterative
shooting method [3, 5]. It yields a rate of convergence independent of the
mesh size h. In § 2, we describe the saddle point formulation of the optimal
control problem and a reduced symmetric indefinite linear system. In § 3, we
describe theoretical results on the parareal preconditioner. In § 4, numerical
results verify the scalability of the algorithm.

2 The parabolic optimal control problem

For brevity, we shall omit a discussion of the parabolic optimal control problem
and instead, begin with the finite dimensional linear-quadratic optimal control
problem resulting from a spatial discretization of the parabolic optimal control
problem. For t ∈ [t0, tf ] let y(t) ∈ Rm̂ denote a nodal vector representing a
continuous piecewise linear finite element function approximating the solution
to the parabolic equation, and let u(t) ∈ Rp̂ denote the nodal vector associated
with the discrete control variable, which will be piecewise constant in space
[3, 6]. The linear-quadratic optimal control problem will seek to minimize the
following quadratic objective functional:

J(y, u) ≡ 1
2

∫ tf

to

(
e(t)T Qe(t) + u(t)T R u(t)

)
dt +

1
2

e(tf )T C e(tf ), (1)

where y∗(t) ∈ Rm̂ denotes a given discrete “tracking” function at time t, and
e(t) = (y(t)− y∗(t)) denotes the tracking error. Here C ∈ Rm̂×m̂, Q ∈ Rm̂×m̂,
R ∈ Rp̂×p̂ are given symmetric positive definite matrices. The state variable
y(t) is required to solve the following system of differential equations obtained
by spatial discretization of the parabolic equation:

ẏ = A y + B u, for to < t < tf ; and y(to) = y0, (2)

where A ∈ Rm̂×m̂ denotes the symmetric negative definite matrix obtained
from the discretization of the elliptic operator and B ∈ Rm̂×p̂ denotes the
control matrix. To obtain a temporal discretization of (2), we partition [to, tf ]
into l̂- sub-intervals with time step τ = (tf − to)/l̂. We denote tl = l τ and
yl := y(tl) for 0 ≤ l ≤ l̂. For simplicity, we assume that the state variable y(t)
is continuous and piecewise linear in each (tl, tl+1], while the control u(.) is
constant on each interval (tl, tl+1] with ul+1/2 = u(tl+1/2).
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Employing the backward Euler discretization of (2) in time, yields:

E y + N u = f , (3)

where y := [y1, . . . , yl̂]
T ∈ <l̂m̂ and u := [u1/2, . . . , ul̂−1/2]

T ∈ Rl̂p̂, de-
notes block vectors of state and control vectors, respectively, at all the dis-
crete times. The input vector is f := [−F0yo, 0, ..., 0]T ∈ Rl̂m̂. Matrix E =
lower-bidiag[F0,−F1] ∈ R(l̂m̂)×(l̂m̂) involves the submatrices F0 := I ∈ Rm̂×m̂

and F1 := I − τA ∈ Rm̂×m̂, and the matrix N = τIl̂⊗B ∈ R(l̂p̂)×(l̂p̂). Expres-
sion (1) is discretized analogously (see [6] for details) yielding:

Jh(y, u) =
1
2
(uT GuT + eT Ke), (4)

where G = rτIl̂ ⊗ hIp̂ ∈ R(l̂p̂)×(l̂p̂) and K = Γ + Z ∈ R(l̂m̂)×(l̂m̂). Here Γ =
diag(0, 0, ..., 0, sMh) and Z = qMτ ⊗Mh, where Mτ and Mh are appropriately
defined mass matrices, Ij is an identity matrix of size j, {q, r, s} are relaxation
parameters, and ⊗ stands for Kronecker product. The Lagrangian Lh(y,u,p)
for minimizing (4) subject to constraint (3) is:

Lh(y,u,p) =
1
2
(uT GuT + eT Ke) + pT (Ey + Nu− f). (5)

Vector e := [eT
1 , . . . , eT

l̂
]T ∈ Rl̂m̂ is defined in terms of the discrete error vec-

tors el for l = 1, ..., l̂. To obtain a discrete saddle point formulation of (5),
optimality conditions for Lh(·, ·, ·) yields the symmetric indefinite linear sys-
tem: K 0 ET

0 G NT

E N 0

y
u
p

 =

Kg
0
f

 (6)

where g := [g1, . . . , gl̂]
T ∈ Rl̂m̂ for gl = y∗(lτ). Eliminating y = E−1 (f −N u)

and p = E−T (K g −K y) in (6) yields the reduced Schur complement system:

(G + NT E−T KE−1N)u = bu, (7)

see [6, 7], where bu := NT E−T K
(
E−1f − g

)
is pre-computed. Matrix

H := G + NT E−T KE−1N will be symmetric positive definite and (u, Gu) ≤
(u,Hu) ≤ µ(u, Gu), where µ = O(1 + 1+s/τ

r ); see [6]. As a result, the PCG
method can be used to solve (7), but double iteration will be required. To
avoid double iteration, define auxiliary variables w := −E−T KE−1Nu and
b̂ := −bu. Then (7) will be equivalent to the symmetric indefinite system:[

EK−1ET N
NT −G

] [
w
u

]
=

[
0
b̂

]
. (8)

System (8) will be ill-conditioned (see [6]), but can be solved using the MIN-
RES algorithm with the symmetric positive definite block diagonal precon-
ditioner P = diag(ẼK−1ẼT , G), where matrix Ẽ is any matrix spectrally
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equivalent (or a preconditioner) to the evolution matrix E; see [6]. We next
consider the parareal algorithm with n sweeps, denoted by E−1

n , and ana-
lyze the spectral equivalence between E−T KE−1 and E−T

n KE−1
n , for use in

P−1 = diag(E−T
n KE−1

n , G−1).

3 Parareal preconditioner for EK−1ET

In this section, we first describe a parareal-shooting method preconditioner
for E z = v, where z := [zT

1 , . . . , zT
l̂

]T and v := [vT
1 , . . . , vT

l̂
]T belong to Rl̂m̂.

Subsequently, we describe the parareal preconditioner for E K−1 ET .
For simplicity of presentation we set t0 = 0 and z0 = 0. We adopt the

notation z(tl) = zl, for tl = lτ and 0 ≤ l ≤ l̂ and z(t) for t ∈ [t0, tf ] via linear
interpolation. We partition the time interval [t0, tf ] into k̂ coarse subintervals
of length ∆T = (tf − t0)/k̂, and set Tk = k∆T for 0 ≤ k ≤ k̂. For each coarse
time interval [Tk, Tk+1], we introduce coarse and the local propagators. The
coarse propagator G(Tk+1, Zk) denotes the solution to zt = A z at Tk+1 with
initial data z(Tk) = Zk, obtained by applying one step of the backward Euler
method, i.e., G(Tk+1, Zk) = G Zk, where G = (I −A∆T )−1 ∈ Rm̂×m̂. The fine
(or local) propagator F(Tk+1, Zk, v) denotes the solution to zt = A z + v at
Tk+1 with initial data z(Tk) = Zk and forcing v, obtained by applying the
backward Euler method on the fine mesh with tl ∈ [Tk, Tk+1]:

F(tl, Zk, s) = Φı̂Zk +
ı̂∑

i=1

Φı̂−ivTk
τ +i

where ı̂ = tl−Tk

τ and Φ = (I −Aτ)−1. Imposing the continuity conditions at
time Tk, i.e., Zk −FZk−1 = 0 for 1 ≤ k ≤ k̂, we obtain the system:

I
−F I

. . . . . .
−F I




Z0

Z1

...
Zk̂

 =


z0

0
...
0

 . (9)

In the parareal algorithm, the coarse propagator G is used as a tool for pre-
conditioning the system (9) via the following Richardson iterative scheme:

Z0

Z1

...
Zk̂


n+1

=


Z0

Z1

...
Zk̂


n

−




I
−G I

. . . . . .
−G I



−1 

r0

r1

...
rk̂


n

, (10)

where the residual vector rn := {rn
k}k̂

k=1 is defined in the usual way from the
equation (9). It is easy to see that the kth row of equation (10) reduces to:
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Zn+1
k+1 = G(Tk+1, Z

n+1
k ) + F(Tk+1, Z

n
k , s)− G(Tk+1, Z

n
k ),

and can be shown that limn→k̂ Zn
k+1 → Zk+1, where Zk+1 = F(Tk, Zk, s)

for 0 ≤ k ≤ k̂ − 1; see [4, 2]. Let us define ΦG := (I −Aτ)−1 and ΦF :=
(I − Aτ)−∆T/τ , with Φ̂G = Ik̂ ⊗ ΦG and Φ̂F = Ik̂ ⊗ ΦF . The error en :=
{en

k}k̂
k=1 ∈ Rk̂m̂, where en

k := z(Tk) − Zn
k , at the nth sweep of the parareal

algorithm can be expressed as:

en+1 =
(
Φ̂F − Φ̂G

)
T en (11)

where T ∈ R(k̂m̂)×(k̂m̂) is the block upper triangular Toeplitz matrix defined
by T :=

{
Φj−i−1

G if j > i; 0 otherwise
}
. Employing the spectral decompo-

sition of matrix A = UΛUT , with Λ := diag{λm}, 1 ≤ m ≤ m̂, equation (11)
can be rewritten as:

ξn+1 =
(
Λ̂F − Λ̂G

)
T̂ ξn where T̂ :=

{
Λj−i−1

G if j > i; 0 otherwise
}

. (12)

where ξn := V T en and V = Ik̂ ⊗ U . Here, ΛF := diag{(1 − λmτ)−∆T/τ},
ΛG := diag{βm}, and βm := (1 − λm∆T )−1 are Rm̂×m̂ diagonal matrices,
while Λ̂F := Ik̂ ⊗ ΛF and Λ̂G := Ik̂ ⊗ ΛG are R(k̂m̂)×(k̂m̂). We now permute
system (12) by reordering the eigenvalues, obtaining m̂ systems of the form:

ζn+1
m =

(
(1− λmτ)−∆T/τ − βm

)
T̃ (βm)ζn

m, (13)

where the Toeplitz matrix T̃ (β) of size k̂ is given by

T̃ (β) :=
{

βj−i−1 if j > i, 0 otherwise
}

.

Remark 1. Note that each eigenvalue λm is negative, hence:

βm = (1− λm∆T )−1 ≤ (1− λm∆T )−∆T/τ ≤ eλm∆T ,

and therefore | (1− λmτ)−∆T/τ − βm| ≤ |eλm∆T − βm|.
Remark 2. Let z denote the exact discrete solution to E z = v and let
zn(tl) = F(tl, Zn

k , v) for tl ∈ [Tk, Tk+1]. The spectral decomposition of z(tl)
and zn(tl) yields z(tl) =

∑m̂
m=1 αm(tl)qm and zn(tl) =

∑m̂
m=1 αn

m(tl)qm, re-
spectively. Hence, ζn

m in (13) can also be represented as ζn
m(Tk) = αm(Tk) −

αn
m(Tk).

The following lemma states the convergence of the parareal algorithm for
system (13); see [2].

Lemma 1. Let tf < ∞, to = 0, ∆T = tf/k̂, Tk = k∆T for 0 ≤ k ≤ k̂. Then

max
1≤k≤k̂

|αm(Tk)− αn
m(Tk)| ≤ ρn max

1≤k≤k̂
|αm(Tk)− α0

m(Tk)|,

where ρn = max0<β<1

(
e1−1/β − β

)n 1
n!

∣∣∣ dn−1

dβn−1

(
1−βk̂−1

1−β

)∣∣∣ ≤ 0.2984n.

The next theorem shows spectral equivalence between the linear operators
EnK−1ET

n and EK−1ET .



6 Schaerer, Mathew and Sarkis

Theorem 1. Let En be the nth application of the parareal scheme and ε ∈
(0, 1/2). Then

γmin

(
v, E−T KE−1v

)
≤

(
v, E−T

n KE−1
n v

)
≤ γmax

(
v, E−T KE−1v

)
(14)

where γmax :=
(
1 + tf ρn

4τε + 2ε
)

/ (1− 2ε), γmin :=
(
1− tf ρn

4τε − 2ε
)

/ (1 + 2ε).

Proof. Let z = E−1v and z(t) =
∑m̂

m=1 αm(t)qm. Then:

(v, E−T KE−1v) = ‖z‖2L2(0,tf ;L2(Ω)) =
m̂∑

m=1

‖αm‖2L2(0,tf ).

Similarly, we have (v, E−T
n KE−1

n v) = ‖zn‖2L2(0,tf ;L2(Ω)) =
∑m̂

m=1 ‖αn
m‖2L2(0,tf ).

An upper bound for ‖E−1
n v‖2L2(0,tf ) can be obtained as follows:

‖αn
m‖2L2(0,tf ) = (αn

m − αm, αn
m + αm)L2(0,tf ) + ‖αm‖L2(0,tf )

≤ 1
4ε
‖αn

m − αm‖2L2(0,tf ) + ε‖αn
m + αm‖2L2(0,tf ) + ‖αm‖2L2(0,tf )

≤ 1
4ε
‖αn

m − αm‖2L2(0,tf ) + 2ε‖αn
m‖2L2(0,tf ) + (1 + 2ε)‖αm‖2L2(0,tf ),

which reduces to

(1− 2ε)‖αn
m‖2L2(0,tf ) ≤ (1 + 2ε)‖αm‖2L2(0,T ) +

1
4ε
‖αn

m − αm‖2L2(0,tf ).

To obtain a bound for ‖αn
m − αm‖2L2(0,tf ) we use that:

‖αn
m − αm‖2L2(0,tf ) =

k̂−1∑
k=0

‖αn
m − αm‖2L2(Tk,Tk+1)

≤
k̂−1∑
k=0

∆T |αn
m(Tk)− αm(Tk)|2

since |αn
m(tl)− αm(tl)| = (1− τλ)−(tl−Tk)/τ |αn

m(Tk)− αm(Tk)| and

(1− τλ)−(tl−Tk)/τ ≤ 1. Hence:

(1− 2ε)‖αn
m‖2L2(0,tf ) ≤ (1 + 2ε)‖αm‖2L2(0,T ) +

tf
4ε

max
0≤k≤k̂

|αn
m(Tk)− αm(Tk)|2.

Using Lemma 1 with the starting guess αn
m(Tk) = 0, 0 ≤ k ≤ k̂ we obtain:

tf
4ε

ρn max
0≤k≤k̂

|αm(Tk)|2 ≤ tf
4ετ

ρn max
0≤k≤k̂

‖αm(Tk)‖2L2(0,tf ),

and

(1− 2ε)
m̂∑

m=1

‖αm‖2L2(0,tf ) ≤ (1 + 2ε +
tfρn

4ετ
)

m̂∑
m=1

‖αm‖2L2(0,tf ),

and so the upper bound (14) follows. The lower bound follows using the same
procedure.
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Table 1. Values of γmax−1 when τ is refined. The spatial discretization is h = 1/10
and ∆T = 1/20.

n \ l̂ 200 400 800 1600

n = 1 0.864415 1.449299 2.473734 4.371709
n = 2 0.070835 0.097852 0.136802 0.193845
n = 3 0.007760 0.010765 0.015141 0.021165
n = 4 0.000865 0.001224 0.001715 0.002397

Remark 3. Performing straightforward computations we obtain:

min
ε

γmax(ε) = 1 +
4√

1 + 4τ
ρntf

− 1
.

Hence, for small values of ρn, we have γmax−1 ≈ 2
√

ρntf

τ . The dependence of
γmax − 1 with respect to τ is sharp as evidenced in Table 1, see below, since
it shows that γmax − 1 increases by a

√
2 factor when the fine time step τ is

refined by half.

4 Numerical Experiments

The optimal control problem we consider involves the 1D-heat equation:

yt − yxx = u, 0 < x < 1, t > 0

with boundary conditions y(t, 0) = 0 and y(t, 1) = 0 for t ≥ 0, and initial data
y(0, x) = 0 for x ∈ [0, 1]. The control variable u corresponds to the forcing
term, and the performance function is y∗(t, x) = x(1 − x)e−x for t ∈ [0, 1].
Following [6], we employ a backward Euler discretization of the parabolic
equation and choose s = 0, q = 1 and r = 0.0001. We let rj denote the
residual at iteration j and use ‖rj‖/‖r0‖ ≤ 10−6 as a stopping criteria for the
iterative solvers.

Table 1 lists the value of (γmax − 1) for different values of l̂ and n (where
n = 7 is equivalent to an exact solver). The results indicate that the method
is scalable if “n” is kept constant. In addition, when “n” is increased, the
number of MINRES iterations decreases. As a result, preconditioner P will
yield optimal order convergence provided n is increases when τ is small.

Table 2 lists the number of MINRES iterations as ∆T/τ is varied while
mantaining constant τ . We chose n = 2. The number of iterations for the
MINRES basically remains constant when h is refined and k̂ is increased,
and so the results indicate scalability. Table 3 lists the number of MINRES
iterations for n = 2 and τ = 1/512 for different values of ∆T/τ . It indicates
optimal order convergence.
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Table 2. MINRES iterations using a parareal n = 2 as preconditioner. Parame-
ters q = 1, r = 0.0001, s = 0, tf = 1, ∆T/τ = 16. n = 2/4/7. Backward-Euler
discretization is used in both fine grid and coarse grid.

k̂ 4 8 16 32

l̂ 64 128 256 512

h = 1/16 62 / 40 / 42 58 / 44 / 44 60 / 50 / 44 60 / 50 / 44
h = 1/32 60 / 42 / 42 58 / 44 / 44 60 / 50 / 44 62 / 50 / 44
h = 1/64 60 / 42 / 42 58 / 44 / 44 60 / 50 / 44 62 / 50 / 44

Table 3. MINRES iterations using a Parareal n = 2 as preconditioner. Parameters
q = 1, r = 0.0001, s = 0, tf = 1, τ = 1/512. Backward-Euler discretization is used
in both fine grid and coarse grid.

k̂ 8 16 32 64

∆T/τ 64 32 16 8

h = 1/16 62 62 60 60
h = 1/32 62 62 62 60
h = 1/64 62 62 62 60
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