The Dirichlet problem for CMC surfaces in Heisenberg space

L. J. Alías*, M. Dajczer and H. Rosenberg

Abstract

We study constant mean curvature graphs in the Riemannian 3-dimensional Heisenberg spaces $\mathcal{H}=\mathcal{H}(\tau)$. Each such \mathcal{H} is the total space of a Riemannian submersion onto the Euclidean plane \mathbb{R}^{2} with geodesic fibers the orbits of a Killing field. We prove the existence and uniqueness of CMC graphs in \mathcal{H} with respect to the Riemannian submersion over certain domains $\Omega \subset \mathbb{R}^{2}$ taking on prescribed boundary values.

1 Introduction

In recent years, there has been much research on minimal and constant mean curvature surfaces (CMC) in the simply connected homogeneous 3-manifolds, other than space forms. Figueroa, Mercuri and Pedrosa [5] gave many interesting such surfaces in \mathcal{H}, each invariant by Killing vector fields of the ambient space. Daniel [4] and AbreschRosenberg [1], [2] have also obtained some interesting results on these surfaces. For example, the latter authors proved that the only immersed H-surfaces in \mathcal{H} which are homeomorphic to the 2 -sphere are precisely the rotational H-spheres. We mention that the classical Alexandrov Theorem is not yet known in \mathcal{H} : "Is a compact embedded H-surface a rotational sphere".

It is natural (and we believe important) to solve the Dirichlet problem in \mathcal{H}; we do this here.

[^0]
2 Preliminaries

2.1 The Heisenberg space

Let \mathcal{H} denote the three-dimensional Heisenberg Lie group endowed with a left invariant metric. In fact, we have a one-parameter family of metrics indexed by bundle curvature by a real parameter $\tau \neq 0$. The spaces are simply connected homogeneous Riemannian manifolds carrying a 4-dimensional isometry group. In global exponential coordinates they are \mathbb{R}^{3} endowed in standard coordinates with the metrics

$$
d s^{2}=d x^{2}+d y^{2}+(\tau(y d x-x d y)+d z)^{2} .
$$

A global orthonormal tangent frame is given by

$$
E_{1}=\partial_{x}-\tau y \partial_{z}, \quad E_{2}=\partial_{y}+\tau x \partial_{z}, \quad E_{3}=\partial_{z} .
$$

The corresponding Riemannian connection is $\bar{\nabla}_{E_{j}} E_{j}=0,1 \leqslant j \leqslant 3$, and

$$
\begin{gathered}
\bar{\nabla}_{E_{1}} E_{3}=\bar{\nabla}_{E_{3}} E_{1}=-\tau E_{2}, \quad \bar{\nabla}_{E_{2}} E_{3}=\bar{\nabla}_{E_{3}} E_{2}=\tau E_{1} \\
\bar{\nabla}_{E_{1}} E_{2}=-\bar{\nabla}_{E_{2}} E_{1}=\tau E_{3} .
\end{gathered}
$$

In particular,

$$
\left[E_{1}, E_{2}\right]=2 \tau E_{3} \quad \text { and } \quad\left[E_{1}, E_{3}\right]=0=\left[E_{2}, E_{3}\right] .
$$

The Heisenberg space is a Riemannian submersion $\pi: \mathcal{H} \rightarrow \mathbb{R}^{2}$ over the standard flat Euclidean plane \mathbb{R}^{2} whose fibers are the vertical lines. Thus the fibers are the trajectories of a unit Killing vector field and hence geodesics. The horizontal vector fields E_{1}, E_{2} are basic since they are the horizontal lifts of the vector fields of the orthonormal coordinate base of \mathbb{R}^{2}, namely, $\pi_{*}\left(E_{1}\right)=\partial_{x}$ and $\pi_{*}\left(E_{2}\right)=\partial_{y}$.

The isometries of the space are the translations generated by the Killing vector fields

$$
F_{1}=\partial_{x}+\tau y \partial_{z}, \quad F_{2}=\partial_{y}-\tau x \partial_{z}, \quad F_{3}=\partial_{z},
$$

and the rotations about the z-axis corresponding to

$$
F_{4}=-y \partial_{x}+x \partial_{y} .
$$

The translations corresponding to F_{1} and F_{2} are, respectively,

$$
(x, y, z) \mapsto(x+t, y, z+\tau t y)
$$

and

$$
(x, y, z) \mapsto(x, y+t, z-\tau t x)
$$

where $t \in \mathbb{R}$. Thus, by the group of isometries vertical planes go to vertical planes, and Euclidean lines go to Euclidean lines. For additional information, we refer to [4].

2.2 Graphs

We denote by $S_{0} \subset \mathcal{H}$ the surface whose points satisfy $z=0$. Given a domain $\Omega \subset \mathbb{R}^{2}$ throughout the paper we also denote by Ω its lift to S_{0}. We define the graph $\Sigma(u)$ of $u \in C^{0}(\bar{\Omega})$ on Ω as

$$
\Sigma(u)=\{(x, y, u(x, y)) \in \mathcal{H}:(x, y) \in \bar{\Omega}\} .
$$

Consider the smooth function $u^{*}: \mathcal{H} \rightarrow \mathbb{R}$ defined as $u^{*}(x, y, z)=u(x, y)$ and set $F(x, y, z)=z-u^{*}(x, y)$. Then $\Sigma(u)=F^{-1}(0)$, and therefore

$$
2 H=\operatorname{div}\left(\frac{\nabla F}{|\nabla F|}\right) .
$$

Here div and ∇ denote the divergence and gradient in \mathcal{H} and the mean curvature function H of the graph is with respect to the downward pointing normal vector.

We have

$$
\nabla F=-\left(\tau y+u_{x}\right) E_{1}+\left(\tau x-u_{y}\right) E_{2}+E_{3} .
$$

Since E_{1}, E_{2} are basic, using the Riemannian submersion one shows that the H-graph equation is

$$
\begin{equation*}
\operatorname{div}_{\mathbb{R}^{2}}\left(\frac{\alpha}{W} \partial_{x}+\frac{\beta}{W} \partial_{y}\right)+2 H=0 \tag{1}
\end{equation*}
$$

where

$$
\alpha=\tau y+u_{x}, \quad \beta=-\tau x+u_{y}
$$

and

$$
W^{2}=1+\alpha^{2}+\beta^{2} .
$$

It follows easily that $\Sigma(u)$ has mean curvature function H if and only if u is a solution of the following PDE

$$
\begin{equation*}
Q_{H}(u):=\frac{1}{W^{3}}\left(\left(1+\beta^{2}\right) u_{x x}+\left(1+\alpha^{2}\right) u_{y y}-2 \alpha \beta u_{x y}\right)+2 H=0 \tag{2}
\end{equation*}
$$

for α, β and W as above. We remark that this is the Euclidean mean curvature equation for $\tau=0$.

2.3 Cylinders and cones

Let $\gamma: I \rightarrow S_{0} \subset \mathcal{H}$ be a smooth curve parametrized on an interval $I \subset \mathbb{R}$ where S_{0} is as above. We assume that $\gamma=\gamma(s)$ is parametrized so that $\bar{\gamma}=\pi \circ \gamma$ carries a parametrization by arc length. Thus $\gamma(s)=(x(s), y(s), 0)$ satisfies $\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}=1$.

The vertical cylinder $\mathbb{C}_{\gamma} \subset \mathcal{H}$ over γ is the surface generated by taking through each point of $\gamma(I)$ the vertical geodesic fiber. Thus \mathbb{C}_{γ} is parametrized by $\varphi: I \times \mathbb{R} \rightarrow \mathcal{H}$ given by

$$
\varphi(s, t)=(x(s), y(s), t)
$$

Then, the mean curvature $H_{\mathbb{C}}$ (taken to be non-negative) of \mathbb{C}_{γ} is

$$
\begin{equation*}
H_{\mathbb{C}}(s)=H_{\mathbb{C}}(s, t)=\frac{k(s)}{2} \tag{3}
\end{equation*}
$$

where $k(s)$ is the geodesic curvature function of $\bar{\gamma}$ with respect to the Euclidean metric. Notice that $H_{\mathbb{C}}$ is independent of the parameter τ. To see that (3) holds, first observe that the horizontal lift T of $\bar{\gamma}^{\prime}=d \bar{\gamma} / d s$ to each point of \mathbb{C}_{γ} forms a horizontal unit tangent vector field. Since \mathbb{C}_{γ} is ruled by vertical geodesics, it follows that the mean curvature of \mathbb{C}_{γ} is $2 H_{\mathbb{C}}=\left\langle\bar{\nabla}_{T} T, N\right\rangle$, where N is the Gauss map of the cylinder \mathbb{C}_{γ} chosen so that $H_{\mathbb{C}}$ is non-negative. But N is the horizontal lift of a unit normal vector field η to $\bar{\gamma}$ in \mathbb{R}^{2}, and hence $\left\langle\bar{\nabla}_{T} T, N\right\rangle=\left\langle\nabla_{\bar{\gamma}^{\prime}} \bar{\gamma}^{\prime}, \eta\right\rangle=k$, where ∇ denotes the Euclidean connection.

The cone $\mathcal{C}_{\gamma} \subset \mathcal{H}$ with vertex $P \in \mathcal{H} \backslash S_{0}$ and base curve γ as above is just the Euclidean cone in \mathbb{R}^{3} constituted of straight lines from P through points of $\gamma(I)$. Thus \mathcal{C}_{γ} is parametrized by

$$
\psi(s, t)=(1-t) P+t \gamma(s)
$$

where $t \in(0,+\infty)$.
Vertical lines remain invariant under the isometries of \mathcal{H}. Thus the same holds for vertical cylinders. Also Euclidean lines are sent to Euclidean lines by isometries of \mathcal{H}, and vertical planes as well. Thus cones are also invariant by isometries. Hence, to analyze the behavior of the mean curvature of a cone we may assume that the vertex is $P=(0,0, c)$ where $c \neq 0$. Then, either a computation using (2) or by a direct computation, we obtain that the mean curvature $H=H(s, t)$ of \mathcal{C}_{γ} pointing down is given by

$$
H=\frac{c t^{2}\left(x^{2}+y^{2}+c^{2}\right)\left(y^{\prime \prime} x^{\prime}-x^{\prime \prime} y^{\prime}\right)}{2\left(\tau^{2} t^{4}\left(x^{2}+y^{2}\right)\left(x^{\prime} y-y^{\prime} x\right)^{2}+2 c \tau t^{3}\left(x x^{\prime}+y y^{\prime}\right)\left(x^{\prime} y-y^{\prime} x\right)+t^{2}\left(c^{2}+\left(x^{\prime} y-y^{\prime} x\right)^{2}\right)^{3 / 2}\right.} .
$$

Here the sign of H is non-negative when γ is a convex Jordan curve in \mathbb{R}^{2}. In particular,

$$
H(s, 1) \rightarrow H_{\mathbb{C}}(s) \quad \text { as } \quad c \rightarrow+\infty
$$

and

$$
H\left(s_{0}, t\right) \rightarrow+\infty \quad \text { as } \quad t \rightarrow 0^{+}
$$

if $y^{\prime \prime} x^{\prime}-x^{\prime \prime} y^{\prime}>0$ at $\gamma\left(s_{0}\right)$.
We also have fixing $t=t_{0}$ and allowing $c \rightarrow+\infty$ that

$$
2 H\left(s_{0}, t_{0}\right) \rightarrow\left(y^{\prime \prime} x^{\prime}-x^{\prime \prime} y^{\prime}\right)\left(s_{0}\right)
$$

and this is also a proof that the mean curvature of a cylinder is given by (3).

3 The main result

We now state and prove the Dirichlet theorem in Heisenberg space \mathcal{H}.
Theorem 1. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with C^{3} boundary $\Gamma=\partial \Omega$ whose curvature function with respect to the inner orientation is $k>0$. Let H be a constant satisfying $0 \leq 2 H<k$ and let $\varphi \in C^{0}(\Gamma)$ be given. Then there exists a smooth function u satisfying $\left.u\right|_{\Gamma}=\varphi$ whose graph $\Sigma(u)$ in \mathcal{H} has constant mean curvature H.

Moreover, if M is a compact embedded connected surface inside the vertical cylinder \mathbb{C}_{Γ} over Γ with constant mean curvature $H, \partial M=\Gamma$ and the mean curvature vector of M points down, then $M=\Sigma(u)$.

Proof: First suppose that $H=0$. In this case we prove a more general existence result. In fact, we allow φ to have a finite number of discontinuities $E \subset \Gamma$, and at each discontinuity, φ has a left and right limit. The Nitsche graph (see [7]) γ of φ is the graph of φ on $\Gamma \backslash E$ together with the vertical segments over each point of E, joining the left and right limits of φ at this point. The Nitsche graph γ is a Jordan curve on the vertical cylinder \mathbb{C}_{γ} and its vertical projection to Γ is a monotone (constant on the vertical segments) map.

Since \mathbb{C}_{γ} is mean convex with respect to the inside of \mathbb{C}_{γ}, there is a least area embedded minimal disk Σ inside \mathbb{C}_{γ} with $\partial \Sigma=\gamma$.

We claim that Σ is a z-graph over Ω and solves the Dirichlet problem as desired. First observe that Σ is nowhere vertical. To see this, suppose $p \in$ int Σ and the tangent plane to Σ at p is vertical. Let $\beta \in \mathbb{R}^{2}$ be a line such that the vertical plane $P=\pi^{-1}(\beta)$ equals the tangent plane to Σ at p. Then $P \cap \Sigma$ near p is an analytic curve topologically equivalent to $\operatorname{Re}\left(z^{k}\right), k \geq 2$, in a neighborhood of $z=0$. Each branch of these curves leaving p must go to $P \cap \partial \Sigma=P \cap \gamma$, by the maximum principle, i.e., a cycle in (int $\Sigma) \cap P$ would bound a disk in Σ and we could touch this disk at an interior point with another vertical plane (which is also a minimal surface). Now $P \cap \gamma$ consists of two points of Γ, or one or two vertical segments of γ, by convexity of Γ. Hence, at least two of the branches of $P \cap \Sigma$ leaving p, go to the same point, or vertical segments of γ. This yields a compact cycle $C \subset P \cap \Sigma$. Σ is simply connected so C bounds a disk $D \subset \Sigma$. Using vertical planes in \mathcal{H}, we can touch D at an interior point so D would equal this vertical plane; a contradiction. Thus Σ is nowhere vertical in its interior.

Now Σ separates the vertical cylinder over Γ into two components. So Σ can be oriented with the unit normal pointing up in its interior. Then each vertical line over a point in the interior of Ω, intersects Σ in exactly one point, since at two successive points of intersection the normal to Σ would point up and down. This proves Σ is a graph over the interior of Ω.

Now assume that $H \neq 0$ and φ is continuous. We have seen that u must be a solution of the Dirichlet problem

$$
\left\{\begin{array}{l}
Q_{H}(u)=0 \tag{4}\\
\left.u\right|_{\Gamma}=\varphi
\end{array}\right.
$$

where Q_{H} was given in (2). To prove the existence part of the theorem, we use the continuity method. We show that the subset

$$
Z:=\left\{t \in[0,1]: \exists u_{t} \in C^{3}(\Omega) \text { such that } Q_{t H}\left(u_{t}\right)=0 \text { and }\left.u_{t}\right|_{\Gamma}=t \varphi\right\}
$$

is nonempty, open and closed in $[0,1]$. We have that Z is not empty since $0 \in Z ; S_{0}$ is a minimal surface in \mathcal{H}. Standard arguments from the theory of quasilinear elliptic PDE's presented in [6] give that Z is open (a consequence of the implicit function theorem). Moreover, any solution of $Q_{H}(u)=0$ is smooth in Ω. Finally, that Z is closed follows from the theory in [6] once we show that a priori height and gradient estimates exist.

We have from (2) that any Euclidean plane in \mathbb{R}^{3} is a minimal surface in \mathcal{H}. In particular, each leaf of the foliation of isometric surfaces $z=z_{0}=$ constant is minimal and diffeomorphic to the base \mathbb{R}^{2} by the projection of the Riemannian submersion. It follows using the maximal principle that any solution u of (4) satisfies

$$
u \geq \min _{\partial \Omega} \varphi
$$

Fix a point $\left(x_{0}, y_{0}, 0\right) \in \Omega$. Given $z_{0} \in \mathbb{R}$, we consider the cone $C\left(z_{0}\right)$ with vertex $P=\left(x_{0}, y_{0}, z_{0}\right)$ constituted of straight lines from P through points of the graph of φ over Γ. Then, the piece $C_{\varphi}\left(z_{0}\right)$ of $C\left(z_{0}\right)$ from P to the graph of φ is contained inside the vertical cylinder over Γ. Notice that $C\left(z_{0}\right)$ is the cone $C_{\hat{\Gamma}}\left(z_{0}\right)$ over $\hat{\Gamma}=C_{\Gamma}\left(z_{0}\right) \cap S_{0}$. Clearly, by choosing z_{0} such that $\left|z_{0}\right|$ is large enough, the geodesic curvature of $\hat{\Gamma}$ with respect to the Euclidean metric is positive. In fact, the curve converges to Γ as $\left|z_{0}\right| \mapsto \infty$. Therefore, by our previous discussion on the mean curvature of vertical cylinders and cones we have that choosing z_{0} large enough, say $z_{0}=z_{1}$, and z_{0} small enough, say $z_{0}=z_{2}$, that $C\left(z_{1}\right)$ has mean curvature strictly larger than H everywhere and $C\left(z_{2}\right)$ has negative mean curvature (this cone is going down). By the maximum principle, they are upper and lower barriers for the CMC H-graph equation on Ω. Thus $C\left(z_{1}\right)$ and the above remark concerning planes below the graph of φ provides an a priori height estimate for any solution of the Dirichlet problem (4) depending only on Ω, H and φ, that is,

$$
|u|_{0} \leqslant C_{0}(\Omega, H, \varphi) .
$$

Moreover, the cones also provide the following bound along Γ for the norm of the Euclidean gradient of u

$$
\left|\nabla_{e} u\right|=\sqrt{u_{x}^{2}+u_{y}^{2}} \leqslant C_{1}(\Omega, H, \varphi) .
$$

The next result uses techniques developed in [3] to show that global estimates of the gradient reduces to the boundary estimates already obtained.

Lemma 2. Let $u \in C^{3}(\Omega) \cap C^{1}(\bar{\Omega})$ be a solution of (4). Assume that u is bounded in Ω and that $\left|\nabla_{e} u\right|$ is bounded in Γ. Then $\left|\nabla_{e} u\right|$ is bounded in Ω by a constant that depends only on $|u|_{0}$ and $\sup _{\Gamma}\left|\nabla_{e} u\right|$.

Proof: To estimate $\left|\nabla_{e} u\right|=\sqrt{u_{x}^{2}+u_{y}^{2}}$ in the interior of Ω it suffices to obtain an estimate for $\omega=\sqrt{\alpha^{2}+\beta^{2}} e^{A u}$ for some positive constant A to be chosen later. If ω achieves its maximum on Γ then we have the desired bound. Otherwise, ω must reach its maximum at an interior point $p_{0}=\left(x_{0}, y_{0}\right)$ in Ω.

We may choose coordinates of the ambient space such that

$$
\beta\left(p_{0}\right)=-\tau x_{0}+u_{y}\left(p_{0}\right)=0 .
$$

We denote

$$
v=\alpha\left(p_{0}\right)=\tau y_{0}+u_{x}\left(p_{0}\right) .
$$

The function $\phi=\ln \omega=\ln \sqrt{\alpha^{2}+\beta^{2}}+A u$ also takes a maximum at $p_{0} \in \Omega$. That $\phi_{x}\left(p_{0}\right)=0$ yields

$$
\begin{equation*}
u_{x x}\left(p_{0}\right)=-A v u_{x}\left(p_{0}\right), \tag{5}
\end{equation*}
$$

and $\phi_{y}\left(p_{0}\right)=0$ gives

$$
\begin{equation*}
u_{x y}\left(p_{0}\right)=-\tau\left(A v x_{0}+1\right) \tag{6}
\end{equation*}
$$

Moreover, from $\phi_{x x}\left(p_{0}\right) \leqslant 0$ we obtain

$$
\begin{equation*}
v u_{x x x}\left(p_{0}\right) \leqslant A^{2} v^{3} u_{x}\left(p_{0}\right)+A^{2} v^{2} u_{x}^{2}\left(p_{0}\right)-\tau^{2}\left(A v x_{0}+2\right)^{2}, \tag{7}
\end{equation*}
$$

and $\phi_{y y}\left(p_{0}\right) \leqslant 0$ yields

$$
\begin{equation*}
v u_{x y y}\left(p_{0}\right) \leqslant-A v^{2} u_{y y}\left(p_{0}\right)+\tau^{2} A^{2} x_{0}^{2} v^{2}-u_{y y}^{2}\left(p_{0}\right) . \tag{8}
\end{equation*}
$$

On the other hand, from (2) and (5) we have

$$
\begin{equation*}
u_{y y}\left(p_{0}\right)=-2 H\left(1+v^{2}\right)^{1 / 2}+\frac{A v}{1+v^{2}} u_{x}\left(p_{0}\right) . \tag{9}
\end{equation*}
$$

Taking the derivative of (2) with respect to x and using (5) and (6) yields $u_{x x x}+\left(1+v^{2}\right) u_{x y y}-2 A v^{2} u_{x} u_{y y}-2 \tau^{2} v\left(A^{2} x_{0}^{2} v^{2}+3 A x_{0} v+2\right)-6 A H v^{2}\left(1+v^{2}\right)^{1 / 2} u_{x}=0$ at the point p_{0}. Multiplying the last equation by v and using (9) and inequalities (7) and (8) we obtain, after a long computation, that

$$
\frac{\left(v-\tau y_{0}\right)^{2}}{1+v^{2}}+\tau^{2} x_{0}^{2} \leqslant \frac{1}{A^{2}}\left(A G_{1}(v)+G_{2}(v)\right)
$$

where

$$
G_{1}(v)=\frac{2 H \tau y_{0}\left(1+v^{2}\right)^{1 / 2}}{v}+\frac{P(v)}{v^{4}}, \quad G_{2}(v)=-4 H^{2}+\frac{Q(v)}{v^{4}}
$$

and $\lim _{v \rightarrow \infty} P(v) / v^{4}=0=\lim _{v \rightarrow \infty} Q(v) / v^{4}$. Therefore,

$$
\lim _{v \rightarrow \infty} G_{1}(v)=2 H \tau y_{0} \quad \text { and } \quad \lim _{v \rightarrow \infty} G_{2}(v)=-4 H^{2}<0
$$

It follows that we can choose $A>0$ such that

$$
\frac{\left(v-\tau y_{0}\right)^{2}}{1+v^{2}}+\tau^{2} x_{0}^{2} \leqslant \frac{1}{2} .
$$

This gives an upper bound for v^{2}, and hence for $\omega=\sqrt{\alpha^{2}+\beta^{2}} e^{A u}$. This concludes the proof of the Lemma.

Hence Z is closed, and this concludes the proof of the existence part of the Theorem for $0 \leq 2 H<k$. Now we prove that the graph $\Sigma=\Sigma(u)$ is unique. Suppose that M is an embedded H-surface inside the vertical cylinder \mathbb{C}_{Γ} over Γ with $\partial M=\partial \Sigma$. Then M separates \mathbb{C}_{Γ} into two components and we assume the mean curvature vector of M points into the lower component. When the mean curvature vector points toward the upper component, our argument will show that M equals the graph of the function u, equal to φ on Γ, with mean curvature H and mean curvature vector pointing toward the upper component.

The mean curvature of the vertical cylinder over Γ is strictly larger than H and the mean curvature vector points inside the cylinder so the interior of M is disjoint from the cylinder by the comparison principle.

Denote by $\Sigma(t)$ the surface Σ translated t by the flow of the Killing field ∂z. Since $\partial \Sigma$ is a z-graph, we have $\partial \Sigma(t) \cap \Sigma(0)=\emptyset ; \partial \Sigma(0)=\partial \Sigma$. Since M is compact there is a $T>0$ such that $\Sigma(T) \cap M=\emptyset$.

Now lower $\Sigma(T)$ to Σ by the flow ∂z, letting t go from T to 0 . The mean curvature of each $\Sigma(t)$ points down, so there can be no first contact of $\Sigma(t)$ with M for $t>0$, by the maximum principle. Thus M is below Σ. Now choose $T<0$ so that $\Sigma(t) \cap M=\emptyset$. Move $\Sigma(T)$ up to Σ by the flow ∂z, letting t go from T to 0 . There can be no first contact of $\Sigma(t)$ with M for $t \neq 0$ by the maximum principle (the mean curvature vector of M points toward the downward component). Therefore M is above Σ, and we obtain that $M=\Sigma$. This concludes the proof of the Theorem.

4 A further result

It would be interesting to know if Theorem 1 holds when we allow $2 H=k$. In this section we give the following partial answer.

Theorem 3. Let $\Omega \subset \mathbb{R}^{2}$ be a bounded domain with C^{3} boundary $\Gamma=\partial \Omega$ whose curvature function with respect to the inner orientation is $k>0$. Let H be a constant satisfying $|\tau| / \sqrt{3}<H \leq k / 2$. Then there exists a smooth function u satisfying $\left.u\right|_{\Gamma}=0$ whose graph $\Sigma(u)$ in \mathcal{H} has constant mean curvature H.

We need a supersolution w defined in a neighborhood of Γ (better than the cones in the preceding section); w is constructed in the following result.

Proposition 4. Assume that $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ satisfies $Q_{H}(u)=0$ in Ω, $\left.u\right|_{\Gamma}=0$ and $|u|_{0}<M$. If $0<2 H \leq k$ on Γ, then there is a constant $C=C(H, \Omega, M)$ such that

$$
\sup _{\Gamma}|\nabla u| \leq C
$$

Proof: Let $\gamma:[0, \ell] \rightarrow \Gamma$ be a parametrization by arc length and let ν stand for the unit normal vector to Γ pointing to Ω. We parametrize a neighborhood U of Γ in Ω by

$$
\begin{equation*}
P=P(s, t)=\gamma(s)+t \nu(s) \tag{10}
\end{equation*}
$$

for $(s, t) \in[0, \ell] \times[0, \epsilon]$, where $0<\epsilon<1 / k(s)$. We compute (1) on U making use of the orthonormal frame

$$
P_{t}=\nu, \quad \frac{1}{\phi} P_{s}=\gamma^{\prime}
$$

where $\phi(s, t)=1-t k(s)>0$. Notice that (1) can be written as

$$
Q_{H}(u)=\operatorname{div}_{\mathbb{R}^{2}}\left(\frac{Z}{\sqrt{1+|Z|^{2}}}\right)+2 H=0
$$

where $Z(p)=\tau J p+\nabla u(p)$ and J is the standard complex structure in \mathbb{R}^{2}. Then,

$$
\begin{equation*}
W^{3} Q_{H}(u)=W^{3} \operatorname{div}_{\mathbb{R}^{2}}\left(\frac{1}{W} Z\right)+2 H W^{3}=-\frac{1}{2}\left\langle\nabla W^{2}, Z\right\rangle+W^{2} \operatorname{div}_{\mathbb{R}^{2}} Z+2 H W^{3} \tag{11}
\end{equation*}
$$

where $W^{2}=1+|Z|^{2}$.
We compute $W^{3} Q_{H}(w)=0$ for $w=w(t)$ to be chosen. Then $\nabla w=w_{t} P_{t}$ and

$$
\begin{equation*}
W^{2}=1+|Z|^{2}=w_{t}^{2}+2 \theta w_{t}+A \tag{12}
\end{equation*}
$$

where $\theta=\tau\left\langle J P, P_{t}\right\rangle=\tau\left\langle\gamma, \gamma^{\prime}\right\rangle$ and $A=1+\tau^{2}|\gamma+t \nu|^{2}$. Moreover,

$$
\operatorname{div}_{\mathbb{R}^{2}} Z=\Delta w=w_{t t}-k_{t} w_{t}
$$

where

$$
k_{t}(s)=\left\langle\nabla_{P_{s} / \phi} P_{s} / \phi, P_{t}\right\rangle
$$

and hence, $k_{0}(s)=k(s)$. Thus,

$$
\begin{equation*}
W^{2} \Delta w=w_{t}^{2} w_{t t}+2 \theta w_{t} w_{t t}-k_{t} w_{t}^{3}-2 \theta k_{t} w_{t}^{2}+A w_{t t}-A k_{t} w_{t} \tag{13}
\end{equation*}
$$

Moreover,

$$
\nabla W^{2}=\left(2 w_{t} w_{t t}+2 \theta w_{t t}+A_{t}\right) P_{t}+\left(2 \theta_{s} w_{t}+A_{s}\right) \phi^{-2} P_{s}
$$

Using $J P_{t}=-\phi^{-1} P_{s}=-\gamma^{\prime}$ and $\phi^{-1} J P_{s}=P_{t}=\nu$, it is easy to see that

$$
\begin{equation*}
\frac{1}{2}\left\langle\nabla W^{2}, Z\right\rangle=w_{t}^{2} w_{t t}+2 \theta w_{t} w_{t t}+\theta^{2} w_{t t}+B w_{t}+C \tag{14}
\end{equation*}
$$

where the functions B and C are bounded on U and do not depend on w or any of its derivatives. It follows from (11), (12), (13) and (14) that
$W^{3} Q_{H}(w)=2 H\left(w_{t}^{2}+2 \theta w_{t}+A\right)^{3 / 2}-k_{t} w_{t}^{3}-2 \theta k_{t} w_{t}^{2}+\left(A-\theta^{2}\right) w_{t t}-\left(A k_{t}+B\right) w_{t}-C$.
For positive constants L and K choose

$$
w(t)=L \ln \left(1+K^{2} t\right)
$$

Then $w(0)=0$ and $w_{t t}=-w_{t}^{2} / L$. Given $M>0$ choose $L=M / \ln (1+K)$. Thus,

$$
w(t)=\frac{M}{\ln (1+K)} \ln \left(1+K^{2} t\right)
$$

Hence,

$$
w(1 / K)=M
$$

and

$$
w_{t}(0)=\frac{M K^{2}}{\ln (1+K)}
$$

We claim that we can choose $K>1 / \epsilon$ large enough such that $Q_{H}(w)<0$ for all $(s, t) \in[0, \ell] \times[0,1 / K]$. This fact, together with $w(1 / K)=M$ (recall that $\left.|u|_{0}<M\right)$ allows us to use w as a barrier from above for Q_{H} and conclude the proof.

It suffices to show that $Q_{H}(w)<0$ at $t=0$ for K large enough. Since $w_{t}(0) \rightarrow+\infty$ as $K \rightarrow+\infty$, the claim is clear at points of Γ where $2 H<k$. If $2 H=k$ first observe that

$$
\lim _{K \rightarrow+\infty} \frac{\left(w_{t}^{2}+2 \theta w_{t}+A\right)^{3 / 2}-w_{t}^{3}-2 \theta w_{t}^{2}}{w_{t}^{2}}=\theta
$$

Then, we have that

$$
\left(A-\theta^{2}\right) w_{t t}(0)=-\frac{1}{L}\left(1+\tau^{2}\left(|\gamma|^{2}-\left\langle\gamma, \gamma^{\prime}\right\rangle^{2}\right)\right) w_{t}^{2}(0)<0
$$

and the claim follows from the fact that $L \rightarrow 0^{+}$as $K \rightarrow+\infty$.

Proof of Theorem 3: Let $\Omega(n)$ be the domain with boundary

$$
P(s, 1 / n)=\gamma(s)+\frac{1}{n} \nu(s)
$$

for large n, so $\partial \Omega(n)$ is smooth. By Theorem 1 there exists an H-graph $\Sigma(n)$ with $\partial \Sigma(n)=\partial \Omega(n)$, since the curvature of $\partial \Sigma(n)$ is strictly greater than $2 H$. Let u_{n} be the function with graph $\Sigma(n)$

The curvature tensor of \mathcal{H} is given for any $X, Y, Z \in T \mathcal{H}$ by

$$
R(X, Y) Z=-3 \tau^{2}(X \wedge Y) Z+4 \tau^{2} R_{1}\left(\partial_{z} ; X, Y\right) Z
$$

where
$R_{1}\left(\partial_{z} ; X, Y\right) Z=\langle Y, Z\rangle\left\langle X, \partial_{z}\right\rangle \partial_{z}+\left\langle Y, \partial_{z}\right\rangle\left\langle Z, \partial_{z}\right\rangle X-\langle X, Z\rangle\left\langle Y, \partial_{z}\right\rangle \partial_{z}-\left\langle X, \partial_{z}\right\rangle\left\langle Z, \partial_{z}\right\rangle Y$.
Thus the (not normalized) scalar curvature of \mathcal{H} is $S=-\tau^{2}$.
By Theorem 1 of [8], there is a positive constant L such that $\left|u_{n}\right|_{0} \leq L$ for each n. By the maximum principle, $u_{n+1}>u_{n}$ on the domain of u_{n}. Since the u_{n} are uniformly bounded by L, the function

$$
u(x)=\lim _{n \rightarrow \infty} u_{n}(x),
$$

is well defined for $x \in \Omega$ and is an H-graph in Ω. Moreover, the upper barrier w constructed in Proposition 4 shows that u takes the value zero on the boundary.

References

[1] U. Abresch and H. Rosenberg. A Hopf differential for constant mean curvature surfaces in $S^{2} \times \mathbb{R}$ and $H^{2} \times \mathbb{R}$. Acta Math. 193 (2004), 141-174.
[2] U. Abresch and H. Rosenberg. Generalized Hopf differentials. Mat. Contemp. 28 (2005), 1-28.
[3] L. Caffarelli, L. Nirenberg and J. Spruck. Nonlinear second-order elliptic equations V. The Dirichlet problem for Weingarten hypersurfaces. Commun. Pure Appl. Math. 41, (1988) 47-70.
[4] B. Daniel. Isometric immersions into 3-dimensional homogeneous manifolds. To appear in Comment. Math. Helv.
[5] C. Figueroa, F. Mercuri and R. Pedrosa. Invariant surfaces of the Heisenberg groups. Ann. Mat. Pura Appl. 177, (1999) 173-194.
[6] D. Gilbarg and N. Trudinger. "Elliptic partial differential equations of second order", Springer Verlag Berlin Heidelberg 2001.
[7] H. Rosenberg. Minimal surfaces in $\mathbb{M}^{2} \times \mathbb{R}$. Illinois J. Math. 46, (2002) 1177-1195.
[8] H. Rosenberg. Constant Mean Curvature Surfaces in Homogeneously Regular 3-Manifolds. Bull. Aust. Math. Soc. 74 (2006), 227-238.
[9] J. Serrin. The problem of Dirichlet for quasilinear elliptic equations with many independent variables. Philos. Trans. Roy. Soc. London Ser. A 264, (1969) 413-496.

Luis J. Alias
Departamento de Matematicas
Universidad de Murcia
Campus de Espinardo E-30100 - Spain
ljalias@um.es

Marcos Dajczer
IMPA
Estrada Dona Castorina, 110
22460-320 - Rio de Janeiro - Brazil
marcos@impa.br

Harold Rosenberg
Departement de Mathematiques, Universite de Paris VII,
2 place Jussieu, 75251 - Paris - France
rosen@math.jussieu.fr

[^0]: MSC2000. 35J60, 53C42.
 Key words and phrases. Heisenberg space, constant mean curvature graph.
 *Partially supported by MEC/FEDER project MTM2004-04934-C04-02 and Fundación Séneca project $00625 / \mathrm{PI} / 04$, Spain.

