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Abstract

Given a topologically hyperbolic attracting set of a smooth three dimensional Kupka-Smale diffeo-
morphism, it is proved under some hypothesis over the dissipation rate, that the set is either hyperbolic
or the diffeomorphisms is C!— approximated by another one exhibiting either a heterodimensional cy-
cle or a homoclinic tangency.

1 Introduction and statements.

In the direction to describe the long range behavior of trajectories for “most” systems (residual, dense,
etc.) within the space of all dynamical systems, once of the goal is to identify the dynamical mechanism
underlying any generic behavior.

It was briefly thought in the sixties that this could be realized by the so-called hyperbolic ones. Under
this assumption, it is proved that the limit set decomposes into a finite number of disjoint transitive sets
such that the asymptotic behavior of any orbit is described by the dynamics in the trajectories in those
finite transitive sets (see [S]).

Hyperbolicity was soon realized to be a less universal property than was initially thought: it was
shown that there are open sets in the space of dynamics which are nonhyperbolic. Two mechanisms
were identified that leads to generic (meaning generic perturbation of the initial system) nonhyperbolic
behavior:

1. heterodimensional cycle, meaning the presences of two periodic points of different indices linked
through the intersection of their stable and unstable manifolds (see [AS], [Sh], [D1]);

2. homoclinic tangency, meaning non-transversal intersection of the stable and unstable manifold of a
periodic point (see [N1], [N2], [N3]).

The mentioned mechanisms are relevant due to the dynamical consequences involving their presences:

1. the first mechanism is related to the existence of non-hyperbolic robust transitive systems (see [D1],
[BDPR));

2. the second ones related to the existence of residual subsets of diffeomorphisms displaying infinitely
many periodic attractors.



In the early 80’s Palis conjectured (see [P] and [PT]) that those bifurcations are the maim obstruction
to hyperbolicity:

Every C™ diffeomorphism of a compact manifold M can be C" approzimated by one which is hyperbolic
or by one exhibiting a heterodimensional cycle or by one exhibiting a homoclinic tangency.

To be precise, a hyperbolic diffeomorphism means a diffeomorphism such that its limit set (the closure
of the accumulation points of any orbit) is hyperbolic. A set A is called hyperbolic for f if it is compact,
f-invariant and the tangent bundle T M can be decomposed as TaAM = E° @ E" invariant under D f
and there exist C > 0 and 0 < A < 1 such that

|Df/gs(@| < CA* and |Df g )| <CX* Vo e A, neN.

Moreover, a diffeomorphism is called Axiom A, if the non-wandering set is hyperbolic and it is the closure
of the periodic points.
We recall that the stable and unstable sets

W?(p) ={y € M : dist(f"(y), f"(p)) = 0 as n — oo},

W(p) = {y € M : dist(f"(y), f*(p)) — 0 as n — —o0}

are C"-injectively immersed submanifolds when p is a hyperbolic periodic point of f. A point of inter-
section of these manifolds is called a homoclinic point.

Definition 1 Homoclinic tangency. We say that f exhibits a homoclinic tangency if there is a periodic
point p such that there is a point x € W*(p) N W (p) with T,W?*(p) + T,W"(p) # TuM. Given an open
set V', we say that the tangency holds in 'V if p and = belongs to V.

The above conjecture was proved to be true for the case of surfaces and the C* topology (see [PS1]).
Theorem ([PS1]): Let M? be a two dimensional compact manifold. Every f € Diff'(M?) can be
C'-approzimated either by a diffeomorphism exhibiting a homoclinic tangency or by an Aziom A diffeo-
morphism

In dimensions higher than two, the theorem stated above is false, due to another kind of homoclinic
bifurcation that breaks the hyperbolicity in a robust way: the so-called heterodimensional cycles (see
[D1] and [D2]).

Definition 2 Heterodimensional cycle. We say that f exhibits a heterodimensional cycle if there are
two hyperbolic periodic points q and p of different stable index (the number, counted with multiplicity, of
contractive eigenvalues), such that W*(q) N W*(p) # 0 and W*(p) N W*(q) # 0. Given an open set V,
we say that the cycle holds in V if p, q and the points where the stable and unstable manifolds intersects
belongs to V.

It is remarkable to say that for a compact manifold with dimension larger and equal than three, there
are C'—open sets of diffeomorphisms containing a dense set of diffeomorphisms exhibiting a tangency
and a dense set of diffeomorphisms exhibiting a heterodimensional cycle (see [D1] and [BD]). On the
other hand, the conjecture formaulated by Palis, states that the systems exhibiting either a tangency or
a heterodimensional cycle are dense in the complement of the hyperbolic ones.



A weak form of hyperbolicity introduced independently by Maiié, Liao and Pliss, as a first step in
the attempt to prove that structurally stable systems satisfy a hyperbolic condition on the tangent map,
is the so called dominated splitting:

Definition 3 An f-invariant set A is said to have a dominated splitting, if the tangent bundle over A is
decomposed in two invariant subbundles TAM = E @ F, and such that there exist C > 0 and 0 < A < 1
with the following property:

|Df|nE(z)||Df|;'7(lfn(z))| <CM\*, forallz e Ayn > 0.

If the bundle TAM is decomposed in more than two directions, i.e.: if TAM = @leEi then it is said that
the decomposition is a dominated splitting if for any 1 < 7 < k —1 follows that
n. n < n > 0.
Pliet_sro| Pligt,, muggny| < CX Jor allw € An 2.0
Related to the notion of dominated splitting, there is a well known result proved in [HPS] that states
that for any point 2 € A there are manifolds W (z) and W/ (z) (not dynamically defined) tangents to
the subbundles E and F respectively, which are usually called local tangent manifolds. 1t is natural to
ask which is the relation of this tangent submanifolds with the local stable and unstable manifolds.

To precise, let us first recall the definition of local stable and unstable manifold of size e (where € is a
positive constant):

We(z) ={y € M : dist(f"(y), /" (z)) = 0n — oo, dist(f"(y), f*(x)) < e},

We(z) = {y € M : dist(f"(y), f*(x)) = 0n — —oo, dist(f"(y), /" (2)) < ¢}.
To be concise, W2 (z) and W}*(x) are called the local stable and unstable manifold respectively.

Observe that if A is hyperbolic, then follows that the tangent manifolds to £ and F' are contained
in the local stable and unstable manifold respectively. However, the converse is false: it may happen
that the tangent manifolds are dynamically defined and A is not hyperbolic. Taking into account this
observation, we introduce the next definition:

Definition 4 Topologically hyperbolic sets: Given a compact invariant set exhibiting a dominated
splitting E @ F, it is said that the set A is a topologically hyperbolic set if it is mazimal invariant (i.e.:
A = Ngpezy f*(U) for some neighborhood U) and the local tangent manifold to E is contained in the local
stable manifold and the local tangent manifold to F is contained in the local unstable manifold. It this
case, it is said that E is topologically contractive and F' is topologically expansive.

In other words, it is said that a compact invariant set A is topologically hyperbolic if it is maximal
invariant and for each point, the local stable and unstable manifolds are two complementary submanifolds
of size independent of the point. Roughly speaking we may say that a set A is topologically hyperbolic
if its dynamic is conjugated to a hyperbolic dynamic. In fact, topologically hyperbolic sets share the
same dynamical properties of the hyperbolicity. In particular, transitive topologically hyperbolic sets are
homoclinic classes (see subsection 2 for details).



With this definition in mind we could reformulates the Palis’s conjecture in the following terms:
Every C" diffeomorphism of a compact manifold M can be C" approrimated by one which is topologically
hyperbolic (its limit set is decomposed in a finite number of topologically hyperbolic invariant set) or by
one exhibiting a heterodimensional cycle or by one exhibiting a homoclinic tangency.

In the paper [Pu] it is proved that this weak version of the Palis’s conjecture holds for attracting
homoclinic class of a smooth diffeomorphisms acting on a three dimensional compact manifold. To be
precise, first we have to introduce more definitions.

Definition 5 Homoclinic class. Given a periodic point p, we define the homoclinic class associated to
p as the closure of the set {W*(p) N W*(p)}.

Definition 6 Attracting homoclinic class. Given a homoclinic class we say that Hy, is an attracting
homoclinic class if there exists an open set U such that H, C U and Hp = Npsof™(U)

Different kind of examples of three dimensional attracting homoclinic classes can be found: the
solenoid attractor, the Plykin attractor (both hyperbolic), the Henon attractor (that it can be approxi-
mated by a map exhibiting a tangency; see [BeCal, [V] and [U]), or partially hyperbolic attractors (which
can be approximated by a map exhibiting a heterodimensional cycle; see [M], [BD] and [BV] for these
kind of examples).

In [Pu] the following theorem was proved:

Theorem A ([Pu]): Let f € Dif f2(M3). Let Hy = Npsof™(U) be an attracting homoclinic class such
that all the periodic points in Hy, are hyperbolic. Then it follows that either

1. Hy, is hyperbolic or
2. there exists g Cl—arbitrarily close to f exhibiting a homoclinic tangency in U or,
3. there exists g C'—arbitrarily close to f exhibiting a heterodimensional cycle in U or,

4. Hp is a topologically hyperbolic homoclinic class exhibiting a dominated splitting E1 ® E2 @ E3 such
that Ey @ E9 is topologically contractive, E1 is contractive, FEo is a one dimensional subbundle and
Es is topologically expansive

To get a complete answer to the Palis’s conjecture for the case of attracting homoclinic class, we have
to deal with the last alternative of theorem A. The answer in this case is given under an extra hypothesis
related to the rate of dissipation.

Definition 7 Normally dissipative invariant sets. Let H be a topologically hyperbolic set exhibiting
a dominated splitting E1 ® Fo @& E3. If there exists d < 1 such that for any x € H holds that

|D fi By ()] <d

Df N .
| 'E“'lDﬂEZ(m)l

then we say that H is normally dissipative.



In few words it is said that a compact invariant set A is normally dissipative if the rate of contraction

along the direction the direction F; is smaller than the rate of domination between the direction Es and
E3. The normal dissipative condition it is used to prove that the strong stable foliation is C.
Maim theorem: Let f € Dif f2(M3). Let H = Nusof™(U) be an attracting transitive topologically
hyperbolic set exhibiting a dominated splitting E1 @ Fs ® E3 such that E1 & Ey is topologically contractive
and E3 is topologically expansive. Let us also assume that H is normally dissipative and all the periodic
points in H are hyperbolic. Then it follows that either

1. H is hyperbolic or
2. there exists g C'—arbitrarily close to f exhibiting a heterodimensional cycle in U.

Acknowledgments: The author would like to thank to M. Sambarino, L. Diaz, C. Bonatti, S. Crovisier,
L. Wen, S. Gan, B. Fayad, J. Palis and M. Shub for the fruitful conversations and remarks that helps in
the redaction of the present paper.



2 Preliminaries to maim theorem.

First we introduce a series of results about topologically hyperbolic homoclinic classes. Some of these
results are proved in [Pu] and are related to the dynamics and structure of topologically hyperbolic
sets and the continuation of them for perturbed systems. In subsection 2.1 we states some results
about invariant manifolds of topologically hyperbolic set and the continuation of those manifolds for
perturbation of the initial system. In the subsection 2.2 we state a series of results related to the strong
stable holonomy induced by the strong stable foliation. In subsection 2.3 we state some results related to
the dynamics and structure of topologically hyperbolic sets and the continuation of them for perturbed
systems. In subsection 2.4 we get state results for non-hyperbolic topologically hyperbolic sets. In the
last subsection, we state a series of results that allows to to distinguish the “two dimensional case” from
the genuinely higher dimensional dynamics.

2.1 Invariant manifolds of a topological hyperbolic set.

Recall that we are assuming that H), is a topological hyperbolic set exhibiting a dominated splitting
Ey ® Ey @ E3 such that E, @ E5 is topologically contractive, E3 is topologically expansive and E; is
contractive. Under this hypothesis, first it is conclude that we can assume that there exists a positive
constant A\s < 1 such that

|Df|E1| < As.

Moreover, for each points z € H), it can be defined local embedded manifolds tangent to the subbundles
En, E», E5. More precisely, there exist continuous functions

¢° : Hy — Emb' (D1, M), ¢°°: H, — Emb*(I;, M),
¢°: Hy — Emb*(I1, M), ¢*: Hy, — Emb*(I;, M)

where I} = (—1,1), I. = (—e,¢); D1 = {z € R? : ||2z]| < 1}; Dc = {z € R? : ||2|| < €} such that for any
x € Hy, it is defined

We(z) = ¢ (2)De; W(z) = ¢%°(2) I WE(z) = ¢°(2)I; We(z) = ¢ (2) I
and verifying
1. T,We(z) = E(x), T,We(z) = By (x), ToWe(z) = Bo(x), T,We(z) = F(z)
2. We(a) = {y € M : dist(f"(z), f"(y)) — 0,dist(f"(z), f"(y)) < e},
3. W2o(z) = {y € M : dist(f™(z), f*(y)) < A%, dist(f*(z), f"(y)) < €}
4. We(z) C W (z) = We ()
5. Wi(z) = {y € M : dist(f (), f"(y)) — 0, dist(f "(z), f"(y)) < e}

The next proposition states that for topologically hyperbolic set it is possible to get a hyperbolic
metric (not necessarily coherent with a riemannian structure).



Proposition 2.1 Given a topologically hyperbolic set, follows that there exists an adapted metric dist
compatible with the topology, and there exist constants ¢ > 0 and 0 < Ao < 1 such that

1. ify € W(x) then
dist(f™(z), f"(y)) < Ngdist(z,vy).

2. ify € W*(x) then
dist(f~"(z), f"(y)) < Agdist(z,y).

Proposition 2.2 Given a transitive topologically hyperbolic set A, follows that for any periodic point p
in A holds that
A=H,

where Hy, is the homoclinic class associated to p. Moreover, the dynamic on A is conjugated to a subshift
of finite symbols.

Proof: The proof is similar to the the proof of the same proposition formulated for maximal invariant
hyperbolic sets. [

Corollary 2.1 Given a topologically hyperbolic set A, follows that there is a finite number of periodic
points pi, ..., pn Such that
A= U,’Hpi.

Moreover, the homoclinic classes are disjoints.

Now, we state a result about the continuation of a dominated splitting and the associated tangent
manifolds.

Lemma 2.1.1 Let f € Dif f"(M) (r < 1) and A be a compact mazimal invariant topologically hyperbolic
set of f exhibiting a dominated splitting E1 @ Eo @ E3 such that E{ @ Eq is topologically contractive, E3
is topologically expansive.

There exists an open neighborhood U of f in Dif fT(M) and an open neighborhood U of A such
that for each g € U and any subbundle E; there erists a continuous function, Ty : Ay — Ty, M and
gb_f] : Ay x Diff(M) — Emb'(D, M) such that for any g € U and x € A, it is defined the dominated
splitting E1(g) ® E2(g) ® E3(g) and the manifold tangent to E;(g) is given by WFi(z,g) = ¢} (z)De and
verifying

2. if gWF9(z,9)) C Be(g(x)) then g(W* 9 (z,g)) ¢ W9 (g(x), g),
3. if 7 (W9 (2)) € B(g7'(2)) then g~ (WE9)(z,9)) c WEO (g7 (), 9).

4. the maps g €U — Ty and g € U — Emb' (D, M) are continuous.



Remark 2.1 If one of the subbundles of the dominated splitting is hyperbolic, then it remains hyperbolic
after a C"—perturbation of the system.

We take a small neighborhood V' of H, and for g C*— close to f we take the set
Ag=Ag(V) = Closure(ﬂ{nez}gn(V)).
From lemma 2.1.1 and previous remark, follows that for any g close to f there is a dominated splitting

Ei(g) @ Ea(g9) © Es(g),

such the subbundle E3(g) is contractive in Ag(V).

In the sequel, we denote with We*(z, g) the tangent manifold to E1(g)® E2(g), with W2*(z, g) the tangent
manifold to E§(g), with W¢(z, g) the tangent manifold to Ea(g), with W¥(z, g) the tangent manifold to
Es5(g). Observe that the tangent manifolds W£(x) and W (x) are not necessarily contained in the stable
and unstable manifold respectively. However, form results stated in [PS4] follows that W*(x) is unique
and dynamically defined. With W*(z, g) we note the manifold

Wecu(w’g) = U{zeWg(a:,g)}Wg(z7g)'

In some cases, given positive numbers €, < € we take

ec,ieL“(w’ g) = UzGWé%(m,g)Wec(z’ g)'

Now, we study how the dynamic of a perturbed map behave related to the distance introduce in
proposition 2.1. Observe that the adapted metric not necessary is coming from a riemannian metric so
even the distance along the center manifold are contracted exponentially this does not imply that the
derivative is either contractive or expansive along the respective subbundles. In particular, we cannot
expect that a perturbation of the initial map contracts distances along the center manifold. However,
some contraction along the center stable manifold is kept when the points are not close enough one to
each other. This is the statement of the next lemma.

Lemma 2.1.2 Let dist, € and A\ the distances and the constants introduced in proposition 2.1. Then, for
any vy < r there exist a neighborhood U of f and \1 with A < A1 < 1 such that for any g € U holds:

1. ify € W&(z,g) follows that:

(a) if dist(z,y) >~ then dist(g(x), g(y)) < \idist(z,y),
(b) if dist(z,y) <~y then dist(g(z), 9(y)) < 7;

2. ify € W& (z,g) follows that:

(a) if dist(z,y) > v then dist(g~(x), g7 (y)) < Midist(z,v),
(b) if dist(z,y) < then dist(g™(z),97 (1)) < 7.

Moreover, the distance dist remains contractive along E3(g).



2.2 Strong stable foliation and strong stable holonomy map.

Remark 2.2 Observe that since Hy is an attractor follows that the subbundle x — Eq(x) is defined in a
unique way i a whole neighborhood of Hy; i.e.: there exists a neighborhood U of H, where it is defined
an invariant continuous subbundle contracted by Df.

Lemma 2.2.1 Let f be a C?—diffeomorphisms and let us suppose that there exists a positive constant
d <1 such that for any x € Hy, follows that

|D fi By ()] <d

Dfig (= .
D] D fiEa(a)|

Then it follows E1(z) is a C'—subbundle.
If g is C?—close to f then Ei(.,g) is a C1—subbundle that it is C'—close to Fy(., f).

See [HPS] for the proof.
Corollary 2.2 The local strong stable foliation is a C'—foliation.

Definition 8 Strong stable holonomy.
Let x € H, and let us take a neighborhood B(z) of x contained in U. Let us consider the map

I1*¢ : B(z) - W (x)
defined as
II**(z) = W2 (2) N W ().

This map is called the strong stable holonomy.

In some cases, we note

I

to specify that the projection is done over WE*(x) and it is associated to the map f.

If there is a pair of points x,y such that y € W2*(z) we also consider

I1°° . We(y) —» W ().

In some cases, we note
SS
1Y,z

to specify that the projection is done from W (y) to W (x) and it is associated to the map f.

Remark 2.3 Observe that there is a neighborhood U of f, and positive constants €1, €2, €3, €4 such that
given a pair of points x,y verifying WE*(x) N WS (y) # 0 then for any g € U, z1 € h;1($) and zy €
hy'(y) then WEs(z1) N WE(22) # 0. Without loss of generality and to avoid notation we assume that
€ = €1 = €3 = €3 = €4. Moreover, in what folow, any neigborhood of f satisfies the present remark.



The strong stable holonomy, in general, is a continuous map. However, under the assumption of
normally dissipativeness it is possible to conclude that the strong stable holonomy is smooth.:

Corollary 2.3 Let II*® : W (y) — W (x) be the strong stable holonomy induced by the subbundle E;.
It follows that it is a C'—map. In particular, there exists a constant Co such that

Co_ld(Z1,252) < d(IT**(z1), 1% (22)) < Cod(z1, 22),

where in this case dist is the distance induced by the riemannian metric restricted to the local center
unstable manifold.

2.3 Continuation of topologically hyperbolic maximal invariant sets.

Recall that given a neighborhood V' of Hj, we define for any diffeomorphisms g nearby f the following
set:
Ay(V) = Closure(Nnezyg(V)).

Theorem E1: Let f € Dif f'(M). Let H,, be a topologically hyperbolic homoclinic class. There exists a
neighborhood U of f and V' of Hy, such that for any g € U follows that there is a continuous map

hg: Ag(V) — Hp

such that
hgog= fohg.

Moreover, the map g — hg is continuous with g and hg is close to the Identity map.

Assuming that A has a dominated splitting E5® E2@® E3 such that Ef @ E, is topologically contractive,
E5 is topologically expansive and Es, E3 are one dimensional subbundles, then it is possible to show that
the map hg is onto and it is possible to get better description of the continuation of the homoclinic class
for perturbation of the initial system.

Now, given a periodic point g, we take A2(g) and A3(g) the eigenvalues of D, f™ (n4 being the period of
q) associated to the subbundles F2(q) and E3(q) respectively. Given A9 and Ag such that 0 < Ay < 1 < As,
we take the set of periodic point

Pery,as (f) = {g € Per(f) : |A2(g)] < A2, [As(g)] > As}-

Lemma 2.3.1 There exist positive constants A3 < 1 < A} such that for any A2 and A3 such that A9 <
A<l<Az< )\g follows that the periodic points of f with center eigenvalue smaller than Ao and unstable
eigenvalue larger than A3, are dense in H,.

Moreover, given a transitive invariant set A contained in H, follows that there exists a neighborhood

V of A such that

Perx, (f/V) ={q € Per(f) : O(q) C V, |Xa(g)] < A2, |A3(q)| > As}

verifies that A C Closure(Per,x, (f/V)).
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Theorem E2: Let f € Diff'(M). Let H, be a topologically hyperbolic homoclinic class. If Hy, has
a dominated splitting Ef @ Eo @ E3 such that Ei ® Eo ts topologically contractive, E3 is topologically
ezpansive and Ez, B3 are one dimensional subbundles, then there exists A3 and A3 with 0 < A3 < 1 < A3
such that for any Ao, A3 with A\ < Ay < 1 < A3 < )\g, there exist a meighborhood U of f, )\%,)\% with
A2 < A} <1< A\ < A3 and a neighborhood V of H, such that

H, = Closure(Pery,»,(f/V)) and,

hg M PETA%A% (g/V) — Per)\z)\s (f/V)

1s a homeomorphisms. In particular, it follows that hg is onto.

The previous result is proved using that the periodic points with eigenvalue exponentially far from
one are dense in Hy, (see lemma 2.3.1) and later it is shown that those points has a well defined analytic
continuation for any g in an uniform neighborhood of f.

In what follows, we consider neighborhood U2 of f given by C2—maps that they are C1—close to f.
In the next proposition, it is characterized the pre image by hy of a point that does not belong to the
stable manifold of a periodic point. In this case, it is proved that the pre image by h4 is contained in a
center stable disc and the local center unstable manifold is contained in the unstable manifold. Observe
that this result is only valid for at least C?—maps.

Proposition 2.3 Let f € Diff?(M). Let H,, be a topologically hyperbolic homoclinic class exhibiting

dominated splitting E5® Eo® E3 such that E5® Es is topologically contractive, E3 is topologically expansive

and Es, E3 are one dimensional subbundles. Let hy be the semicongugacy introduced in theorem E2. Then

there exists a neighborhood UY? of f such that for any g € UY2 it follows that given 2’ € hg_l(z) either
1. h;l(z) NWE(2', g) is a single point or

€

2. z belongs to the stable manifold of a periodic points q, and WE*(Z',g) N h;l(z) is a compact arc
verifying that its w—Ilimit is a periodic arc such that one of its extremal points is a continuation of

qz-

Corollary 2.4 Let g be a hyperbolic periodic point of f in H,. There exists a neighborhood uH? =
UY2(q, f) such that for any g € UY? follows that if = € W¥(q) and z does not belong to the stable
manifold of some periodic point, then h;l(z) is a single point.

A similar result to the one obtained in propositions 2.3 and corollary 2.4 can be stated for points that
belong to the stable manifold of a periodic point.

Proposition 2.4 Let g be a hyperbolic periodic point of f in Hyp. There exists a neighborhood Uu? =
UY2(q, f) such that for any g € UY? follows that if z € W*(q) then h;l(z) is contained in the stable
manifold of h;l(q).

Corollary 2.5 If h;l(x) is a single point then WE(x,g9) C W2(x,g) and for any § > 0 there exists
n =n(8) such that L(g"(WE(z,g))) > € and L(gF(WE(z,g))) <€ for 0 <k < n.

11



Lemma 2.3.2 Letx € Hp. Let us assume that for any g € U follows that hg_l(:c) is a single point. Then,
the map
geU — h;l(m)

is a continuous function.

Proof:
Let us assume that it is false. Therefore, there exist a a sequences {g,} converging to some gy in
U such that {h,!(z)} does not converge to hg,(z). Let z be an accumulation point of {h,'(x)}. By
theorem F follows that & = hy, (hy,!(x)) — hg,(2). Therefore, & = hg,(2) which implies that z = hg, (x).
A contradiction.
[

Notation 2.1 Let z € H, such that for any g close to f, h;l(z) is a single point. In this case we note
Zg 1= hg_l(z).

Lemma 2.3.3 Let x,y in Hp such that y € W*(x) and such that for any g close to f, h;l(x) and
h;1(x) are single points. There exists a neighborhood U of f such that for any g € U follows that

g
Yg € WP(zg).

Proof: If it not the case, follows that Wy (yg, g) \ {yg} for some § small (such that § is arbitrarialy small
provided that |g — f|1 is sufficuiently small) intersects W*(z4). Let us note this point with z. From
corollary 2.5 follows that dist(g"(z),9"(xg4)) goes to zero, and there exists a positive integer n such that
dist(g"(yq),9"(2)) > €. Therefore, there exists n such that dist(¢9"(yq), g™ (z4)) > €(x). On the other
hand, dist(9™(yq), f"(y)) and dist(g™(z4), f"(x)) are small, provided that |g — f|1 is sufficuiently small.
Since y € W2*(x) follows that dist(f"(x), f*(y)) is small for large n and so dist(g"(yg), 9" (z4)) is also
small for n large; which is a contradiction with ().
|

Let z € H, such that for any g close to f, h;l(a:) is a single point. Then, we can take a neighborhood

B(z) of = such that for each g we take

ec‘}fe“ (iL'g)

and we can define the strong stable holonomy from
H;S : B(.’E) — Wecczfeu(xg).

Lemma 2.3.4 Let z,y in Hp such that y € W5*(x) and such that for any g close to f, h;l(x) and
hg_l(:v) are single points. There exists U and €* and B(z) such that for any g € U follows that

ecclfeu (xg) \ Weu(:cg,g)
ceren (@) \ II* (W (yg, 9))

has two connected components.

Proof: It is immediat from the transversality of the local manifolds.

12



2.4 Weak hyperbolic periodic points and heteroclinic cycles

The next lemma states that under the assumption of dominated splitting over a homoclinic class for a C?
diffeomorphisms in a three dimensional manifold, holds that if the subbundle E5 is not hyperbolic then
there are periodic points contained in Hj,, homoclinically related to p, such that the eigenvalue associated
to the center subbundle is close to one.

Lemma 2.4.1 Let f € Diff'(M). Let H, be a topologically hyperbolic homoclinic class ezhibiting
a dominated splitting Ef ® Eo @ E3 such that Ei ® Ea ts topologically contractive, E3 is topologically
expansive, and Eo is one dimensional. Then it follows that if Es is not contractive, then for any & there
exists a periodic point g with period ng and homoclinically related to p such that (1—4§)™ < |D fﬁ}i’z (q)| <1
(in this case we say that g has 6—weak contraction along the center direction). Moreover, the periodic
points with weak contraction are dense in Hp.

Lemma 2.4.2 Let g5 be a periodic point that has 6—weak contraction along the center direction. Then
there ezists a neighborhood U of f such that for any g € U and any q € Pery,\,(f/V1) follows that the
gg s homoclinically related with gs.

For any periodic points in the homoclinic class follows that they exhibits a transverse intersection of
its stable and unstable manifold. If this intersection holds along the strong stable and unstable manifolds
we say that there is a strong homoclinic connection:

Definition 9 Strong homoclinic connection. Given a periodic point q, we say that it has a strong
homoclinic connection if the strong stable and strong unstable manifolds of q has an intersection.

Now, let assume that there is a periodic point with weak contraction (expansion) along the center
direction and also exhibiting a strong homoclinic connection. In this case, after a C'! perturbation, it is
possible to show that it is created a heterodimensional cycle.

Proposition 2.5 Given dy > 0, there exists § such that if there is a periodic point with 6—weak contrac-
tion (expansion) along the central direction and exhibiting and strong homoclinic connection, then there
is g C1 — 8g—close to f exhibiting a heterodimensional cycle.

Now we reformulate a lemma proved in [H] and already to stated in previous subsection, that allows

to connect the strong stable and unstable manifolds when they are orbits that accumulates on both
manifolds.
Lemma ([H]): (C'— connecting lemma) Let f € Dif f*(M™) and let p be a periodic point such that
there are points x in the strong unstable manifold and y in the strong unstable manifold, a sequence of
points x, accumulating in x and points f*r(x,) in the forward orbit of the sequences x, accumulating
on y. Then, there is a diffeomorphisms g C1—close to f such that p remains periodic for g, = is in the
strong unstable manifold, y is in the strong unstable manifold and y is in the forward orbit of x.

13



2.5 Actual “two dimensional” situation.

Even though our ambient manifold is three dimensional, it may happen that the homoclinic class that we
are considering are contained in a two dimensional submanifolds and therefore it could turn out that the
attractors are actually two dimensional. In fact, to get examples of this kind a situation, let us consider
an attractor for a surface diffecomorphism f (for instance a Plykin attractor or a Henon attractor), and
then, let us embed this surface inside a in three dimensional manifold in a such a way that the three
dimensional diffeomorphism coincides with f on the surface and such that this surface is invariant and
normally hyperbolic for the new dynamics. First we start recalling the definition of normally hyperbolic
submanifold.

Definition 10 We say that an invariant submanifold S is normally hyperbolic if there is a splitting
TsM = E°*® F ® E* such that

1. E? is contractive;

2. there is A < 1 such that |Df|Es(m)||Df|}l(f(z))| < A for any x € S;

3. E" is expansive;

4. there is X < 1 such that |Df|F(x)||Df|Elu(f(x))| <\ forany z € S;

5. TpS = F(z) for anyx € S.
If it holds that f € Diff"(M) and

1D ips@IDfir(pay” <A <1 [Dfip@)| 1D g ey <A <1

it is said that S is r—normally hyperbolic and follows that S is C" (see [HPS]).

Theorem 2.1 (/BC]) Let f € Dif fr(M) (r > 1) be a diffeomorphism on a compact manifold M. Let
A be a compact mazximal invariant set exhibiting a dominated splitting Ty = E° & F & E* where E® is
contractive and E* is erpansive. Let also assume that for every x € A holds that W2*(z) N A = {x}
(where W2%(x) is the local strong stable manifold tangent to E°) and W**(x) N A = {z} (where W**(x)
is the local strong unstable manifold tangent to E*) . Then, there exist two C'—submanifold normally
hyperbolic S and S such that,

1. T, S = F(z),
2. 5cC8S,
3. ACS, f(S)c S and f~'(S)C §.

Applying the previous theorem to the homoclinic class H), follows the next corollary:

14



Corollary 2.6 Let Hy, be a topological hyperbolic homoclinic class exhibiting a dominated splitting E ®
E> ® E3 such that E1 @ Ey is topologically contractive, E3 is topologically erpansive, Es, E3 are one
dimensional subbundle, and T = (. Then there is a C'—submanifold S containing Hy and such that fi5
is a C'—surface map exhibiting a dominated splitting.

Even f is C?, the submanifold obtained in theorem 2.1 it could be only C'. In fact, if there is a
periodic point ¢ in H,, with stable eigenvalues A\; and A2 such that 0 < A; < Az but )\% < )\ follows that
S cannot be C2.

On the other hand, for topologically hyperbolic sets of C!—surfaces maps exhibiting some extra
properties it is possible to obtain a well description of the limit set.

To be more precise, we have to introduce some definitions for two dimensional diffeomorphisms.

Let S be a surface and f € Dif f(S). Let us assume that f has an invariant set A exhibiting a two
dimensional dominated splitting F @& F. Recall that for each subbundle and for every point z € A we
have associated the tangent manifolds W (z) and W7 ().

Definition 11 We say that WF (z) has bounded distortion property if there exists Ko and § > 0 such
that for allz € A and J C WF (z) we have for all z,y € J andn > 0, if £(f74(J)) < & for 0 < i < n then

|Df/_;( )| n—1 —1
1. ot < exp(Ko 35, €(f7(J))),
D)5 ’

-n o0 f™(J n— —3 -
2. |DF | < M exp(Ko S5y 65 7HD)) Fy) = T,W ().
We say that WP (z) has bounded distortion property if there exists Ko and § > 0 such that for all
z € A and J C WE(z) we have for all z,y € J and n >0, if £(f(J)) <3 for 0 < i < n then
IDf e

I T < oxp(Ko I HF))

oI —1 p 4i ;
2. IDf7 | < U exp(Ko SI U(F()) B(y) = T,WE ().

With this definition in mind, it is possible to get the following result which is a generalization of the
theorem B of [PS1] for C'—maps on surfaces:

Theorem 2.2 Let f € Dif f{(M?) and assume that A C Q(f) is a compact invariant set topologically
hyperbolic and exhibiting a dominated splitting E ® F such that any periodic point is a hyperbolic saddle
periodic point. Moreover, assume that W (x) and WX (z) has bounded distortion. Then, A = Ay U Ag
where N1 is hyperbolic and Ao consists of a finite union of periodic simple closed curves Cy, ...C, normally
hyperbolic, and such that f™ : C; — C; is conjugated to an irrational rotation (m; denotes the period of

Ci).

Proposition 2.6 Let f € Dif f>(M) and let H,, be a topologically hyperbolic homoclinic class exhibiting
a dominated splitting E5 & Eo @ E3 such that E1 @ Eo ts topologically contractive, E3 is topologically
expansive. Let us assume that there exists a two dimensional C'—normally submanifold S such H,CS.
Then, the tangent manifolds W (x) NS and W(x) N S have bounded distortion property.
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3 Proof of maim theorem.

From proposition 2.2 follows that we can assume in what follows that the set A is a homoclinic class and
we denote H with H), to indicate that we are dealing with a homoclinic class associated to p.
First we define the set
T ={z € Hy: [W2(2)\ {e}] N Hy # 0}.

Then we consider the following options:

1. T=0,
2. T # 0 and Interior(T) # 0,
3. T # 0 and Interior(T) = 0,

where the topology is the restricted topology to H.
Case 1. T = 0.

The theorem follows applying theorem 2.1, theorem 2.2 and proposition 2.6 stated here. For details
see theorem C in [Pu].

Case 2. T # 0 and Interior(T) # 0.

In the case that the interior of 7 is not empty, from the fact that the periodic points with weak
contraction are dense (see lemma 2.4.1), follows immediately that there exists a periodic point ¢ with
weak contraction along the center direction such that [W2*(q) \ {¢}] N Hp, # 0. Then, applying the
C'—connecting lemma, and proposition 2.5 (for details, see theorem D of [Pu]). In other words, we have
proved the following proposition:

Proposition 3.1 Let Hy, be an attracting topological hyperbolic homoclinic class. If the interior of T is
not empty then the thesis of the maim theorem follows.

So it remains to consider the case that the interior of 7 is empty.
Case 3. T # 0 and Interior(T) = 0.

In the present case, we consider either if there exists a periodic point ¢ such that [W2*(q)\{¢}|NH, # 0
or for all periodic point g follows that [W2*(q) \ {¢}] N Hp = 0. In the first case, we apply the following
proposition to f:

Proposition 3.2 Let g € Dif f"(M?) and § > 0 such that
1. g has two hyperbolic periodic points q1 and qa verifying

(a) q1 and q2 are homoclinically connected,

(b) W*(q2) "W (qr) # 0;

2. there exists a periodic points qs with g—weak contraction along the center direction and homoclini-
cally related with q;.
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Then, there is § arbitrarily C*—close to g and a periodic point §5 with §—weak contraction along the
center direction and exhibiting a strong homoclinic connection.

The proof of this proposition can be found in [Pu].

Therefore, in what follows, we assume that for all periodic point g follows that [W5*(q)\ {g}|NH, = 0.
However, recall that there exists a pair of points in the homoclinic class z,y such that y € W2*(z). On
one hand, observe that x is accumulated by a sequence {g,} of periodic points and so it follows that
there is a sequences of points {g};} such that ¢} € W2*(g,) and g} — y. Moreover, we can assume that
the periodic points ¢, have weak contraction along the center direction. On the other hand, the unstable
manifold of p accumulates on y and therefore, the unstable manifold of the points ¢, also accumulates
on y. Observe that even if for any ¢, holds that [W2*(gn) \ {gn}] N Hp = 0, since y € Hp and ¢, — y,
it is natural to try to perform some kind of connecting lemma argument’s with the goal to connect the
unstable manifold of one of the points ¢, with the local strong stable manifold of the same point. If this
type of perturbation can be done, again, a heterodimensional cycle is created.

However, to use the connecting lemma, it is necessary to assume some restrictions over the orbits
of the periodic points {g,}. For instances, if the periodic points {g,} do not accumulate on y then it
can be applied the connecting lemma. On the other hands, if it occurs that the periodic points {g,} do
accumulate on y, then connecting lemma argument’s can not be performed. In fact, if the pair of points
z and y belongs to a minimal invariant set contained in Hj,, then the situation mentioned above holds.
Therefore, it is necessary to develop other techniques to deal with these type of situation. The rest of the
paper is devoted to overcome these difficulties. Under this hypothesis, we show the following: there is a
C' suitable perturbations of f, exhibiting a pair of periodic points ¢ and gz homoclinically related and
such that W"(q2) NW25(q1) # 0. More precisely, by perturbation we are in the hypothesis of proposition
3.2. So the goal is to show that if the interior of 7 is empty, then for any § > 0 we can get by perturbation
a diffeomorphisms g C!—arbitrarily close to f verifying the hypothesis of proposition 3.2.

To get the pair of periodic points in the hypothesis of the proposition 3.2, we consider the pair of
points =,y € Hp such that y € W2*(z). Recall that the are sequences {¢,} and {p,} of periodic points
in Pery_x, (f /V), the first accumulating on x and the second on y. Moreover, the local unstable manifold
and the local strong stable manifold of the points ¢, and p, accumulate in the local unstable manifold
and strong stable manifold of  and y respectively. Using that the periodic points {g,} and {p,} have well
defined continuation for any diffeomorphisms g nearby f, named {¢.(g)} and {pn(g)} respectively. The
goal is to show that for some g nearby f, holds that y, ¢ W*(h,'(z)) and the periodic points {g.(g)}
and {pn(g)} accumulate on hg_l(x) and h;l(y) respectively. Using this and that the local unstable and
strong stable manifolds move continuously with the perturbation, it is proved that for some perturbation
holds that the strong stable manifold of some of the points {p,(g)} intersects the local unstable manifold
of some of the points {g,(g)}. To get the periodic point with weak contraction along the center direction
as in proposition 3.2 we proceed as follow: Let us take 6 > 0 and let g5 be a periodic point with
%—Weak contraction along the center direction. We consider an arbitrarily small open neighborhood
U = US) C Dif f1(M3) of f such that for any g € U follows that ¢ has analytic continuation and gs
remains g—weak contractive. Then, recall from lemma 2.4.2, that for any periodic points in Per)_x, (f)
and any g € U follows that hg_l(q) is homoclinically related with gs. Since hg_l(q) is a single point we
note it with ¢(g).
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To perform these arguments, we have to consider two alternatives. To introduce the mentioned
alternative first let us consider the pair of points z,y such that y € W*(z). Let us consider the strong
stable holonomy introduced in subsection 2.2,

IS . We(y) — We(z).

Observe that if y € W25(x) then II**(W¥(y)) N W*(x) # 0.
The mentioned alternative splits in different parts related to the kind of intersection of II**(W(x))
with W2(y).

Definition 12 Joint integrability: We say that strong stable foliation and the strong unstable foliation
are jointly integrable if there exist 0 < €1 < €2 and 0 < €9 such that for any x and y in the homoclinic
class with y € W2*(x) holds that

Vz e Wo(x) then Wi(2z) N W, (y) # 0
in other words, for all x,y € A such thaty € W2*(x) follows that

(Wi (y)) € W ().

Without loss of generality, we can assume that € = ¢g = €1 = €2 and
I**(We(y) = We(<).

We consider independently the case that the strong foliation are jointly integrable and the case that
this does not happen. More precisely:

Alternative:

1. There exists x,y € Hy such that y € W2*(x), there exist 0 < €1 < €3 such that there is z € W2 (y)
verifying that W25 (z) N W5 (x) # 0 and WP (2) N W (z) = 0.

2. The strong foliations are jointly integrable.

In the case that the strong foliation are not jointly integrable, we can conclude there are a pair of
periodic points pg,p, such that there is a pair of points z and y in the unstable manifold of p, and py
respectively such that they share the same strong stable leaf. Later, performing a suitable perturbation
it is concluded the existence of a new diffeomorphisms verifying the hypothesis of proposition 3.2. In
the case that the strong foliation are jointly integrable, it is necessary to perform another perturbation
different that the one done in the previous case. The goal of the next subsection are devoted to consider
both situations.

3.1 The strong foliations are not jointly integrable.

To study this situation we have to analyze different cases related to the type of intersection of the unstable
manifolds:
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Definition 13 Given a pair of points x,y € Hp, we say that II**(W!(x)) intersects W*(y) if y €
Wes ().

We say that 1I°*(WX(z)) intersects transversally W¥(y) if [1°*(Wk(x)) intersects both components of
W (y) \ We(y).

We say that W (y) locally s-intersects transversally W2 (x) if for any 6 > 0 follows that II**(W*(x))
intersects both components of Ws*(y) \ W2 (y).

To avoid notation we say that W*(y) s-intersects (s-intersects transversally, locally s-intersects transver-

sally) W¥(x) and we note with Wk (x) Ns Wk(y) the set IIZ¥(W2(z)) N Wx(y).

€

Now we consider the following alternative:

1. There are not transversal intersections: for any z,y € H) such that y € W2*(z) follows that
W (z) does not s-intersect transversally Wk (y).

2. There are transversal intersections: there is a pair =,y € Hp, such that y € W2*(z) and W} (x)
s-intersect transversally W (y).

3.1.1 Transversal intersections.

In the case that the strong foliation are not jointly integrable and there are transversal intersections, we
get the following result (the proof is given in subsection 4.1):

Lemma 3.1.1 Let Hy, be a topologically hyperbolic attracting homoclinic class such that T # 0, the
strong foliations are not jointly integrable and there are transversal intersections. Then, there are a pair

of points x,y in the homoclinic class and a pair of periodic points p;,py also in the homoclinic class such
that:

1.y € W& (z) \ {z}],
2. x € W"(pg) and y € W*(py).
Moreover, one of the following option holds:

1. there exists a connected compact arc contained in W2 (z) N II**(Wk(y)) or

2. WX(y) locally s-intersects transversally Wk (x).
In the first case of the options stated in lemma 3.1.1 we apply the next lemma.

Lemma 3.1.2 If there ezxists a compact arc contained in W¥(z) NII°¥(Wx(y)) follows that we get that

there are two points ',y in the unstable manifold of p, and p, respectively and there is a periodic point
q such that

1.y € W& (a') \ {=z}]
2.y, 2, e W*(q).
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In this situation we apply the following lemma to finish the maim theorem:

Lemma 3.1.3 Let x € W"(p;) and y € W"(py) such that y € W2*(x). Let us suppose that there exists
a periodic point q such that x,y € W*(q). Then, the hypothesis of proposition 3.2 holds.

In the case W (y) locally s-intersects transversally W (z) we do not know if the hypothesis of lemma
3.1.1 imply that there are two periodic points in the hypothesis of proposition 3.2 or in the hypothesis of
lemma 3.1.3. However, using that the intersection is transversal, it is possible to get a diffeomorphisms
g C'—close to f, that verifies the hypothesis of proposition 3.2.

To do that we consider two different cases related to w(z) (where w(z) is the closure of the accumu-
lation points of the forward orbit of z):

1) If z ¢ w(x) then it is performed a perturbation such that for some g close to f holds that the
“continuation” of the points  and y do not belong to the same strong stable leaf. Then considering an
isotopy between the initial map and the perturbation, follows that for some map of the isotopy holds
that there are two periodic points as in the thesis of proposition 3.2 (see lemma 3.1.4 in what follows).

2) If € w(z) we prove that there exists a diffeomorphisms C'—close to f such that the points z and
y such that they belongs to the unstable manifold of p, and p, respectively, they share the same strong
stable leaf and they are in the stable manifold of p,. In few words, a C'—connecting lemma preserving
the strong stable foliations is proved. After that, by lemma 3.1.3 follows that a heterodimensional cycle
can be created by perturbations.

Case 1. z ¢ w(x).
In the present case we use the following proposition and lemma.

Proposition 3.3 Let p, and py verifying that their local unstable manifold intersects transversally at
z,y. Let us assume that x ¢ w(zx). Then there ezists g close to f such that x4 ¢ W2*(yg, g).

Lemma 3.1.4 Let us take x,y as in the thesis of lemma 3.1.1. Let us suppose that x and y do not belong
to the stable manifold of some periodic point. Let us also assume that there exist g1 € U>!, such that
Tg, & WE5(ygy,91)- Then, there exists § € U>' such that it verifies the hypothesis of proposition 3.2.

This finish the proof of maim theorem in case that z ¢ w(z). In fact, if the thesis of lema 3.1.3 holds
then the proof is complete. If the hypothesis of lemma 3.1.3 does not hold, we apply the proposition 3.3
and then it follows that the hypothesis of lemma 3.1.4 holds and so the proof is finished.

Case 2. z € w(x).

In this situation we perform a C!'—connecting lemma perturbation that preserves the strong stable

foliation. At this point it is used that H), is normally dissipative.

Proposition 3.4 Let H, normally dissipative topologically hyperbolic homoclinic class such that the in-
terior of T is empty. Let q be a periodic point such that there exists x € W*(q) satisfying:

1. there exists y € W2*(x) N W (py) for some periodic point py,
2. w(x) NWe(q) # 0
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Then there exists g C'—close to f such that
1. q and py are periodic points for g,

2. € W¥(q,9), y € W:(py, 9),

3. yeWs(z,g),
4- € W3(q,9).

Observe that the points xz,y that satisfy the thesis of proposition 3.4 also verify the hypothesis of
lemma 3.1.3. Therefore, to conclude the proof of maim theorem in this case, first it is applied the
proposition 3.4 and then the lemma 3.1.3.

3.1.2 Non transversal intersections.

Using that they are not transversal intersections, it is proved that there is a pair of points z,y € H)p
such that y € W2*(x), and that they belong to the unstable manifold of some periodic points p, and p,.
Then, it is performed a perturbation which consists essentially in moving the unstable manifold of p, and
keeping the local unstable manifold of p, unperturbed. This perturbation is performed with the goal in
mind that the points z4,y, verify that y, ¢ W2*(z4). The movement of the unstable arc of = related to
the unstable arc of y, allows to show that the local strong stable manifold of the continuation of some
periodic point g close to x intersects the local unstable manifold of y. Since y belongs to the unstable
manifold of a periodic point, the hypothesis of proposition 3.2 holds.

Proposition 3.5 Let H, be a topologically hyperbolic attracting homoclinic class such that T # 0, the
strong foliations are not jointly integrable, and there are not transversal intersections. Then, there is a
pair of points x,y in Hyp and a pair of periodic points p,py in Hy such that:

1.y € W (x) \ {=}],
2. x € W (pg) and y € W"(py).

Observe that at this point we could apply the same strategy that was considered for the case of transversal
intersection. However, we develop another strategy, suited for the case of non-transversal intersection,
that do not use the hypothesis of normal dissipativeness.

More precisely, we prove:

Proposition 3.6 Let f € Diff"(M3). Let H,, be a non-hyperbolic topologically hyperbolic attracting
homoclinic class with nontransversal intersections and verifying the thesis of proposition 3.5. Then, for
any & > 0 there exists a diffeomorphisms g arbitrarily C'—close to f verifying the hypothesis of proposition
3.2.
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3.2 The strong foliations are jointly integrable.

Now we have to address the case that the strong foliations are jointly integrable. It is not clear if under
the hypothesis of joint integrability it is possible to get two points x,y as in the proposition 3.1.1; i.e.: a
pair o points x,y such that belong to the same strong stable leaf and contained in the unstable manifold
of some periodic points.

However, using strongly that the strong foliation are jointly integrable, it is possible to perform a
C'—perturbation to get two periodic points as in the proposition 3.2.

For that, it is necessary the following theorem that state if the interior of T is empty, then there is a
subset A such that E3 is uniformly expansive on A and containing a pair of points z,y with y € W2%(z).

Theorem 3.1 Let H, be a topologically hyperbolic attracting homoclinic class such that T # 0 and the
interior of T is empty. Then, there is a compact transitive invariant subset A such that

1. there is a pair of points x,y € A such that y € W*(x),
2. E3 is uniformly expansive in A.

Observe that in theorem 3.1 is not assumed that the strong foliations are jointly integrable (the proof
is given in section 7).
Then we apply the following proposition (the proof is given in section 6):

Proposition 3.7 Let H, be a normally dissipative topologically hyperbolic attracting homoclinic class
such that the strong foliations are jointly integrable. Let us suppose that there exists a compact invariant
set A C Hp, that verifies the thesis of theorem 3.1. Then, for any § > 0 there exists a diffeomorphisms g
arbitrarily C'—close to f werifying the hypothesis of proposition 3.2.

As a consequences of the previous proposition, again we conclude the maim theorem when the strong
foliation are jointly integrable.
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4 Non jointly integrable case with transversal intersection.

In the present section we give the proof of lemma 3.1.1, 3.1.3 and 3.1.4. Later is given the proof of
proposition 3.3 and 3.4. The proof of the last one is more intricated and it includes a series of technical
lemmas.

4.1 Proof of lemma 3.1.1.

Let us consider the strong stable holonomy map %, defined from a neighborhood of x to the center-
unstable manifold of z. Let us a take a periodic point p, close to x and a periodic point py close to y. So,
the local unstable manifold of p, and p, are closed to the local unstable manifold of  and y respectively
and so II**(W!(pg)) and II**(W¥(py)) are closed to W (z) and II**(W2(y)) respectively. Since W (x)
s-intersect transversally W (y), follows that, II**(W!(p.)) and II**(W(p,)) intersects transversally.

4.2 Proof of lemma 3.1.3:

Observe that there is a hyperbolic set H = H(p,,z,q) that contains p,, , and q. Moreover, it can
also be assumed that there is a connected compact arc I, contained in the unstable manifold of p, that
contains p, and y such that H N1, = 0. So, it follows that there is a periodic point § arbitrarily close to
x, contained in H, and with orbit uniformly disjoint from [,: there exists § > 0 such that for any v > 0
there is a periodic point § such that d(4,z) < v and d(f*(4),l,) > & for any integer i. So, it is possible
to perturb the intersection between I, and W*(q) in a such a way that for the perturbation follows that
ly N W25(§) # 0 and [, remains contained in the unstable manifold of p,. Therefore, the proof of the
proposition 3.2 is finished in this case.
|

4.3 Proof of lemma 3.1.4:

Since z and y do not belong to the stable manifold of some periodic point, by lemma 2.4 follows that for
any smooth g C'—close to f follows that h;l(:c) and hg_l(y) are single points. Therefore, for any g € U
we denote them with z, = h;'(z) and yg = h; ' (y). From lemma 2.3.3 follows that z4 and y, belongs to
the same local center stable manifold.

First observe that if {g,} is a sequences of periodic points such that g, € Peryeyu(f/V) and z is an
accumulation point of {g,}, then z4 is an accumulation point of {gn(g))} Where gn(g) := h; " (gn)--

Let us consider a homotopy F = {g,}o<y<1 such that g, € U for any 7, go = f and g, is the
diffeomorphism in the hypothesis of the present lemma. We keep denoting gy with f.

For each g € F let us take WS*(zg4, g). Using that W (x4, g) is continuous with g and that W*(zg, g)
is contained inside a compact arc of the unstable manifold of a periodic point, for each g we can assume
that

1. zg ==z,

2. Wg‘(wg,g) = Wé‘($7f)7

23



3. We(z,g) = Wi, f) and
4. Wt (g, g) = W (, f).

Given positive numbers €* < € we take WSt (z). Now, for each g € F we take II;° : B — W *(x)
where B is a neighborhood that contains x and y, for any g € F. Let us take LT and L; the connected
components of Wt (z) \ II¥ (W (y, f)). Since yg, ¢ W2*(z,g1) then I3 (y,,) # z. Since yg, € W ()
and W (z) intersect transversally I (W (y, f)) follows that IIZ*(yg,) ¢ II3° (W (y, f)). Therefore, fol-

lows that II5? (yg,) € L}L U L}. We can suppose that IIg} (yg,) € L;{. Moreover, we can also assume that
for any g € F, which is not f, follows that II;*(y,) € L]f.

Taking €* sufficiently small, also follows that IIZ} (W (y,,, 91) is also contained in L}'. Moreover, from
lemma 2.3.4 we can also take €* small such that for any g € F holds that W (z) \ IIg° (W (yg, g)) also
has two connected components. We denote with L;l the connected component that does not contains zx.
Observe that therefore, z € L, .

Since Wk (y, f) and W¥(z) s-intersect transversally, there is a sequences of periodic points {g,} such
that g, € Peryexe(f/V), ¢n — = and I1$°(g,) belong to L}r. In fact, since W*(y, f) and W¥*(z) s-intersect
transversally, there is a sequences of points {z,} in the local unstable manifold of z that accumulate on
z and z, € L;f. Then for each z,, we take a periodic point g, in Peryeyu(f/V) close to z, and such that
its projections by the strong stable holonomy are contained in L.

Since for g1 also holds that II3*(gn(g1)) — = then follows that for n large enough holds that
157 (gn(91)) € Ly, - Therefore, there is a sequences {g,} such that

I3 (qn) € L}, and TIg: (4n(91)) € Lg, -

Using that everything moves continuously, follows that there exists § € F such that for some n large

13" (gn(9)) € 113 (We' (45, 9))-

This is equivalent to say that
W (an(9)) N We(yg,9) # 0.

Therefore, the thesis of the lemma follows.

4.4 Proof of proposition 3.3.

Since = ¢ w(x) we can get a neighborhood B of f~1(z) such that for any z € W (z) follows that
f*¥(z)¢ B Vk>o.

Using that, we construct a perturbation of f with support in B and such that it moves the unstable
manifold of p, in a small neighborhood of f~!(x) with the property that

9(fH(2)) # 07 (y), and g(f~'(z)) € Lf (1)
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where LJT is the connected component of We*(z) \ I3 (W (y)) such that its interior intersects I13*(Hp N
B(y)). Since the support of the perturbation is localized in B it follows that W< (z, f) = W (g(f(z), 9)
and OF(g(f1(z))) = {9™(9(f (%))} {neny does not intersect the support of the perturbation and
therefore follows that

zg=g(f '(z)) and y, =y. (2)

Moreover, it holds that

W (g(f (), 9) = We(g(f (), f). (3)

From 1, 2 and 3 follows that
H;S (zg) # Yg-

4.5 Proof of proposition 3.4.

Roughly speaking, the perturbations that is done in the present proposition is a kind of Cl—closing
lemma that preserves the strong direction; i.e.: it is performed a perturbation that sends the point z; to
a point z9 in such a way that the image of the local strong stable manifold of z; by the perturbation goes
to the local strong stable of zs.

A naive idea of the proof of the present lemma, it is to consider an endomorphism, “II** o f”, induced
by the projection of the dynamic of f by the strong stable manifold. Since the strong stable foliation
is C! then follows that the induced endomorphism is also C'. Then, it is performed a C'—connecting
lemma for non-singular endomorphism (see [LW2] for closing lemmas for endomorphism). If it holds that
any perturbation of the induced endomorphism can be performed as a projection by the strong stable
foliation of a perturbation of f, we would conclude the thesis of the proposition 3.4.

To perform the connecting lemma preserving the strong stable leaves, it is followed and adapted
the arguments used in the connecting lemma. However, instead to use the Euclidean cubes to localize
the perturbation, it is used rectangles coherent with the splitting. These rectangles also verify that are
uniformly large along the strong stable direction (see lemma 4.5.5) and arranged in tiles as is done in the
connecting lemma.

Moreover, it is also proved a version of the closing lemma that keeps invariant the local strong stable
leaves:

Lemma 4.5.1 C'—closing lemma preserving the strong stable leaves. Let f € Diff(M3) and
let H, be an attracting topologically hyperbolic homoclinic class which is normally dissipative and such
that the interior of T s empty. There exist g and a neighborhood U of Hy such that for any v > 0
and = € H), verifying z € w(z) there ezists a positive integer m = m(z,v), a C'—diffeomorphisms g,
v — C'—close to f such that f™(z) is a periodic orbit of gwith orbit in U and verifying that

We (1™ (), 9) = Weg (™ (), f)-
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Before to give the proof, we explain the strategy of the C! —closing lemma and latter we show how to
adapt it to get the proof of lemma 4.5.1. The rest of this subsection is organized in the following way: In
subsection 4.5.1 we explain the strategy of the C! closing lemma. In subsection 4.5.2 we build rectangles
coherent with the splitting. In subsection 4.5.3 we give the proof of the C'—closing lemma preserving
the strong stable leaves. In 4.5.4, we explain the strategy of the connecting lemma. and in 4.5.5 we prove
proposition 3.4.

4.5.1 Strategy of the proof of the C!'—closing lemma.

First we state two lemmas due to Pugh, used by him to get the closing lemma. The first one states
that given two points close enough it is possible to get a diffeomorphisms C! close to the identity that
sends one point to the other and such that it is the identity in the complement of a small neighborhood
of the points (see local perturbations below). The second lemma states that it is possible to spread the
perturbation along the orbit, in a way to obtain a safety zone to close the orbit. Since the C'—closing
lemma deals with local perturbation, it can be state for linear dynamics (see shortcoming procedure in
what follows). Later we indicate a selection of points to apply the lemmas 4.5.2 and 4.5.3 to conclude
the C! closing lemma.
1- Local perturbation.

We consider Euclidean rectangles [—1,1]% + {z} of radius [ centered at = and we note it with C(1)
without expliciting the point where it is centered.

Lemma 4.5.2 Let us consider an Euclidean rectangle C(l). For all B > 0 there exists r > 0 such that
for any 1,2 € C(1) such that d(z1,x2) < rd(x1,0C(l)) follows that there exists h € C*°(R?) such that

1. |h—1Id), < B,
2. h($1) = T2,
3. h|C(l)C = Id.

2- Shortcoming procedure.

Lemma 4.5.3 Let R? be endowed with some Euclidean metric d(.,.) and let M; be any sequence of linear
isomorphisms of RS, Given n > 0 and r > 0 there exists an integer N > 1 and some basis of R? such
that the following holds; given any pair of points x,y in the cube C(l) of radius | relative to this basis,
there exists points z; in the cube C((1 +n)l) of radius (1 + n)l such that zo = z,zxy =y and

d(M;(zi-1), M;(2:)) < rd(M;(zi-1), OM;(C((1 +n)l)))
foralli=1,....,N.

3- Selection of points to close orbits.
Let = be a non periodic point such that z € w(z). Let 8 > 0, and let » = r(3) > 0 be the positive
constant given by lemma 4.5.2. We take n = % and the linear maps M; = D, f*. Then we take the integer
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N given lemma 4.5.3. Now we take a neighborhood B of z such that the sets { fi(B)}{ogig N} are pairwise
disjoint and the linear part D, f* of f in the neighborhood B is close to f for any 0 < ¢ < N. Now,
we take two consecutive iterates f™(x) and f"(x) (with n > m) sufficiently close such that n —m > N,
#(z), f™(z) € B and

d(f"(z), f™(2)) < d(f(z), fF(2)) ¥V m <j <k <n. (4)

We take the minimal Euclidean cube C(l) C B of radius [, where | = d(f"(z), f™(x)), that contains
f™(z) and f™(z). Moreover, we take the points f(x) and f™(x) close enough such that

C((1+n)l) C B.

Observe that from 4 follows that for any 0 < k < n — m holds
FE™ () ¢ O+ )b,
and therefore follows that
PR (@) ¢ Uik f(C((L+m))) YO <k <n—m—N. (5)

Now we select the sequences of points {z;} such that zg = f"(z),z2y = f™(x) given by lemma 4.5.3.
Then, the perturbation introduced on lemma 4.5.2 is performed along the orbit { fm+i}{0§is ~N}- More
precisely, for any 0 < i < N we take h; such that h; restricted to the complement of f*(C((1+ n)l)) is
the identity and satisfying h;(f*(zi_1) = f%(2;). Taking g = h; o f in each fi(C((1+ n)l)) and observing
that the sets {f*(C((1 + n)l))}{o<i<n} are pairwise disjoint it is obtained that gV (f(z)) = N ().
Since (5) holds then g™+ N*i(z) = fm+N+i(z) for 0 < i < n —m — N and therefore

9" (" () = (=)

i.e.: f"(z) becomes a periodic point for g.

To adapt this criterium to select points, first we have to introduce rectangles coherent with the
dominated splitting with the property that they have a uniform size (independent of the points involved
in the perturbation) along the strong stable direction. At this point, we use strongly that the distance
between two points is comparable to the distances of their images by the strong stable holonomy.

4.5.2 Rectangles coherent with the splitting.

Now we construct some kind of rectangle in terms of the splitting E1 & E9 & E3. For that, we start
defining the notion of rectangle coherent with the splitting.

Definition 14 We say that a set R is a rectangle coherent with the splitting if
R = int(h([~1,1]*))

where h : [—1,1]> — M is an homeomorphism such that there exists points x_1,21,y_1,Y1, 21,21 in H,
verifying that
h({=1} x [-1,1]%) c Wi (z 1), h({1} x [-1,1]*) € W' (z1),
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h([=1,1% x {~1}) € W&(y-1), A([-1,1]* x {1}) C W (a),
h([=1,1] x {=1} x [-1,1]) € W¥(2—1), A([=1,1] x {1} x [-1,1]) C W¥(x)

We call the set h([—1,1]%> x {=1}) U h([-1,1]? x {1}) the unstable boundary of R.
Given €€ €* and a point x we define the rectangle R(e®, €%, €*)(x) as the rectangle of center x and
size €°,€°, € in each axis. More precisely, x = h(0,0,0) and

R(€%, €%, €")(x) = h((—€°,€°) X (=€ €°) x (—€",€")).
Notation 4.1 Given a rectangle R we use the following notation:

W (z) .= W2(x)N R, Wh(x) :=Wr(z)NR, WE'(z) = W(z)NR.

€

Lemma 4.5.4 Assuming that the splitting is normally dissipative, it follows that it is possible to get a
rectangle coherent with the splitting R = int(h([—1,1]®)) where h : [-1,1]> = M is a C'—map such that
for any (z0,v0, 20) € [—1,1]® follows that

h([=1,1] x {yo} x {z0}) C W*(0,30, 20)-

Lemma 4.5.5 Let H, be a topologically hyperbolic attracting homoclinic class such that the interior of

T is empty. There is g such that for any z € Hy,, € < €9 and 6 > 0 small there exists a pair of rectangles
R, R such that

1. € RCR,
2. W5 (z) C R,
3. for any z € W*(z) follows that W§*(2) C RNW5H(2) C W3 (2),

4. R =int(h([-1,1]3)) for some homeomorphism h : [-1,1]> — M and R = h([a,b] x [—1,1]?) for a
pair of points a,b such that —1 <a <b<1;

5. [R\ R|nH, =0,
6. the rectangles Rand R verify the thesis of lemma 4.5.4.

The proof is given at the end of the subsection. Observe that in the hypothesis is only assume that the
interior of T is empty. This lemma is also used in the proof of theorem 3.1.

Corollary 4.1 Let x be a non periodic point. There exist rectangles R3 C Ry C Ry centered at x and
coherent with the splitting, such that

1. the rectangles R3 C Rs C Ryverify the thesis of lemma 4.5.4,
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2. if z € R1 N Hy then z € R3,

3. if z € R3 and f"(z) € R3 then
"(WEg; (2)) C Ra.

Lemma 4.5.6 Let R be rectangle coherent with the splitting as in lemma 4.5.4. Then there exists v =
v(R1) such that for any 1 € RN Hy follows that W3*(z) C R and if x2 € Hy N Ry N W (1) then

C_ld(xl,azg) < d(z1,22) < Cd(z1,x2),
where z1 € Wi¥(z1) and 22 € W (z1) N W§(z2).

Proof: It follows from lemma 2.3.
| ]

4.5.3 Proof of lemma 4.5.1: C'—closing lemma preserving the strong stable leaves.

To adapt the proof of the C'—closing lemma to prove lemma, 4.5.1, we need first an equivalent to lemma
4.5.2. Later we need a criterium to select points where to apply the perturbations and the shortcoming
procedure.

Let R = int(h([—1,1]%)) be a rectangle as defined in 14. Given a set of rectangles R3 C Ry C R as
in corollary 4.1, positive constants €® < €,€ < €, €* < € we take

R;(e°, €% €") = R(e°, €% €")(x) N R; j=1,2,3. (6)

1-Local perturbations preserving the strong stable leaves.
First we formulate a simple lemma that states that it is possible to perform small perturbations that
sends local strong stable leaves to local strong stable leaves.

Lemma 4.5.7 For any B > 0 there exists r > 0 such that for any Euclidean rectangle R coherent with
the splitting, given any pair 1,x2 € R and connected arcs l;, C W2*(x1) N R, lp, C W5*(z2) N R such
that

d(z1,22) < rd(lg;,0R) j=1,2

follows that there exists g € C*®(R3) such that
1. |lg—1d|1 < B,
2. 9(ley) = lay,

Proof:
Using the dominated splitting, we can assume that zo € W(z1). In fact, taking o = W (z1) N
WEs(x1) it follows that dist(x1,Z2) < d(x1,x2). Therefore we can reformulate the lemma replacing
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by Z. Let z1(.) and z2(.) be a parameterization of the local strong stable manifold of z; and z»; i.e.:
z; € C%([—¢, €], M3) such that z;(t) € W2*(z;). Moreover, we can assume that z;(0) = z; and

z1(t) € W (za(t)) Vt € [—¢, €.
Observe that from lemma 4.5.6 there is a constant C such that
CYd(z1, x2) < d(z1(t), z2(t)) < Cd(z1, 22). (7)
Claim 1 Given 8 > 0 there exists v > 0 such that for any t if
d(z1(t), z2(t)) < rd(z1(t), OWE (z2(t))) Vt € [—¢, €]

then there is g; defined in R? such that

1. gt — Id|1 < Cod(z1(t), z2(t)) < B,

2. gi(z1(t)) = 2(t),

5 9w @) = 1d-

Proof of the claim: The proof is similar to the proof of lemma 4.5.2.

Since it follows that d(x1,z2) < rd(lz;, OR), then from 7 holds that
d(z1(2), z2(t)) < rd(z1(t), OWE" (z2(t)))

and so for each ¢ we can apply claim 1. Moreover, we can take the maps g; in such a way that they moves
continuously with .
Since 0;(zi(t)) = E1(x;(t)) and

SL(E1(z1(t)), E1(z2(t))) < Cod(z1(0), z2(0))

follows that the map
G(t,z) = gi()

can be taken C'—close to the identity.
Now we restrict the map G(.,.) to

A

R = U, ety }WE (21(2))-
Observe that R C R. Let :cf_ be the extremal points of [,,. Since
dzf,z37) < rd(w;r_,(')R),

|G — Id|; < Cod(z1(0),2(0)) and d(z1(0),z2(0)) < rd(ls,;,0R) then follows that G|p can be extended
to R in such a way that
|G — Id|; < 8, and G|Rc = Id.
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|
Selection of points to close strong stable leaves.

Let = be a non periodic point such that z € w(z). Let 8 > 0, and let » = r(3) > 0 be the positive
constant given by lemma 4.5.2. We take n = % and the linear maps M; = D, f’. Then we take the integer
N given lemma 4.5.3. Now we take a neighborhood B = B(W2*(z)) of the local strong stable manifold
of z such that the sets {f*(B)}{o<;<n} are pairwise disjoint. Observe that from the fact that f contracts
along the local strong stable leaves follows that B can be taken close enough to W2*(z) such that the
linear part D f? of f is close to f in the neighborhood B for any 0 < i < N. Let also take R3 C Ry C Ry
rectangles coherent with the splitting around x given by corollary 4.1. We take the rectangles R; N B
(4 =1,2,3.) and we keep noting them with R;.

Now, we take two consecutive iterates f™(z) and f™(z) (with n > m) sufficiently close such that
n—m> N, f*(z), f"(z) € Rs and

AW (F™(2)), WE (f"(2))) < dWE; (£ (2)), W, (F#(2))) ¥ m <j <k <n. (8)

Let o € Wi (£(2) and g1 € Wi (£(z) such that d{yo,y1) = d(Wi: (f™(z)), Wi, (f*(2)). We
take the minimal rectangles Rj(e,l,l) (7 = 1,2,3.) of radius I, where [ = d(yo,y1), that contains yg
and y; (recall (6) for the definition of these rectangles). We note them with R;(l). We also take the
minimal Euclidean cube C(I) C Rs(l) of radius I, where | = d(yo,y1), that contains yp and y;. We
also take the points f™(x) and f™(z) close enough such that Ri((1 4+ n)l) C B. Observe that the sets

{FfH(R1((1 + M) }o<i<n} are pairwise disjoint.
Let

1 : 88 SS
0<vy< 2 min {{(WE (2) \ WE, (2)).
2E€ER3
Claim 2 For any 0 < k < n —m follows that

W3 (F(f™())) N Rs((1 +n)l) = 0.

Proof of the claim: In fact, if the intersection is not empty from the election of v and the rectangles
R; follows that

FH(f™(x)) € Ra((1 +n)l)
and therefore if § = W2 (FE(f™(x))) N We(yo) then
min{dist(J,yo), dist(§,y1)} < dist(y1,y0)

which is a contradiction with (8).

|
From the previous claim follows that
W3 (fN*™(2))) 0 Ra((L+n)l) =0 (9)
FEWse (V™ (@) N UL o f (Rs((L+n)l)) =0 VO <k <n—m—N. (10)

Now we select the sequences of points {z;} given by lemma 4.5.3 such that 29 = yo, 2y = y1. Let us take
now

li= (Wi (2)) and Lioy = f{(WE (2i1)).
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Lemma 4.5.8 For any points z; follows that
d(f*(2), f*(2i-1)) < r min{d(l;, Of*(R1)), d(li—1,0f (R1))}.

Before to prove the lemma, let us show that how to finish the proof of lemma 4.5.1. In fact, the lemma
4.5.8 allows to perform the perturbation introduced on lemma 4.5.7 along the orbit { fi(zi)}{ogig N}- More
precisely, for any 0 < i < Nwe take h; such that h; restricted to the complement of f*(Ry((1+ n)l)) is
the identity and satisfying

hi(FH(WE (2i-1)) = f{(WE (2i-1))-

Taking g = h; o f in each f*(Ri((1+ n)l)) and observing that the sets {f*(R1((1 + n)l))}{o<i<n} are
pairwise disjoint it is obtained that

gV (WE (" (@) = N WE (f™(2)))-
Since (9) holds then gN (W5 (f™(z))) = FN (W (F™(x))) for i < n—m — N and therefore
9" " (Wi (f*(2))) € Wi (F"(2)),

ie., Wg: (f"(x)) becomes a periodic strong stable leaf.
Proof of lemma 4.5.8: First we estimate the distance of the image of the strong stable leaves inside
R3 with the distance to the boundary of the images of R;.

Claim 3 There exists a constant Cy such that for any point z; follows that
o ID fiy ol < A(F W (26)), F(B)) < ConlIDfig ol
Proof of the claim: Observe first that from the domination follows that
d(f (Wi (20)), 0 (R1)) = L(F (W (2:) \ Wi (24))).

Observe now that for each connected component of Wg* (2;) \ W (2;) there is a point y; in this connected
component such that

UF Wi () \ Wi () = LW (20) \ Wi (20))ID S, )| = YDy I
Since W (2) is C? and there is K such that

Sesol(FH(WE (2:))) < Ko,
follows that there is Cy such that .
1D 5, o)l

Cyl < .
¢ T IDfig ey

< Cp.
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Claim 4 There exists a constant Co such that for any point y; € Wg (z;) follows that

Co (L +mUID fip, ol < d(f*(20), 8 (C((L + 1)) < Co(L +MUID fg, (z,)|l-

Proof of the claim: The proof is similar to the proof of claim 3.

[ ]
Now we can finish the proof of lemma 4.5.8. In fact, since
d(f'(z), f'(zi1) < rd(f*(z),0F (C((L+ 1)),
from claim 3, claim 4 and that | << =, it follows the lemma.
[ |

4.5.4 Strategy of the proof of the C!—connecting lemma.

In the context of the connecting lemma, it is given two orbit segments fi(y), 0 <4 < m and f~¢(2), 0 <
i < n such that f™(y) is close to f "(z) and the goal is to find a perturbation for which y and z are in
the same orbit (observe that this is enough to conclude the connecting lemma). The strategy introduced
by Hayashi consists in to make perturbation at several places in order to shorten the two segments every
times one of them comes closes to itself or to the other.

To perform that, it is taken a small Euclidean cube containing f™(y) and f~"(z), and later it is tiled
this cube into Euclidean sub-cubes such that the sizes of each sub cube is comparable up to a factor of
the size of its neighborhood.

Arrangement of Euclidean cubes.

For all 2 > 0 we take o; = 1 + 23202_]' and the interval [—Qiai,Qiai — 1]. For each ¢ > and j €

[—2%q;, 2°a; — 1] we take the Euclidean rectangle (called tiles)

E kE+1

i,k — e 3
R""(e) [62i,€ o ]°.

Then we take )
R(G) = Ui7kRz’k(6).

Then it is considered the following criterium of connecting intermediate orbits:
Criterium of connecting orbits: Given two points of the orbits f*(y), 0 <i<mand f *(y),0<i<n
are selected if either:

1. they belong to the same tile and the distance between then is smaller to any intermediate point,

2. they belong to different neighbors tiles but the distance between then is much smaller than the size
of the neighbors tiles.

After that, the selected orbits are connected, using the shortcoming procedure introduced in the proof
of the C! closing lemma, following that 4 and z are in the same orbit for the perturbed map.

In the direction to obtain the proof of proposition 3.4 we need to apply the previous criterium for
rectangles coherent with the splitting.
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4.5.5 Proof of proposition 3.4.

Arrangement of rectangles coherent with the splitting.
To adapt the strategy of the C'—connecting lemma preserving the strong stable leaves we have to
adapt the construction and arrangement of the tiles satisfying the following properties:

1. the tiles are built using the dominated splitting,
2. the tiles has uniform size along the strong stable direction,

3. the tiles are arranged in such a way that if two points in different tiles are closed then they are far
from the strong stable boundary of the tiles.

Finishing the proof of proposition 3.4.

To do that, we take z € WZ(q) \ {q} such that z is accumulated by the positive orbit of = (recall that
there exists y € H, such that y € W2*(z)). Now we take a rectangles R3 C Ry C Ry as in corollary 4.1
and we take h : [-1,1]> — M as in lemma 4.5.4 such that Ry = h([—1,1]3). We select those rectangles
in such a way that if f*(z) € Ry then follows that

[f(2), f*(y)]** C Rs,

where [f*(z), f¥(y)]** is the connected arc contained in W2*(f*(z)) such that its extremal points are
given by f¥(z) and f*(y). This is possible taking R; small in the vertical direction in such a way that if
f*(x) € Ry then

LW () <7 < %gg{f(Wéﬁ(z) \ Wi (2))-

Therefore, since if f*(z) € Ry then follows that f*(x) € Rj, it holds that £(f*(W2*(z)))) C R1 and so,
f¥(y) € Ry and since f¥(y) € H, holds that f¥(y) € Rs, which implies that [f*(z), f*(y)]** C Rs. Then,
given § > 0 we select 7 = r() > 0 given by lemma 4.5.7 and we perform the following arrangement of
the rectangles: For all ¢ > 0 we take o; = 1 + E;ZOQ_j and the interval [—2¢c;,2°q; — 1]. For each i >
and j € [-2'ay, 2%a; — 1] we take the rectangle

k k+1 k+1

R (e,€%) = h([~lo, o] x [~€°5;, "] x [egzaf 5 DN A

Then we take .
R;(€% €") = Ui,kR;.’k (€ €*).

Observe that
[R1(e €") \ R3(e% )] N Hp = 0.

Then, it is applied the connecting lemma criterium to connect orbit using the present arrangement of
rectangles and the perturbation introduced in lemma 4.5.7. This conclude the proof of proposition 3.4.
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4.5.6 Proof of lemma 4.5.5.

To prove the lemma 4.5.5 first we use the following lemma. In this lemma it is used explicitly that the
interior of T is empty.

Lemma 4.5.9 Let H, be a topologically hyperbolic attracting homoclinic class such that the interior of
T is empty. Then for every € there is a connected arc I} C Wj,s’+ (z) such that I} N Hy, =0 and there is
a connected arc l; C W5 (z) such that Iy N Hy = 0, where W5 (z) and W5*™ (z) are the connected
components of W5°(x) \ {z}.

Proof of lemma 4.5.9:
Let us assume that the thesis of the lemma is false; i.e: there is * € H, such that for instance
west (x) C Hp for some small e,. We consider two cases:

1. For some « such that We¥*(z) c H, (for some small ¢;), there is y € W2 (z) such that
I1**(W(y)) does not coincide with W (z) or

2. For any x such that WS> (z) C H, (some small ;) holds that for any y € W (z) follows that
%, , (W) = Wi (); ies Way) © Wek(z) = Uy s oy WE(2)

In other words, we are considering if for any x such that W2*" (z) ¢ H, (some small ¢,) given the
point = then the strong foliation associated to = are either jointly integrable or it is not the case. Let us
take

W (z) = U{z€W:S,+(z)}W£(z)

From the fact that we are assuming that Wo*" (z) is contained in H, and from the fact that H, is an
attractor, follows that W2**(z) C H,.

Given a point zp in W**(x) we consider the set W2 (z9) N W¥*(z) and observe that there is zp such
that W2%(zp) intersect transversally W2 (z9) N W*3(x), in the sense that W2(zg) N W2*(z) intersects
both components of W2(z9) \ W2%(z9). To check this assertion, it is enough to take zy such that that
WE(z9) N WE4(z) intersects only one components of W2(zp) \ W2*(z9) and W2(z9) N W2*(z) it is not
contained in W2*(zp). This point 2 exists because otherwise it follows that the strong foliations are
jointly integrable. Then, it holds immediately that we can choose another point z; € W2 (z9) N W2*(x)
such that W2*(z() N W**(z) intersect both components of W2 (z() \ W25 (z().

Now, let z be any point close to zp contained in Hp, N W2(2p), so it follows that W2*(z) intersect
transversally W2(z) N W2(x) (this follows from the fact that W2*(z) is C!—close to W2*(2)). Now
we have two options: If for some z close to zp holds that z ¢ W**(x) or for any z close to zp holds
that 2 € W2*(z). In the former, taking an small neighborhood of z follows that for any 2z’ in this
small neighborhood of z holds that [W2*(2') \ {z'}] N H, # 0, and this implies that the interior of
T is not empty, which is absurd. In the latter, from the fact that any point z close to zy, follows
that we can take a periodic point g such that ¢ € W*®(xz). We take W?(q) and W2 (q) N W**(z) and
we can assume that W2°(q) intersect transversally the set W2 (q) N W*4(x) (otherwise, using that the
periodic points are dense it can be argued as before). Then we take fme*(W?2(q) N W% (z)) where n,
is the period of ¢ and k is large positive integer. Observe that fm*(W2(q) N W*(x)) C W(q). Since
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W2(q) N W2(x) intersect transversally W2*(q) follows that W2(q) N W¥*(z) is not invariant by fme*,
then there is z € fme*(W?2(q) N W2(z)) \ [W2(q) N W2¥(z)] close to q. Taking an small neighborhood of
z follows that for any 2’ in this small neighborhood holds that [W2*(2') \ {z'}] N Hp # 0, and this implies
that the interior of 7 is not empty, which is absurd. See figure 20.

In the second situation let us consider

W (z) = Closure(Ugpso) Ugyewss@)y £ (We' (F7"(y))))

Observe that for any y € W**(z) follows that there is €, such that Wg*(y) = W' (y) C W**(z). Let us
take also

Ag = Closure(Ugyewus(z)1(y))-

Observe that Ag is a topologically hyperbolic compact invariant set such that for any z € Ag follows that
W*(z) C Ag. To prove that, is enough to prove that for any z € a(y) for some y € W**(x) follows that
WX(z) C Ag and observe that this immediate from the definition of W**(y).

From the fact that W*(z) C Ag for any z € Ay, follows that Ag has local product structure. So
Ao = Npezf™(V) for some V. Since it holds that whole unstable manifold of each points is contained in
Ag and the unstable manifolds are dense, follows that H, = Ag.

On the other hand, observe that if z € Ag, then W**(z) C Ag and W2*(z) = W*(z). It follows from
the fact that W35°(f~"(y)) C f~"(W"*(x)) and from the fact that for any z € W*"*(x) there is €, such
that W2*(z) C W*(x) and W2*(x) = W2*(x). Therefore, 7 = Hp and so the interior is not empty,
which is an absurd.

|

Let us continue now with the proof of lemma 4.5.5. Let us start taking a point € H,. By the previous
lemma, for any €’ there exist arcs I and [, contained in opposite connected components of W5*(x) \ {z}
and such that I; N H, = 0 and I N H, = 0. So, there exists v, > 0 such that W7 () N H, = 0 and
We (I;) N Hy = 0, where W _(I77) = U{zeli_}W’;’:q;(z)' Let 2, and 2] (they depends on the point ) in
opposite connected components of W¢(z) such that We*(z,, ) "W, (1) # 0, We*(2f) "W (1) # 0 and
W (25 ) N WS (1) # 0, W(2f) N W5 (1) # 0. Let us consider the region B, in W(z) bounded by
We (2, ), We (IF), We*(25) and W (I, ). Now we take the rectangle given by:

Rz = U{zeBz}Weu(z)‘

Observe that this rectangle verifies the property required in the thesis of lemma 4.5.5.
|
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5 Non jointly integrable case with non transversal intersections.

5.1 Proof of proposition 3.5.

Observe that given a point in the homoclinic class, the local strong stable manifold of it, splits the local
stable manifold in two disjoint sets; i.e.: W25 (z) \ W2*(x) has two disjoint connected components. Using
this, we introduce the following definition:

Definition 15 Stable boundary point: We say that a point x is a stable boundary point, if H, N
WEs(z) accumulates on x from only one connected component of W (z) \ W2*(z).

Now we prove that under the assumption of non integrability of the strong foliation and that there
are not transversal intersection then either there are stable boundary points or the thesis of proposition
3.5 holds.

Lemma 5.1.1 If there are not transversal intersection and the strong foliations are not jointly integrable,
then for any compact set A such that Ty # 0 follows that either there exist stable boundary points in A
or the thesis of proposition 3.5 holds.

Proof:

Let us assume that there are not stable boundary points in A. Then, there are two situations to
consider: for every z € A follows that either [W?(z) \ W2*(z)] N Hp = 0 or the homoclinic class intersect
both components of W2 (x) \ W2*(x).

Suppose that there is a point € A such that [W7(z) \ W*(z)] N Hp, = 0. Recall that there are not
isolated point in the homoclinic class. In particular, there are periodic points nearby x. Therefore, if
(We(z) \ W2 (z)]N Hp = 0 follows that the local unstable manifold of those periodic points intersects the
local strong manifold of the point . So, there are periodic points such that their local unstable manifold
s—intersect each other and then the thesis of proposition 3.5 holds.

To finish the proof we show that the second option cannot hold. In fact, it is shown that if for every
x € Hp, the homoclinic class intersect both components of W2 (z) \ W2*(x) and the strong foliation are
not jointly integrable then we can find a pair of points such that their local unstable manifold s-intersect
transversally. Which is a contradiction with the hypothesis of the lemma.

To prove that, let us consider a pair of point & and y such that they belong to the same strong stable
manifold. Moreover, since that we are assuming that the strong foliations are not jointly integrable,
we can suppose that II**(W2(z)) does not coincide with W¥*(y). Then II**(Wk(x)) is contained in the
closure of one of the connected component of Wc%(y)\ W¥(y) and there is a point ' in IT1*¥(W¥(z)) which
is properly contained in W (y) \ W¥(y). This is equivalent to say that, there is a point y' € Wk(y)
such that is properly contained in W¢¥(y) \ II**(Wk(x)); i.e. dist(y,11%(W¥(x))) > ro > 0. Since
y is not a boundary points, we can take a point z close to y contained in W2(y) \ W2*(y) such that
IT°%(2) is contained in the same connected component of W& (y) \ Wk (y) that contains z’. Moreover,
follows that II**(z) is contained in the connected component of W (y) \ II**(W¥(x)) that does not
contain y'. Therefore, since there are not transversal intersections, follows that I1°*(W¥(z)) is contained
in the closure of the connected component of Wc*(y) \ II**(Wk(z)) that does not contain y' and so
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dist(y', 11°¥(W(z))) > ro > 0. However, if z is close enough to y follows that IT1°¥(W(z)) is close to
W(y) and in particular I1**(Wk(z)) is arbitrarily close to y’ which is a contradiction.
]
Proof of proposition 3.5:
We start the proof with the following lemma:

Lemma 5.1.2 Let x be a boundary point. Then, either it belongs to the unstable manifold of some
periodic points or there exist a periodic points p, such that W2 (z) N W"(py) # 0.

Proof: Let us suppose that there is a boundary point  which is not contained in the unstable manifold
of any periodic point. Let us take the sequence {f~"(x)},>0 and take n1, n2, ng arbitrarily large such that
the points "1 (z), f"2(x), and f~"3(x) verify that dist(f™(z), f"(z)) < §. Observe that f~"(z) ¢
Wa(f~"i(z)) for i # j i, = 1,2,3. If it is not the case, follows that f~™i(x) is contained in the local
unstable manifold of a periodic point.

Claim 5 The local unstable manifold of at least two of the three points f~"(x), f~"*(x), f~™(x) s-
intersects each other.

Proof of the claim: Assume now that the local unstable manifold of the three points do not s-intersect
each other. In this case, follows that there is one of the three points, for instance f~"2(z) such that the
unstable manifold of f~™(z) and f~"3(x) intersects the stable manifold of f~"2(z) on opposite connected
components of W2 (f"2(x)) \ W2*(f "*(z)) of it.

Now, taking

Zny = W (fT™ (@) N W2(F7™(2) and 2, = W (f 7™ (2)) N WE(f™ (@)

follows that they belong to H, and they are in different components of W2 (f~"2(z)) \ W2*(f~™*(x)).
Then, using that n1,n2,n3 are arbitrarily large follows that f"2(zp,) — « and f"?(z;,) = = as ng — +00
accumulating on z from different components of W2 (z) \ W2*(x), which is a contradiction since we are
assuming that x is a boundary point.

|
Let us suppose without loss of generality that the local unstable manifold of f~"!(z) s-intersects the local
unstable manifold of f~"2(z), with n; and ny arbitrarily large.

Claim 6 Without loss of generality we can assume that
W (f7™ (x)) NWE(f7 () # 0.

Proof of the claim: Let us suppose that this is not the case. Therefore the unstable manifold of f~"2(x)
intersect the stable manifold of f ™ (z) on one component of W2 (f~"(x)) \ W2*(f ™ (z)). We claim
that the point f ™ (z) is only accumulated by points of the homoclinic class only in the same component
of W2(f~™1(x)) \W2*(f~ ™ (x)) where the unstable manifold of f~"2(z) intersects W2(f~"!(x)). In fact,
if this is not the case, using that n; and no are arbitrary large follows that x is not a boundary point; i.e.:
if there are points z € Hj, close to f~"!(x) in the opposite component of W2(f~"(x)) \ W2*(f~"(x))
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that contains z,, = WX(f ™ (z))NW2(f ™ (z)) follows that z is accumulated by f™ (z) and by f™ (2n,)
from different connected components of W2 (z) \ W2*(z), which is an absurd since we are assuming that
z is a boundary point. The same can be conclude for f~"*(x).

Now we take

1 : B.(f~™(z)) = W(f ™ (z)).

Let us also take L' and L~ the closure of the connected components of W (f~™ (z))\ W¥(f ™ (z)). Let
us assume that I155(W¥(f~"2(zx))) is contained in the closure of L™. Let us take the point IT15(f~"3(z))
and observe that it can not be contained in the interior of the region bounded by W (f~"!(x)) and
I155(W2(f~™2(x))) (let us denote this region with L), because otherwise follows that W(f~™1(z)) and
WX(f~™2(x)) intersects both connected components W2 (f~™(x))) \ W2*(f~™3(z)), which is an absurd
because z is a boundary point (see proof of claim 5). Therefore, it follows that either IT**(f "3 (z)) € L¢
or one of the following options holds:

1. I3 (f~™3(z)) € WE(f ™ (x)),
2. TI*5(f ™ (x)) € I (WE(f " (x))).

In the first option, changing f~"!(z) and f~"2(z) by f~"!(z) and f~"3(z) then the claim holds.
In the second option, changing f~"!(z) and f~"2(z) by f~"*(z) and f~"(z) then the claim holds.

Now, let us consider the case that II**(f~"3(x)) € L°. Therefore, it follows the next options:
1. I%5(f™(x)) € L™,
2. II*5(f~"(x)) € LT\ L.

In the first option follows that II**(W*(f~"3(x))) is contained in the closure of L™ and since f~"!(x)
is accumulated by points in L™ and since f~™(z) is boundary point (follows from the fact that z is a
boundary point) follows that f~"1(z) € II**(W¥(f~"3(z))). Therefore, changing f~"!(z) and f~"*(z) by
f7™(x) and f~"3(x) respectively, then the claim holds. In the last option, follows that II** (W2 (f~"3(z)))
is contained in the closure of L™\ L and since f~"2(z) is accumulated by points in L follows that f~"2(z) €
II*s(W2(f~™(x))). Therefore, changing f~™ (z) and f~"2(z) by f~"2(x) and f~™3(x) respectively, then
the claim holds.

|

Now, we consider two situations:

L We(f~™ () Ns WE(f2(2)) = WE(f™ (),
2. WE(f ™ (z)) Ns WX(f ™ (z)) is properly contained in W*(f " (z)).

Observe that the first situation can hold even if we are assuming that the strong foliation are not
jointly integrable. In the first case, we can assume without loss of generality, that no < n; and n; —ne is
arbitrarily large. We take an arc [ containing f~"!(z) and such that I C WX(f~™ (z)) Ns WX(f~™2(z)).
Then we take f*(I) where k = n; — n2 and observe that f*(I) C W¥*(f ™(z)) and II**(f*(I)) contains
[ (where II** projects over WE(f~™(z))). So, there is a periodic point g such that W(q) contains
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(W2 (f ™ (x))) and II**(WX(f ™ (x))) (where the projection is done over the center unstable manifold
of ¢). Therefore, the thesis of the lemma holds.

Now we study the second situation. Let us take II** : B(f " (x)) — WE(f "™ (x)). Let us take
points z; € WX(f~™(x)) such that z; ¢ II**(WX(f~"2(x))) and 2o € WX(f~"2(z)) such that II°°(z3) ¢
We (7 (z))-

Let us take the connected component of W (f ™ (z)) \ W¥(f ™ (x)) and we note with L}r_nl (@) the one

that contains II1°%(22). Let us take the connected components of WE*(f ™ (z)) \ II**(WX(f "*(x))) and

—n2(z) the one that contains z7; with L}F_nz () Ve note the other component. Related to

. + + — —
this components, observe that Lf_"2(a:) C Lf_n1 @) and Lf_n1 @) C Lf_M(z).

Let g2 be a periodic point close to zo; observe that since there is nontransversal intersections then

I1%5(WX(g2)) is either contained in the closure of L;[_,12 (@) OF in the closure of L;_,Q ()" Let us first

consider that I1**(W¥(g2)) is contained in the closure of L}LM (@) In this case either follows that f~™1(z) €

I1°°(W*(gq2)) and so W24(f~™ (z)) N W*(g2) and then concluding the thesis of the lemma, or f~™ (z) is

accumulated by points from Lj{,nl (z)- Loet us consider now that I1°*(WX(q2)) is contained in the closure of

L}nQ(w)- Then it implies that ™ (z) € I1°*(WX(q2)) otherwise, if it is not the case, since I1**(W2(q2))

is close to IT**(WX(f~"2(x))) follows that II**(WX(q1)) intersect transversally W2 (f ™ (z)) which is an

absurd. Therefore, either the lemma is concluded or f~ ™ (z) is accumulated by points from L;f_"l ()" Let

us suppose so that f~ ™ (z) is accumulated by points from L;'[_nl ()" We take now a periodic point g; close

we note with Lf

to z1; observe that II%°(W2(q1)) is contained in the closure of L (@) in fact, if it is not the case, since
IT°* (WX (q1)) is close to WX(f ™ (z)) follows that II**(W*(q1)) intersect transversally II°* (W2 (f"*(z)))
which is an absurd. Now, if it happens that f~"1(z) € II**(WX(q1)) again the lemma is finished; if not

follows that f ™ (z) is accumulated by points from L;_nl @) Therefore, either the lemma is concluded

. Because also holds that f~™ (z) is accumulated by

or f~™(z) is accumulated by points from L ()
points from L;f_nl (@) and z is a boundary point it can not hold that f~™(z) is accumulated by points

from L;_nl (@) This finish the proof of lemma 5.1.2.

Now, we can prove the following lemma:

Lemma 5.1.3 Let us assume that there are not transversal intersection and there are stable boundary
points. Then, if z,y € Hp are such that y € W2*(z) follows that x and y are boundary points.

Proof: Let us assume that the lemma is false. Let us take z,y such that y € W2*(z), we can assume that
for instances y is not a boundary point. Moreover, if the unstable foliations are not jointly integrable, we

can also assume that I1%° (W (z)) intersect the interior of one of the connected components of W (y) \

W (y).

Let us take a periodic point g close to y such that II1°*(g) is in the connected component of W (y)\ W (y)
that its closure contains II**(Wk(z)). Then, since II**(W¥(q)) is close to W (y), II**(Wk(q)) is in the
connected component of We¥(y) \ W¥(y) that its closure contains IT**(W(z)). Since II**(WX(z)) and
WZX(y) do not coincide, follows that II**(W*(q)) intersects W¥(x) transversally. Which is a contradiction
because we are assuming that they are not transversal intersection.
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Now, we proceed to show that the two previous lemma imply proposition 3.5.

Let z,y € A such that y € W2*(z). By lemma 5.1.3 follows that they are boundary points. By lemma
5.1.2 either they belong to the unstable manifold of a periodic point or there exist two periodic points
Pz and py such that W25 (z) N W*¥(p,) # 0 and W2 (y) N W*(py) # 0. Taking ' = W2*(xz) N W*(pg) # 0
and y' = W2 (y) N W*(py) # 0, the proposition follows.

|

5.2 Proof of proposition 3.6.

Let x,y,pz, py € Hp as in lemma 3.5. Now, we consider two cases: either x and y belongs to the stable
manifold of some periodic point or it is not the case.

In the first case, we apply lemma 3.1.3. The rest of the subsection, deals with the second case. Since
z and y do not belong to the stable manifold of some periodic point then h;!(z) and h;'(y) are single
points and so from now on, for each g let us denote z, = h;l(a:) and yg = h;l(y).

Given positive numbers €, < € we take W' () and let us consider IT1** : B(z) — W& (z). Let us
take both connected components of W& (z)\ W (z). Since there are not transversal points, follows that
I (W (y)) is contained in one of the connected components of W (x) \ W (z). Let us denote these
components as L;{ (z) and Ly (z) where L}L(m) is the connected component such that its closure contains
I (W (y)). Moreover, we can assume that for any § there is not an arc contained in II3* (W' (y)) "Wy (z).
In fact, if it is not the case, we have that there is a point in II3*(Wy'(y)) N W§'(z) that belongs to the
stable manifold of some periodic point and therefore we can apply the lemma 3.1.3. For each g, we take
the two connected components of W (x) \ W (z,) and we note it L (z,) and L, (z4) respectively with
the property that L (xy) and L, (z,) move continuously with g.

Now, we take the two connected components of W& (z) \ TI3°(W¢(y,)) and we note them with

L (T1°*(yg)) and L, (I1°*(y,)), taking in account that we note with L}' (IT**(y)), the connected component
contained in L}L ().

Proposition 5.1 Let us take x,y as in lemma 3.5. Let us suppose that they do not belong to the stable
manifold of some periodic point. For any ng > 0 there exists a one parameter family F = {g,,}ne[o’l] such
that for any g € F follows that

1. |g - f| < 7o,

2. y € W¥(py,9) and g(f~*(x)) € W*(pz, 9),

3. g7™y) = f(y) and g7(f(z)) = f(f () for any n > 0;
and for any n > 0 holds that:

1. gy(f(z)) # 05 (y) and

2. go(f~'(2)) € L, (T3 (v))-
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Remark 5.1 Observe that given g € F, x4 and yq follows that they are not necessarily equal to g(f~(x))
and y respectively. In particular, the fact that g(f~*(x)) # II5*(y) does not imply that x4 # TI55(y,).

Before to give the proof of the Proposition, let us show how it implies the proposition 3.6.
Proof of proposition 3.6: proposition 5.1 implies proposition 3.6.

Observe that x4 and y4 belongs to the same local center stable manifold. For each g € F let us take
W (xg,9). Using that W*(zg4, g) is continuous with g we can assume that W (z4,9) = W(z, f).
Moreover, we also can assume that W (z, g) "W (x, f) = W(z, f) N WE(x, f). Observe that for any
g € F follows that g(f !(z)) € W¥(z4,9) and y € WU (yg, g), therefore, Ly (g(f () = Lg" (x,)
and L;’_(H;s(y)) = L;’_(Hf]s(yg)) In particular, if g1(f~"(x)) € L, (I (y)) follows that

W (g1, 91) N Ly, (T (yg,)) # 0-

Then, follows that there is an arc in W (zg,, g1) contained in L, (II5*(y)). Let us consider the maximal
connected components of W(z,,,91) that intersects Lj, (II5*(y)) and let us denote it with w(zy,, g1).

We claim that there exists 29 € w(zg,,g1) such that hg, (29) belongs to the stable manifold of some
periodic point qg. In fact, let us consider the map

h’gl : w(xgngl) - Weu(x)

Taking into account that hg, (z) is continuous then either hg,, o is constant or hg, (w(zg,,91)) is

Tgq1,91
a connected interval. In the first case, by lemma 2.4 follows thatglhgl)(w(xgl, g1)) belongs to the stable
manifold of some periodic point. In the second case, since the intersection of any unstable arc with the
stable manifolds of any periodic point in H), is dense, the assertion also follows.

Now, for each 1 we take the set hg*nl(hg1 (20))- It holds that either the set is a single point or it is
an interval I, contained in the stable manifold of a periodic interval J;, such that the extremal points
of J,, are periodic points (see proposition 2.3). The proof of the proposition in the second case is more
elaborated and contains the proof in the first case. So, we focus only in the second case. Observe that
for any 1 > 0, from the fact that g,(f'(z)) € L§ (II5¢ (y)) follows that I, N L (T3 (y)) is not empty.
Also observe that x4 ¢ I,, because = does not belong to the stable manifold of some periodic point (see
propositionconjugacionbis3). Let us take z,;L and z, the extremal points of I, such that z; is the extremal
point of I, closest to z,,. Let us take ¢ and g, the extremal points of J, such that 2, € W*(g,") and
z, € W? (q; ). Observe that q,‘; and g, are continuations of go and there exists ng such that for any 7
follows that

g0 (z7) € Wi(gl), and gp°(z,) € Wi(qy)

Now we consider two following obvious alternative:
1. There exists 7o such that either 2, € Ly (I3 (y)) or 2, € Ly (IIg° (y))-
2. For all n > 0 follows that z;” € Ly (II;: (y)) and 2, € Ly, (II3* (v)).

To conclude the proof of the proposition, we show that the second case cannot occur and that in the
first case there is a map g close to f exhibiting two points in the condition of lemma 3.1.3.
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First case:
Let us suppose that there exists 79 such that z} € LT (1'[;20 (y)). Since W¢'(z) C L (IIF(y)) it holds
that
7y € Ly (15 (y))

therefore follows that there exists 71 such that

ZT_]|—1 € HSS (Weu(yhgnl)) N Weu(xgnlag'rn)'

Im

Therefore, there are two points in the condition of lemma 3.1.3 and from that we conclude the proposition.
If it holds that 2, € L;’(H;flo (y)), we can repeat the argument and again we conclude the proposition.
Second case:
First observe that from the continuity of h4 follows that x4, — x as n — 0. Moreover, it also holds
that
Z+

n ¢ n—0.

In fact, if it is not the case, let us take the interval [z, , 24| contained in W¥(z)defined as [z, ,2]] =
lim, .o [zn_ , z,‘f ]. Since zp]L is the closest point to z,4, it follows that zaL is the closest point to x and so if
zg # x then [z;, 27 ] is contained in the interior of L (II$(y)), and therefore by continuity follows that
for 77 close to 0 holds that [z, , 2, ] is contained in the interior of Lg (17 (y)) which is a contradiction
because I C [z, , 2] and I, N LS (II5° (y)) is not empty for any n > 0.

Therefore, 2, — = as n — 0. Then,

d(g™ (z]), 9™ (zy)) — 0.

Since gp°(z,) € W2(q;) and g7 — qo it follows that z belongs to the stable manifold of g, which is a
contradiction.
[ ]
Proof of proposition 5.1:
To construct the one parameter family, we perturb the unstable manifold of p, in a small neighborhood
of f~!(x) with the property that for any > 0 holds that

gn(f71(2)) # P (y), and gy(F7 () € LT (OF(W2(y)))

where L* (I3 (W (y))) is the connected component of Wt (z) \ I3 (W (y)) such that its interior inter-
sects I15°(H, N B(y)). Later it is showed that this property implies that for any n > 0 follows that

9n(f 7 (2)) # T2 (y) and gy (F7'(2)) € Ly, (153 (y)).

We consider two cases:

1. z ¢ w(x),

2. z € w(z).
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Case 1: z ¢ w(z).
Since = ¢ w(x) we can get a neighborhood B of f~1(z) such that for any z € W<(z) follows that
f¥(z) ¢ BV k>0.

Then it holds that
zg = g(f~'(x)) and II* (yg) = II5°(9(f (1))

following immediately the thesis of the proposition. Therefore, it remains the case that z € w(z).
Case 2: z € w(z).
First we need a series of results that allows to localize and control the recurrences.

Lemma 5.2.1 Let q be a periodic point. Let also assume that [W2*(q)\{q}]NHp = 0. Then, there exists
20,21 € WE(q) and € > 0 such that if z € W5°(q) then there is k > 0 verifying that

F78(z) € WE((f(20), 20)] UWE ([f™(21), 20)))
where WE*([f™4(2:), 2i)] = Ugzre[fma ()} WS (2') and [f™4(2:), 2] is the connected arc of WE(q) that its

extremal points are given by z; and f™i(z;) (i =0,1).
Moreover, given N > 0 there exists d = d(N) such that if 2 € W(q), d(q,2z) < d and f~%(z) €
Wes([f™(20), 20)] U W ([f™(21), z1)]) then k > N.

Coordinates in a neighborhood of z.
We take a small neighborhood Ry of x and a map

H : R(n?,nd,m0)(z) = {(2,9,2) : 12| <n, gl <nd |2l <ng»} = Ro
such that
1. H(z) = (0,0,0);
&(x) N R(n3,m2,m))(x)) = {z = 0,5 = 0};

(

2. HW,

3. H(We(z) N R(ng,n2,ma)(x)) = {z = 0}
(
H(

~
e

I (Wx(y) N R(n2,n2,19)(x)))) € LT = {g > 0};
s (W (y) N {z > 0})) C L* = {g > 0};
We take 0, < 09, n. < n° and 1, < 79 and a rectangle R(ns, 7, 7)(z) C R(n2,172,70)(z) in R3 given
by
R=A{(z,9,2) : |Z| < ns, Y| < Ne,|Z| < Nu, }-

Now we apply lemma 5.2.1 to the point p, such that x is contained in the local unstable manifold of p,
and we obtain the following corollary:
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Corollary 5.1 There exist n0,n0,m0 such that if z € R(ns,ne,nu)(z) then there exists k > 0 such that
WE(f75(2)) N [WE([f™(20), 20)] UWE([f™1(21), 21)])] # 0. Moreover, given N > 0 there ezists n. < nQ
such that if z € R(n%,ne,n°)(x) and f*(z) € R(n2,me,n0)(x) then k > N.

Perturbation of f.
We take 1,7,y small. For each n with —n, < n < 7. we take the map
TT](27 Y, 2) = (ja Y+ Gn(ja Y, 2)7 2)

where
G"(2,9,%) = G(%)G4(9)G3(2)

and G7,GJ,GY are C" functions satisfying

ui _ ui _ ui N
L Gl pymale = 05 G2 pnee = 05 Gy puge = 05

ui Ui Ui .
2. Gy 20 G2 20 Gy ) 2 05
3. G1(0) =1, G3(0) =n, G3(0) = n;

N

! ! !
G < L jey) < 16y <

Observe that
3 n® n n?
Tn(O, 0, 0) = (0,77 ,0) |8zT77| S ’]7_7 |6yTn| S ’[7_’ |82T7]| S ’,7_

S C u

Therefore, taking 7 small enough follows that T is C'—close to the identity map in R. Now we take 9n
equal to f in the complement of R = H(R(ns, ¢, nw)(x)) and in R we take

gn:H_loTnoHof.
Remark 5.2 It follows that for any g, € F follows that
dist(gn(f~ (2)), @) = 1.

In particular this implies that
gn(fH(2)) € LF (TP (W (y)))-

Lemma 5.2.2 For any g € F follows that if z € WX(y) then

3
dist(T2*(2), TI(2)) < 2/\NZ—.
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Lemma 5.2.2 and remark 5.2 imply proposition 5.1:
Observe that it is enough to show that dist(g(f~'(«)), 15*(y)) > 0. In fact,

dist(g(f (), I (y)) > dist(g(f~ (), T (y)) — dist(T15 (y), 15 (y))
= dist(g(f'(z)), ) — dist(IT¥ (y), L (y))

3 )\N
> pd ooV L 3 - 2]
S

S

Therefore, recalling that N = N(n.) — +o00 as 1. — 0 (recall corollary 5.1), choosing 7, small enough
such that

)\N
2— <1

Ms

we conclude the proposition.
|
Proof of lemma 5.2.2:
First we prove that for any z € W*(y) follows that
,’73

Ns

To do that, we use the next immediate claims:

Claim 7 Let g € F and let Dg: T,M — Ty, )M. Let w € Ty(2)M be close to E1(g(z), f). Then

SL(Dg~ (), Bv(z, £)) < - + ASL(w, E1(g(2), f)).

Ts

Claim 8 Let g € F and let Df" : T,M — Tyn(,yM. Let w € Tyn(;)M be close to E1(f"(z), f). Then
SL(Df™(w), E1(2, f)) < X*SL(w, E1(f"(2), f))-

Now we proceed to prove (11). Let z € W¥(y). Let us take the sequences n; such that z; = g"i(z) € R.
Let k; = n; — n;—1 with ng = 0. Observe that f7(z;) = ¢’(z;) for 0 < j < k; — 1. Observe that

Ei(z;,9) = Dg % D(Ei(¢" 1 (2),9)) = Df % D(E(f57(2), 9)).
Using claims 7 and 8, follows that

SL(Ey(2,9), Br (2, £)) < N[ 4 ASL(Er(zi11, ) Br (i1, )

Ns
3

< AV 4 ASL(E: (2141, 9)Er (zi41, )]

Ts
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Therefore,
3
SL(E1(2,9), Bi(2, 1)) < N {1+ 2500Y),
So, for N large (11) holds. To conclude the proof of the lemma, it is proved that (11) holds for any

z' € W25%(z) such that z € W(y).
[
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6 Joint integrable case. Proof of proposition 3.7.

Recall that in the present situation we can not guarantee that there is a pair of periodic points such that
their unstable manifolds s-intersect. So, in general, the perturbations performed in the previous sections
can not be carried out in the context of joint integrability.

Before to start, we need more information about the points z and y in particular when either x or y are
not boundary points. More precisely, using that the strong foliations are jointly integrable, we can prove
the following lemma.

Lemma 6.0.3 Let Hy, be a topologically hyperbolic homoclinic class. Let also assume that the strong
foliations are jointly integrable. Then, for any z € H, one of the next options holds:

1. for any positive integer ng and a positive constant r, there exist positive integers ni, ng,ng such that

(a) n;y >mng fori=1,2,3,
(b) dist(f "i(z),f ™i(z)) <7 fori,j=1,2,3,

(c) the local unstable manifold of f~™(z) and f~"3(z) intersects different connected components

of We(f™m2(2)) \ W (f72(2));
2. z € W¥(q) for some periodic point q;

3. there exits a pair of periodic points g1 and qo such that the local strong stable manifold of each point
intersect the unstable manifold of the other point.

Proof: The proof is similar to some part of the proof of proposition 3.1.1. If the first item does not
hold, then follows that there exist n; and ng arbitrarily large such that either f~"2(z) € WX(f~™(z))
or [Wes(f™2(2)) \ {f ™ (2)}] N WX(f ™ (z)) # 0. In the first case, follows that z belong to the un-
stable manifold of some periodic point. In the second case, from the joint integrability follows that
WE(f~™2(2)) C W%(f~™(z)) and arguing as item (4i) of claim 6 2.1 of lemma 5.1.2, the third situation
follows.
|

Let us take the points z,y € H) such that y € W2*(z). Observe that if either = or y verify the third
item them it follows that f satisfies the proposition 3.2. If both points satisfy the second item, since the
strong foliations are jointly integrable, follows that we are in the hypothesis of lemma 3.1.2 and so then
we can apply lemma 3.1.3 to finish the proof of proposition 3.7.

Therefore, it what follows we assume that at least one of the points x,y, verifies the first item of
lemma 6.0.3. Then, one of the following options holds:

1. Case A: the points z and y satisfy the first item of lemma 6.0.3.

2. Case B: either z or y satisfy the first item of lemma 6.0.3 and the other point satisfies the second
item of lemma 6.0.3.
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Moreover, we can assume that the points x,y are contained in the set A given by theorem 3.1.

Given a point z € A that verifies the first item of lemma 6.0.3 we can show that the point z is
accumulated by periodic points in a neighborhood of A converging on z from both connected components
of W2(z) \ W5 (z). As the consequences of lemma 6.0.3 we get:

Lemma 6.0.4 Let z € A such that verifies the first item of lemma 6.0.3. Then, for any small open
neighborhood V' of A follows that there are periodic points in Npezf™(V) such that the local unstable
manifold of these periodic points intersects different connected components of WE(z) \ W2*(z).

Proof:

Let us take a periodic point go; with orbit in V' and close to f~"(z) such that the local unstable
manifold of ¢a; intersect the same connected components of W2(f"2(z)) \ W2*(f "2(z)) where the local
unstable manifold of f~"1(z) intersects WS(f~"2(z)) \ W2°(f~™2(z)). Let us take a periodic point go3
with orbit in V' and close to f "3(y) such that the local unstable manifold of g3 intersect the same
connected components of W2(f"2(z)) \ W2*(f ™2(z)) where the local unstable manifold of f~"3(z)
intersects W2(f~"2(z)) \ W2*(f~™2(z)). So, observe that there are arcs y2; and 732 of the local unstable
manifold of go1 and ¢32 such that fi(y21) C V, fi(y32) C V for 0 < i < ng, and intersecting different
connected components of W?(z) \ W2*(z). Using a dense orbit in A (recall that Ay is transitive), follows
that there are discs Da; and D3g of the local stable manifold of g2; and g3 such that f~*(Dg;) C V for
0 <4 < ko and ko large, f~*(D32) C V for 0 < i < k3 and k3 large, such that f*2(Ds;) and f~"*2(D3s)
intersect the local unstable manifold of z.

Moreover, we can suppose that f"2(vya1) intersects f~*2(Da;) and f™2(y32) intersects f—*3(Dsz).
Then, there homoclinic points z91 and z32 of g21 and ¢32 respectively, with orbits in V' and such that their
local unstable manifolds intersects the local stable manifold of y in different connected components of
WE(z) \W2*(z). Then, we can get a pair of periodic point, each one arbitrarily closed to each homoclinic
point. This conclude the proof.

|

As a consequences of previous lemma and using lemma 2.3.1 and that the subbundle Fj3 is expansive re-
stricted to A follows that there is A\ < 1 and a neighborhood V; of A such that A C Closure(Pery, (f/V1))
and therefore for any z € A there are periodic points in Pery (f/V1) accumulating on z such that the local
unstable manifold of these periodic points intersects different connected components of W2 (z) \ W2*(z).
Now we take the two connected components of W<%(z) \ W*(z) and we denote it with L!(z) and L"(z).

Lemma 6.0.5 Let z € A such that verifies the first item of lemma 6.0.3. Then, follows that
88

1. there is a sequences {¢,,} € Pery (f/V1) accumulating on z and such that Hf’z(q,fl) € I}(2);

2. there is a sequences {qy} € Pery (f/V1) accumulating on z and such that 113, (q7) € L7 (z).

Recall, that for any g € U the map h;l is well defined over the periodic points in Pery_(f/V1).
Now, fixed a sequences verifying the lemma 6.0.4, for each g € U we define

zg =limg;(g) and z; = limgj(g).
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Remark 6.1 Observe that if h;l(z) is a single point then zf] = 2g.

Remark 6.2 Observe that z; and zg, move continuously with g and they belong to Hy(g) for any g close

to f.

For each g € U, given z and the points 2} and 2}, we define L"(2}) and L'(z}) as the continuation of
L"(z) and L!(z) respectively.

Lemma 6.0.6 Let z € As such that verifies the first item of lemma 6.0.3 and let {g.,} € Pery (f/V1) be
the sequence such that H;s(qil) € L'(2). Then either

1. for any g € U and any gn follows that I13°(gn(g)) € Ll(zé) or

2. there is a g € U arbitrarily close to f and g, such that TI;*(gn(g)) € Wf(zg), i.e.: W2%(gn(g),9) N
W (25, 9) # 0.

The same statement follows for zg.

Proof: It follows immediately from the continuity with g of wé, gn(g), the local strong stable manifolds
and local strong unstable manifolds.
|

Lemma 6.0.7 If the second item of lemma 6.0.6 holds, follows that there is a map g C'—close to f and
a periodic point q, such that q,(g) ezhibits a strong homoclinic connection. Therefore, the proposition
3.7 is finished in this case.

Proof: If there is a ¢ € U and ¢, such that W2*(gn(g),9) N Wf(zfj,g) # 0, using that zg and ¢, (g)
belongs to Hy(g) with g,(g) homoclinically related with p(g), follows that the strong stable manifold and
the unstable manifold of ¢,(g) accumulates one into the other. Using the connecting lemma, the results
follows. [

Therefore, in what follows, we assume that the first item of lemma 6.0.6 holds. In the next sections
we study the case A and we show how the proof is adapted to deal with the case B.

6.1 Case A:

We can apply lemma 6.0.5 for both points  and y. Moreover, recall that we are also assuming that the
first item of lemma 6.0.6 holds. Therefore, in what follows we assume that

1. there is a sequences {¢),} € Pery_ (f/V1) accumulating on z such that for any g € U follows that
¢',(g) accumulates on xé and H;S(qfl (9)) € L} (m_f]),

2. there is a sequences {q},} € Pery (f/Vi) accumulating on z such that for any g € U follows that
q,(g) accumulates on zj and I13°(qy,(g)) € L"(xy),
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3. there is a sequences {p},} € Pery (f/Vi) accumulating on y such that for any g € U follows that
pl.(g) accumulates on yé and II3° (pL(g)) € Ll(yé),

4. there is a sequences {p},} € Pery_(f/V1) accumulating on y such that for any g € U follows that
P (g) accumulates on yy and II°(pj,(g)) € L" (yg)-

In what follows, we have to study what happen to the right or left continuation of z and y. We do
the study just for the right continuation; the same follows for the left one. To avoid notation, we denote
with 2, and y, the right continuation of x and y respectively.

To finish the proof of proposition 3.7, we consider the following options:

1. there exists g € U arbitrarily close to f such that the points x4 and y,4 verifies that
W (yg, 9) N WE(zg,9) = 05

2. or for all g € U follows that
We(yg, 9) N W (zg,9) # 0.

In other words, as in the case of transversal intersection, we also consider here the following two
situations:

1) If for some g close to f holds that the “continuation” (right or left) of the points z and y do
not belong to the same strong stable leaf, then taking an isotopy between the initial map and the
perturbation, follows that for some map of the isotopy holds that there are two periodic points as in the
thesis of proposition 3.2.

2) If it occurs that for any g close to f holds that the “continuation” (right or left) of the points z and
y have the property that they belong to the same strong stable leaf, then it is performed a perturbation
such that the local unstable manifold of the “continuation” of the points « and y are not jointly integrable,
and this allows to find two periodic points as in the hypothesis of proposition 3.2.

Remark 6.3 We do not know if the second option can occur for an open set of diffeomorphisms; therefore
a strategy is developed assuming that the second option can occur.

Now we start analyzing the first case.
1. There exists g € U such that W2 (yg, g) N W2*(z,,g) = 0.

To avoid notation, we denote W' (SS)(yg, g) with W' (s2) (yg), except it is necessary to clarify. The
same for 4.

Lemma 6.1.1 Let us assume that there exists g € U such that W (yg) NW2*(z4) = 0. Then there exists
g € U such that the thesis of proposition 3.7 holds for g.

Proof: Let us consider a homotopy F = {g,}o<n<1 such that g, € U for any n, go = f and g; is a
diffeomorphism that verifies the hypothesis of the present lemma. We take the two connected components
of W& (y) \ W(y) and we note with L*(y) the right connected component (recall that we are dealing
with the right continuation of z and y, so L™ (y) is equal to Ly). The same is done for z.
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For each g € F let us also take W (yy) and the two connected components of W (yg) \ W (yg)-
We note with L™ (y,) the right connected component and with L™ (yg) the other component. Using that
We¥(yy) and W2 (y,) are continuous with g, it follows that LT (y,) and L™ (y,) move continuously with g
(observe that since y4 = y} then L™ (yy) do not necessarily coincides with L!(y?), in fact, this is the case
if yf] # Yg)- The same is done with z.

Now, for each g € F we take II;° : B — W *(y,) where B is a neighborhood that contains x4 and y,
for any g € F.

Since W (yg,) N W*(z4,) = 0 then IT;% (x4, ) is contained in one of the connected components of
W (yg,) \ W(yg,). We can suppose that

I3 (zg,) € LT (yg, )-

Taking a reduced center unstable manifold, we can also assume that for any z € W (z4) it follows that
I3%(2) € L (yg, ). By lemma 6.0.5, 6.0.6, and the fact that z, and y, are the right continuation of z and
y respectively, follows that there exist a pair of periodic points g, and g, of f such that g, is arbitrarily
close to x, gy is arbitrarily close to y and such that

1. g5 € Pery (f/V1) and gy € Pery (f/V1),
2. II%,(g-) € LT (2) and II¥ (gy) € LT (y)
3. for any g € U holds that g,(g) and gy(g) are close to z4 and y4 respectively,

4. for any g € Y holds that IT3%, (gz(g)) € L (zg) and I3, (gy(9)) € L™ (yg),

Moreover, we can suppose that for any g € F follows that ¢,(g) and gy(g) belong to B.
Now, for each g we take

W (yg) \ TIg° (W (ay(9)))

and we note the both connected components with L*(gy(g)) and L™ (gy(g))). Again we can choose the
connected components L+ (gy(g)) in such a way that they move continuously with g. Moreover, we choose
L*(gy) as the connected component that verifies that it is contained in L™ (y).

Using that I3} (z,,) € L™ (yq,) we can choose the periodic g, close enough to y in such a way that it
verifies:

H;f(Wg(wgl)) C L+(Qy(gl))- (12)

Since TI5%, (g2(9)) € L™ (x,), from (12) follows that

g (42(91)) € L (ay(91))- (13)
The periodic point g, can be also choose close enough to x in such a way that it verifies:
dist(T13(g2), TTF (2)) < dist (T} (a,), ). (14)
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From (14) follows that
115 (¢:) € L™ (gy). (15)

Using that the maps g — II;°(gz(g)) and g — II;°(gy(g)) move continuously with g from (13) and (15)
follows that there is § € F such that

117°(¢2(9)) € g (W (9y(9)))

therefore,
W (42(9))) N W (qy(9)) # 0
and so the lemma follows.
In the case that
127 (zg,) € L™ (yg,)

since z4 € W(yg) for any g, it follows that

I15; (v, ) € L (zg,)

and so we can repeat the same analysis replacing z by y.
[
2. For every g € U follows that W2 (y,) N W25 (z,) # 0.
Given the pair z,y, observe that there is a periodic point pg close to them such that W*(z)NWZ(po) #
0 and W2 (y) N W2(pg) # 0. Without loss of generality, we can assume that the point pg is fixed. We can
take a disc D contained in W2(pg) such that W¥(z) N D # 0 and W¥(y) N D # (. We take the points

z- e Wt(z)ND, and y € W'(y)nD.

Observe that it could occur that £~ = x and y~ = y. We can also suppose that for any g close to f, the
point po remains fixed and the disc D remains contained in W2(pg). Now, for each g € U we considerer
the points

z, = W(zg,9) N D and y, = W (yg,g) N D.
If it holds that there is g € U such that

Yg ¢ W(zg)

then we use proposition 6.1 below that proves proposition 3.7.
If it holds that for every g € U holds that

y, € W2(zy)

then there is performed a C! —suitable perturbation (see proposition 6.3) to show that the strong foliation
associated to these points are not jointly integrable and then we show that this implies the proposition
3.7. We consider both cases separately.

Remark 6.4 We do not know if the second option can occur for an open set of diffeomorphisms; therefore
a strategy is developed assuming that the second option can occur.
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2.1. There is g € U such that y, ¢ W2*(z,).

Proposition 6.1 If there exists g € U such thaty, ¢ W*(z; ), then follows that there exists § € U such
that the proposition 3.7 holds for §.

Proof: Let us consider a homotopy F = {g,}o<n<1 such that g, € U for any n, go = f and g; is
a diffeomorphism that satisfies the hypothesis of the present proposition. For each g € F let us take
Wet(y, ) and the connected components of We*(y, ) \ W (y, ) that we note as LT (y,) and L™ (y, ).

By hypothesis, we are assuming that y,, ¢ W2*(z,,) and we can suppose that

I3 (z,,) € L;Ll (Yg)-

Recalling that there are periodic points in Pery (f/Vi) accumulating on z and y from the right, we
can choose a periodic point g, and g, such that

fe(dz) € LT (z) and IT7 (qy) € L (y).
For these points and its continuation, and for any g € U we take the points
%(9)” = Wi(a=(9)) N D and gy(9)~ = W¢(gy(9)) N D.

In particular it holds that
I*(q, ) € L™ (y ) and I**(q, ) € L*(y ).

We take the point g, such that for any g € F holds that

. _ _ 1. _y —
dist(Tly* (g (9)), ¥y ) < dist(Tlg; (2g,), ¥g,)- (16)
We chose the periodic points g, such that verifies

. S8 ( — SS( n— 1. sS/ — _
dist(T (g5 ), T3 (27)) < 5dist(IT5*(g; ),y™)  and, (17)

. 88 — 88 (. — L. 88(, — —
d/LSt(Hgl (Qm(gl) )7Hg1 (a‘lg1)) < EdZSt(Hgl (ygl)?xg1)‘ (18)

For each g € F, we consider the connected components of We*(y,") \ TIg° (W (gy(9)7)))-
We note this components as L*(IT3*(gy(g) ))) and L™ (I13°(gy(g) ))) and we can choose them such that
they moves continuously with ¢ and such that,

LH(T15%(gy(9) 7)) € LT (y)-

By (17), follows that
I1°°(g; ) € L™ (I%*(gy ))-
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From (16) and (18), follows that

I (g2(91)7) € L7 (1053 (gy(92) 7))-

From the continuity of g — IIZ® follows that there is another g such that

Hgs(‘h(g)_) = Qy(g)_'
This implies that

7(9)” € W(gz(9)")-
Therefore, we get that there exists § such that the local unstable manifold of the periodic points g, (§)
and g, (g) s-intersect each other (at gy(§)~ and ¢,(§)~) and these points of s-intersection belong to the
stable manifold of a periodic point. Therefore, we can apply the lemma 3.1.3 to finish the proof of the

proposition 3.7 is the present case.
In the case that

g7 (2g,) € Ly, (yg,)s
it follows that
115 (ug,) € Ly, (ag,)
and therefore, interchanging the role of x and y we can repeat the same argument.
]
2.2. For every g € U holds that y, € W2*(z,).
To deal with the case that for every g € U follows that y, € Wess(:cg—) we introduce a special

perturbations such that the strong manifolds associated to z; and y, are not jointly integrable. In other
words, in the present case we prove that there is ¢ C'—close to f such that

IT;° (W (g(y, ))) does not coincide with W' (g(z;)).
After that, arguing in a similar way as in proposition 6.1 we conclude the proposition 3.7.

Remark 6.5 Assuming that x does not belong to the unstable manifold of a periodic points, follows that
there exist a neighborhood Ry of f(z~) and z € W*(pg) such that O(z) N Ry = 0.

Proposition 6.2 Let us assume that for every g € U holds that y, € W* (ac;) Let us assume that for
any U C U there exists a one parameter family of diffeomorphisms F such that

1. for any g € F follows that gU,
2. 9|Rye = f|Roc where Ry is a neighborhood as in remark 6.5,

3. there exist T > 0 and g € F such that for any z € Wit (g(y,)) \ {9(y, )} follows that WZ*(z) N
W (g(zg)) = 0.

Then, the proposition 3.7 follows.
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Proof:

Observe that the previous proposition implies that the local unstable manifold of g(ys) and g(zg)
are not jointly integrable. To precise, the proposition 6.2 implies the next assertion (recall that we can
assume that for any g close to f we can assume that pg is a fixed point and W2 (po, g) = W2(po, f)):

Claim 9 There is a compact disk D* contained in the stable manifold of po for any g € F such that
there exist Ty and yg verifying:

1. zy € Wr(g(zg)) N D*, y; € W(g(y,)) N D*
2. y; ¢ Wess(w;)'

Proof of the claim: Let z and Ry be the point and neighborhood considered in remark 6.5. Let
k > 0 such that f=%(z) € W¥(po). Then, we can take a small disk Dy containing z and contained in
the stable manifold of py such that UX of (Do) N Ry = (. In particular, for any g € F follows that
9|Uk_ o f~i(Do) = f|Uf>0f—i(D0)- We can take n > 0 and D* C f~"(f*(Dg)) close enough to a disk in
WE(po) such that

1. dist(D*,W$(po))) <,
2. W¥(z) N D* #  for any z € Ry N W2 (po),
3. filD)NRy=0for1 <j<n.

. B . . . .
From these properties follows that ki pi(Dr) = f|Uf>+0n Fi(D*) and therefore D* is contained in the stable

manifold of py and verifies the thesis of the claim.

mTaking the disk D*
follows that for any g € U holds that the disk D* intersects the unstable manifold of size r of the points
z, and y, . To conclude the proof of the proposition, we repeat the proof of lemma 6.1 changing the

g
points x by x and the disc D by D*

g7yg g’yg

|
Now, we have to show that there exists a diffeomorphisms a one parameter family of diffeomorphisms
C'—close to f verifying the hypothesis of proposition 6.2.
To do that, first we introduce some coordinates nearby the point pg. In particular, recall the lemma
2.2.1 and corollary 2.2 that state that the strong stable foliation is C?.
1. Local coordinates. First we introduce in the next remark a system of local coordinates used to
perform the perturbations of f that verify the hypothesis of proposition 6.2.

Remark 6.6 Let us take the point po such that x—,y~ € D C W2(pg). We can assume that there is a
C'—map H from a neighborhood By of po to a neighborhood By of (0,0,0) in R® such that if we denote
with (Z,7, %) the coordinates of a point in By and with (Z(2),7(z),2(z)) the coordinates of a point H(z)
follows that

1. H(W¢(po)) = {z = 0},
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2. HWX(po)) = {z =0,5 =0},
3. HWe(f(=z7))) = {z € Bo: 2(2) = 2(f(27)), 9(2) = §(f(2))},
4- HWe(f(y7))) = {2z € Bo: 2(2) = 2(f (y7)), 9(2) = y(f (¥))}-

5. given a point z in R, follows that

8l

DH[E:(z, f)] = (1,0,0) and HW*(2)) = {z = z(2)}.

Moreover, we can take the neighborhood By in such a way that W*(z)N f(Bo) = 0 and W (y)Nf(Bg) = 0.

2. Selection of rectangles around f(z7).
Using lemma 4.5.5 and the coordinates introduced above, we can take constants

caa<ca<cz<c<ygH(f(x))) <ds<ds<dy<d,
a1 <az<ag<as<T(H(f(z7))) < bs <bg < by < by,

such that for each ny > 0 if we consider the rectangles R;(n{) i = 1,2, 3,4, defined by
Ri(ny) ={(Z,9,2) 1 a; < T <bjj¢; <F < dy;|2| <mg'},

they verify that

1- H(f(z)) € Ra(ng) C Ra(ng) C Ra(mg) C Ra(mg) C B

2— H(f(y")) ¢ Ra,
83— [Ri(ng) \ Ra(ng)] N Hy =0 and
4— Ri(ng) C Ro

where Ry is the neighborhood given in remark 6.5. To avoid notation, we also note the rectangles
H™Y(R;(ng)) and H™'(R;(n)) with Ri(n§) and Ri(n).

Remark 6.7 For any g C1—close enough to f follows that
Ngns039" (U) N [Ra(ng) \ Ra(ng)] = 0.

3. One parameter family of perturbation of the map f.
Now, given 79 small, it is constructed a one parameter family of C!—perturbation g of f with the
property that |f — g|1 < no and the local unstable manifold of g(z4) and g(y,) are not jointly integrable.

Lemma 6.1.2 Given ng > 0, follows that for any ng > 0 there exists a C'—diffeomorphism
g = g(no,ny) such that the following properties hold:

1. |g— fl1 < no where |.|1 is the C1—norm,
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2. 9Ry ey =T
3. for every z € Ry(n¥)N D follows that DH~ o D,go DHJ(0,0,1)] is collinear to the vector (0,70, 1),
4. for every z € Nip~039" (U) follows that Er(z,g) = Ei(z, f),

5. there exists a neighborhood B(f(y~)) of W2*(f(y~)) such that f(z~) € B(f(y~)) and for every
z€ B(f(y™)) NAg(U) follows that

W(z,9) = W(z, f).

Proof:

Let us consider the map _
H: Bo — Bo

given by remark 6.6. First, we consider a perturbation of the identity map in By. We take the map
T : By — By defined as

&2\
Qﬁ\
N
&

T(z, (#,9+ Ti(2)T2(9)T5(2), 2) if (2,9,2) € Ri(mg),
T(z, (z,9,2) if (z,9,2) € Ra(n5)"-

for some appropriate C'—maps T}, T» and T3 defined over the real line. We assume that T and T5 verify:

1 2)
»Z)

&2\
Cﬁ\
Y]
&
td\
W

1. Th(z) =0 for all Z ¢ [ag, b2, Ta(y) = 0 for all § ¢ [ca, da];

2. T1(z) <1 for all = € [ag,a3] U [b3,ba], T2(g) = 1 for all § € [ca, c3] U [d3, da];

3. Thi(z)=1forall z € [a3,b3] 2(g) =1 for all § € [e3, d3];

4. |T(z)| < mm{a3 ) b2 5} for any z, [T5(y)| < mm{63 ) d2 7 } for any y.
We assume that T3 verifies:

1. T3(0) = mo,

2. |T3(2)| < mo for any Z,

3. T3(2) = 0 for all Z € [—ng,n§]¢,

4. |T3(Z)| < ngno for any Z,
Observe that

1 0 0
DT = | T (f)T2(§?J)T3(5) 1+ T1(:E)OT£(37)T3(2) T1(5?)T21(?J)Té(f)
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So, taking 7§ small enough, follows that
|T I |1 < 1o-
Moreover, we can assume that

|[H Y oT o H—1I| < no.

Then we get the map g equal to f in the complement of By and inside By it is taken the map
g=H 'oToHof.

To conclude the third item, observe that for any (z,y,0) € R4(ng) follows that
Ty (z)T2(y) T3(0) = mo.

To conclude the fourth item, first observe that for any (z,y,2) € [R1 \ R2(n§)] U Rs(ng)] follows that
T1(Z)T>(9)T3(2) = 0. Therefore, if O(z) N [[R1 \ R2(n§)] U R3(ng)]] = O then follows that Ei(z,g) =
Ei(z, f). Since by remark 6.7 follows that Ng,~019™(U) N [R1(ng) \ Ra(ng)] = 0 follows that for any
z € Nip>039™(U) then E1(z,9) = E1(z, f).

To conclude the last item, first observe that if we take

€1 < min{ag —a1,a4 —asg, b1 — bz,bg - b4}

follows that for any z € Ag(U) = Nn>039™(U) andz’ € W(2) then O(2') N[[R1 \ R2(ng)] U R3(ng)]] =0
and so, for any 2’ € W2*(z) holds that Ey(2',g) = E1(#/, f) and so

W(z,9) = W3 (2, )
To conclude that also holds W2*(z,g) = W2*(z, f) we need the next claim.

Lemma 6.1.3 For any positive integer M there exists iy such that for ng < g and g = g(no,ng) as in
lemma 6.1.2 follows that if z € Hp, 2 € h,'(z) N R(nY) and g™(2) € R(n§) then |n| > M.

Proof of the lemma 6.1.3: Wedeal first wit forward iterates. Let us fix 790 > 0. Now, for each 7§ and
z € Ri(no,n¢) follows that there exists n = n(z,n%) (n could be equal to +00) such f*(z2) ¢ Ry(no,n¥)
for any 1 < k < n. From the fact that if n§ is small, then the points in R;(no,n{) are close to the
local stable manifold of py follows that there exists 7§ such that for any n§ < 7§ and z € Rq(no,ng) if
f™(2) € Ri(no,ng) then |n| > M. In other words, if N(n¥) = min{n(z,ny) : z € Ri(no,ng)} follows that
N(ng) — oo as ng — 0.

Observe also that there exists By > 0 and 7§ such that for any n§ < 7§ such that for any ng < 7y
follows that if z € Ry(no,n§) then

dist(fk(z),Rl(no,n(’)‘)) > fo, 1<k<n=n(zn5). (19)

Now we take a neighborhood U of f such that if g € U then for any z € Hp and 2 € h;l(z) follows
that

dist(g"(2), f"(2)) < %. (20)
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Now we take 79 and ng§ small that if g = g(no, n§) as in lemma 6.1.2 then g € U.
Therefore, if 7§ is small enough such that N(n{) > M from (19) and (20) follows the lemma for
positive iterates. The proof is similar for backwards iterates.
[ |

Now we take 7y small enough such that the previous claim follows with M the positive integer such

that
A Mep > e
Taking a small neighborhood B(f(y™)) of W2*(f(y™)), follows that if z € B(f(y~)) and g"(z) is the first
forward iterate that g"(z) € R1(n%) then fi(z') = g*(2') for any 2’ € W2*(z) and 0 < i < n. Therefore,
9" (W (z,9)) C W (9" (2,9))-

Since g*(W2(z,9)) = f{(We(z,9)) for 0 < i < n and W:(z,g) = W2*(z, f), then the lemma follows.
[

Remark 6.8 Let g = g(no,ng) as in the previous lemma. Then

dist(g(2), f(2)) < mong-
Remark 6.9 Let g = g(no,ng) as in the previous lemma and let z € B(f(y™)). Let
g B(f(y ) = W ().
Then
;S 3 — HSS .
1B(f(y™)) 9 |B(f(y™))
In particular, follows that

88 _ 88
DTl IB(f(y=)) DI [B(f(y™))’
Moreover, using the linear coordinates introduced in R follows that

7 1B(sy = 1o

34. One parameter family that verifies the hypothesis of proposition 6.2.
Now, we introduce a proposition that implies the proposition 6.2.

Proposition 6.3 Given ng > 0 there exists ng a diffeomorphisms g = g(no,ng) as in lemma 6.1.2 and
7 > 0 such that for every z € Wi*(g(y, ) \ {9(y, )} follows that W*(z) N W;t(g(z,)) = 0.

Observe that the proposition 6.3 implies immediately the proposition 6.2. In fact, we take 7§ small
enough and we take the family

F ={9(10,18) }no-

To finish, we have to prove proposition 6.3. In this direction, first we need to compute how the
strong stable manifold and unstable manifold changes for the perturbed maps g = g(no, 7 ) as the one
introduced in lemma 6.1.2. This is the goal of the next proposition. It states that the angle between
the local unstable manifold of f(z ™) and g(z, ) is much larger than the angle between the local unstable
manifold of f(y~) and g(y, ).
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Proposition 6.4 Given ng small, follows that for any 61 > 0, 62 > 0 there exists n§ and g = g(no,ng)
as in lemma 6.1.2 such that:

1. dist(y;,y~) < 01,
2. SL(Bs(g(uy),0), B(fw ), 1)) <
3. SU(Es(9(zy),9) Bs(f(z7), ) > %

Remark 6.10 Let IT;° : W (y) — W (x) be the strong stable holonomy induced by the subbundle
Er(.,9). If there is 6 > 0 such that II3* (W (y)) C W(x) then follows that

027

DII$*(Es(y, 9)) = Es(, g).

Proposition 6.4 implies proposition 6.3:
We want to show that

DI (Es(9(yg ), 9)) # Es(9(zg), 9); (21)

in fact, if the inequality holds then by remark 6.10 the local unstable manifold can not be jointly integrable
and so the proposition 6.3 follows.
From the fact that for f the strong foliation are jointly integrable, follows that

D ;S(E3(f(y_)7 f) = E3(f($_)7f)

Using that 6, is small, follows that g(y, ) € B(f(y~)). From the fact that inside B(f(y~)) the strong
stable holonomy map DII¢® is the identity and that DII¥*(E3(f(y™), f) = Es(f(z7), f), it follows that

SU(DILE(E5(9(yy ), 9)), E3(f(z7), f)) < b2.

Observe that

Sl(E3(g(zg),9), DIIF(Es(9(yg ), 9))) >

SU(E3(g(x7),9), Bs(f(«7), f))) — SUDTG (E3(f(27), f): Es(g(y™),9))) >
o _
2

Taking 6 sufficiently small follows that 2 — 62 > 0 and so the inequality (21) holds.
]
To finish, we have to give the proof of proposition 6.4.
Proof of Proposition 6.4:
To prove the first item, we prove a more general statement that estimates the distance between a
point z and £ € h,'(z) for z € A and g as in lemma 6.1.2.
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Lemma 6.1.4 Given 1o follows that for any o > 0 there exists n§ and g = g(no,ng) as in lemma 6.1.2
such that if z € A then for any z € h;l(z) follows that

dist(2,z) < vo.

In few words, the previous lemma states that if the vertical size of the support of the perturbation
is made extremely small (i.e.: 7§ small), then the map hy is extremely close to the identity, despite the
fact the perturbation twist the vertical vector in a fix quantity (i.e.: 7).

Proof of lemma 6.1.4: We start with a claim that follows from the fact that f is expansive and
topologically hyperbolic.

Claim 10 For any 1 > 0 there exists N = N(v1) such that for any z € H, and 2’ € U follows that:
1. if dist(f™(z), f™(2')) < € for all 0 < n < N then dist(z', W (z)) < m;
2. if dist(f™(2), f*(2')) < € for all =N < n <0 then dist(z', W*(z)) < 7.
The next claim follows from the fact that the local unstable and local stable manifold are transversal:

Claim 11 There is a constant ¢ such that if dist(z', W(z)) <r and
dist(z',W*(z)) < r with v small, then dist(z,2') < c.r. In what follows, Without loss of generality we
assume that c =1

Now we continue with the proof of the lemma 6.1.4.
First, we take y; > 0 smaller than ~y. Let N (1) be the positive integer given by the first claim. Now
we choose 7§ such that

L. v +mnomg < Yo,

2. if 2h;1(2) N R(ng) and g"(2) € R(ng) then |n| > N(v1) (recall lemma 6.1.3 that guarantee the
election of ng).

Let z € Ay and £ € h;l(z) N R(ny), then if n} and n; are the positive integer such that

o
z

9" (2) € R(n) and ¢7": () € R(1§)

follows that either n} > N(y1) or n; > N(m).

Let us suppose that n} > N(v;). Observe that g'(2) ¢ R(ny) for 0 < i < n} therefore g*(2) = f%(2)
and dist(fi(2), fi(z)) < € for 0 <4 < nJ. Then,

dist(2, WS(z)) < 71 < 7.

Now, let us consider the points f~": (z) and g~": (£). Observe that from the fact g~": (2) € R(n¥)
follows that the number of backward iterates to visit again R(ng) is larger than N(1) and therefore

dist(g™": (2), W' (7" (2))) < m.
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By remark 6.8 follows that

dist(g(g"s (2)), W (f(F "= (2))) < 7 + morig.-

So,
dist(2, We(2)) <7 +nomg < Yo

Therefore, we conclude that the distance dist(2, W(z)) < o and
dist(z2,W*(z)) < 70, so by claim 11 follows that

dist(z,z) < 7.

|
The next lemma states that for points that do not belong to f(Bg) N By then the variation in direction
E3 for the perturbed map is small:
To prove it, we need a series of lemmas. The first one, it is a folklore results and it states that the
strong unstable foliation is Holder (see [HPS]).

Lemma 6.1.5 There erists o > 0, a neighborhood V' of Ay and a neighborhood U of f such that for any
gEU, z€ Af(V) and 2’ € Ag(V') follows that

Sl(Es(z, f), B3(2', 9)) < dist(z,2')* +|g = fI}.

Lemma 6.1.6 Given 1o follows that for any v1 > 0 there exists ng and g = g(no,ny) such that if
z ¢ f(Bo) N By and 2 € h;'(z) then

Sl(B3(z, f), E3(2,9)) <.

Proof: First observe that the splitting in H,, can be extended continuously to the neighborhood U of
H,. Using this, observe that

Sl(E3(2ag)7E3(z7 f)) < Sl(E3(27g)7E3(27 f)) +
+Sl(E3(2, f),Eg(Z,f))

and by lemma 6.1.5 follows that
Sl(E3(27 f)7 E3(z7 f)) < dZSt(27 z)a

From lemma 6.1.4 follows dist(Z2, z) can be taken arbitrarily small if 7§ is sufficiently small; therefore, to
conclude the proof we only need to bound

SU(E3(2, f), E3(2, f)).

Let Np be the minimum positive integer such that g~ ¥o(z) € R(n¥). Observe that if n¢ is small, by the
fact that z ¢ f(Bo) N By follows that Ny is large (see lemma 6.1.3).
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Let us take E3(g~\°(2),9) and E3(g~™¥o(2), f). Observe that if x ¢ R(n¥) follows that D,g = D, f.
Then, by the domination property and previous observation follows that

Si(Es3(2,9), E3(2, f)) =
SU(Dg"(E3(g~™0(2),g)), DN (Bs(g~™°(2), £))) <
< AMSI(E3 (g™ (2), 9), Es(g0(2), £))

)

where A is the constant of domination.
By lemma 6.1.5 follows that SI(E3(gV°(2), 9), Es(g (%), f)) < |g — f|1. Then,

SU(Es(2,9)Es(z, f)) < dist(2,2)* + |g — fia™.

So, taking 7§ such that Ny is sufficiently large and dist(Z, z) is sufficiently small, it is concluded the proof.
|
The next corollary applies the previous lemma to W (z) and Wk (y).

Corollary 6.1 Given ng follows that for any v1 > 0 there exists n§ and g = g(no,ny) such that if
z € WX(zg,9) and Z € h;l(z) then

SZ(E3(Z7 f)7 E3(27 g)) <M.

In particular follows that
Sl(DH[E3(z7 g)]7 (07 0, 1)) <M.

The same result follows replacing xg by yq.

Proof:

It follows from the previous lemma after checking that W (x4, g) is equal to hy ' (W2 (z, f)) and that
W(z, f)N f(By) N By = 0 (see remark 6.6).

]

End of proof of proposition 6.4:

Now, we are in condition to finish the proof of proposition 6.4:
Given 7, we take 1 such that 2y, +~{ < 2. By corollary 6.1 we can choose 7§ and g = g(no,7§) such
that

Sl(DH[ES(xg_7 g)]7 (07 0, 1)) <M-

Observe that z; € R4(ng). In fact, taking ny small by corollary W (zg, g) is close to W¢(z, f) and so
x, € Ry(ng). By the construction of g follows that

Mo

SUDH[E3(9(zg), 9)],(0,0,1)) > 10 —m >

Again by corollary 6.1 follows that

SZ(DH[ES(yg_v g)]a (07 0, 1)) <M
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and therefore
SI(DH[Dg(Es(9(yg),9));(0,0,1)) <m
Taking 6; = v; and 62 = 1 + 7§ the proposition follows.
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7 Proof of theorem 3.1

The proof of the theorem is based on the proof of the theorem B in the paper [PS1].
We give the steps of the proof of theorem 3.1, we make the references to the lemmas of the cited
paper and we give the proof of the lemma and definition which are different to the one given in [PS1].
To prove that there is a transitive invariant compact subset A such that Dfp, restricted to A is
expansive and T # 0, we take a compact invariant subset A C H, which is the minimal set, in the Zorn’s
lemma sense, such that A is not uniform hyperbolic. To prove the existence of this set, it is enough
to show that given a sequences of nonhyperbolic compacts invariant sets {As}aca ordered by inclusion
follows that NgeaAq is a nonhyperbolic compact invariant set.
Related to this set, we prove the following:

Proposition 7.1 Let H, be a mazimal invariant topologically hyperbolic homoclinic class ezhibiting a
splitting E1 ® Es ® Es, such that it is not hyperbolic, T # (0 and the interior of T is empty. Then, the
minimal nonhyperbolic set A is a compact invariant set, such that verifies:

1. it s transitive,

2. Dfig, is expansive restricted to A.

Before to give the proposition 7.1, we show that this proposition implies theorem 3.1.
Proof of theorem 3.1. Proposition 7.1 implies theorem 3.1:
We take a small neighborhood W of A and then we take

~

A = Closure(Nipezy fM(W))-
It follows that:

1. Ais transitive,
2. there is a pair of points z,y € A such that y € WEs(x),

3. D f| E5 1S expansive restricted to A.

The first item follows from the fact that A is transitive and H), is topologically hyperbolic. The last
item is straightforward. To prove the second item of proposition 7.1, observe that from theorem 3.1 and
theorem 3.3 of [Pu] and also stated in section 2 follows that there is a pair of points z,y € A such that
y € W5 (z). In fact, if it is not the case, follows that the set A is hyperbolic and so A is hyperbolic,
which is a contradiction.

|
Proof of proposition 7.1:

The first item is easy to prove. In fact, since any proper compact subset of A is hyperbolic, it follows
that A is transitive. In fact, if it is not the case, follows that for any = € A then a(z) and w(x) are
properly contained in A; so it follows that both sets are hyperbolic. This implies that for any z € A
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follows th.a,t .|D f|E’3‘(z)| — 0asn — 400 and |D fﬁEl o (z)| — 0 as n — +oo and therefore, A is hyperbolic,
a contradiction.

So, it only remains to prove the last item of previous proposition 7.1. To do that, we find a set
R such that for any x € RN A follows that |D f|EZ(z)| — 0 as n — 400, which would imply that Ej

is uniformly expansive in A. In fact, if z € A and «o(z) (the a—limit of z) is a proper subset of A,
follows that |D f|;5:(w)| — 0. If a(z) coincides with A, there is k£ > 0 such that f~*(z) € R and so again

|D f|EZ(z | = 0. Then, for any = € A follows that |D f|EZ(z)| — 0. The set R is some kind of rectangle in
terms of the splitting 1 @& Ey & E3. Recall the definition of rectangle given in 14 and the definition of
stable, unstable and center boundary of a rectangle given in 16.

It remains the question if assuming that the interior of 7 is empty is possible to prove that Es is
hyperbolic.

Recall that given an open set R and point € R we denote with Wi(z) (W2 (x)) be the connected
component of W (z) contained in R (the connected component of W2*(z) contained in R). Moreover,
given an unstable segment J we define Jgr as the connected component of J contained in R.

Definition 16 Given a rectangle R, we define
1. the unstable boundary of R as “R = h([—1,1]?> x {-1}) UR([-1,1]? x {1}) of R.
2. the stable boundary as 0 R = Ufze pn,}0(WE (2));
3. the strong stable boundary as 0°°R = Ugzernp,}O(WE ());
4. the center boundary as 0°R = Ugzepnm,}0(Wg())-

Definition 17 Adapted rectangle Given a rectangle R we say that it is an adapted rectangle if for
any z € AN R then

1. W§(z) is a connected component of WX (z) that intersects the two components of the unstable
boundary of R;

2. for any positive integer n one of the following holds:

(¢) fT"(Wg(2)) C R;
(b) F"(Wg(z)) N R =0.

Related to the notion of rectangle we define the notion of return maps.

Definition 18 Returns.
Let R be an adapted rectangle. A map 1) : S — R (where S C R) is called a return of R associated to
A if:

e SNA#D

e there exist k > 0 such that ¢ = f/_Sl’c
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o (S) = f*(9) is a connected component of f *(R)N R
o f(S)NR=0 for1<i<k

We denote the set of returns of R associated to A by R(R, A). Moreover, we define with Ry, the image
of ¥ and we say that a return ¢ € R(R,A) have |¢'| < £ < 1 if

DY ~kig,y| < € for ally € W(2), 2 € dom(y) N A,
where P = f/_d’;m(w)-

We prove that there exists a rectangle R such that if z € R then |D f|EZ(z)| — 0. In this direction, we
prove the following propositions.

Proposition 7.2 Let R be an adapted rectangle and assume that for every return ¢ € R(R,A) we have
|| < € <1 for some &. Then for ally € RN A the following holds:

D U TM(I()) < o0, and (D] —noses 0.

n>0
Following this strategy, to conclude the theorem 3.1, it is enough to prove the following proposition.

Proposition 7.3 Let A be the minimal non-hyperbolic set associated to H,.
Then, there exists an adapted rectangle R such that for every return ¢ € R(R,A) we have |¢'| < £ for
some £ < 1.

Therefore, to finish we have to prove proposition 7.2 and 7.3. This is done in the next two subsections.
|

7.1 Proofs of proposition 7.2.

First, we start establishing the relation between summability of the length of the unstable arcs and
the hyperbolicity along the subbundle F3. In other words, we show that if the sum of the length of the
negative iterates of the unstable leaves is uniformly bounded then the derivative of f along the subbundle
E3 goes to zero for backward iterates. It is a general argument that follows from smoothness. In our
case, since the map is C? and 2—domination holds, follows that the unstable discs are C2. In fact:

Lemma 7.1.1 Let A be a topologically hyperbolic set exhibiting a splitting F1 & Eo ® E3 such that E1 @
is topologically contractive. Then, there exists X < 1 such that %7;@?' < A. Morover, it follows that
3

the unstable discs W (z) are C? for any z.

The proof is similar to the proof of lemma 12 of [Pu]. From the fact that the unstable arc are C? we can
get the following lemma:
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Lemma 7.1.2 There exists a constant Ko such that if y € W¥(x) follows that

1Df gy ()] Mo p
— B < ex K 2 _ 7 .
|ngzy)'_e;>< 0§|f (2) = £ ))
Moreover .
f " (Je ~
D1l < g Ko 3417 )

where J C W¥(z).

Proof of proposition 7.2:

The proof is similar to the proof of lemma 3.7.2 given in [PS1] (page 10012) and the key argument is
that in each return we have contraction along the E3—subbundle, combined with the fact that the sum
up to a return of the length of iterates of the unstable arc is uniformly bounded.

More precisely, it is necessary the following lemma which is useful also in the rest of the proof of
proposition 7.3. The lemma state the uniform bound of the sum up to a return of the length of the
unstable arcs. Moreover, state that the subbundle FE» is contractive for sufficently large positive iterates.

Lemma 7.1.3 Let R be an adapted rectangle. There exists K1 = K1(R) such that if © € R, J =
W&(z) N R and f~*o(J) is the first return of J to R then follows that

ko
Zﬁ(f’i(J)) < K;.

Moreover, there exist a positive integer Ny, a positive constant Cy and 0 < Ag < 1 such that if k > Ny
then | |
|Dfig,(s-+@n| < CoAo Yz € J 1> No.

The proof of this lemma is similar to the proof of lemma 3.7.1 given in [PS1] (page 1010) and the key
argument is the fact that the maximal invariant subset of A outside R, i.e.,

A= Closm‘e[ﬂ f"(A = R)]

nez

is a proper set of A and so it verifies that it is a hyperbolic set. More precisely, if the previous set is
empty, follows that for any point in R the return time are uniformly bounded, and so the lemma holds
immediately. If the set it is no empty, it is possible to get a neighborhood of A1 such that while the
iterates remain in this neighborhood follows that the subbundle Es and E3 are hyperbolic; moreover, the
number of iterates that an orbit remains in the complement of the mentioned neighborhood of A; and R
is uniformly bounded. From these facts together follows the conclusion of the lemma.

After that, as we mentioned, to conclude proposition 7.2 we can repeat the arguments done in lemma
3.7.2 proved in [PS1] (page 1012).

]
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7.2 Proof of proposition 7.3.

The proof of the proposition is done in different steps. First, we need more geometrical properties. More
precisely it is introduced some kind of special type of adapted rectangle. This is shown in subsection
7.2.1 where also is proved the existences of this kind of rectangle in lemma 7.4. Latter, in subsection 7.2.2
are introduced some techniques called distortion, and which are useful to compare the volume of this
rectangle to the length of the local unstable manifold. In subsection 7.2.3 it is study how the distortion
changes under iterations. In subsection 7.2.4 it is ended the proof of proposition 7.3.

7.2.1 Well adapted rectangles.

Recall that we want to show the existence of a rectangle that verifies the hypothesis of proposition 7.2.
To do that, we need some definitions (see figure 13).

Definition 19 Horizontal rectangle. Given a rectangle R as the one defined in definition 14, we say
that R* C R is an horizontal rectangle if there exists [a,b] C [~1,1] such that R* = h([—1,1]2 x [a, b])

Definition 20 Vertical rectangle. Given a rectangle R as the one defined in definition 14, we say
that R® C R is a vertical rectangle if there exists [a,b] C [—1,1] and [c,d] C [-1,1] such that R* =
h’([aa b] X [C,d] X [_171])'

Remark 7.1 Given an adapted rectangle R and a return 1 observe that its domain is a vertical rectangle
and its image is contained in a horizontal rectangle. Moreover, if the domain is properly contained in R
follows that the image is a horizontal rectangle.

To check the remark, observe that if z € S, where S is the domain of a return associated to a rectangle
R, by the definition of adapted box follows that that Wx(x) C S.

Lemma 7.2.1 Let R be an adapted rectangle. Then for every ¢ € R(R,A) follows that Ry, = Image(1))
is an adapted rectangle.

Proof: Observe that by definition of Ry, the unstable boundary of it(we called it the bottom and
the top of Ry) is given by the center stable manifold of some points in Hj,. More precisely, the top
and bottom of Ry, are contained in a connected component of f~*(We(y1)) N R and in a connected
component of f~*(W<(y;)) N R, where f~% =1 and y1,y_1 are the points such that their center stable
manifolds contains the top and bottom of R. To finish, we have to check that if x € Ry follows that
f‘”(W}éw (z)) C Ry or f‘"(W}éw (z)) N Ry = 0. If it is not the case, i.e.: if there is x, and a positive
integer n such that f‘"(W}éw (z)) "Ry # 0 and f‘"(Wﬁw (x)) is not contained in Ry, follows that
f"(Wg,(z)) N 0“Ry # 0, and this implies, that fk_"(W}%w(m)) NO“R # ( and since fk(W1%¢ (z)) =
WE(f*(z)) follows that f~"(WE(f*(x))) N 6*R # 0 which is absurd since R is an adapted rectangle.
|

Definition 21 Well adapted rectangle. Given a rectangle R = h([—1,1]3), we say that R is a well
adapted rectangle if there is a positive integer No such that fNWwsp)NR = h(-1,12 x {1}) U
h([-1,1]2 x {=1}) and there exists a rectangle R contained in R such that
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1. R=nh(-1,1] x [a,b] x [-1,1]) for -1 <a <b< 1;
2. [R\ RN H, = 0.

Moreover, there exist two vertical rectangles R}, RS such that for each R} follows that one of the
connected component of 0°(RY) is contained in the center boundary of 0°(R) for i = 1,2 and one of the
following options holds:

1. either (Wi (RY)URYINH, =0
2. or there is a horizontal rectangles R? and a returns ;, ¥y such that

(a) RY and R are the domain and image of 11 ;
(b) W (RY)\ RY]NHyp =0 fori=1,2; where W2*(A) = UpeAW2*().

Observe that on one hand, if R is a well adapted rectangle then the strong stable boundary of R does
not intersect A. On the other hand R is a well adapted rectangle if either the set A does not intersect
the central boundaries of R or if it is not the case, the central boundary is contained in the domain of
some return. See figure 14.

Lemma 7.2.2 If R is a well adapted rectangle then it is an adapted rectangle.

Proof: First, we have to check that if € RN H, then W§(x) is a connected component of W (z) that
intersects the top and the bottom of R. If x € R} U R3S, follows from the definition. If z ¢ R} U R},
then W2(z) N Ry U RY = (. In other case, it would imply that z € R} U R3. So, if Wj(z) is not a
connected component of W (z) that intersects the top and the bottom of R follows that W*(z) intersect
(W (RY)\ RY] (for i = 1 or 4 = 2) which is an absurd because W(z) C Hp, and [W3*(R})\ RY]NH, = 0.

To check the second items in the definition of adapted box, observe that for any x € R and any positive
integer k follows that f~*(W¥(z))No*(R) = 0. If it is not the case, then follows that f*(f=No(Ws(p)))N
interior(R) # (. Which is an absurd because f*(f~No(Ws2(p))) C fNo(W2(p)) and f N (W2(p))NR =
h([-1,1]%2 x {1}) UA([-1,1]2 x {-1}).

|

Lemma 7.2.3 Given a well adapted rectangle R and a return 1, follows that Ry (the image of 1) is a
well adapted rectangle.

Proof: It follows immediately and it is similar to the proof of lemma 7.2.1.
|

Proposition 7.4 Let H, be a topologically hyperbolic attracting homoclinic class such that the interior
of T is empty. Then, there exist a well adapted rectangle associated to A.
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Proof of proposition 7.4:

Let us start taking a point z € Hp. By lemma 4.5.9, for any €’ there exist arcs [ and I contained
in opposite connected components of W5%(z) \ {z} and such that I; N H, = 0 and I; N H, = 0. So, there
exists v, > 0 such that W (i) N Hp = 0 and W, (I7) N Hp = 0, where W5 (IF77) = U+, W5, (2).
Let z, and z; (they depends on the point z) in opposite connected components of W¢(x) such that
Wes(2,) NWE (1) # 0, W (2) N WS (1) # 0 and W2*(,) N WE (1) # 0, We (=) NWE (1) # 0.
Let us consider the region B, in W?(z) bounded by W2*(z;), W< (), W2*(2;) and W (I;). We take
B} and B; the two connected components of B, \ W25(z).

We consider two cases:

1. there exists z such that, there exist y~,y* in opposite connected components of W¢(z) \ {z} such
that W2*(y~) N B, N Hp = 0 and W2*(y*) N BN Hy, = (;

2. for every z holds that either for every y € B follows that W2*(y) N H, N B # 0 or for every
y € By follows that W2*(y) N H,N B, # 0

First case.

In the first case, we claim that the we can built a rectangle as in the option one of lemma 7.4. To
avoid notation in this part we do not write the dependence of the points on .

In fact, let us take arcs [,~ and l,+ in opposite connected components of W¢(z) \ {z} such that
wes(l,-) " B* N Hy = 0 and W2*(l,+) N B*N H, = (). Then, there are arcs I,- and [,+ in opposite
connected components of W¢(z) \ {z} such that W2*(l,-) N B*N H, = ) and W2*(l,+) N B* N H, = 0.

Now we take xf,x;, the boundary points of I}; z7,z;, the boundary points of I ; yf,y;r, the

x )
boundary points of I+ and y; ,y, , the boundary points of [,~. We order then by distances to the point
x. We take the rectangle R® bounded by W2*(yy ), W (y; ), W(z7 ) and WE(c]). We take the rectangle
R® bounded by W2*(y, ), W& (yy ), We(z5 ) and WE(cs). Observe that R® C R®. Now, we take z* and
2z~ in opposite components of W(x) \ {z}. For each z € R°® we define W}, _(z) as the connected
component of W¥(z) \ {W(21) UW$(27)} bounded by W(2*) and W2(2~). Now we define
R = U{ZE.RS}WZUJ",Z_ (Z) R = U{ZERS}W;LJ",Z_ (Z)

Observe that these rectangles verify the items 1 and 2 of the proposition. To get that the bottom and
the top are contained in the stable manifold of p and that R is adapted, we use the following claim:

Claim 12 Let p be a periodic point. For every § > 0, there exist Ng = Ny(0) such that for every z
follows that f~No(WE(p)) intersects both connected components of W (z) \ {z}.

Then, using the previous claim, we can cut the rectangle by the stable manifold of a periodic point.
Second case.
We start with the following lema:

Lemma 7.2.4 Assuming that we are in the second case follows that given two pair of points x1 and xo
in Hp such that x1 € W2*(x2) follows that W} (z1) and W} (xz2) cannot s-intersect transversally.
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Proof:
Let us assume that the lemma is false. Let ] € W¥(z1) and xf, € W¥(z2) such that =, € W2*(z))
and for any r small follows that W;*(z}) manifold s-intersect transversally W*(z5).
Let us take B,; small enough such that '} ¢ W¥(B,;) = U.ep_, }W(2). Let us assume that for any
T2

y € B:,z follows that W2*(y) N B:,Z N Hy, # 0.
Let us take Wy (z}) = U{ngf’*(zg)}W# (z) where WS (ah) is the connected component of W () \
{«5} that intersects B, . Let us take
2
I1°° . Bwl — Wecu(iL‘)
2

If r is small, observe that
Wi (25) € 1% (W' (Byy) N Hp)

Moreover, form the fact that we are assuming that the local unstable manifold of x4 and z) s-intersect
transversally each other, follows that for some ' holds that

(W (2h)) C interior(WeT(zh))

where W' () is one of the connected components of W4 (z}) \ {z}}-

Then, taking any point zg close to a point z € int(W;“" (z})) such that T1°*(2) is in the interior of
Wit (ah) follows that [W2*(20) \ {z0}] N Hp # 0 which implies that the interior of 7 is not empty, which
is an absurd.

|
Coming back to the proof of the proposition 7.4, we take a point = such that for every y € B, follows

that W2$(y) N H, N B # (. Let us define
Rz = U{zeBz}Weu(z)‘

We can find two periodic points ¢; and g2 with large period in each side of R, \ W *(z) such that for
each ¢; holds that dist(g;,z) < dist(f7(g;),z) for any j. Then we take the connected component of
Ry \ [Wf¥(q1) U W2*(q2)] that contains z. Now, we can use the claim 12 and we cut this connected
component by the stable manifold of the p. We claim that the remaining rectangle is a well adapted
rectangle. To check that, first observe that it is an adapted rectangle and the proof is similar to the
previous case. To check that it is well adapted, it is necessary to show that associated to each g; it can be
constructed a vertical rectangle which is the domain of its associated return map. First, for each ¢;, it is
taken the connected component of R, = ™ (W25*(g;) N R) N R that contains ¢; and where n; is the period
of g;. Later, we take the connected component of f~™ (W¢(R,) N R) N R that contains g;. This connected
component is the horizontal rectangle R; the vertical rectangle is f™(R?) and the return ; = fﬁ{;".
This finish the proof of the proposition. '
|

7.2.2 Rectangle: volume and length. Distortions.

Now we adapt to dimension three, a series of definition given in [PS1].
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Definition 22 We say that a rectangle R has distortion (or s-distortion) C if for any y,z € R

1 W)
c = wwiy) =<

Remark 7.2 If a rectangle R has distortion C then for any z € R follows that
L(Wg(2))Area(WE' (2)) < CVolume(R).

Notice that, in order to guarantee distortion C' on a rectangle R, it is sufficient to find a C! foliation
F* by two dimensional embedding with tangent planes close to the Eq @ Es-subbundle (7, F* lies in a
b-cone for b small along the center-stable), such that, for any z,y € R follows that,

1
— < || <
s<lmj<c

holds, where IT = II(W}(2), Wg(y)) is the projection along the foliation between these unstable arcs.
Given a point z € RN Ag , for any positive integer n we can take the rectangle R, around f "(z)
defined as the connected component of

Rp = fT*(R) N B(f"(2))

that contains f~"(z). Observe that inside R,, we can define the foliation F; taking the negative iterations
of the foliation F?; i.e.: given z € R,, we take the the connected component of

Falz) = fTHF(f"(2))) N R

that contains z.
The following lemma will be useful in the sequel. The proof of this lemma is similar to the proof of
lemma 3.4.1 in [PS1].

Lemma 7.2.5 Let R, F° and C be as above. If for any z € R, follows that

D7, 73 ()] < CoAS
for any No < k < ko. Then R, has distortion C1 = C1(C, Cop, Ao, No).

Applying previous lemma to lemma 7.1.3 we can conclude the following corollary:

Corollary 7.1 Let R be an adapted box with distortion C. Then, for any ¢ € R(R,A) follows that Ry
has distortion C1 = C1(C, Co, Ao, No).-
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7.2.3 Controling the sum up to a return.

The next lemma is similar to the lemma 3.7.3 of [PS1] (page 1014). However, in the present context the
proof is simpler than the one done in [PS1] and use explicitly the properties of the adapted rectangle.

Lemma 7.2.6 Let R be a well adapted rectangle. There exists K = K(R) with the following property:
for every ¢ € R(R,A) and z € By = Image(v) (denoting Jy(z) = J(z) N By) follows that

S II() < K
7=0

whenever f~I(z) ¢ Ry,1< j <n.

Proof: Let R be a well adapted rectangle and let ¢ € R(R, A). Let z € Ry, = Image(y)) and a positive
integer n such that f~7(2) ¢ Ry,1 < j < n. Let also C; be as in corollary 7.1.3 and consider C from
corollary 7.1 (corresponding to Co = C1). This means, that Ry has distortion Cs.

Let 0 <ny <ng <...<ng <nbetheset {0 <j<n:f ()€ R} For every n; we have associated
a return 1; € R(R, A) such that f~"i(2) € Ry,, i.e., f ™ (z) = ¢;(f ™-1(2)) where ¢ = f~Fi for some
k;.

We take positive constants A1 and A9 such that A < Ay < A2 < 1 where A is the constant of domination.

We consider (if exists) the sequence 0 = mg < m1 < mg < ... < my; < n such that

|Df;E1@E2(f_mi(z))| <X, 0<j<m, Vi=1,..,1

We claim the following:

Claim 13 There exists Cy = C4(R) such that

l

D U™ (Js(2)) < Ca

i=0
where Jy(2) = W2(z) N Ry.

Proof of the claim: To show that, we construct a rectangle associated to each m;. Recall that the

rectangle R contains a sub rectangle R such that [R\R]NH, = 0. Let us take R = R\[W355(R})UW?*(R3)].
Now we select a series of constants: Let 1,72, 7y3,74 be the following positive constants

1 N
m<sj min dist(0° (WS (z) N R), 8°(WE(z) N R)),
zeR

Y2 <L(f (W (2)) N WE(F () V 2 € Hy,
W< min {6WE (), AW ()),
z€ERTUR 1 2

1 2
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Ya < L(f (W5, (2)) NWE(f™(2)) V 2z € Hy.
Now, let
Yo = min{y1,v2, 73,74}

For each m;, we take n;; of the sequences {ni,...,ns}, such that %) ¢ R for ni; < k < my. Given
z € Ry, we consider
ip =min{i; > 0: f "9 (z) ¢ R} URS}

and

Jjo =min{j : m; > m;,}.
We assert first that in this case l

Y UFT(Iy(2)) < K.

J=Jo
To show that, we consider the rectangle R(n;;) = Ry, and we take the rectangle R(j) as the connected
component of

£ (R, ) O WE(F 7™ (J(2)))

that contains f~™4(z).
On one hand, we show that for j; # jo and larger than jy follows that

R(j1) N R(j2) = 0.

On the other hand, from corollary 7.1 follows that R; has distortion Cs and so the area is compare to
the length in the following way:

E(f7 (Jy(2))) Area(Wii;) (F7™(2)) < C2Vol(R(5)),

and
Area(WE (£ (2)) > 0.
So, .
e(f7M(Jy(2))) < CQ%Vol(R(j))-
Therefore

l l
S U™ (Jy(2))) < 027—10 S Vol(R(j)) < %czK

Jj=jo J=Jo

where K is such that
jo—1

Y Vol(R())) < K.
=0

The constant K exists because the rectangle R(j) are disjoint. So, the claim is proved.
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So, to conclude that S %_. I(f~™i(Jy(2))) < Ki, we have to show that the rectangles R(j) are
j=jo ¥

disjoint. To show that, first observe that if f~"(2) € R, then f™(W3(f~"(2)) C Ry. Let us suppose that
R(j1)NR(j2) # 0. It follows that W3 (f~™1(2)) N f~™2(Jy(2)) # 0 so (assuming that j; < ja) it follows
that W5 (f ™0 (2)) N fFo=miz (Jy(2)) # 0 where kg = mj, — nj,. By the election of v and from the fact
that f~™o(z) € R\[RYURY] follows that f*~™i2(Jy(2)) C R. Then, f*=™i2 (Jy(2))NWE (f ™o (2)) # 0
which implies that f™o (f0~™32(Jy(2))) C Ry, i.e: f~(M17™32)(J,(2)) C Ry which is an absurd because
the first return is f~"(z) and mj, — mj; < n.

Now, to finish the proof of the claim, we have to control the sum

DU (I(2))).

=0

In this case we have that f~"(z) € RYUR} for any i < 4. Observe that in particular f~"+1(z) € R{UR}
for any 7 < 79

Define B(n;) as the connected component of f~"(R,) N R} which contains f~"(z), and [ is equal to
1 or 2 depending if f™(z) € R} or f™(z) € RY. Observe that, for B(n;) follows that

fﬁk(B(nz))ﬂR:@ V0<k<nir —n;. (22)

In this case, for each m; such that n;; < n;, we consider the rectangle R(j) as the connected component
of

7T (B(ng))) 0 Bao(F ™5 (Jy(2))).
Again, we have that for this rectangle we can uniformly compare the length with the volume. So,
to conclude, we have to show that the rectangles R(j) in this case are also disjoint. To show that,
observe that if R(j1) N R(j2) # 0 then f_(mj1 _nijl)(B(nijl)) N f_(mjz_nifz)(B(nijQ)) # (. Assuming that
mj; — Ny < My, — Ny, follows that B(nijl) N f_k(B(nijz)) # 0 with 0 < k < mj, — Mij, < Mij, 41— Nij, -
Which is a contradiction with (22). Then, we have concluded that

S _ol(f ™ (Jy(2)) < K1

|
To finish the proof of the lemma, we must control the sum between consecutive m}s. To do that, we
need a lemma due to Pliss:
Pliss’s Lemma: Given 0 < 79 < 71 and a > 0, there exist Ny = N1(vy0,71,a) and [ = I(y9,71,a) > 0
such that for any sequences of numbers {a;}o<i<np with n > Ny, a” ! < a; < a and I _ya; < ™ then
there exist ng with ng < In such that

H]

1=no

)

a; <™ np<j<n.
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Let N = N(\1,\2) from Pliss’s lemma and consider Ky = sup{|[Df’|| : 1 < j < N}. There are two
possibilities: m;11 —m; < N or m;+1 —m; > N. If m;11 —m; < N, then

mi41 —1

Y U (Iy(2) < NEE(F™(Jy(2)))-

J=m;
On the other hand, if m;41 — m; > N, then

IDF) e ma(pmivigay| = A for N < j < mipy —m;.

In fact, if it is not the case, i.e.: if there exists j such that N < j < m;1; — m; with

J J
D /EléBEz(f“"”“)(Z))| <A

follows by Pliss’s lemma, there exists m; < f; < m;y1 such that |D f;“El ©Fy(f—s (z))| <Xfor0<k<
n; —m; and therefore |D f7E1 OB (f-7i (z))| < M for 0 < k < #; which is a contradiction with the election

of the sequences {m;}.
Thus, by the dominated splitting, there is A3 = )\—)‘1 < 1 such that

i 2 , '
DS gy gmepl < 57 = X for N < < migy —my.
So, for any y € fI(f ™i(J(z))) we have that

|Df/_b23(y)| < )\?,; for 0 < j<mjy1 — N.

Hence
mi41—1 . N . m;p1—1 .
STUTIUR) < DTN+ D LFT(Iy(2)
j=m; Jj=my j=N
mir1—N )
< NEL(f ™(Jp(2)+ Y. Kol(f ™ (J(2))M
§=0
< (MKt Kot ) )
Therefore
mit1—1
SUFTIIp() = D Y UFT(Iy(2)
j=0 i g=my
< <NK2 + K7 _1A3) Zﬂ(f‘m"w(z)))
< <NK2+K21_)\3) K, = Kj.
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Finally, if the sequence m}s does not exist, the same argument shows that

S < (VKa+ Kopo g

J=0

) €62

< (NK2+K2 )L=K4

1— A3
where L = sup{¢(Jy(z)) : z € RN A}. Taking K = max{K3, K4} we conclude the proof.
|

7.2.4 Finishing the proof of proposition 7.3.

We shall finish the proof of the proposition 7.3 in two cases: one, when A is not a topological minimal
set, and the other when it is. Remember that a compact invariant set is topological minimal if it has no
properly compact invariant subset, or equivalently, if any orbit is dense.

Case: A is not a minimal set

Lemma 7.2.7 Let R be an adapted rectangle such that #R(R,A) = oco. Then there exists a return
Yo € R(R,A) such that the adapted rectangle
Ry, = Image(tpg) satisfies the conditions of lemma 7.2, i.e., for every 1 € R(Ry,,A), [¢'| < % holds.

The central idea of the proof of the present lemma is that there are infinitely many returns, we can
J¢0 (2)
Jr(z)
that 1) € R(Ry,,A), follows that |¢)| < 3. The proof of the this lemma is similar to the proof of lemma

3.7.4 given in [PS1] (page 1016) and we give it here for completeness and to show how the lemma 7.2.6
and the corollary 7.1 are used.

Let R be box as in the hypothesis of the lemma, and let Ky, K1, K,C] be as in lemmas 7.1.2, 7.1.3,
7.2.6 and corollary 7.1 respectively. Consider also L = min{¢(J(z)) : z € Br(J) N A}.

Let r > 0 be such that

get one, namely g such that is small, so |¢g| is small and then it is showed that for any 1 such

C 1
Tfl exp(K0K1 + K()K) < 5

Since #R(R,A) = oo, there exists ¥g € R(Br(J),A) such that
£(f3 (T (2))) <1, V5 >0, Vz € By NA.

Let ko be such that 1y = f/jg’ZO, where Sy = dom(io).

Let us prove that the box By, satisfies the thesis of the lemma. Observe that if 2 € So N A, then for
y € J(2)

- U(fH(I(2)))
ko | <
DS rw S =gy xPEeK).
Let now ¢ € R(Ry,, ), = f/_SIZ,’ Sy = dom(v).Setting ng = k—ko, (k > ko) we have f~"0(Sy) C Sp.
Then, for y € Jy,(z), z € dom(v),
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—ng |

W'l = 1D /E()|—|Df/E o7 Eyty)
(R (I(F™(2)))) (™ (g (2))
S THuFmR) W) TEE Gy o)

= ) O (ko + Kok)

’I“Cl— exp(K0K1 + K()K) <

IN

1
2
So, the proof is finished.

Case: A is a minimal set.

The proof of the this lemma is similar to the proof for the minimal case proved in [PS1] (page 10018).
However, we give some overview details. We begin remarking that we cannot expect to do the same
argument here as in the preceding case, due to the fact that if A is a minimal set, then the set of returns
to R is always finite. Nevertheless we shall exploit the fact that in the case A is a minimal set, then there
are unstable "boundary points”. First, we introduce some notations. Given an unstable arc J, we order
J in some way and we denote JT ={ye J:y >z}, J- ={ye J: y <z} Also, giving z € R we shall
denote by R™ (say the upper part of the box) the connected component of R — Wés(m) which contains JT,
and by R~ (the bottom one) the one containing J~.

Lemma 7.2.8 Assume A is minimal set. Then, reducing R in the unstable subbundle such that RTNA =
D orRRNA=0.

The idea to show that is that if the lemma does not follows, we would get that there is a periodic
point in A which is a contradiction since A is minimal. See the proof of lemma 3.7.5 in [PS1] (page 1018).
]
Related to this rectangle we will get the following lemma that will imply the Main Lemma when A is
minimal:

Lemma 7.2.9 Let R be an adapted rectangle such that RT N A = 0. Then there exist K such that for
everyy € RN A,
S U )

3>0

In particular there exist J1(y),J*(y) C Ji(y) C J(y) such that the length of Ji(y) — J*(y) is bounded
away from zero (independently of y) and such that

[e o]

DU MNi(Y))) < oo

n=0

The proof of this lemma, use the following one:
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Lemma 7.2.10 Assume that A is a minimal set and let R be an adapted rectangle such that RTNA = .
Then R™ verifies that for ally € RN A,

fIT )N R =00r (I (y) C BT

where Jt(y) = J(y) N R*. Moreover, there exist Ky such that ify € RNA and f~3(J*(y))NRT =0,1<
J < n then

D AT W) < K.
=0

Again, the proof are similar to the equivalent lemmas proved in [PS1] See the lemma 3.7.7 for the
first and lemma 3.7.6 for the second one in [PS1] (page 1019).
Now we can prove the proposition 7.3 when A is a minimal set. Take

Ro= |J Ji(w).

yEBNA

Notice that Ry is an open set of A, and for every y € Ry N A (i.e. y € Ji(y)), we have

o0

D UfTM(i(y))) < oo

n=0
and so
DSy 7mroo O

Let z be any point in A. Since A is a minimal set there exist mg = mg(z) such that f~™°(z) € Ry
and so

DS gm0 ey | o0 0

implying that
|Df/_E7;(z)| —n—soo 0.
This completes the proof of the proposition 7.3.
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