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Abstract. In this paper we study the dynamics on T2 and C2 of a two dimensional Blaschke product.
We prove that in the case that the Blaschke product is a diffeomorphisms of T2 with all periodic points
hyperbolic then the dynamics is hyperbolic. If a two dimensional Blaschke product diffeomorphism of T2

is embedded in a two dimensional family given by composition with translations of T2, then we show that
there is an open set of parameter values for which the dynamics is Anosov or has an expanding attractor
with a unique SRB measure.

1. Introduction

A (finite) Blaschke product is a map of the form

B(z) = θ0

n∏

i=1

z − ai

1− zai

where n ≥ 2, ai ∈ C, |ai| < 1 , i = 1 . . . n and θ0 ∈ C with |θ0| = 1. B is a rational mapping of C,
it is an analytic function in a neighborhood of the unit disc D, and B maps the unit circle T to itself.
Blaschke products are interesting in their own right but also from the point of view of more general complex
dynamics. For example, any meromorphic map such that its Julia set bounds an invariant simply connected
neighborhood in C is conjugate to a Blaschke product which is expanding on the unit circle.

In [PRS] we studied the family of Blaschke products

{Bθ}{θ∈T} = {θB}{θ∈T}
as dynamical systems on T from the point of view of finding lower bounds for the average entropy of members
of the family. In [PRS] we first show that either {Bθ} has a fixed sink or indifferent point or the dynamics
is expanding. We show that for an open set U of θ, {Bθ} is expanding. Then we give a lower bound for the
integral of the entropy h(Bθ) over U , where the entropy is the measure theoretic entropy with respect to the
absolutely continuous invariant measure for {Bθ}. This measure is also the SRB measure for {Bθ}.

In the present brief paper we make a start on the study of the dynamics of a two dimensional Blaschke
product of the form

F (z, w) = (A(z)B(w), C(z)D(w)),(1.1)

and of the form

F (z, w) = (
A(z)
B(w)

,
D(w)
C(z)

),(1.2)
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considered as dynamical systems on T× T where A,B, C, D are one dimensional Blaschke products and we
allow the possibility that some of the degrees of A,B, C, D may also be 1. We concentrate our study in the
case of Blaschke products that are diffeomorphisms of T2. We will call the Blaschke product of type (1.1)
that are diffeomorphism of T2, Blaschke product diffeomorphisms; the Blaschke products of type (1.2) that
are diffeomorphism of T2 will be called quotient Blaschke product diffeomorphisms. If the periodic points
of a Blaschke product diffeomorphism are hyperbolic the diffeomorphism is hyperbolic (see Theorem 3.10).
Moreover, some are Anosov diffeomorphisms. In some cases we show that the Julia set of a Blaschke product
considered as a map of C2 is contained in T2. Observe that the result staed in theorem 3.10 is similar to the
one obtained for one dimensional Blaschke product endomorphisms.

These results could help to get some insight into the dynamics of certain meromorphic maps on C2.
In [PRS], we raise the question of whether similar results as the one stated for one dimensional Blaschke

families might hold for two dimensional Blaschke products, The family now depends on two parameters
(θ, φ) ∈ T× T,

F(θ,φ)(z, w) = (θA(z)B(w), φC(z)D(w)).
We show in Theorem 4.1 that if F is a diffeomorphism of T × T then there is an open set of parameter
values for which there is an SRB measure with positive entropy that is either supported on the whole torus
in which case the diffeomorphism is Anosov or on a hyperbolic attractor. This is analogous to our result in
one dimension. As opposed to [PRS] which employs techniques from complex analysis our proofs rely on
results from real dynamics, especially [PS1], [PS2]. We wonder if our results on Blaschke products have
simpler proofs more along the lines of complex dynamics. The Blaschke product diffeomorphisms we consider
as above are precisely the analytic maps on a neighborhood of D × D mapping D × D to itself and T × T
diffeomorphically to itself (see [R]).

2. Examples.

The Blaschke product

B(z) = θ0

n∏

i=1

z − ai

1− zai

is a degree n, orientation preserving immersion of the circle. It follows that the two dimensional Blaschke
product diffeomorphisms F we are considering induce isomorphisms of the fundamental group of the torus,
Z× Z, which given as a matrix are of the form

NF =
[

n m
k j

]

with n,m, k, j positive integers, the degrees of A,B, C, D respectively. Moreover, det(N) = 1 since F is an
orientation preserving diffeomorphism of T × T. From the form of NF we see that NF maps the positive
orthant into itself and NF is a hyperbolic linear map. It is sometimes convenient to consider the torus T2 as
R2/Z2 and to write F additively, as follows: Given a Blaschke product B : C → C, there exists b : R → R
with

b′ > 0.

such that
B(e2πix) = e2πib(x).

Now, given F (z, w) = (A(z)B(w), C(z)D(w)), let a, b, c, d be the corresponding transformations acting on
R. Therefore

F (e2πix, e2πiy) = (e2πi(a(x)+b(y)), e2πi(c(x)+d(y))).
So, given F we can take the map

F̂ : T2 → T2,
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F̂ (x, y) = (a(x) + b(y), c(x) + d(y)).

Observe that for (z, w) = (e2πix, e2πiy) ∈ T2 we have

Fn(z, w) = e2πiF̂ n(x,y).

The linear part of F̂ is the matrix N above, ie F̂ = NF + Θ where Θ is doubly periodic. An invariant
set Λ for f : M → M is called hyperbolic if it is compact,the tangent bundle TΛM can be decomposed as
TΛM = Es ⊕ Eu invariant under Df and there exist C > 0 and 0 < λ < 1 such that

|Dfn
/Es(x)| ≤ Cλn, |Df−n

/Eu(x)| ≤ Cλn

for all x ∈ Λ and for every positive integer n. Moreover, a diffeomorphism f ,is called Anosov, if L(f) = M
is a hyperbolic set, where L(f) is the limit set of f (the closure of the accumulation points of any backward
and forward trajectory).

2.1. Blaschke products induced by a linear Anosov diffeomorphisms. Now let us start with a
matrix N ∈ SL(Z, 2),

N =
[

n m
k j

]

with n,m, k, j positive integers. Let
FN (z, w) = (znwm, zkwj)

and observe that FN is a Blaschke product diffeomorphism. It follows that

F̂N (x, y) = N(x, y) = (nx + my, kx + jy),

so F̂N is a linear Anosov diffeomorphism induced by N on T2 and T2 is a hyperbolic set for FN .
If we take

N−1 =
[

j −m
−k n

]

it follows that
FN−1(z, w) = (zjw−m, z−kwn)

is a quotient Blaschke product diffeomorphism.
From the discussion above we see that F is in the homotopy class class of the linear Anosov diffeomor-

phism NF . So question 4.2 of section 4 makes sense from the homotopy point of view.
2.1.1. The Dynamics in C2 of Blaschke products induced by a linear Anosov diffeomorphisms. Now we

discuss the dynamics of FN in C2.

Lemma 2.1. FN is an Axiom A diffeomorphisms such that Ω(FN ) = {(0, 0)} ∪T2}. Moreover, the point
at infinity (∞,∞) is an attractor, while (∞, 0) and (0,∞) are repeller.

Proof. Writing z and w in polar coordinates, z = r exp(2πix), w = s exp(2πiy), it follows that

FN (r exp(2πix), s exp(2πiy)) = (rnsm exp 2πi(nx + my), rksj exp 2πi(kx + jy)).

Studying the map (r, s) → (rnsm, rksj) for r, s ≥ 0, it follows that its nonwandering set consists of five
points: (0, 0), (1, 1), (∞, 0), (0,∞), (∞,∞). ¤

The stable manifold of T2 is contained in {|z| < 1}× {|w| > 1} ∪ {|z| > 1}× {|w| < 1} and the unstable
manifold of T2 is contained in {|z| < 1} × {|w| < 1} ∪ {|z| > 1} × {|w| > 1}. The map FN fails to be a
diffeomorphisms at C× {0} ∪ {0} × C which are critical points for FN .
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2.1.2. Perturbation of Blaschke products induced by a linear Anosov diffeomorphisms. The next theorem
follows from classical results on the stability of Axiom A systems :

Theorem 2.2. Let FN be a Blaschke product diffeomorphism induced by N ∈ Sl(Z, 2). Then, for
any rational map G on C2 close enough to FN it follows that G is an Axiom A diffeomorphism such that
Ω(G) = {{S1} ∪ {S2} ∪ {R1} ∪ {R2} ∪ H}, such that S1, S2 are fixed attracting points, R1, R2 are fixed
repelling points and H is a hyperbolic set homeomorphic to a two dimensional torus.

3. General dynamics of the Blaschke products.

Definition 3.1. An f -invariant set Λ is said to have a dominated splitting, if the tangent bundle over
Λ is decomposed in two invariant subbundles TΛM = E ⊕ F , such that there exist C > 0 and 0 < λ < 1
with the following property:

|Dfn
|E(x)||Df−n

|F(fn(x))| ≤ Cλn, for all x ∈ Λ, n ≥ 0.

This concept was introduced independently by Mañé, Liao and Pliss, as a first step toward proving that
structurally stable systems satisfy a hyperbolicity condition on the tangent map. A dominated splitting is a
natural way to relax hyperbolicity.

Theorem 3.2. Let a, b, c, d be C1−smooth immersions from S1 to S1 that preserve orientation. Let
f : T2 → T2 be given by

f(θ, φ) = (a(θ) + b(φ), c(θ) + d(φ))

then the positive cone field is preserved by Tf and if f is a diffeomorphism then f has a dominated splitting
on all of T2.1

Proof. Observe that

Df =
[

a′ b′

c′ d′

]
.

Let C+ be the positive cone bounded by the directions spanned by the vectors (1, 0) and (0, 1). Observe that
DF (C+) is properly contained in C+. The existence of a dominated splitting follows. ¤

Corollary 3.3. Given a two dimensional Blaschke product diffeomorphism

F (z, w) = (A(z)B(w), C(z)D(w)),

then F̂ has a dominated splitting on all of T2 and the complexification of this dominated splitting is a
dominated splitting for F |T2 with respect to the complex derivative of F.

Theorem 3.4. Let a, b, c, d be C1−smooth immersions from S1 to S1 such that a, d preserve orientation
and b, c reverse orientation . Let f : T2 → T2 be given by

f(θ, φ) = (a(θ) + b(φ), c(θ) + d(φ))

then the positive cone field bounded by the directions spanned by the vectors (1, 0) and (0,−1) is preserved
by Tf and if f is a diffeomorphism then f has a dominated splitting on all of T2.2

Proof. The proof is similar to the one of theorem 3.2. ¤

1If f is not a diffeomorphism there is a dominated splitting on the inverse limit space.
2If f is not a diffeomorphism there is a dominated splitting on the inverse limit space.
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Corollary 3.5. Given a two dimensional Blaschke product diffeomorphism

F (z, w) = (
A(z)
B(w)

,
D(w)
C(z)

),

then F̂ has a dominated splitting on all of T2 and the complexification of this dominated splitting is a
dominated splitting for F |T2 with respect to the complex derivative of F.

Now we can apply results from real dynamics about diffeomorphisms with dominated splittings. Recall
that Ω(f) is the nonwandering set of f.

Theorem 3.6. ([PS1]) Let f ∈ Diff2(M2) and assume that Λ ⊂ Ω(f) is a compact invariant set
exhibiting a dominated splitting such that any periodic point is a hyperbolic periodic point. Then, Λ = Λ1∪Λ2

where Λ1 is hyperbolic and Λ2 consists of a finite union of periodic simple closed curves C1, ...Cn, normally
hyperbolic, and such that fmi : Ci → Ci is conjugate to an irrational rotation (mi denotes the period of Ci).

In the next two propositions we show that periodic simple closed curves do not occur for Blaschke
product diffeomorphisms and that there is at most one sink.

Proposition 3.7. Let F be a Blaschke product diffeomorphism. Then F does not have any normally
hyperbolic simple closed invariant curves.

Proof. If C is an invariant simple closed curve for F the either C represents a non-trivial element of
the fundamental group fixed by NF or C bounds a disc. Since NF is a hyperbolic linear map it has no
non-trivial fixed elements, so the first eventuality is impossible. In the second case the bundle E which is
tangent to C cannot be extended over the disc bounded by C contradicting the fact that there is a dominated
splittng defined on all of T2. ¤

Proposition 3.8. A two dimensional Blaschke product, F, has at most one attracting or semiattracting
periodic point, which is necessarily a fixed point, in D2.

Proof. Since D2 is invariant for F , Fn is a normal family in D2. If z0 ∈ D2 is an attracting or a
semiattracting periodic point of F then some subsequence Fnk converges to the constant map z0 on an open
set in, and hence all of the interior of , D×D. Let j be the period of z0. It follows that F jn(z) converges to
z0 for all z in the interior of D2. Thus z0 is the unique attracting periodic point in D2. ¤

Question 3.9. We don’t know if there is a version of proposition 3.8 which counts the number of
repellors, even for Blaschke products which are birational equivalences.

We can now describe the dynamics of Blaschke product diffeomorphisms.

Theorem 3.10. Let F be either a Blaschke product diffeomorphism or a quotient Blaschke product
diffeomorphism such that any periodic point in T2 is a hyperbolic periodic point. Then, F|T2 is an Axiom A
diffeomorphism. Moreover, one of the next option holds:

(1) F|T2 is Anosov and L(F|T2) = T2,
(2) L(F|T2) = S ∪H ∪ Sa ∪R,
(3) L(F|T2) = S ∪H,
(4) L(F|T2) = H ∪ Sa ∪R;

Where S is a set formed by a single attracting fixed point, R is a set formed by a finite number of repelling
periodic points, Sa is a finite number of isolated saddles and H is a non-trivial maximal transitive hyperbolic
invariant set in T2. In the last case it follows that H is an attractor in T2. Moreover, the order relation is
given by R → Sa → H→ S (where A → B if Wu(A) ∩W s(B) 6= ∅). In the case that S is empty, F |T2 has
a unique SRB measure with positive entropy.
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If F is a Blaschke product diffeomorphisms it follows that F always has an attracting or semi-attracting
fixed point in D2, and any forward orbit in the interior of D2 converges to that fixed point. If this fixed point
is in the interior of D2 it is attracting.

Proof. Since F̂ has a dominated splitting on all of T2 we can apply theorem 3.6. From proposition 3.7,
it follows that there are no normally hyperbolic curves. Therefore, L(F|T2) is a hyperbolic set. This implies
that the number of periodic repellers and attractors is finite, the periodic points are dense in L(F|T2) and
L(F|T2) has a spectral decomposition. From proposition 3.8 F has at most one attracting periodic point
which is a fixed point. From the fact that NF is a hyperbolic linear map with positive entries it follows that
Trace(Fn

∗ ) → +∞ as n →∞ and this implies by the Lefschetz formula and [SS] or Nielsen theory that the
number of periodic points goes to infinity. So Closure(Per(F )) contains a non-trivial homoclinic class. To
prove that H is a non-trivial hyperbolic set, first we prove that that the closure of all the periodic points
such that at least one branch of its unstable manifold and at least one branch of its stable manifold is not
bounded, is a unique homoclinic class denoted with H. Later we prove that the set of periodic points with
stable and unstable manifold with bounded length are a finite number of periodic points.

Lemma 3.11. There exists h : T2 → T2 continuous, onto and homotopic to the identity such that
h◦F = A◦h, where A is the linear Anosov map induced by NF . That is, F is semiconjugate to A. Moreover,
let p be a periodic point of F such that one of it its unstable branch has unbounded length. Then it follows
that h(γu(p)) ⊂ Wu(h(p)) and h(γu(p)) has unbounded length, where γu(p) is the branch of Wu(p) \ {p}
such that the corresponding unstable branch has unbounded length. The same holds for the stable branches.

Proof. To prove the lemma we use the following lemma:

Lemma 3.12. Let F̂ : R2 → R2 be the lift of F to R2. Then F̂ = A + P such that A is a linear Anosov
map and P is periodic and there exists H : R2 → R2 continuous and onto such that H ◦ F̂ = A ◦ H, that
is, F̂ is semiconjugate to A. Moreover, there exits a constant K1 such that ‖H − Id‖ < K1. Also, for any
m ∈ Z2 we have H(x + m) = H(x) + m.

Proof. The proof can be found in theorem 2.2 of [Fr]. The main ingredient to construct the semicon-
jugacy is the global product structure of A. An alternate approach uses the fact that the shadowing lemma
holds for any pseudo orbit.

¤
Observe that this lemma implies the existence of h. Moreover, since h is a semiconjugacy we also conclude

that h(γu(p)) ⊂ Wu(h(p)). In fact, if x ∈ γu(p) then ∃xi → p such that f i(xi) = x. So h(xi) → h(p) and
Ai(h(xi) = h(f i(xi) = h(x) and h(x) ∈ Wu(h(p)). We have to show now that the length of h(γu(p)) is
unbounded. Since γu has infinite length we may find periodic saddle points whose stable manifolds cross γu

in infintely many points. Consider an embedded loop γ consisting of a connected subarc of γu and a short
piece of stable arc of a periodic saddle r. This loop is not contractable to a point. In fact, if it is not the
case, let D be the disc bounded by γ. Observe that there it is a non singular vector field X defined on D
induced by the subbundle F of the dominated splitting with the property that X is inward pointing on D,
which is a contradiction. Therefore, it follows that Nn

F ([γ]) = [Fn(γ)] (where NF is the linear map acting on
the fundamental group) goes to infinity . Since Fn(γ) = Fn(γ̃u) ∪ Fn(γ̃s) and Fn(γ̃u) ⊂ γu and Fn(γ̃s) is
a stable arc the length of which goes to zero, then given M > 0 there exists n large enough and x ∈ R2 such
that x ∈ Fn(γ̃u) and d(x, p) > M . Observe that this implies that the length of h(γu) is unbounded. In fact,
let us assume that this is not the case; so there is K0 such that for any x ∈ γu then dist(H(x),H(p)) < K0.
Let M be a positive integer and let n > 0 and x ∈ R2 such that x ∈ Fn(γ̂u

ε ) and d(x, p) > M . Since
dist(H(x),H(p)) < K0 and dist(H(p), p) < K1 it follows that

dist(H(x), x) > dist(p, x)−dist(p,H(x)) > dist(p, x)− [dist(p,H(p))+dist(H(p),H(x))] > M − (K1 +K0).
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Since |H − Id| < K1 it follows that for M large enough we get a contradiction.
¤

Using the lemma 3.11, we conclude that the closure of all the periodic points such that at least one
branch of its unstable manifold and at least one branch of its stable manifold is not bounded, is a unique
homoclinic class. To do that, we show that given a pair of periodic points p and q such that p has an
unbounded unstable branch and q has an unbounded stable branch, it follows that these branch intersects
homoclinically.

Let p be a periodic point with an unbounded unstable branch and let q be a periodic point with an
bounded unstable branch . Let γu(p) be the branch of Wu(p) \ {p} with unbounded length. Let γs(q)
be the branch of W s(q)) \ {q} with unbounded length. From lemma 3.11 it follows that h(γu(p)) is an
arc of unbounded length contained in the stable manifold of h(p). Since Wu(h(p)) and W s(h(q)) intersects
transversally (recall that since A is a linear Anosov, then that for any pair of periodic point of A, any of their
stable and unstable branches intersect each other), it follows that h(γu(p)) and h(γs(q)) intersect infinitely
often and the long arcs in h(γu(p)) and h(γs(q)) have arbitrarily large intersections. Now if we complete
a long arc in γu(p) to a closed embedded loop γ(p) adding a small arc in W s(r1) and a long arc in γs(q)
to a closed embedded loop γ(q) adding a small arc in γu(r2) for appropriately chosen saddles r1, r2 we see
that h(γ(p)) and h(γ(q) intersect homologically with as large an interesection number as we wish. Since h
induces the identity map in homology so do γ(p) and γ(q) and then by construction so do γu(p) and γs(q).

To check the last part of the theorem, that there is always an attracting or semi-attracting fixed point
in D2, we will use the following lemma:

Lemma 3.13. There exists N0 such that for any z ∈ D2, there exists a periodic point z0 = z0(z) of F
with period smaller than N0 and a subsequences {ki} = {ki(z)} such that F ki(z) → z0.

Proof. Recall that D2 is invariant. Therefore, given z ∈ D2 it follows that {Fn(z)} has a convergent
subsequences. Let {ni} be such that Fni(z) → z0 for some z0 and let gi = Fni+1−ni and observe that it is a
bounded sequences and therefore, there exists a subsequences gik

converging to some holomorphic map h. It
follows that h(z0) = z0. Then, from the fact that h is a limit of iterates of F follows that F and h commute
and therefore it follows that for any k it holds that F k(z0) is also a fixed point of h. In other words, F maps
the fixed points of h into fixed points of h. Observe that h has a finite number of fixed points; otherwise,
h is the identity in D2 and so it the identity in the closure of D2 which is not possible because the identity
map in T2 can not be obtained as the limit of iterates of F restricted to T2 (recall that DFn diverges in
T2). Therefore, since h has a finite fixed points and F maps them into themselves, it follows that the point
z0 is eventually periodic for F with period smaller and equal to the number of fixed points of h. Without
loss of generality, we can assume that it is periodic and the lemma follows. ¤

Corollary 3.14. For any z ∈ D2, there exists a periodic point z0 = z0(z) of F with period smaller than
N0 such that F k(z) converges to the orbit of z0.

Proof. Since F has a finite number of periodic point of period smaller than N0 we can assume that
the accumulation points of any sequence {F k(z)} is a fixed point. Let {zi} the set of fixed points and we
can take a pair of finite number of disjoints neighborhoods {Vi} and {Ui} of each of those fixed points. We
assume that zi ∈ Vi ⊂ Ui and if z ∈ Vi then f(z) ∈ Ui. Now, given z let us subdivide N into a finite number
a set {Ni} such that if n is large and n ∈ Ni, then fn(z) ∈ Wi. For each Ni let us subdivide it in blocks
Ni = ∪jB

j
i such that it blocks is formed by maximal chains of consecutive positive integers in Ni. We can

assume that they are infinitely many of these blocks, otherwise the sequences fn(z) is convergent. For each
block Bj

i let nj
i the larger integer in it. In particular, fnj

i+1(z) /∈ Wi and so, it belongs to some Uk (k 6= i),
but this is a contradiction because fnj

i (z) ∈ Wi and so fnj
i+1(z) ∈ Ui.

¤
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As a consequences of this corollary, it follows that at least one of the periodic points F with period
smaller than N0, has to attract an open set. Therefore, the function h obtained in the proof of lemma 3.13
is constant in an open set. Since is holomorphic, it follows that it has to be constant in D2. And this also
implies that F has only one semi-attracting periodic point z0. Replacing F by F k (where k is the period of
z0) follows that it has to be fixed.

¤

Using the spectral decomposition theorem for dominated splitting (see [PS2]) similar results as the one
stated in theroem 3.10 can be obtained without assuming that the periodic points are hyperbolic.

4. Families of Blaschke products

Now, given a two dimensional Blaschke product diffeomorphism F (z, w) = (A(z)B(w), C(z)D(w)), we
consider the following two parameter family

F(θ,φ)(z, w) = (θA(z)B(w), φC(z)D(w)), (θ, φ) ∈ T× T.

Theorem 4.1. Let F be a Blaschke product diffeomorphism . Then there exists an open set of U ⊂ T2

such that if (θ, φ) ∈ U then it follows that F(θ,φ)|T2 satisfies the first or last item of theorem 3.10; i.e.:
F(θ,φ) is Anosov or L(F(θ,φ)|T2) is the union of a finite number of repelling periodic points and saddles and
a hyperbolic non trivial attractor. In either case F(θ,φ)|T2 has a unique SRB measure of positive entropy.

Question 4.2. Are there always parameter values (θ, φ) such that F(θ,φ) is Anosov?

Proof. First we show that there is an open set of parameter (θ, φ) such that F(θ,φ) has neither a sink or
a semiattracting fixed point in T2. If it is not the case since there is at most only one sink or a semiattracting
fixed point then there is a continuous function from T2 to T2, (θ, φ) → s(θ, φ) such that s(θ, φ) is either
a sink or a semiattracting fixed point. However, if (θ, φ) is a semiattracting fixed point, from the fact
that F has a dominated splitting, it follows that s(θ, φ) is a saddle-node and there is an invariant center
manifold containing the saddle node; then we can choose a nearby parameter value to bifurcate the point
to make it dissapear. Therefore, it follows that s(θ, φ) is a sink for every value of (θ, φ). As s(θ, φ) is a sink
Id − DF(θ,φ)(θ, φ) is an isomorphism and by the implicit function theorem, s is a covering map from the
torus to itself. Hence s is surjective and for every (x, y) ∈ T2, det(DF (x, y)) = det(DF(θ,φ)(s(θ, φ))) < 1. So
F is volume decreasing, which contradicts the fact that F is a diffeomorphism.

To finish, it is enough to show that there is an open and dense set of parameter values such that all
the periodic point are hyperbolic. By theorem 3.10 it is enough to show there is a dense set of parameter
values such that all the periodic points are hyperbolic since it follows from theorem 3.10 that these systems
are stable. This last fact follows from a standard Kupka-Smale argument. There are finitely many periodic
points of any period, and if q is a non-hyperbolic periodic point, since F has a dominated splitting, we find
an invariant center manifold containing the point q and we can choose a nearby parameter value to bifurcate
the point into a hyperbolic one. It follows that the set of parameter values with diffeomorphisms with all
periodic points of a given period hyperbolic are open and dense. Hence the set with all periodic points
hyperbolic is residual and hence dense. ¤

Observe that in the case that F(θ,φ)|T2 has a unique SRB measure µ(θ,φ) of positive entropy, it follows
that

hµ(θ,φ) =
∫

T2
log||DF ||dµ(θ,φ) = λ+

(θ,φ) > 0,

where λ+
(θ,φ) is the positive Laypunov exponent. On the other hand, when F(θ,φ)|T2 has a either a sink or a

semiattracting fixed point, then the SRB measure is a Dirac measure on the sink or the semiattracting fixed
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point and therefore we can also define the metrical entropy related to these measures. We wonder if possibe
to obtain lower bounds for ∫

T×T
hµ(θ,φ)dθdφ,

as the ones we have obtained in [PRS].

5. Final remarks, questions and some generalizations.

5.1. Julia sets. Let F : C2 \ P → C2 be an analytic function, where P is a set of poles given by a
finite union of codimension one submanifolds. Let us assume that given F analytic on C2 \ {P} (where P
are the poles) there exists a finite number of one dimensional complex submanifolds {li} such that F has an
analytic inverse

F−1 : C2 \ [∪ili] → C2.

Observe that this is the case for the quotient Blaschke diffeomorphisms. It is possible to define K+ as the
sets

K+ = {(z, w) ∈ C2 \ P : ∃ neighborhood U of (z,w) such that Fn
|U is a normal family}

K− =
{

(z, w) ∈ C2 \ [∪ili] : ∃ neighborhood U of (z,w) such that
F−n
|U is a normal family and [∪ili] ∩ F−n(U) = ∅ ∀n > 0

}
.

We define the Julia set J as
J = C2 \ [K+ ∪K− ∪i li ∪ P ].

Tt follows immediately that
H ⊂ J(F ).

Question 5.1. Is it true that
H = J(F ).

5.2. Some general version for analytic diffeomorphisms. Some of the result stated here can be
stated in a more general setting using classical results of complex analysis (see [R]).

Remark 5.2. Any analytic function on cl(D2) that keeps T2 invariant is a Blaschke product.

In fact, this can be easily checked in the following way: fixing w ∈ S1 it follows that z → F1(z, w) (where
F1 is the first coordinate of F ) is an analytic function on cl(D1) that keeps S1 invariant and therefore, is a
one-dimensional Blaschke product

F1(z, w) = B(w)
n∏

i=1

z − ai(w)
1− zai(w)

where w → B(w) is an analytic function that preserves S1 and
∏n

i=1
z−ai(w)

1−zai(w)
is an analytic function. In

particular, it follows that B(w) is also a Blaschke product. To finish, observe that in the quotient complex
conjugation is used so to keep analyticity it follows that the symmetric functions of the ai(w) are constant
functions.

Using the Riemann mapping theorem and theorem 3.10 the next remark follows:

Remark 5.3. Let F be an analytic map in cl(U)× cl(V ) → C2 such that U, V are two connected open
sets in C. Let us assume that F (U×V ) ⊂ U×V , F (∂U×∂V ) = ∂U×∂V, and F|∂U×∂V is a diffeomorphisms
(where ∂W denotes the boundary of W ). Then, the thesis of theorem 3.10 holds on ∂U × ∂V .
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