
The Dirichlet problem for CMC surfaces

in Heisenberg space

L. J. Aĺıas∗, M. Dajczer and H. Rosenberg

We study constant mean curvature graphs in the Riemannian 3-dimensional
Heisenberg spaces H = H(τ). Each such H is the total space of a Rieman-
nian submersion onto the Euclidean plane R2 with geodesic fibers the orbits
of a Killing field. We prove the existence and uniqueness of CMC graphs in
H with respect to the Riemannian submersion over certain domains Ω ⊂ R2

taking on prescribed boundary values.

1 Introduction

In recent years, there has been much research on minimal and constant mean curvature
surfaces (CMC) in the simply connected homogeneous 3-manifolds, other than space
forms. Figueroa, Mercuri and Pedrosa [5] gave many interesting such surfaces in H,
each invariant by Killing vector fields of the ambient space. Daniel [4] and Abresch-
Rosenberg [1], [2] have also obtained some interesting results on these surfaces. For
example, the latter authors proved that the only immersed H-surfaces in H which
are homeomorphic to the 2-sphere are precisely the rotational H-spheres. We mention
that the classical Alexandrov Theorem is not yet known in H: “Is a compact embedded
H-surface a rotational sphere”.

It is natural (and we believe important) to solve the Dirichlet problem in H; we do
this here.
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2 Preliminaries

2.1 The Heisenberg space

Let H denote the three-dimensional Heisenberg Lie group endowed with a left invariant
metric. In fact, we have a one-parameter family of metrics indexed by bundle curvature
by a real parameter τ 6= 0. The spaces are simply connected homogeneous Riemannian
manifolds carrying a 4-dimensional isometry group. In global exponential coordinates
they are R3 endowed in standard coordinates with the metrics

ds2 = dx2 + dy2 + (τ(ydx− xdy) + dz)2.

A global orthonormal tangent frame is given by

E1 = ∂x − τy∂z, E2 = ∂y + τx∂z , E3 = ∂z.

The corresponding Riemannian connection is ∇̄Ej
Ej = 0, 1 6 j 6 3, and

∇̄E1
E3 = ∇̄E3

E1 = −τE2, ∇̄E2
E3 = ∇̄E3

E2 = τE1

∇̄E1
E2 = −∇̄E2

E1 = τE3.

In particular,
[E1, E2] = 2τE3 and [E1, E3] = 0 = [E2, E3].

The Heisenberg space is a Riemannian submersion π: H → R2 over the standard
flat Euclidean plane R2 whose fibers are the vertical lines. Thus the fibers are the
trajectories of a unit Killing vector field and hence geodesics. The horizontal vector
fields E1, E2 are basic since they are the horizontal lifts of the vector fields of the
orthonormal coordinate base of R2, namely, π∗(E1) = ∂x and π∗(E2) = ∂y.

The isometries of the space are the translations generated by the Killing vector
fields

F1 = ∂x + τy∂z, F2 = ∂y − τx∂z, F3 = ∂z,

and the rotations about the z-axis corresponding to

F4 = −y∂x + x∂y.

The translations corresponding to F1 and F2 are, respectively,

(x, y, z) 7→ (x + t, y, z + τty)

and
(x, y, z) 7→ (x, y + t, z − τtx)

where t ∈ R. Thus, by the group of isometries vertical planes go to vertical planes,
and Euclidean lines go to Euclidean lines. For additional information, we refer to [4].
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2.2 Graphs

We denote by S0 ⊂ H the surface whose points satisfy z = 0. Given a domain Ω ⊂ R2

throughout the paper we also denote by Ω its lift to S0. We define the graph Σ(u) of
u ∈ C0(Ω̄) on Ω as

Σ(u) = {(x, y, u(x, y)) ∈ H : (x, y) ∈ Ω̄}.

Consider the smooth function u∗:H → R defined as u∗(x, y, z) = u(x, y) and set
F (x, y, z) = z − u∗(x, y). Then Σ(u) = F−1(0), and therefore

2H = div

( ∇F
|∇F |

)

.

Here div and ∇ denote the divergence and gradient in H and the mean curvature
function H of the graph is with respect to the downward pointing normal vector.

We have
∇F = −(τy + ux)E1 + (τx− uy)E2 + E3.

Since E1, E2 are basic, using the Riemannian submersion one shows that the H-graph
equation is

divR2

(

α

W
∂x +

β

W
∂y

)

+ 2H = 0 (1)

where
α = τy + ux, β = −τx + uy

and
W 2 = 1 + α2 + β2.

It follows easily that Σ(u) has mean curvature function H if and only if u is a solution
of the following PDE

QH(u) :=
1

W 3

(

(1 + β2)uxx + (1 + α2)uyy − 2αβuxy

)

+ 2H = 0 (2)

for α, β and W as above. We remark that this is the Euclidean mean curvature
equation for τ = 0.

2.3 Cylinders and cones

Let γ: I → S0 ⊂ H be a smooth curve parametrized on an interval I ⊂ R where S0

is as above. We assume that γ = γ(s) is parametrized so that γ̄ = π ◦ γ carries a
parametrization by arc length. Thus γ(s) = (x(s), y(s), 0) satisfies (x′)2 + (y′)2 = 1.
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The vertical cylinder Cγ ⊂ H over γ is the surface generated by taking through
each point of γ(I) the vertical geodesic fiber. Thus Cγ is parametrized by ϕ: I×R → H
given by

ϕ(s, t) = (x(s), y(s), t).

Then, the mean curvature HC (taken to be non-negative) of Cγ is

HC(s) = HC(s, t) =
k(s)

2
(3)

where k(s) is the geodesic curvature function of γ̄ with respect to the Euclidean metric.
Notice that HC is independent of the parameter τ . To see that (3) holds, first observe
that the horizontal lift T of γ̄ ′ = dγ̄/ds to each point of Cγ forms a horizontal unit
tangent vector field. Since Cγ is ruled by vertical geodesics, it follows that the mean
curvature of Cγ is 2HC = 〈∇̄TT,N〉, where N is the Gauss map of the cylinder Cγ

chosen so that HC is non-negative. But N is the horizontal lift of a unit normal vector
field η to γ̄ in R2, and hence 〈∇̄TT,N〉 = 〈∇γ̄′ γ̄′, η〉 = k, where ∇ denotes the Euclidean
connection.

The cone Cγ ⊂ H with vertex P ∈ H\S0 and base curve γ as above is just the
Euclidean cone in R3 constituted of straight lines from P through points of γ(I). Thus
Cγ is parametrized by

ψ(s, t) = (1 − t)P + tγ(s)

where t ∈ (0,+∞).
Vertical lines remain invariant under the isometries of H. Thus the same holds for

vertical cylinders. Also Euclidean lines are sent to Euclidean lines by isometries of H,
and vertical planes as well. Thus cones are also invariant by isometries. Hence, to
analyze the behavior of the mean curvature of a cone we may assume that the vertex
is P = (0, 0, c) where c 6= 0. Then, either a computation using (2) or by a direct
computation, we obtain that the mean curvature H = H(s, t) of Cγ pointing down is
given by

H=
ct2(x2 + y2 + c2)(y′′x′ − x′′y′)

2(τ 2t4(x2 + y2)(x′y − y′x)2+2cτt3(xx′ + yy′)(x′y − y′x)+t2(c2 + (x′y − y′x)2)3/2
.

Here the sign of H is non-negative when γ is a convex Jordan curve in R2. In particular,

H(s, 1) → HC(s) as c→ +∞.

and
H(s0, t) → +∞ as t→ 0+

if y′′x′ − x′′y′ > 0 at γ(s0).
We also have fixing t = t0 and allowing c→ +∞ that

2H(s0, t0) → (y′′x′ − x′′y′)(s0),

and this is also a proof that the mean curvature of a cylinder is given by (3).
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3 The main result

We now state and prove the Dirichlet theorem in Heisenberg space H.

Theorem 1. Let Ω ⊂ R2 be a bounded domain with C3 boundary Γ = ∂Ω whose
curvature function with respect to the inner orientation is k > 0. Let H be a constant
satisfying 0 ≤ 2H < k and let ϕ ∈ C0(Γ) be given. Then there exists a smooth function
u satisfying u|Γ = ϕ whose graph Σ(u) in H has constant mean curvature H.

Moreover, if M is a compact embedded connected surface inside the vertical cylinder
CΓ over Γ with constant mean curvature H, ∂M = Γ and the mean curvature vector
of M points down, then M = Σ(u).

Proof: First suppose that H = 0. In this case we prove a more general existence result.
In fact, we allow ϕ to have a finite number of discontinuities E ⊂ Γ, and at each
discontinuity, ϕ has a left and right limit. The Nitsche graph (see [7]) γ of ϕ is the
graph of ϕ on Γ \ E together with the vertical segments over each point of E, joining
the left and right limits of ϕ at this point. The Nitsche graph γ is a Jordan curve on
the vertical cylinder Cγ and its vertical projection to Γ is a monotone (constant on the
vertical segments) map.

Since Cγ is mean convex with respect to the inside of Cγ, there is a least area
embedded minimal disk Σ inside Cγ with ∂Σ = γ.

We claim that Σ is a z-graph over Ω and solves the Dirichlet problem as desired.
First observe that Σ is nowhere vertical. To see this, suppose p ∈ int Σ and the
tangent plane to Σ at p is vertical. Let β ∈ R2 be a line such that the vertical plane
P = π−1(β) equals the tangent plane to Σ at p. Then P ∩Σ near p is an analytic curve
topologically equivalent to Re(zk), k ≥ 2, in a neighborhood of z = 0. Each branch
of these curves leaving p must go to P ∩ ∂Σ = P ∩ γ, by the maximum principle, i.e.,
a cycle in (int Σ) ∩ P would bound a disk in Σ and we could touch this disk at an
interior point with another vertical plane (which is also a minimal surface). Now P ∩γ
consists of two points of Γ, or one or two vertical segments of γ, by convexity of Γ.
Hence, at least two of the branches of P ∩Σ leaving p, go to the same point, or vertical
segments of γ. This yields a compact cycle C ⊂ P ∩ Σ. Σ is simply connected so C
bounds a disk D ⊂ Σ. Using vertical planes in H, we can touch D at an interior point
so D would equal this vertical plane; a contradiction. Thus Σ is nowhere vertical in its
interior.

Now Σ separates the vertical cylinder over Γ into two components. So Σ can be
oriented with the unit normal pointing up in its interior. Then each vertical line over
a point in the interior of Ω, intersects Σ in exactly one point, since at two successive
points of intersection the normal to Σ would point up and down. This proves Σ is a
graph over the interior of Ω.
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Now assume that H 6= 0 and ϕ is continuous. We have seen that u must be a
solution of the Dirichlet problem
{

QH(u) = 0

u|Γ = ϕ
(4)

where QH was given in (2). To prove the existence part of the theorem, we use the
continuity method. We show that the subset

Z := {t ∈ [0, 1] : ∃ ut ∈ C3(Ω) such that QtH(ut) = 0 and ut|Γ = tϕ}

is nonempty, open and closed in [0, 1]. We have that Z is not empty since 0 ∈ Z; S0

is a minimal surface in H. Standard arguments from the theory of quasilinear elliptic
PDE’s presented in [6] give that Z is open (a consequence of the implicit function
theorem). Moreover, any solution of QH(u) = 0 is smooth in Ω. Finally, that Z is
closed follows from the theory in [6] once we show that a priori height and gradient
estimates exist.

We have from (2) that any Euclidean plane in R3 is a minimal surface in H. In
particular, each leaf of the foliation of isometric surfaces z = z0 = constant is minimal
and diffeomorphic to the base R2 by the projection of the Riemannian submersion. It
follows using the maximal principle that any solution u of (4) satisfies

u ≥ min
∂Ω

ϕ.

Fix a point (x0, y0, 0) ∈ Ω. Given z0 ∈ R, we consider the cone C(z0) with vertex
P = (x0, y0, z0) constituted of straight lines from P through points of the graph of ϕ
over Γ. Then, the piece Cϕ(z0) of C(z0) from P to the graph of ϕ is contained inside

the vertical cylinder over Γ. Notice that C(z0) is the cone C
Γ̂
(z0) over Γ̂ = CΓ(z0)∩S0.

Clearly, by choosing z0 such that |z0| is large enough, the geodesic curvature of Γ̂
with respect to the Euclidean metric is positive. In fact, the curve converges to Γ as
|z0| 7→ ∞. Therefore, by our previous discussion on the mean curvature of vertical
cylinders and cones we have that choosing z0 large enough, say z0 = z1, and z0 small
enough, say z0 = z2, that C(z1) has mean curvature strictly larger than H everywhere
and C(z2) has negative mean curvature (this cone is going down). By the maximum
principle, they are upper and lower barriers for the CMC H-graph equation on Ω.
Thus C(z1) and the above remark concerning planes below the graph of ϕ provides an
a priori height estimate for any solution of the Dirichlet problem (4) depending only
on Ω, H and ϕ, that is,

|u|0 6 C0(Ω, H, ϕ).

Moreover, the cones also provide the following bound along Γ for the norm of the
Euclidean gradient of u

|∇eu| =
√

u2
x + u2

y 6 C1(Ω, H, ϕ).
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The next result uses techniques developed in [3] to show that global estimates of
the gradient reduces to the boundary estimates already obtained.

Lemma 2. Let u ∈ C3(Ω) ∩ C1(Ω̄) be a solution of (4). Assume that u is bounded
in Ω and that |∇eu| is bounded in Γ. Then |∇eu| is bounded in Ω by a constant that
depends only on |u|0 and supΓ |∇eu|.

Proof: To estimate |∇eu| =
√

u2
x + u2

y in the interior of Ω it suffices to obtain an

estimate for ω =
√

α2 + β2 eAu for some positive constant A to be chosen later. If ω
achieves its maximum on Γ then we have the desired bound. Otherwise, ω must reach
its maximum at an interior point p0 = (x0, y0) in Ω.

We may choose coordinates of the ambient space such that

β(p0) = −τx0 + uy(p0) = 0.

We denote
v = α(p0) = τy0 + ux(p0).

The function φ = lnω = ln
√

α2 + β2 + Au also takes a maximum at p0 ∈ Ω. That
φx(p0) = 0 yields

uxx(p0) = −Avux(p0), (5)

and φy(p0) = 0 gives
uxy(p0) = −τ(Avx0 + 1). (6)

Moreover, from φxx(p0) 6 0 we obtain

vuxxx(p0) 6 A2v3ux(p0) + A2v2u2
x(p0) − τ 2(Avx0 + 2)2, (7)

and φyy(p0) 6 0 yields

vuxyy(p0) 6 −Av2uyy(p0) + τ 2A2x2
0v

2 − u2
yy(p0). (8)

On the other hand, from (2) and (5) we have

uyy(p0) = −2H(1 + v2)1/2 +
Av

1 + v2
ux(p0). (9)

Taking the derivative of (2) with respect to x and using (5) and (6) yields

uxxx +(1+ v2)uxyy − 2Av2uxuyy − 2τ 2v(A2x2
0v

2 +3Ax0v+2)− 6AHv2(1+ v2)1/2ux = 0

at the point p0. Multiplying the last equation by v and using (9) and inequalities (7)
and (8) we obtain, after a long computation, that

(v − τy0)
2

1 + v2
+ τ 2x2

0 6
1

A2
(AG1(v) +G2(v))
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where

G1(v) =
2Hτy0(1 + v2)1/2

v
+
P (v)

v4
, G2(v) = −4H2 +

Q(v)

v4

and limv→∞ P (v)/v4 = 0 = limv→∞Q(v)/v4. Therefore,

lim
v→∞

G1(v) = 2Hτy0 and lim
v→∞

G2(v) = −4H2 < 0.

It follows that we can choose A > 0 such that

(v − τy0)
2

1 + v2
+ τ 2x2

0 6
1

2
.

This gives an upper bound for v2, and hence for ω =
√

α2 + β2 eAu. This concludes
the proof of the Lemma.

Hence Z is closed, and this concludes the proof of the existence part of the Theorem
for 0 ≤ 2H < k. Now we prove that the graph Σ = Σ(u) is unique. Suppose that M is
an embedded H-surface inside the vertical cylinder CΓ over Γ with ∂M = ∂Σ. Then
M separates CΓ into two components and we assume the mean curvature vector of M
points into the lower component. When the mean curvature vector points toward the
upper component, our argument will show that M equals the graph of the function u,
equal to ϕ on Γ, with mean curvature H and mean curvature vector pointing toward
the upper component.

The mean curvature of the vertical cylinder over Γ is strictly larger than H and the
mean curvature vector points inside the cylinder so the interior of M is disjoint from
the cylinder by the comparison principle.

Denote by Σ(t) the surface Σ translated t by the flow of the Killing field ∂z. Since
∂Σ is a z-graph, we have ∂Σ(t) ∩ Σ(0) = ∅; ∂Σ(0) = ∂Σ. Since M is compact there is
a T > 0 such that Σ(T ) ∩M = ∅.

Now lower Σ(T ) to Σ by the flow ∂z, letting t go from T to 0. The mean curvature
of each Σ(t) points down, so there can be no first contact of Σ(t) with M for t > 0, by
the maximum principle. Thus M is below Σ. Now choose T < 0 so that Σ(t)∩M = ∅.
Move Σ(T ) up to Σ by the flow ∂z, letting t go from T to 0. There can be no first
contact of Σ(t) with M for t 6= 0 by the maximum principle (the mean curvature vector
of M points toward the downward component). Therefore M is above Σ, and we obtain
that M = Σ. This concludes the proof of the Theorem.

4 A further result

It would be interesting to know if Theorem 1 holds when we allow 2H = k. In this
section we give the following partial answer.
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Theorem 3. Let Ω ⊂ R2 be a bounded domain with C3 boundary Γ = ∂Ω whose
curvature function with respect to the inner orientation is k > 0. Let H be a constant
satisfying |τ |/

√
3 < H ≤ k/2. Then there exists a smooth function u satisfying u|Γ = 0

whose graph Σ(u) in H has constant mean curvature H.

We need a supersolution w defined in a neighborhood of Γ (better than the cones
in the preceding section); w is constructed in the following result.

Proposition 4. Assume that u ∈ C2(Ω) ∩ C1(Ω̄) satisfies QH(u) = 0 in Ω, u|Γ = 0
and |u|0 < M . If 0 < 2H ≤ k on Γ, then there is a constant C = C(H,Ω,M) such
that

sup
Γ

|∇u| ≤ C.

Proof: Let γ: [0, `] → Γ be a parametrization by arc length and let ν stand for the unit
normal vector to Γ pointing to Ω. We parametrize a neighborhood U of Γ in Ω by

P = P (s, t) = γ(s) + tν(s) (10)

for (s, t) ∈ [0, `] × [0, ε], where 0 < ε < 1/k(s). We compute (1) on U making use of
the orthonormal frame

Pt = ν,
1

φ
Ps = γ′

where φ(s, t) = 1 − tk(s) > 0. Notice that (1) can be written as

QH(u) = divR2

(

Z
√

1 + |Z|2

)

+ 2H = 0

where Z(p) = τJp + ∇u(p) and J is the standard complex structure in R2. Then,

W 3QH(u) = W 3divR2

(

1

W
Z

)

+ 2HW 3 = −1

2
〈∇W 2, Z〉 +W 2divR2Z + 2HW 3, (11)

where W 2 = 1 + |Z|2.
We compute W 3QH(w) = 0 for w = w(t) to be chosen. Then ∇w = wtPt and

W 2 = 1 + |Z|2 = w2
t + 2θwt + A (12)

where θ = τ〈JP, Pt〉 = τ〈γ, γ′〉 and A = 1 + τ 2|γ + tν|2. Moreover,

divR2Z = ∆w = wtt − ktwt

where
kt(s) = 〈∇Ps/φPs/φ, Pt〉,
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and hence, k0(s) = k(s). Thus,

W 2∆w = w2
twtt + 2θwtwtt − ktw

3
t − 2θktw

2
t + Awtt − Aktwt. (13)

Moreover,
∇W 2 = (2wtwtt + 2θwtt + At)Pt + (2θswt + As)φ

−2Ps.

Using JPt = −φ−1Ps = −γ′ and φ−1JPs = Pt = ν, it is easy to see that

1

2
〈∇W 2, Z〉 = w2

twtt + 2θwtwtt + θ2wtt +Bwt + C (14)

where the functions B and C are bounded on U and do not depend on w or any of its
derivatives. It follows from (11), (12), (13) and (14) that

W 3QH(w) = 2H(w2
t + 2θwt +A)3/2 − ktw

3
t − 2θktw

2
t + (A− θ2)wtt − (Akt +B)wt −C.

For positive constants L and K choose

w(t) = L ln(1 +K2t).

Then w(0) = 0 and wtt = −w2
t /L. Given M > 0 choose L = M/ ln(1 +K). Thus,

w(t) =
M

ln(1 +K)
ln(1 +K2t).

Hence,
w(1/K) = M

and

wt(0) =
MK2

ln(1 +K)
.

We claim that we can choose K > 1/ε large enough such that QH(w) < 0 for all
(s, t) ∈ [0, `] × [0, 1/K]. This fact, together with w(1/K) = M (recall that |u|0 < M)
allows us to use w as a barrier from above for QH and conclude the proof.

It suffices to show that QH(w) < 0 at t = 0 for K large enough. Since wt(0) → +∞
as K → +∞, the claim is clear at points of Γ where 2H < k. If 2H = k first observe
that

lim
K→+∞

(w2
t + 2θwt + A)3/2 − w3

t − 2θw2
t

w2
t

= θ.

Then, we have that

(A− θ2)wtt(0) = − 1

L
(1 + τ 2(|γ|2 − 〈γ, γ′〉2))w2

t (0) < 0,

and the claim follows from the fact that L→ 0+ as K → +∞.
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Proof of Theorem 3: Let Ω(n) be the domain with boundary

P (s, 1/n) = γ(s) +
1

n
ν(s)

for large n, so ∂Ω(n) is smooth. By Theorem 1 there exists an H-graph Σ(n) with
∂Σ(n) = ∂Ω(n), since the curvature of ∂Σ(n) is strictly greater than 2H. Let un be
the function with graph Σ(n)

The curvature tensor of H is given for any X, Y, Z ∈ TH by

R(X, Y )Z = −3τ 2(X ∧ Y )Z + 4τ 2R1(∂z;X, Y )Z

where

R1(∂z;X, Y )Z = 〈Y, Z〉〈X, ∂z〉∂z + 〈Y, ∂z〉〈Z, ∂z〉X−〈X,Z〉〈Y, ∂z〉∂z −〈X, ∂z〉〈Z, ∂z〉Y.

Thus the (not normalized) scalar curvature of H is S = −τ 2.
By Theorem 1 of [8], there is a positive constant L such that |un|0 ≤ L for each n.

By the maximum principle, un+1 > un on the domain of un. Since the un are uniformly
bounded by L, the function

u(x) = lim
n→∞

un(x),

is well defined for x ∈ Ω and is an H-graph in Ω. Moreover, the upper barrier w
constructed in Proposition 4 shows that u takes the value zero on the boundary.
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