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1 Introduction

In the theory of differentiable dynamics, one may say that a fundamental problem is to
describe the dynamics of “open sets” in the space of all dynamical systems, hoping that these
systems can be interesting either in terms of their own rich mathematical structure or in
terms of the meaning to other areas of sciences.

In this sense, the theory of the hyperbolic dynamics has been extremely successful: hy-
perbolicity is the cornerstone of uniform and robust chaotic dynamics; it characterizes the
structural stable systems; it provides the structure underlying the presence of homoclinic
points; a large category of rich dynamics are hyperbolic (geodesic flows in negative cur-
vature, billiards with negative curvature, linear automorphisms, mechanical systems, etc.);
the hyperbolic theory has been fruitful in developing a geometrical approach to dynamical
systems; and, under the assumption of hyperbolicity one obtains a satisfactory (complete)
description of the dynamics of the system from a topological and statistical point of view.
Moreover, hyperbolicity has provided paradigms or models of behavior than can be expected
to be obtained in specific problems.

A set Λ is called hyperbolic for f if it is compact, f -invariant and the tangent bundle
TΛM can be decomposed as TΛM = Es ⊕Eu invariant under Df and there exist C > 0 and
0 < λ < 1 such that

||Dfn
/Es(x)|| ≤ Cλn, ‖Df−n

/Eu(x)| ≤ Cλn

for all x ∈ Λ and for every positive integer n. A hyperbolic diffeomorphism means a diffeo-
morphism such that its limit set (noted as L(f)) is hyperbolic (where the limit set is the
closure of the forward and backward accumulation points of all orbits).

A diffeomorphism is called Axiom A if its the non-wandering set is hyperbolic and it is
the closure of the periodic points. It is called an Anosov diffeomorphisms if f is hyperbolic
on the whole manifold.

Nevertheless, hyperbolicity was soon realized to be a property less universal than it was
initially thought: it was shown that there are open sets in the space of dynamics which are
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nonhyperbolic and there are many dynamical phenomena coming from applications that can-
not be described in the framework of hyperbolicity. To overcome these difficulties, the theory
moved in different directions; one being to develop weaker or relaxed forms of hyperbolicity,
hoping to include a larger class of dynamics.

There is an easy way to relax hyperbolicity, called partial hyperbolicity, which allows the
tangent bundle to split into Df -invariant subbundles TM = Es ⊕ Ec ⊕ Eu, such that the
behavior of vectors in Es, Eu is similar to the hyperbolic case, but vectors in Ec may be
neutral for the action of the tangent map. This notion arose in a natural way in the context
of time one maps of Anosov flows, frame flows or group extensions. See [Sh], [M2], [BD],
[BV] for examples of these systems and [HP], [PS3] for an overview.

There is also another category which includes the partially hyperbolic system: dominated
splitting. An f -invariant set Λ is said to have dominated splitting if we can decompose its
tangent bundle in two invariant subbundles TΛM = E ⊕ F, such that:

‖Dfn
/E(x)‖‖Df−n

/F (fn(x))‖ ≤ Cλn, for all x ∈ Λ, n ≥ 0.

with C > 0 and 0 < λ < 1.
Of course, it is assumed that neither of the subbbundless is trivial (otherwise, the other

one has a uniform hyperbolic behavior: contracting or expanding). Also observe that any
hyperbolic splitting is a dominated one.

Let us explain briefly the meaning of the above definition: it says that, for n large, the
“greatest expansion” of Dfn on E is less than the “greatest contraction” of Dfn on F and
by a factor that becomes exponentially small with n. In other words, every direction not
belonging to E must converge exponentially fast under iteration of Df to the direction F .
This notion was first introduced independently by Mañé, Liao, and Pliss, as a first step in
the attempt to prove that structurally stable systems satisfy a hyperbolic condition on the
tangent map. Simple examples of invariant sets exhibiting dominated splitting which are not
hyperbolic splitting are normally hyperbolic closed invariant curves with dynamics conjugate
to irrational rotations and homoclinic classes associated to non-hyperbolic fixed points. Later
we shall expose more elaborate examples.

In this survey, we show a series of dynamical contexts where the notion of dominated
splitting appears naturally. In particular, we show how it extends the notion of hyperbolicity
and explains robust dynamical phenomena that are not hyperbolic. On the other hand,
we expose how the dominated splitting helps us to find hyperbolic structures: in fact, we
show that in certain cases, the dominated splitting structure arises naturally and from there
hyperbolicity is concluded. To attain this last kind of result, we expose a series of theorems
that explain the dynamical consequences that follow from a dominated splitting.

However, we have to make clear that the theory of dominated splitting is far from being
successful as the theory of hyperbolicity. Moreover, it is not complete and many of the
examples that are known could be considered extremely limited.
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2 Hyperbolicity and stability. Robust transitivity and dom-
inated splitting.

In loose terms, robustness means that some main feature of a dynamical system (an attractor,
a given geometric configuration, or some form of recurrence, to name a few possibilities) is
shared by all nearby systems. If we consider that the mathematical formulation of natural
phenomena always involves simplifications of the physical laws, features specific to the model
may have nothing to do with the actual phenomena. Therefore, real significance of a model
may be accorded only to those properties that are robust, or even stable, under perturbations.
The typical models showing robust properties are the well known Anosov maps (as examples
of global hyperbolic dynamics) and the Smale’s horseshoes (as examples of local hyperbolic
ones).

In contrast to the instability of their orbits, the hyperbolic dynamics are stable in the
sense that any perturbation of the system is conjugated to the initial one, meaning that
the relevant dynamical behavior is actually the same, in some appropriate sense, again for
all nearby systems. In particular, this shows that transitive hyperbolic systems (hyperbolic
systems that have a dense trajectory) are in fact Cr−robust transitive ones; i.e: any Cr

small perturbation of the initial system remains transitive. Moreover, hyperbolic dynamics
have provided the first examples of robust dynamics showing chaotic or mixing properties.

As stated above, there are open sets in the space of dynamics which are nonhyperbolic.
Indeed, in [Sh], an open set of non-hyperbolic transitive diffeomorphisms on T4 were exhib-
ited (open sets of diffeomorphisms exhibiting hyperbolic periodic points of different indices
inside a transitive set). This example motivated other different types of constructions of
robustly transitive systems: skew products of a hyperbolic system with a non-hyperbolic
one; derived from Anosov or bifurcation of Anosov maps; time one maps of an Anosov flow.
These examples were a serious blow at the time, since they meant that even such seemingly
simple situations, exhibiting a unique dynamical piece, cannot be understood within the
framework of hyperbolicity. In the late 90s, examples of robust transitive dynamics without
any hyperbolic subbundles were shown. More precisely, it was shown that there are robustly
transitive diffeomorphisms in the 4-torus which have no expanding or contracting invariant
sub-bundle; therefore, they are neither hyperbolic nor partially hyperbolic; they only have a
truly dominated splitting. In fact, those examples exhibit a splitting TM = Ecs ⊕Ecu which
is dominated splitting, where Ecs and Ecu are indecomposable and nonhyperbolic (see [BV]).

The construction follows closely the example by Mañé and it can be summarized in the
following way.

Consider a linear Anosov map A of the torus T4 having four real eigenvalues, 0 < λ1 <
λ2 < 1 < λ3 < λ4. Then fix A−invariant cone fields Ccu corresponding to the expanding
eigenvalues λ3 and λ4 and a cone field Ccs around the contracting eigenspaces. Now, take
two small boxes C1 and C2, and consider a diffeomorphism f coinciding with A outside the
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boxes C1, and C2 and verifying the following:

1. f contains in C1 a fixed point p (of index 2) with a contractive complex eigenvalue with
eigenspace inside Ccs and a fixed point q, of index 1 with eigenspace also in Ccs. This
implies that Ccs does not contain a hyperbolic stable direction.

2. f in C2 contains a fixed point p2 (of index 2) with an expanding complex eigenvalue
and having a fixed point q2 of index 1. These properties prevent the existence of a
hyperbolic unstable subbundle.

Therefore, it follows that the hyperbolic splitting Ess ⊕ Es ⊕ Eu ⊕ Euu of A was deformed
into a dominated splitting E ⊕ F such that dim(E) = 2.

To assure that f is robust transitive it is required that Df (Df−1) preserves the cone
field Ccu (Ccs, respectively) and uniformly expands the area in this cone field; the restriction
of f to the complement of C1 uniformly expands the vectors in Ccu and the restriction of
f−1 to the complement of C2 uniformly expands the vectors in Ccs

Arguing as in [M], using the uniform expansion of the area in Ccu, it is shown that every
center unstable disk D contains a point whose forward orbit remains in the complement of
C1 and this allows one to show that, for every large n > 0, fn(D) contains a center-unstable
disk of radius bigger than L (where L is the maximum of the radius of the boxes C1 and
C2). The same argument shows that the large negative iterates of any center-stable disk D
contain a center stable disk of radius bigger that L and this implies the transitivity of f.

This example causes us to propose the general principle: robust dynamical phenomena
reflect some robust structure of the tangent map.

In fact, in [M2] for surface diffeomorphisms, in [DPU] for dimension three, and in [BDP]
for any dimension it is shown that this is the main characteristic of C1−robust transitivity
(C1−nearby systems are transitive). In fact, the following was proved:

Theorem 2.0.1. Any C1−robust transitive diffeomorphism exhibits a dominated splitting
such that its extremal bundles are uniformly volume contracted or expanded.

This last theorem has other formulations in terms of certain generic dichotomy and also
in conservative terms: see [Ab], [B], [BoV], [BB], [BFP], [AM].

Besides, the situation of hyperbolicity for continuous-time systems was no better. Geo-
metric models for the Lorenz equations had just been proposed [ABS], [GW] which showed,
in particular, that robust attractors of 3-dimensional flows need not be hyperbolic either. Di-
verse results that characterize robustly transitive flows with an equilibrium point have been
developed. We refer to [MPP], [AP], [AR], [BDU], [PS5] for further reading.
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3 Dominated splittings versus homoclinic tangencies.

In all the above examples of open sets of non-hyperbolic dynamics the underlying manifolds
must be of dimension at least three and so the case of surfaces is not covered. It was through
the seminal works of Newhouse (see [N1], [N2], [N3]) that hyperbolicity was shown to be
not dense in the space of Cr diffeomorphisms (r > 2) of compact surfaces. The underlying
mechanism here was the presence of a homoclinic tangency leading nowadays to the so-called
“Newhouse phenomena”, i.e., residual subsets of diffeomorphisms displaying infinitely many
periodic attractors (this conclusion implies the existence of an open set of non-hyperbolic
surfaces maps).

To be precise, first we recall that the stable and unstable sets

W s(p) = {y ∈ M : dist(fn(y), fn(p)) → 0 as n →∞},

W u(p) = {y ∈ M : dist(fn(y), fn(p)) → 0 as n → −∞}
are Cr-injectively immersed submanifolds when p is a hyperbolic periodic point of f .

Definition 3.0.1. Let f : M → M be a diffeomorphism. We say that f exhibits a homo-
clinic tangency if there is a hyperbolic periodic point p of f such that the stable and unstable
manifolds of p have a non-transverse intersection.

After the works of Newhouse, many other results were obtained in the direction of un-
derstanding the dynamics induced by unfolding homoclinic tangencies, especially in the case
of one-parameter families. Many fundamental dynamical prototypes were found in the con-
text of this bifurcation, namely the so called cascade of bifurcations, the Hénon-like strange
attractor ([BC], [MV]) and infinitely many coexisting ones [C]. All the previous results hold
for diffeomorphisms of at least class C2. However, in [BD2] and [DNP] the Newhouse’s
phenomenon was obtained for C1−diffeomorphisms on three dimensional manifolds.

These results suggest that one seek a characterization of universal mechanisms that lead
to robustly (meaning any perturbation of the initial system) nonhyperbolic behavior.

From the works of [N1] and [D1], two basic mechanisms were found to the obstruction of
hyperbolicity, namely heterodimensional cycles and homolicinic tangencies. In the early 80’s
Palis conjectured that these are very common in the complement of the hyperbolic systems:
Every Cr diffeomorphism of a compact manifold M can be Cr approximated by one which is
hyperbolic, or by one exhibiting a heterodimensional cycle, or by one exhibiting a homoclinic
tangency.

The presence of homoclinic tangencies has many analogies with the presence of critical
points for one-dimensional endomorphisms. On one hand, homoclinic tangencies correspond
in the one-dimensional setting to preperiodic critical points and it is known that their bi-
furcation leads to complex dynamics. On the other hand, Mañé (see [M1]) showed that for
a regular, generic one-dimensional endomorphism, the absence of critical points is enough
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to guarantee hyperbolicity. This result raises the question about the dynamical properties
of surface maps exhibiting no homoclinic tangencies. As a dominated splitting prevents the
presence of tangencies, we could say that domination plays for surface diffeomorphisms the
role that the non critical behavior does for one-dimensional endomorphisms.

The above conjecture was proven to be true [PS1] for the case of surfaces and the
C1 topology: Systems that are C1−far from tangencies (meaning systems that can not be
C1−approximated by another one that exhibits a homoclinic tangency) are hyperbolic. This
result is false in higher dimensions. In fact there are open sets of non-hyperbolic dynamics
which are far from tangencies.

However, at least partial results have been obtained in the direction of understanding
systems that remain far from tangencies: The limit set of a system that is C1−far from
tangencies has a dominated splitting.

The next theorem says that the lack (in a robust way) of homoclinic tangency guarantees
the existence of a dominated splitting. It was originally proven for surface diffeomorphisms
in [PS1] and extended to higher dimensions by L. Wen in [We].

Theorem 3.0.2. Let f : M → M be a diffeomorphism which is C1 far from tangencies.
Then Peri(f) (the closure of the set of hyperbolic periodic points of index i) has a dominated
splitting of index i, where i = 1, ..., dim(M)− 1.

It is important to remark that dominated splitting of index i can coexists with tangencies.
In fact, examples like the one shown in section 2 are not approximated by diffeomorphisms
exhibiting a tangency of index 2 although they can be approximated by one having tangencies
associated to periodic points of index different from 2.

4 Dominated splittings and dynamical consequences for sur-
faces maps.

One of the main goals in dynamics is to understand how the dynamics of the tangent map Df
controls or determines the underlying dynamics of f. Actually, this paradigm is motivated
after the success of the hyperbolic theory.

In fact, assuming that the limit set L(f) (the minimum closed invariant set that contains
the ω and α limit set of all orbits) splits into two subbundles, TL(f)M = Es ⊕ Eu, invariant
under Df and vectors in Es are contracted by positive iteration of the tangent map (the same
holding for Eu but under negative iteration), Smale [S] proved that L(f) can be decomposed
into the disjoint union of finitely compact maximal invariant and transitive sets. Moreover,
the periodic points are dense in L(f) and the asymptotic behavior of any point in the manifold
is represented by an orbit in L(f).

A natural question arises: is it possible to describe the dynamics of a system having
dominated splitting? Moreover, observing that the examples of open sets of non-hyperbolic
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diffeomorphisms that have a dominated splitting exist in dimension larger than two, it is
natural to ask if under the assumption of dominated splitting is it possible to conclude
hyperbolicity in dimension two?

In fact, a similar spectral decomposition theorem as the one stated for hyperbolic dy-
namics holds for smooth surface diffeomorphisms exhibiting a dominated splitting. We can
summarize these results by saying that generically, invariant compact sets with dominated
splitting of a smooth surface diffeomorphism are hyperbolic sets.

Theorem 4.0.3. ([PS1]) Let f ∈ Diff2(M2) and assume that Λ ⊂ Ω(f) is a compact in-
variant set exhibiting a dominated splitting such that every periodic point in Λ is hyperbolic.
Then Λ = Λ1 ∪ Λ2 where Λ1 is a hyperbolic set and Λ2 consists of a finite union of periodic
simple closed curves C1, ..., Cn, normally hyperbolic, and such that fmi : Ci → Ci is conjugate
to an irrational rotation (mi denotes the period of Ci).

One may ask whether a set having a dominated splitting is hyperbolic. Two necessary
conditions follows trivially: all the periodic points in the set must be hyperbolic and no
attracting (repelling) closed invariant (periodic) curve supporting an irrational rotation is in
the set.

The next result is the analog of a one-dimensional theorem by Mañe (see [M1]). A similar
description can be obtained for C2 surface diffeomorphisms having dominated splitting over
the limit set L(f):

Theorem 4.0.4. ([PS3]) Let f ∈ Diff2(M2) and assume that L(f) has a dominated splitting.
Then L(f) can be decomposed into L(f) = I ∪ L̃(f) ∪R such that

1. I is a set of periodic points with bounded periods and contained in a disjoint union of
finitely many normally hyperbolic periodic arcs or simple closed curves.

2. R is a finite union of normally hyperbolic periodic simple closed curves supporting an
irrational rotation.

3. L̃(f) can be decomposed into a disjoint union of finitely many compact invariant and
transitive sets. The periodic points are dense in L̃(f) and at most finitely many of them
are non-hyperbolic periodic points. The (basic) sets above are the union of finitely many
(nontrivial) homoclinic classes. Furthermore f/L̃(f) is expansive.

Roughly speaking, the above theorem says that the dynamics of a C2 surface diffeo-
morphism having a dominated splitting can be decomposed into two parts: one where the
dynamics consists of periodic and almost periodic motions (I, R) with the diffeomorphism
acting equicontinuously; and another, where the dynamics are expansive and similar to the
hyperbolic case.
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Two immediate consequences follow from the previous theorem. First, any C2 surface
diffeomorphism with a dominated splitting over L(f) which has a sequence of periodic points
with unbounded periods must exhibit a nontrivial homoclinic class and hence:

Corolary 4.0.1. The topological entropy of a C2 diffeomorphism of a compact surface having
dominated splitting over L(f) and having a sequence of periodic points with unbounded periods
is positive.

Second, using Theorem 3.0.2 and the one above, it can be proved that:

Corolary 4.0.2. Let f ∈ Diff2(M2) be C1−far from tangencies. Then, f can be C1-
approximated by an Axiom A diffeomorphism.

Moreover,

Corolary 4.0.3. Let f ∈ Diff2(M2) have infinitely many sinks or sources with unbounded
period. Then, f can be C1-approximated by a diffeomorphism exhibiting a homoclinic tan-
gency.

5 Geodesic flows and hyperbolicity. Weyl manifolds and dom-
inated splitting. Mechanical examples.

The study of hyperbolicity goes back to the work of Hadamard in 1898 concerning geodesic
flows for surfaces with negative curvature, showing the density of closed geodesics and the
instability of the flow with respect to initial conditions. In the 20s and 30s, Hedlund and Hopf
showed that these flows are topologically mixing and that they are ergodic with respect to
the Liouville measure. Later, in [A] it was shown that geodesic flows for compact manifolds
with negative sectional curvature are hyperbolic (Anosov) flows. To be precise, we need to
introduce the notion of hyperbolicity for flows: Given a compact invariant set Λ ⊂ M of a
flow Φt associated to a vector field X, one says that Λ is a hyperbolic set of Φt if the tangent
bundle of Λ splits into three invariant sub-bundles: TΛM = Es ⊕ [X]⊕ Eu, such that [X] is
the subbundle induced by the vector field, and there are two constants λ < 0 and c > 0 such
that the following properties hold:

1. ||DΦt|Es || < c exp(λt) for t > 0 ; that is, Es is uniformly contracted in the future.

2. ||DΦ−t|Eu || < c exp(λt) for t > 0; that is, Eu is uniformly contracted in the past.

The results for geodesic flows have been extended to the case of Hamiltonian dynamics.
A long standing question has been whether there is a physical example of a Hamiltonian
system with Anosov energy levels – i.e., the Hamiltonian flow is Anosov on some energy level
sets. A positive answer to this question was given in the remarkable paper of [HM] where
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the dynamics of a triple linkage is studied: three disks in a plane, free to rotate about pivots
fixed in a triangle, but constrained by three rods connecting one point of each disk to a pivot
x. For its free frictionless motion Hunt and Mackay proved existence of an open set of three
linkage configurations for which the dynamics in each positive energy level set is a geodesic
flow arising from negative curvature.

A natural generalization of a Riemann manifold is a Weyl structure. It is a torsion free
connection whose parallel transport preserves a given conformal class of metrics. We follow
the work and exposition of Maciej P. Wojtkowski [Wo] to describe the interplay between a
Weyl manifold, a Weyl flow, a Gaussian thermostat, and a dominated splitting.

Fix a Riemannian metric <,>, let ∇ be the Levi-Civita connection, and let E be a vector
field. Define the connection ∇̂ as

∇̂XY = ∇XY + < X,E > Y + < Y,E > X− < X, Y > E;

where X, Y denote arbitrary vector fields. The geodesics of the Weyl connection are given
by the equations in TM

∂q

∂s
= w,

D̂w

∂s
= 0

where D̂w
∂s denotes the covariant derivative ∇̂w. These equations provide geodesics with a

distinguished parameter s, unique up to scale. The W-flow Φt : SM → SM is obtained by
parameterizing the geodesics of the Weyl connection with the arc length of g.
Example: ([Wo]) Let T2 be the flat torus with coordinates (x; y) ∈ R2 and E = (a; 0) be the
constant vector field on T2 then the equations of the W-flow given by x′′ = ay′, y′′ = −ax′y′

can be integrated and we obtain as trajectories translations of the curve ax = ln(cos(ay)) or
the horizontal lines. Assuming that E has irrational direction on T2 one obtains the following
global phase portrait for the W-flow. In the unit tangent bundle ST2 = T3 there are two
invariant tori A and R with minimal quasiperiodic motions, A contains the unit vectors in
the direction of E and it is a global attractor, while R contains the unit vectors opposite to
E and is a global repeller. This example reveals a major departure from geodesic flows and
Hamiltonian dynamics. W-flows may contract phase volume and they may have no absolutely
continuous invariant measure.

The curvature tensor can be defined as R̂(X, Y ) = ∇̂X∇̂Y − ∇̂Y ∇̂X − ∇̂[X,Y ] and there-
fore the sectional curvature of a plane Π spanned by the vectors X and Y , K(Π) =<
R̂(X, Y )Y,X > can be introduced. The next theorem is similar to the one obtained for
geodesic flows on manifolds of negative curvature, replacing hyperbolicity by a dominated
splitting:

Theorem 5.0.5. If the sectional curvatures of the Weyl structure are negative everywhere
in M then the W-flow has a dominated splitting E ⊕ F such that the flow shows exponential
growth of volume in F and exponential decay of volume in E.
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In this paper, Wojtkowski conjectured that there are three-dimensional manifolds and vec-
tor fields such that the sectional curvatures of the corresponding Weyl structure are negative
but the W-flow is not Anosov.

Such W-flows turn out to have a natural physical interpretation: they are identical to
Gaussian thermostats, or isokinetic dynamics, introduced by Hoover in [H]. Isokinetic dy-
namics provides useful models in nonequilibrium statistical mechanics, discussed in the papers
of Gallavotti and Ruelle, [G],[R], [GR].

6 Billiards and hyperbolicity. Pin-ball billiards and domi-
nated splitting.

Billiards are mathematical models for many physical phenomena where one or more parti-
cles move in a container and collide with its walls and/or with each other. The dynamical
properties of such models are determined by the shape of the walls of the container, and
they may vary from completely regular (integrable) to fully chaotic. The most intriguing are
chaotic billiards. This is the case of the dispersing billiard tables due to Ya. Sinai, introduced
as a model of hard balls studied by L. Boltzmann in the XIX century and the Lorentz gas
introduced to describe electricity in 1905. In his paper [Sin70] showed that billiards with
dispersive walls (billiards such that the walls have negative curvature ) are prototypes of hy-
perbolic dynamics. In contrast, billiards induced by polygonal tables are integrable and so
they are non-hyperbolic.

To be precise, let B be an open bounded and connected subset of the plane whose bound-
ary consists of a finite number of closed C2-curves Γi, i > 2. The billiard in B is the
dynamical system describing the free motion of a point mass inside B with elastic reflections
at the boundary Γ = ∪iΓi. Let n(q) be the unit normal of the curve Γ at the point q ∈ Γ
pointing toward the interior of B. The phase space of such a dynamical system is given by

M = {(q, v) : q ∈ Γ, |v| = 1, 〈v, n(q)〉 > 0}.

In this space, the set of coordinates (s, ϕ) is introduced on M where s is the arc length
parameter along Γ and ϕ is the angle between v and the normal vector n(q) to the boundary
at q. Clearly −π/2 6 ϕ 6 π/2 and 〈n(q), v〉 = cosϕ.

The billiard map T is defined by T (q0, v0) = (q1, v1) where q1 is the point of Γ hit first
by the oriented line through (q0, v0) and v1 is the velocity vector after the reflection at q1.
Formally,

v1 = v0 − 2〈n(q1), v0〉n(q1).

The map T is piecewise C1. Even if the billiard map T has discontinuities it is possible
to define the notion of hyperbolicity and prove that billiard tables with dispersing walls are
hyperbolic.
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The dynamics of these types of billiards are prototypes of conservative dynamics: the Liou-
ville measure is preserved. Therefore, these billiards are not useful to model rich phenomena
that could hold in regimes far from the equilibrium. In this direction, moving towards over-
coming these restrictions, in [CELS] one obtains several results about nonequilibrium states
in the Lorentz gas, studying the dynamics of a system defined by a single particle traveling in
a billiard table (bouncing off the scatterers with elastic collisions) and such that the particle
is subjected to an electric field and a momentum-dependent frictional force between collisions
with the scatterer. This unusual frictional force is chosen so that the total kinetic energy of
the system is conserved although the dynamics do not preserve Liouville measure. The deep
study in this system depends on the rather detailed knowledge that it has properties of hyper-
bolic type (e.g. existence of stable and unstable manifolds and rate of decay of correlations)
for billiard systems.

Other types of nonconservative billiards are the pinball billiards which involve a table
billiard with the property that when the ball touches one of the scatters, it suddenly reacts
in a way that shoots or kicks the ball radially outward. After a number of collisions this
system ends up like a “particle accelerator”. The particle moves along straight lines inside
the billiard table and when it hits one of the walls with angle α with respect to the normal,
it is reflected with angle λα with respect to normal line (with λ < 1): this follows from the
fact that the ball is “kicked” by the wall giving a new impulse in the direction of the normal
and thereby increasing its kinetic energy. The billiard map is defined in the same way,

v1 = v0 − (2− α)〈n(q1), v0〉n(q1), α > 0,

so contraction or dissipation in angle occurs while kinetic energy is increased. For this type
of billiards one concludes the following:

Theorem 6.0.6. ([MPS])
The billiard map associated to a billiard table with non-positive curvature (or non-focusing

walls) has a dominated splitting.

In view of theorem 4.0.4 one also concludes:

Theorem 6.0.7. ([MPS]) Given a smooth billiard table with non-focusing walls, follows that
the billiard map associated to it admits a spectral decomposition (as in theorem 4.0.4) on the
closure of the set of trajectories that neither hit a corner of the table nor are tangent to the
boundary of the table.

There is an extreme case of the one that we considered before: the particle moves along
straight lines inside the billiard table and it reflects at the boundary along the normal line.
We call these billiards, slap billiard maps and they induce a one-dimensional map T defined
on the union of a finite number of arcs of length |Γ| whose derivative is t0K0+1

− cos η1
; here η1 is the

angle of incidence of the trajectory at q1.
The following remarks and questions on the one-dimensional dynamics follow immediately:
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• Critical points appear if t0K0 +1 = 0. In this case the boundary has negative curvature
(focusing components): the criticalities are intimately related with the length of the
normal lines inside the billiard table. For example, they do not appear in the elliptical
billiards close to the circular one, since this number is close to 1.

• If the boundary contains only dispersing components (negative curvature) the slap
billiard map is an expansive map with discontinuities (due to the corner and tangent
points).

• Any polygonal billiards with an odd number of sides induces an expanding slap billiard
one-dimensional map.

If one considers a small perturbation of the slap billiard map, i.e., after the reflection the
trajectory follows not exactly along the perpendicular line, but inside a cone centered on it,
it follows that we obtain attractors. Moreover, they are expanding attractors in the case that
the slap billiard map is expanding.

7 Holomorphic dynamics and dominated splitting

For one-dimensional complex dynamics, the notion of hyperbolicity is usually replaced by the
notion of expanding dynamics. In fact, a rational map on C is called dynamically hyperbolic
if f is expanding on the Julia set (the boundary of the set of orbits that do not escape to
infinity): there exists a conformal metric µ defined in a neighborhood of J such that the
derivative Dzf at a point z of this neighborhood satisfies

||Dzf(v)||µ > ||v||µ
for every nonzero vector in TzC. A classical theorem states that:

Theorem 7.0.8. A rational map of degree d > 2 is dynamically hyperbolic if its poscritical
closure P̄ (the closure of the forward orbits of the critical points) is disjoint from its Julia
set, or if and only if the orbit of every critical point converges to an attracting periodic point.
In this case, the Julia set is connected.

The simplest example is the map B(z) = z2. A similar situation holds for an open sets
of parameter of the quadratic family map Bµ(z) = z2 + µ.

The quadratic family is naturally embedded as a two-dimensional diffeomorphism in the
following classical way well known as the Henon family H(a,b)(z, w) = (a− bw− z2, z), where
the parameter b is the Jacobian determinant of H(a,b) . This family has appeared often both
in physics and mathematics literature and in general is extensively studied with real variables,
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i.e., (z, w) ∈ R2 and (a, b) ∈ R2. Virtually all interesting dynamical behavior which is known
to occur for two dimensional diffeomorphisms is known to occur in this family.

Because the Hénon family is also given by polynomial equations it also has a natural
complex extension, which has been extremely successful in the quadratic family. In the case
of the Hénon family and the complex dynamics in several variables, this approach has been
extremely well developed in the works of Hubbard, Sibony, Fornaess, Bedford, Smillie and
Lyubich.

The one-dimensional notion of the Julia set is naturally extended to two-dimensional
complex polynomials as follows. Let f : C2 → C2 be a polynomial diffeomorphism with
dynamical degree d > 1. Let K+ be the set of points with bounded forward orbits and
let K− be the set of points with bounded backward orbits. The sets J± are defined as
the boundaries of K± and the Julia set J is defined to be J+ ∩ J−. In dimension two all
chaotic recurrent behavior is contained in J . Thus J seems to be a good analog of the one-
dimensional Julia set. For instance, if the parameters a and b are close to zero, then the
two-dimensional Julia set is a hyperbolic solenoid. In particular, it is natural to ask if there
are results analogous to theorem 7.0.8 about the hyperbolicity and connectivity of the Julia
sets in the two-dimensional setting. In a series of works of Bedford and Smilie, many results
were obtained about the connectivity of the Julia set and the locus of hyperbolicity. As we
will see later, some results for the case of two-dimensional Blaschke products suggest this
possibility.

Coming back to the one-dimensional setting, a typical example of systems that are satisfy
the conditions of theorem 7.0.8 are the Blaschke products. They are interesting in their own
right but also from the point of view of more general complex dynamics. For example, any
meromorphic map such that its Julia set bounds an invariant simple connected neighborhood
in C is conjugate to a Blaschke product which is expanding in the unit circle. A (finite)
Blaschke product is a map of the form

B(z) = θ0

n∏

i=1

z − ai

1− zai

where n > 2, ai ∈ C, |ai| < 1 , i = 1 . . . n and θ0 ∈ C with |θ0| = 1. B is a rational mapping
of C, it is an analytic function in a neighborhood of the unit disc D, and B maps the unit
circle T to itself.

In view of this remark, it is natural to study two-dimensional Blaschke products of two
forms:

F (z, w) = (A(z)B(w), C(z)D(w)) (1)

F (z, w) = (
A(z)
B(w)

,
D(w)
C(z)

) (2)

13



considered as dynamical systems on T × T where A,B, C,D are one-dimensional Blaschke
products and we allow the possibility that some of the degrees of A,B, C,D may be 1.

A typical example of the rich dynamics associated to a two-dimensional Blaschke product
is an Anosov map in complex variables. Start with a matrix N ∈ SL(Z, 2) and its inverse

N =
[

n m
k j

]
, N−1 =

[
j −m
−k n

]

with n,m, k, j positive integers. Let FN (z, w) = (znwm, zkwj) and observe that FN is a
Blaschke product diffeomorphism, while FN−1(z, w) = (zjw−m, z−kwn) is a quotient Blaschke
product diffeomorphism. It follows that F̂N (x, y) = N(x, y) = (nx+my, kx+jy), is the linear
Anosov diffeomorphism induced by N on T2.

This is a very general phenomenon for two-dimensional Blaschke products that are dif-
feomorphisms of T2. If the periodic points of a Blaschke product are hyperbolic the diffeo-
morphism is hyperbolic and in some cases we can show that the Julia set is contained in
T2. Moreover, in some cases, they are Anosov diffeomorphisms. These results could help get
some insight into the dynamics of certain meromorphic maps on C2. To obtain these results,
first it is shown that Non trivial Blaschke products of C2 have a dominated splitting on T2.

In fact, given F (z, w) = (A(z)B(w), C(z)D(w)), let a, b, c, d be the corresponding trans-
formations acting on R. Therefore

F (e2πix, e2πiy) = (e2πi(a(x)+b(y)), e2πi(c(x)+d(y))).

So, given F we can take the map
F̂ : T2 → T2,

F̂ (x, y) = (a(x) + b(y), c(x) + d(y)).

Observe that the positive cone field is preserved by F̂ and if F̂ is a diffeomorphism then it
has has a dominated splitting on all of T2.

The same holds for the quotient Blaschke products introduced in (2): in this case the
cone field bounded by the directions spanned by the vectors (1, 0) and (0,−1) is preserved
by T F̂ and if F̂ is a diffeomorphism on T2 then F̂ has a dominated splitting on all of T2.

In view of theorem 4.0.3 one concludes the following:

Theorem 7.0.9. ([PSh]) Let F be either a Blaschke product diffeomorphism or a quotient
Blaschke product diffeomorphism such that all periodic points in T2 are hyperbolic. Then,
F|T2 is an Axiom A diffeomorphism. Moreover, one of the next options hold:

1. F|T2 is Anosov and L(F|T2) = T2,

2. L(F|T2) = S ∪ H ∪ Sa ∪R,
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3. L(F|T2) = S ∪ H,

4. L(F|T2) = H ∪ Sa ∪R;

Where S is a set formed by a single attracting fixed point, R is a set formed by a finite number
of repelling periodic points, Sa is a finite number of isolated saddles, and H is a non-trivial
maximal transitive hyperbolic invariant set in T2. In the last case it follows that H is an
attractor in T2. Moreover, the order relation is given by R → Sa → H → S (where A → B
if W u(A)∩W s(B) 6= ∅). In the case that S is empty, F |T2 has a unique SRB measure with
positive entropy.

F always has an attracting or semi-attracting fixed point in D2, and any forward orbit in
the interior of D2 converges to that fixed point. If this fixed point is in the interior of D2 it
is attracting.
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