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Abstract. The main goal of this paper is to present new robust and
scalable preconditioned conjugate gradient algorithms for solving Stokes
equations with large viscosities jumps across subregion interfaces and
discretized on non-structured meshes. The proposed algorithms do not
require the construction of a coarse mesh and avoid expensive commu-
nications between coarse and fine levels. The algorithms belong to the
family of preconditioners based on non-overlapping decomposition of sub-
regions known as balancing domain decomposition methods. The local
problems employ two-level element-wise/subdomain-wise direct factor-
izations to reduce the size and the cost of the local Dirichlet and Neu-
mann Stokes solvers. The Stokes coarse problem is based on subdomain
constant pressures and on connected subdomain interface flux functions
and rigid body motions. This guaranties scalability and solvability for
the local Neumann problems. Estimates on the condition numbers and
numerical experiments based on unstructured mesh parallel implemen-
tation are also discussed.

1 Introduction

The core-flow technique is a technology in research that can turn much more
efficient the production/transportation through pipe of heavy oil. The numerical
simulators available nowadays are inefficient for solving large scale problems
with high jump in viscosity such as the core-flow model. In order to develop
an efficient parallel code to solve such model, we develop a preconditioner for
the Stokes problem that is robust with respect to high jump in viscosity and are
suitable for unstructured meshes.

Balancing Domain Decomposition (BDD) methods are preconditioners based
on non-overlapping decomposition of subregions and they have been tested suc-
cessfully on several challenging large scale applications [4, 7, 6] and its first scal-
able version was developed by Mandel [6] for the Poisson equation with the
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introduction of a coarse problem based on the kernel of the Laplace opera-
tor. Extensions of the BDD preconditioner for elliptic problems with possibly
large jumps on coefficients were treated subsequently in [2, 9, 10]. The extension
of the BDD preconditioner for the Stokes equations had its debut only recently
by Pavarino and Widlund [7]. For the Stokes problem not only are the local Neu-
mann problems singular for floating subdomains but additionally the boundary
values of the local Dirichlet problems should satisfy the zero flux condition on
the boundary of the subregions. Such issues are discussed in detail in [7] and on
this paper.

The goal of this paper is to introduce several improvements of the Pavarino
and Widlund method which are essential for its efficient application. We are
particularly concerned with aspects associated to unstructured mesh parallel
implementation and the high cost of the subdomain solvers when high-order
Stokes discretizations are considered. We introduce several possible choices for
unstructured coarse spaces and discuss their advantages in terms of scalabil-
ity, implementation efforts and robustness with respect to the coefficient jumps.
With regards to the high cost of the subdomain solvers, we explore how the
inf-sup condition of Stokes discretization are checked in order to perform proper
element-wise static condensation and decrease the number of interior unknowns.
We show that the computational complexity of the two discretizations, the
higher-order (P2 + Bubbles)/P1 and the lower-order P2/P0, have compara-
ble computational costs. The paper is organized as follows. The Sections 2 and 3
present the Stokes equations and the variational formulation, respectively, while
on Section 4 we introduce the discretizations used in the numerical experiments.
The Section 5 is devoted to the BDD preconditioner for the Stokes equations and
the coarse spaces. On Section 6 we present some of the implementation issues,
and on Section 7 we provide the numerical results. Section 8 closes the paper
with the conclusions.

2 The Stokes Model

Let Ω ⊂ R
2 be a domain with a polygonal boundary. We consider the Stokes

equations: 



−2∇ · (νε(u)) + ∇p = f in Ω
−∇ · u = g in Ω

u = ud on ∂Ω
(1)

where ν > 0 is the kinematic viscosity and the ε(u) = 1
2 [∇u + ∇uT ] denotes

the symmetric stress tensor. In this paper, we assume only Dirichlet boundary
condition with the compatibility condition

∫
Ω
−g dx =

∫
∂Ω

ud · n ds. The
treatment of natural boundary condition is similar and does not bring any extra
difficulties; see also Remark 3.

Remark 1. Since we are assuming Dirichlet boundary condition on all ∂Ω, the
velocity solution is unique and the pressure is unique up to a constant. To make
the pressure unique, we impose the additional condition of zero average pressure
on Ω, i.e.,

∫
Ω p dx = 0.
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3 Variational Formulation

The variational formulation is introduced as follows. Let us define the space of
velocities X = H1

0
(Ω)2 and the space of pressures M = L2

0
(Ω), where L2

0
(Ω)

stands for L2(Ω) functions with zero average in Ω. Given f ∈ H−1(Ω)2 and
g ∈ L2(Ω), the variational formulation of the Stokes equations is given by:

Find u ∈ X and p ∈ M such that

{
a(u, v) + b(v, p) = F (v) ∀v ∈ X,
b(u, q) = G(q) ∀q ∈ M,

(2)

where a(u, v) = 2ν(ε(u) : ε(v))Ω , b(v, p) = −(∇ · v, p)Ω , F (v) = (f , v)Ω , and
G(q) = (g, q)Ω . The solution (u, p) ∈ X×M of (2) exists and is unique; see [3].

4 Discretization

Let Th be a regular triangulation of Ω. We consider the mixed finite elements
P2/P0 and (P2 + Bubbles)/P1, where the velocity is taken continuous and the
pressure discontinuous.

The P2/P0 mixed finite elements is described as follows: the velocity space be
given as Xh = {v ∈ X; v|K ∈ P2(K)2, ∀K ∈ Th}, while the pressure space by
discontinuous piecewise constant functions Mh = {q ∈ M ; q|K ∈ P0(K), ∀K ∈
Th}. To obtain better accurate results we introduce the (P2 + Bubbles)/P1

mixed finite element space. This space can be considered as a stabilization of
the unstable space P2/P1. We take the bubble function as b̂(x̂, ŷ) = x̂ŷ(1−x̂−ŷ)

defined on the element of reference K̂, and then for each element K in Th define
bK(x, y) = b̂(F −1

K (x, y)), where FK is the affine mapping from K̂ to K. The
velocity space Xh is then given as

Xh = {v ∈ X; v = vP + vB , s.t. vP |K ∈ P2(K)2, vB|K ∈ XB(K), ∀K ∈ Th},

where for each element K ∈ Th

XB(K) = {vB ∈ H1

0 (K)2; vB =

(
α1bK

α2bK

)
and α1, α2 ∈ R}.

The discrete pressure space consists of discontinuous piecewise linear functions
denoted by P1 given as Mh = {p ∈ M ; p|K ∈ P1(K), ∀K ∈ Th}.

The two discretizations above satisfy the uniform inf-sup condition [3], i.e.,
there exists a constant β (independent of h) such that

sup
v∈Xh

v 6=0

(∇ · v, q)

‖v‖
H

1

≥ β‖q‖0 ∀q ∈ Mh, (3)

and so the discrete variational formulation of the Stokes problem (1) given by:
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Find u ∈ Xh and p ∈ Mh such that

{
a(u, v) + b(v, p) = F (v) ∀v ∈ Xh,
b(u, q) = G(q) ∀q ∈ Mh,

(4)

has a unique solution (see [3]). In matricial form, the discrete linear system (4)
is of the form (

A BT

B 0

)(
u
p

)
=

(
f
g

)
. (5)

5 BDD for Stokes Problem

In this section we present the matricial form of the preconditioner. Decompose
the domain Ω into N non-overlapping connected subdomains Ωi and let Γ =
(∪N

i=1∂Ωi)\∂Ω, then we have Ω = ∪N
i=1Ωi ∪ Γ . We denote the nodes inside Ωi

by Ωh
i , the nodes on Γ by Γh and the nodes on ∂Ωi ∩ Γ by Γ (i)

h .

5.1 Schur Complement System

In order to perform a static condensation of the interior variables on Ωi we
reorder and denote the variables as follows: uI (the interior velocities), pI (pres-
sures with zero average in each subdomain Ωi), uΓ (interface velocities) and p0

(constant pressure in each Ωi and with zero average in Ω). Using this reordering,
the matrix of the discrete system (5) can be written as:

K =

(
KII KIΓ

KΓI KΓΓ

)
=




AII BT
II AIΓ BT

0I

BII 0 BIΓ 0
AIΓ BT

IΓ AΓ Γ BT
0

B0I 0 B0 0


 .

The submatrix B0I is null since by the divergence theorem,
∫

Ωi
∇ · uI dx = 0.

Eliminating the interior variables uI and pI by static condensation we obtain
the following Schur complement system:

S

(
uΓ

p0

)
=

(
f̃Γ

g̃0

)
, (6)

where

S = KΓΓ − KΓ IK
−1

II KIΓ =

(
SΓ BT

0

B0 0

)
and

(
f̃Γ

g̃0

)
=

(
fΓ

g0

)
− KΓIK

−1

II

(
f I

gI

)
.

Remark 2. Since AII is positive definite (by Korn’s inequality) and BII has full
row rank, the KII is invertible. We note also that since B0I is null, it is not
possible to eliminate p0.
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Having solved the linear system (6), we can obtain the solutions uI and

pI by solving

(
uI

pI

)
=

(
AII BT

II

BII 0

)−1 [(
f I

gI

)
−
(

AIΓ 0
BIΓ 0

)(
uΓ

p0

)]
, where we ob-

serve that uI and pI do not depend on p0. After a reordering of the inte-
rior variables by subdomain we obtain that KII is the block-diagonal matrix

KII = diag{K(1)

II , · · · , K(N)

II }. This shows that the subdomain matrices K
(i)
II are

decoupled and then to apply K−1
II to a vector is equivalent to solve N decoupled

saddle problems in parallel. Notice that the multiplication by K (i)−1

II represents
a discrete Stokes problem with Dirichlet velocity data on Γ (i)

h . This solution ex-
ists and is unique since we consider the space of pressure and test functions qI

with zero average on Ωi. The velocity component of K (i)−1

II , denoted by SH(i),
is known as the local discrete Stokes harmonic extension operator with velocity

Dirichlet boundary condition prescribed on Γ
(i)
h .

Our goal is to solve the linear system (6) by a preconditioned conjugated
gradient method. This method does not require assembling the matrix S of the
linear system, but only how to apply S to a vector w. By definition of S, applying
S to a vector w is equivalent to applying matrices KΓΓ , KIΓ , KΓI and K−1

II to
subvectors of w. Among those applications, the K−1

II is the most expensive one,
however as we saw previously, this can be done in parallel.

5.2 BDD Preconditioning

Let us decompose the space Xh × Mh =
(
⊕N

i=1Xi,h × Mi,h

)
⊕ (VΓ,h × M0)

where Xi,h = Xh ∩ H1
0 (Ωi), Mi,h = Mh ∩ L2

0(Ωi), VΓ,h = {v ∈ Xh; v|Ωi =

SH(i)(v|∂Ωi), i = 1, . . . , N}, and M0 = {q ∈ Mh; q|Ωi = const., i = 1, . . . , N}. We
observe that the function v ∈ VΓ,h is uniquely defined by its value on the inter-
face Γh.

We now construct a parallel preconditioner M−1 for S in order to make the
linear system scalable and well conditioned.

An initial try would be to use an additive Schwarz like preconditioner of the
form

M−1 =

N∑

i=1

RT
i DT

i S(i)−1
DiRi, (7)

where S(i) is the Schur complement of the local stiffness matrix K(i), the Ri :
Γh → Γ (i)

h is the discrete restriction operator, and the Di is a diagonal matrix

defining a partition of unity on Γh, i.e.,
∑N

i=1 RT
i DiRi = I on Γh. The partition of

unity may be defined through the counting functions defined for each subdomain
as δi : Γ (i)

h → R such that δi(x) = number of subdomains sharing the node
x ∈ Γ (i)

h , define Di as Di = diag{δ−1

i }. When the problem has piecewise constant
viscosity νi in each subdomain, and discontinuous across the interface Γ , then a
better choice is to set

δi =

∑
j∈Nx

νγ
j (x)

νγ
i (x)

, (8)
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where γ ∈ [1/2,∞), and Nx is the set of indices of the subdomains that have
the node x on their boundaries (see [9, 10]).

Remark 3. The local problems S(i)−1
in (7) use natural boundary conditions

νi∇u · n − pn = r on Γ
(i)
h . In this case the pressure is uniquely determined

and therefore the pressure space are now taken on L2(Ω).

The preconditioner (7) is not as good as it appears to be. When the boundary
of a subdomain Ωi does not intersect the boundary of the domain ∂Ω, we have
a floating subdomain Ωi. Since the problem

S(i)

(
u

(i)

Γ

p(i)
0

)
=

(
f̃

(i)

Γ

g̃(i)
0

)
(9)

is equivalent as solving

(
K(i)

II K(i)

IΓ

K(i)

ΓI K(i)

ΓΓ

)



u
(i)

I

p(i)

I

u
(i)

Γ

p(i)
0


 =




0
0

f̃
(i)

Γ

g̃(i)
0


, then when Ωi is a float-

ing subdomain, S(i) has a kernel spanned by the rigid body motions (RBM) and
therefore the linear system (9) might not have a solution. In the two dimensional
case the kernel basis is composed of three functions, two translations and one
rotation. To avoid the issue of existence of solution, we introduce a coarse space
V0 ⊂ VΓ,h to enforce that when solving the linear system (9) the right hand side
(RHS) is on the image of S(i), and since S(i) is symmetric, this is equivalent to
have RHS in Ker⊥(S(i)). In addition we will require that the space V0 must be
chosen so that the pairing (V0, M0) be stable, i.e., satisfies the inf-sup condition.
We discuss possible choices of coarse spaces on Subsection 5.4.

5.3 Preconditioning in Matricial Form

Let L0 : V0 → Γh be the matrix whose columns are the basis of the space

V0. Then define the restriction operator R0 =

(
LT

0 0
0 I

)
, where I is the identity

matrix of the size of the number of subdomains. To define a coarse problem

Q0, we set S0 = R0SRT
0

=

(
LT

0 SΓ L0 LT
0 BT

0

B0L0 0

)
, and Q0 = RT

0
S−1

0
R0. The BDD

preconditioner is then given by

M−1 = Q0 + (I − Q0S)

N∑

i=1

Qi(I − SQ0),

and the preconditioned operator by T = M−1S = P0 +(I −P0)
∑N

i=1 Pi(I −P0),
where P0 = Q0S, Pi = QiS and

Qi =

(
RT

i Di 0
0 0

)(
S(i)

Γ B(i)T

0

B(i)
0 0

)−1(
DiRi 0

0 0

)
.
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The minimal size coarse space V0 must be related to the local RBM associated
to each subdomain Ωi. Since the local problems are scaled by Di, we also scale
the local RBM basis associated to Ωi by Di to define a coarse space so that the
local problems (9) are compatible, i.e., for any w ∈ VΓ,h

〈(
DiRi 0

0 ∗

)
S(I − P0)w, vi

〉

Γi

= 0 ∀vi ∈ Ker(S(i)). (10)

A desirable property of any parallel preconditioner is the scalability. To ob-
tain that, the coarse space must also satisfies the following inf-sup condition

sup
vΓ ∈VΓ,h

vΓ 6=0

(∇.SH(vΓ ), q0)
2

a(SHvΓ ,SHvΓ )
≥ β0‖q0‖2

L2 ∀q0 ∈ M0. (11)

When is the case, as in [7], we can show that the bound for the condition of
the preconditioned operator in S-norm is

condS1/2(T ) ≤ C(1 +
1

β0
)

1

β2
(1 + log(

H

h
))2 (12)

where β is the inf-sup constant of the original problem (3).

5.4 The Coarse Space

The coarse space V0 plays an important rule in the BDD preconditioning. This
space must guarantee solvability for the local Neumann problems and scalability
for the preconditioner. The minimum coarse space V0 for solvability is

V
(0)
0 = Rigid Body Motion of each subdomain Ωi scaled by diag{Di} on Γh,i

and zero on the remaining nodes on Γh.

So, in the two dimensional case V
(0)
0 has dimension 3×(number of subdomains).

As we will see in the numerical results, the associated preconditioner T is not

going to be scalable, therefore V
(0)
0 must not satisfy the uniform inf-sup stability

(11). This indicates that the coarse space should be enriched. Since our objective
is unstructured mesh discretization, we need to design coarse space enrichments

suitable for such discretizations. We enrich V
(0)
0 with one coarse function per

interface Ek, i.e., connected components of an interface ∂Ωi ∩ ∂Ωj .
Let Ek be an interface ordered by a sequence of vertices (v0, . . . , vnk

) con-
nected by fine edges on Th(∂Ωi ∩ ∂Ωj). We define unity normal vectors nj (for
j = 1, . . . , (nk − 1)), by using the coordinates of vj and its two neighboring
vertices vj−1 and vj+1 on Th(∂Ωi ∩ ∂Ωj). Let ηj−1/2 and lj−1/2 (ηj+1/2 and
lj+1/2) be the unity normal and the length of the interval [vj−1, vj ] ([vj , vj+1]),
respectively. Define

nj = (lj−1/2ηj−1/2 + lj+1/2ηj+1/2)/‖lj−1/2ηj−1/2 + lj+1/2ηj+1/2‖2.

To define the different coarse space enrichments we first define the weight
functions wk on each interface Ek. We consider the following weight functions on
Ek (see Fig. 1):



8

– for defining V
(1)
0 let w

(1)
k ≡ 1

– for defining V
(2)
0 let w

(2)
k (vj) = 0 for j even and 1 for j odd

– for defining V
(3)
0 let w

(3)
k (vj) = min{d1

(j), d2
(j)}/max dist

– for defining V
(4)
0 let w

(4)
k (vj) = d1

(j)d
2
(j)/(max dist)2, where d1

(j) and d2
(j) are

defined as the l2 distances to the boundary vertices v0 and vnk
, respectively,

and let max dist = maxj{d1
(j), d2

(j)}.

mesh

V
(1)
0 V

(2)
0 V

(3)
0 V

(4)
0

Fig. 1. Sketch of the edge enrichment functions

For each interface Ek, we define the coarse function as

U
(r)
k (vj) =

{
w

(r)
k (vj)nj for j = 1, . . . , (nk − 1)

0 for j = 0, nk

and then define the enriched coarse spaces V
(r)
0 , r = 1, . . . , 4, as the space

spanned by V
(0)
0 and the coarse functions U

(r)
k . The spaces V

(1)
0 and V

(2)
0 are

quite easy to implement, even for the tridimensional case, since their implemen-
tation depend only on the normal vector at the vertices. Since the enrichment

of V
(1)
0 is already a basis of the RBM for structured meshes, we do not consider

V
(1)
0 on the numerical tests.

6 Implementation Aspects

In this section we discuss some of the implementation details of the code. A
parallel software was developed in C using the PETSc library [1] for unstructured
meshes. The unstructured meshes are generated using the 2D mesh generator
EMC2 from INRIA [8]. The partitioning of the mesh is by elements and it is
performed using the ParMETIS library [5].

6.1 BDD Implementation

To assemble the matrix B0 and the right hand side g0, we define a vector e(i) in
order to recover the constant pressure function in the subdomain Ωi; in the case
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of P0 functions, e(i) is the vector of ones. The matrix B(i)

0 is computed as B(i)T

0
=

B(i)T e(i), while the vector components of the vector g0 are computed as g
(i)
0 =

e(i)T g(i). Since the discrete local pressure spaces are subspaces of L2
0
(Ωi) and the

global pressure space is a subspace of L2
0(Ω), we employ Lagrange multipliers

λ(i) to enforce zero average on each p(i)

I in Ωi and another Lagrange multiplier
µ to enforce zero average of p0 in Ω.

For applying the BDD preconditioner it remains to deal with another issue
when solving (9): the uniqueness of the Neumann solution for the floating subdo-
mains. The natural way of dealing with such difficulty is to search for a solution

u
(i)
Γ which is orthogonal to the kernel of S(i), i.e., orthogonal to the local RBM.

This is done by introducing three Lagrange multipliers per subdomain, i.e., one
for each local RBM basis function.

6.2 A Higher Order Method

Having implemented the P2/P0 discretization in PETSc we reuse all the in-

dex sets and local to global mappings defined for the P2/P0 to implement the
(P2 + Bubbles)/P1. We add the bubble velocities and the linear average zero
pressures on each element K ∈ Th, and then, through a static condensation at
the element level, we eliminate the bubble functions and the two average zero
pressures, resulting in a sort of stabilized P2/P0 finite elements. After solv-
ing the linear system we can recover the P1 discontinuous pressure solution at
element level.

7 Numerical Results

A parallel software was developed in C using the PETSc library [1]. In order to
study the scalability of the coarse space enrichments without the influence of the
mesh partitioning, which may lead to irregular interface between subdomains, we
consider in Subsections 7.1 and 7.2 a structured mesh in the domain [0, 1]× [0, 1]
partitioned into

√
N ×

√
N square subdomains. In Subsection 7.3 we consider

an unstructured mesh example to study the parallel performance.
For the numerical experiments in Subsections 7.1 and 7.2 we impose Dirichlet

boundary condition with the exact solution





u1(x, y) = x(1 − x) cos(x + y) cos(x + 3y)

u2(x, y) = y(1 − y) sin(x + y) sin(x + y)

p(x, y) = xy exp(x + 2y) sin(x − y) cos(y − x),

where we point out that ∇.u is non-null. Since the preconditioned operator T in
(12) is symmetric positive definite with respect to S (see [7]), we use the precon-
ditioned conjugated gradient (PCG) with the stopping criterion ‖rk‖2/‖r0‖2 ≤
10−6, where rk is the residual at the iteration k. For solving the local prob-
lems we use the PETSc’s LU with nested dissection reordering. The minimum
eigenvalue is not presented in the tables since it is equal to one.
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For the numerical experiments reported here we use a cluster of Linux PCs
composed of 8 nodes with two Opteron processors each, where each node has
8Gbytes of shared memory among it processors. Each processor is scored at
4.8Gflops. We remark that the code was compiled with debugging option, thus
the timings can be at least twice faster if compiled with optimizations.

7.1 Constant Viscosity Tests

In this section all the numerical experiments are performed with a constant
viscosity ν = 1 and using the discretization (P2 + Bubble)/P1. On Table 1 we
fix the mesh of the subdomains to 32×32 and increase the number of subdomains.
On Table 2 we fix the number of subdomains to 4× 4 and refine the mesh of the
subdomains. These tables show the number of PCG iterations and the maximum
eigenvalue (in parenthesis) for the different coarse spaces. We conclude from

Table 1 that the coarse spaces V
(0)
0 and V

(2)
0 do not satisfy the uniform inf-sup

stability (11), while the coarse spaces V
(3)
0 and V

(4)
0 provide scalable algorithms.

From Table 2, we see that the iteration counts of all the preconditioners depend
very weakly on the size of the local problems. This result is expected due to
(12).

Table 1. The PCG iteration counts and the largest eigenvalues of the preconditioned
operator T (within parenthesis) for different coarse spaces. We fix the local mesh to
32 × 32.

Subdomains V
(0)
0 V

(2)
0 V

(3)
0 V

(4)
0

3 × 3 19 (10.3) 19 (8.49) 17 (7.23) 16 (7.22)
4 × 4 23 (12.0) 22 (9.42) 20 (7.56) 20 (7.54)
5 × 5 27 (23.5) 25 (13.5) 20 (7.70) 20 (7.68)
6 × 6 28 (24.1) 24 (13.7) 20 (7.80) 20 (7.78)
7 × 7 30 (43.2) 26 (17.2) 20 (7.87) 20 (7.84)
8 × 8 35 (41.2) 27 (17.0) 21 (7.91) 20 (7.88)

Table 2. The PCG iteration counts and the largest eigenvalues of the preconditioned
operator T (within parenthesis) for different coarse spaces. We fix the number of
subdomains to 4 × 4.

Local mesh V
(0)
0 V

(2)
0 V

(3)
0 V

(4)
0

8 × 8 17 (7.87) 16 (4.72) 15 (4.30) 14 (4.27)
16 × 16 20 (9.83) 19 (6.80) 17 (5.82) 17 (5.79)
32 × 32 23 (12.0) 22 (9.42) 20 (7.56) 20 (5.74)

For the subsequent numerical experiments we consider only the space V
(4)
0

since it shows to be the most effective coarse space tested.
On Table 3 we compare the discrete errors of the (P2 + Bubbles)/P1 and

the P2/P0 (in parenthesis). We see that the (P2 + Bubbles)/P1 discretization
is by far more accurate than the P2/P0. The convergence error rates for the
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(P2 + Bubbles)/P1 are 10, 4, 4 for the velocity in the L2, H1, div norms, and
4 for the pressure in the L2 norm, respectively. For the P2/P0 discretization the
rates are 4, 2, 2 for the velocity in the L2, H1, div norms, and 2 for the pressure
in the L2 norm, respectively.

In Table 4 we compare the discretizations (P2 + Bubbles)/P1 and P2/P0

with respect to iteration counts, conditioning, execution and assembling times
(given in seconds), and to preconditioning. The table shows that the overall
CPU time for the discretization (P2 + Bubble)/P1 is not much larger than the
P2/P0 one. Also we can see that the number of PCG iterations and the condition
number are relatively the same for both discretizations. The high CPU time in
the case of the local mesh 64× 64 will be discussed in Subsection 7.3.

Table 3. The discretization errors of velocity for (P2 + Bubbles)/P1 and P2/P0

(within parenthesis). Fixing the number of subdomains to 4 × 4.

Local mesh ‖u − uh‖0 |u − uh|1 |u − uh|div ‖p − ph‖0

4 × 4 3.64e-5 (5.73e-4) 3.88e-3 (3.63e-2) 2.82e-3 (3.31e-2) 1.39e-2 (7.42e-2)
8 × 8 3.71e-6 (1.47e-4) 9.13e-4 (1.84e-2) 6.93e-3 (1.69e-2) 3.81e-3 (3.72e-2)

16 × 16 4.13e-7 (3.73e-5) 2.18e-4 (9.26e-3) 1.71e-4 (8.52e-3) 9.78e-4 (1.86e-2)
32 × 32 4.97e-8 (9.40e-6) 5.39e-5 (4.64e-3) 4.27e-5 (4.27e-3) 2.46e-4 (9.31e-3)
64 × 64 6.60e-9 (2.36e-6) 1.34e-5 (2.33e-3) 1.07e-5 (2.14e-3) 4.65e-5 (4.65e-3)

Table 4. PCG iteration counts (Its.), largest eigenvalue of the preconditioned operator
T (λmax), CPU time for assembling the matrix and CPU times for all the running (T2)
for the discretizations (P2 + Bubbles)/P1 and P2/P0 (within parenthesis). Fixing the
number of subdomains to 4 × 4.

Local mesh Its. λmax T1(s) T2(s)

4 × 4 11 (13) 2.98 (3.42) 0.08 (0.06) 2.35 (2.30)
8 × 8 14 (14) 4.27 (4.57) 0.10 (0.07) 3.12 (2.90)

16 × 16 17 (16) 5.79 (5.96) 0.16 (0.10) 8.65 (8.53)
32 × 32 20 (18) 7.53 (7.61) 0.58 (0.34) 108.6 (107.1)
64 × 64 22 (21) 9.52 (9.51) 1.80 (0.93) 5687.1 (5682.6)

7.2 Discontinuous Viscosities

In this section we assume that the viscosity is constant in each subdomain, how-
ever with a jump across the subdomains. We study the case where the viscosity
is given by two constant values ν1 and ν2, in such a way that it has a checker
board pattern.

We consider the discretization (P2 + Bubbles)/P1 and fix ν1 = 1. On Table
5 we provide the number of iterations and the maximum eigenvalue (in paren-
thesis), for different values of the exponent γ; see (8). The best result is obtained
when γ = 1, although for γ > 1 the condition numbers present similar behavior.
In addition, as predicted in [9, 10], we confirm the strong deterioration on the
performance of the algorithms when γ is less than 1/2 and ν2 is large.
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Table 5. Fixing the Number of subdomains to 4x4

γ local mesh ν2 = 10 ν2 = 100 ν2 = 1000

8 × 8 19 (11.2) 25 (44.5) 26 (172)
γ = 0.25 16 × 16 23 (16.0) 31 (65.3) 35 (254)

32 × 32 25 (22.0) 35 (90.5) 43 (352)

8 × 8 15 (5.72) 17 (7.71) 17 (8.70)
γ = 0.5 16 × 16 18 (7.93) 19 (10.7) 19 (12.1)

32 × 32 20 (10.6) 22 (14.3) 22 (16.1)

8 × 8 13 (4.42) 11 (4.09) 11 (4.04)
γ = 1 16 × 16 14 (5.72) 13 (5.13) 12 (5.04)

32 × 32 16 (7.08) 15 (6.17) 13 (6.03)

8 × 8 13 (5.05) 11 (4.15) 11 (4.05)
γ = 2 16 × 16 15 (6.57) 13 (5.21) 12 (5.05)

32 × 32 17 (8.17) 15 (6.26) 13 (6.04)

7.3 Parallel Performance

In order to analyze the parallel performance of the code we consider the dis-

cretization (P2 + Bubble)/P1 and the coarse space enrichment V
(4)
0 in the

preconditioner. We also consider the domain Ω as in the Figure (2) with an
unstructured mesh. We impose the following Dirichlet boundary conditions

u(x, y) =





y(1 − y); for x = 0 (inflow)

y(1 − y); for x = 6 (outflow)

0; otherwise (no-slip condition)

In Table 6 we run problems with a mesh of 23008 elements (the system then
have 116283 dofs). In order to study the scalability we solve a problem in one
processor only with LU using nested dissection reordering. The speedup in N
processors (SN) is calculated as the ratio of total execution time in 1 processor
(T1) and in N processors (TN) as SN = T1/TN. The efficiency in N processors
is computed as the ratio of the speedup in N processors and the number of
processors, i.e., SN/N . The CPU times show that the proposed preconditioner
is more effective when the size of the local problems is small. This is due to the
high cost of the local LU factorizations of the Dirichlet and Neumann matrices.
The CPU time in assembling and in LU factorization of the coarse matrix is very
small. The speedup factor grows super linearly when we increase the number of
processors due to the smaller sizes of the local factorizations. The efficiency of
the method grows due to the same reason; we point out that in the latter case
of 32 subdomains there is an overload of the processors. We also mention that
a postprocessing of the mesh partition can improve a little the iteration counts
by smoothing the interface between the subdomains.

In Table 7 we fix the local mesh to 3222 elements. We point out that to
setup the preconditioner for more than one subdomain it is required two LU
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factorizations, while in one subdomain we need just one. We remark that the
band of the matrix in the one subdomain case is smaller than in the cases with
more subdomains, due to the shape of the domain. Thus, the execution time for
one subdomain is more than twice faster than the 4 subdomains case, however,
from the case of 4 subdomains to 16 subdomains the increase in the execution
time is almost all due to the iterative solver, that takes 15 more iterations than
in the 4 subdomains case. Hence, by comparing the 4 and 16 subdomain cases,
the scalability is obtained. We expect that the iteration counts will stabilize for
large number of subdomains due to the theory and Table 1.

Fig. 2. Domain for parallel performance test and sketch of an unstructured mesh.
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Table 6. This table shows the iteration counts (It.), total execution time (Ttot), the
speedup factors, the efficiency, and the CPU times to solve iteratively the linear system
(TS), to compute the LU factorizations of the local problems (TF) and to compute the
coarse matrix (this includes the LU factorization of the coarse matrix and is denoted
TC). The cases of 32 subdomains is performed by overloading some processors.

Subs. Its. Ttot (s) Speedup Efficiency TS(s) TF(s) TC(s)

1 (LU) – 4.91e+4 – – – – –
2 10 1.67e+4 2.94 1.47 1.06e+2 1.65e+4 1.15e+1
4 13 2.11e+3 23.3 5.82 3.85e+1 2.06e+3 5.83e+0
8 17 3.21e+2 153 19.1 2.17e+1 2.95e+2 3.49e+0
12 22 1.17e+2 420 35.0 2.56e+1 8.65e+1 2.52e+0
16 28 6.48e+1 758 47.4 2.09e+1 4.01e+1 1.84e+0
32 31 3.47e+1 1420 44.4 1.55e+1 1.13e+1 7.57e-1

8 Conclusions

We propose four coarse spaces suitable for BDD preconditioning on unstructured

meshes. It is verified that the coarse spaces V
(0)
0 and V

(2)
0 are not stable,

while the coarse spaces V
(3)
0 and V

(4)
0 are stable and scalable. We show that

the discretization (P2 + Bubble)/P1 is much more accurate than the P2/P0,
with no significant extra computational cost. We have shown that the choice
γ ≥ 1 in the definition of the diagonal scaling (8) is a robust choice for highly
discontinuous viscosities.
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Table 7. The local mesh is fixed to 3222 elements. The legends are the same as in
the Table 6.

Subs. Its. Ttot(s) TS(s) TF(s) TC(s)

1 (LU) – 1.41e+2 – – –
4 11 4.06e+2 1.32e+1 3.88e+2 2.80e+0
16 25 4.71e+2 5.43e+1 4.06e+2 5.38e+0

We develop a code based on PETSc library for 2D unstructured meshes, ex-
tensible to 3D meshes, with very impressive efficiency and speedup factors. In
addition, as indicated by the numerical results, we can increase the performance
of the local LU factorizations with the use of better reorderings.
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