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1 Summary

A discontinuous Galerkin (DG) discretization of a Dirichlet problem for sec-
ond order elliptic equations with discontinuous coefficients in two dimensions
is considered. The problem is considered in a polygonal region Ω which is a
union of disjoint polygonal substructures Ωi of size O(Hi). Inside each sub-
structure Ωi, a triangulation Thi

(Ωi) with a parameter hi and a conforming
finite element method are introduced. To handle nonmatching meshes across
∂Ωi, a DG method that uses symmetrized interior penalty terms on the bound-
aries ∂Ωi is considered. In this paper we design and analyze Balancing Domain
Decomposition (BDD) algorithms for solving the resulting discrete systems.
Under certain assumptions on the coefficients and the mesh sizes across ∂Ωi, a
condition number estimate C(1+maxi log2 Hi

hi
) is established with C indepen-

dent of hi, Hi and the jumps of the coefficients. The algorithm is well suited
for parallel computations and can be straightforwardly extended to three-
dimensional problems. Results of numerical tests are included which confirm
the theoretical results and the imposed assumption.

2 Introduction

DG methods are becoming more and more popular for approximation of PDEs
since they are well suited for dealing with complex geometries, discontinuous
coefficients and local or patch refinements; see [ABCM02, Dry03] and the ref-
erences therein. There are also several papers devoted to algorithms for solving
DG discrete problems. In particular in connection with domain decomposi-
tion methods, we can mention [FK01, LT03, AA05] where overlapping Schwarz
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methods were proposed and analyzed for DG discretization of elliptic prob-
lems with continuous coefficients. In [Dry03] a non optimal multilevel additive
Schwarz method is designed and analyzed for the discontinuous coefficient
case. In [BW05] a two-level ASM is proposed and analyzed for DG discretiza-
tion of fourth order problems. In those works, the coarse problems are based
on polynomial coarse basis functions on a coarse triangulation. In addition,
ideas of iterative substructuring methods and notions of discrete harmonic
extensions are not explored, therefore, for the cases where the distribution of
the coefficients ρi is not quasimonotonic, see [DSW96], these methods when
extended straightforwardly to 3-D problems have condition number estimates
which might deteriorate as the jumps of the coefficients get more severe. To
the best of our knowledge [DGS07a] is the only work in the literature that
deals with iterative substructuring methods for DG discretizations with dis-
continuous coefficients, where we have successfully introduced and analyzed
BDDC methods with different possible constraints on the edges. A goal of this
paper is to design and analyze BDD algorithms, see [Man93, DW95] and also
[TW05], for DG discrete systems with discontinuous coefficients.

The paper is organized as follows. In Section 3, the differential problem and
its DG discretization are formulated. In Section 4, the problem is reduced to a
Schur complement problem with respect to the unknowns on ∂Ωi, and discrete
harmonic functions defined in a special way are introduced. In Section 5, the
BDD algorithm is designed and analyzed. The local problems are defined on
∂Ωi and on faces of ∂Ωj common to Ωi, while the coarse space, restriction
and prolongation operators are defined via a special partitioning of unity on
the ∂Ωi. Sections 6 and 7 are devoted to numerical experiments and final
remarks, respectively.

3 Differential and discrete problems

Consider the following problem: Find u∗ ∈ H1
0 (Ω) such that

a(u∗, v) = f(v) for all v ∈ H1
0 (Ω) (1)

where a(u, v) =
N∑

i=1

∫
Ωi

ρi∇u∇vdx and f(v) =
∫

Ω
fvdx.

We assume that Ω̄ = ∪N
i=1Ω̄i and the substructures Ωi are disjoint shape

regular polygonal subregions of diameter O(Hi) that form a geometrically
conforming partition of Ω, i.e., for all i 6= j the intersection ∂Ωi ∩ ∂Ωj is
empty, or a common vertex or face of ∂Ωi and ∂Ωj . We assume f ∈ L2(Ω)
and for simplicity of presentation let ρi be a positive constant, i = 1, . . . , N .

Let us introduce a shape regular triangulation in each Ωi with triangular
elements and the mesh parameter hi . The resulting triangulation on Ω is in
general nonmatching across ∂Ωi. Let Xi(Ωi) be a finite element (FE) space



BDD for DG Discretizations 3

of piecewise linear continuous functions in Ωi. Note that we do not assume
that the functions in Xi(Ωi) vanish on ∂Ωi ∩ ∂Ω. Define

Xh(Ω) = X1(Ω1)× · · · ×XN (ΩN ).

The discrete problem obtained by the DG method, see [ABCM02, Dry03], is
of the form: Find u∗h ∈ Xh(Ω) such that

ah(u∗h, v) = f(v) for all v ∈ Xh(Ω) (2)

where

ah(u, v) ≡
N∑

i=1

bi(u, v) and f(v) ≡
N∑

i=1

∫
Ωi

fvidx, (3)

bi(u, v) ≡ ai(u, v) + si(u, v) + pi(u, v), (4)

ai(u, v) ≡
∫

Ωi

ρi∇ui∇vidx, (5)

si(u, v) ≡
∑

Fij⊂∂Ωi

∫
Fij

ρij

lij

(
∂ui

∂n
(vj − vi) +

∂vi

∂n
(uj − ui)

)
ds, (6)

pi(u, v) ≡
∑

Fij⊂∂Ωi

∫
Fij

ρij

lij

δ

hij
(uj − ui)(vj − vi)ds, (7)

di(u, v) ≡ ai(u, v) + pi(u, v), (8)

with u = {ui}N
i=1 ∈ Xh(Ω) and v = {vi}N

i=1 ∈ Xh(Ω). We set lij = 2 when
Fij ≡ ∂Ωi∩∂Ωj is a common face of ∂Ωi and ∂Ωj , and define ρij = 2ρiρj/(ρi+
ρj) as the harmonic average of ρi and ρj , and hij = 2hihj/(hi + hj). In order
to simplify the notation we include the index j = 0 and set li0 = 1 when
Fi0 ≡ ∂Ωi∩∂Ω has a positive measure, and set u0 = 0 and v0 = 0, and define
ρi0 = ρi and hi0 = hi. The outward normal derivative on ∂Ωi is denoted by
∂

∂n and δ is the positive penalty parameter.
It is known that there exists a δ0 = O(1) > 0 such that for δ > δ0, we

obtain 2|si(u, u)| < di(u, u) and therefore, the problem (2) is elliptic and has
a unique solution. An error bound of this method is given in [ABCM02] for
continuous and in [Dry03, DGS07a] for discontinuous coefficients.

4 Schur complement problem

In this section we derive a Schur complement problem for the problem (2).

Define
o

Xi (Ωi) as the subspace of Xi(Ωi) of functions that vanish on ∂Ωi.
Let u = {ui}N

i=1 ∈ Xh(Ω). For each i = 1, . . . , N , the function ui ∈ Xi(Ω)
can be represented as

ui = P̂iu + Ĥiu, (9)
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where P̂iu is the projection of u into
o

Xi (Ωi) in the sense of bi(., .). Note that

since P̂iu and vi belong to
o

Xi (Ωi), we have

ai(P̂iu, vi) = bi(P̂iu, vi) = ah(u, vi). (10)

The Ĥiu is the discrete harmonic part of u in the sense of bi(., .), where
Ĥiu ∈ Xi(Ωi) is the solution of

bi(Ĥiu, vi) = 0 vi ∈
o

Xi(Ωi), (11)

with boundary data given by

ui on ∂Ωi and uj on Fji = ∂Ωi ∩ ∂Ωj . (12)

We point out that for vi ∈
o

Xi (Ωi) we have

bi(Ĥiu, vi) = (ρi∇Ĥiu,∇vi)L2(Ωi) +
∑

Fij⊂∂Ωi

ρij

lij
(
∂vi

∂n
, uj − ui)L2(Fij). (13)

Note that Ĥiu is the classical discrete harmonic except at nodal points close
to ∂Ωi. We will sometimes call Ĥiu by discrete harmonic in a special sense,
i.e., in the sense of bi(., .) or Ĥi. Hence, Ĥu = {Ĥiu}N

i=1 and P̂u = {P̂iu}N
i=1

are orthogonal in the sense of ah(., .). The discrete solution of (2) can be
decomposed as u∗h = P̂u∗h + Ĥu∗h where for all v ∈ Xh(Ω), ah(P̂u∗h, P̂v) =
f(P̂v) and

ah(Ĥu∗h, Ĥv) = f(Ĥv). (14)

Define Γ ≡ (∪i∂Ωihi
) where ∂Ωihi

is the set of nodal points of ∂Ωi. We
note that the nodes on both side of ∪i∂Ωi belong to Γ . We denote the space
V = Vh(Γ ) as the set of all functions vh in Xh(Ω) such that P̂vh = 0, i.e., the
space of discrete harmonic functions in the sense of Ĥi. The equation (14) is
the Schur complement problem associated to (2).

5 Balancing domain decomposition

We design and analyze a BDD method [Man93, TW05] for solving (14) and
use the general framework of balancing domain decomposition methods; see
[TW05]. For i = 1, . . . , N , let Vi be auxiliary spaces and Ii prolongation
operators from Vi to V , and define the operators T̃i : V → Vi as

bi(T̃iu, v) = ah(u, Iiv) for all v ∈ Vi.

and set Ti = IiT̃i. The coarse problem is defined as

ah(P0u, v) = ah(u, v) for all v ∈ V0.



BDD for DG Discretizations 5

Then the BDD method is defined as

T = P0 + (I − P0)

(
N∑

i=1

Ti

)
(I − P0). (15)

We next define the prolongation operators Ii and the local spaces Vi for
i = 1, ..., N , and the coarse space V0. The bilinear forms bi and ah are given
by (4) and (3), respectively.

5.1 Local problems

Let us denote by Γi the set of all nodes on ∂Ωi and on neighboring faces
F̄ji ⊂ ∂Ωj . We note that the nodes of ∂Fji (which are vertices of Ωj) are
included in Γi. Define Vi as the vector space associated to the nodal values on
Γi and extended via Ĥi inside Ωi. We say that u ∈ Vi if it can be represented
as u := {u(i)

l }l∈#(i), where #(i) = {i and ∪ j : Fij ⊂ ∂Ωi}. Here u
(i)
i and

u
(i)
j stand for the nodal value of u on ∂Ωi and F̄ji. We write u = {u(i)

l } ∈ Vi

to refer to a function defined on Γi, and u = {ui} ∈ V to refer to a function
defined on all Γ . Let us define the regular zero extension operator Ĩi : Vi → V
as follows: Given u ∈ Vi, let Ĩiu be equal to u on the nodes of Γi and zero
on the nodes of Γ\Γi. Then we associate with each Ωk, k = 1, · · · , N , the
discrete harmonic function uk inside each Ωk in the sense of Ĥk.

A face across Ωi and Ωj has two sides, the side inside Ω̄i, denoted by Fij ,
and the side inside Ω̄j , denoted by Fji. In addition, we assign to each face
one master side m(i, j) ∈ {i, j} and one slave side s(i, j) ∈ {i, j}. Then, using
the interface condition, see below, we show that Theorem 1 holds, see below,
with a constant C independent of the ρi, hi and Hi.

The Interface Condition. We say that the coefficients {ρi} and the local
mesh sizes {hi} satisfy the interface condition if there exist constants C0 and
C1, of order O(1), such that for any face Fij = Fji the following condition
holds

hs(i,j) ≤ C0hm(i,j) and ρs(i,j) ≤ C1ρm(i,j). (16)

We associate with each Ωi, i = 1, · · · , N , the weighting diagonal matrices
D(i) = {D(i)

l }l∈#(i) on Γi defined as follows:

• On ∂Ωi (l = i)

D
(i)
i (x) =

1 if x is a vertex of ∂Ωi,
1 if x is an interior node of a master face Fij

0 if x is an interior node of a slave face Fij

(17)

• On ∂Ωj (l = j)

D
(i)
j (x) =

0 if x is an end point of Fji,
1 if x is an interior node of a slave face Fji

0 if x is an interior node of a master face Fji

(18)
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• For x ∈ Fi0 we set D
(i)
i (x) = 1

The prolongation operators Ii : Vi → V , i = 1, . . . , N , are defined as
Ii = ĨiD

(i) and they form a partition of unity on Γ described as

N∑
i=1

IiĨ
T
i = IΓ . (19)

5.2 Coarse problem

We define the coarse space V0 ⊂ V as

V0 ≡ Span{IiΦ
(i), i = 1, ..., N} (20)

where Φ(i) ∈ Vi denotes the function equal to one at every node of Γi.

Theorem 1. [DGS07b] If the interface condition (16) holds then there exists
a positive constant C independent of hi, Hi and the jumps of ρi such that

ah(u, u) ≤ ah(Tu, u) ≤ C(1 + log2 H

h
)ah(u, u) ∀u ∈ V, (21)

where T is defined in (15). Here log H
h = maxi log Hi

hi
.

6 Numerical experiments

In this section, we present numerical results for the preconditioner introduced
in (15) and show that the bounds of Theorem 1 are reflected in the numerical
tests. In particular we show that the interface condition (16) is necessary and
sufficient.

We consider the domain Ω = (0, 1)2 divided into N = M × M squares
subdomains Ωi and let H = 1/M . Inside each subdomain Ωi we generate
a structured triangulation with ni subintervals in each coordinate direction
and apply the discretization presented in Section 3 with δ = 4. In the nu-
merical experiments we use a red and black checkerboard type of subdomain
partition. On the black subdomains we let ni = 2 ∗ 2Lb and on the red sub-
domains ni = 3 ∗ 2Lr , where Lb and Lr are integers denoting the number of
refinements inside each subdomain Ωi. Hence, the mesh sizes are hb = 2−Lb

2N

and hr = 2−Lr

3N , respectively. We consider −div(ρ(x)∇u∗(x)) = 1 in Ω with
homogeneous Dirichlet boundary conditions. In the numerical experiments we
run PCG until the l2 initial residual is reduced by a factor of 106.

In the first test we consider the constant coefficient case ρ = 1. We con-
sider different values of M ×M coarse partitions and different values of local
refinements Lb = Lr, therefore, keeping constant the mesh ratio hb/hr = 3/2.
We place the master on the black subdomains. Table 1 lists the number of
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PCG iterations and in parenthesis the condition number estimate of the pre-
conditioned system. We note that the interface condition (16) is satisfied. As
expected from Theorem 1, the condition numbers appear to be independent of
the number of subdomains and grow by a logarithmical factor when the size
of the local problems increases. Note that in the case of continuous coefficients
the Thereom 1 is valid without any assumption on hb and hr if the master
sides are chosen on the larger meshes.

M↓ Lr → 0 1 2 3 4 5

2 13 (6.86) 17 (8.97) 18 (12.12) 19 (16.82) 21 (22.23) 22 (28.25)
4 18 (8.39) 22 (11.30) 26 (14.74) 30 (19.98) 33 (26.64) 36 (34.19)
8 20 (8.89) 24 (11.57) 28 (14.82) 32 (20.03) 37 (26.64) 42 (34.04)
16 19 (9.02) 24 (11.63) 27 (14.83) 32 (20.05) 37 (26.67) 42 (34.06)

Table 1. PCG/BDD iterations count and condition numbers for different sizes of
coarse and local problems and constant coefficients ρi.

We now consider the discontinuous coefficient case where we set ρi = 1 on
the black subdomains and ρi = µ on the red subdomains. The subdomains
are kept fixed to 4 × 4. Table 2 lists the results on runs for different values
of µ and for different levels of refinements on the red subdomains. On the
black subdomains ni = 2 is kept fixed. The masters are placed on the black
subdomains. It is easy to see that the interface condition (16) holds if and
only if µ is not large, which it is in agreement with the results in Table 2.

µ ↓ Lr → 0 1 2 3 4

1000 90 (2556) 133 (3744) 184 (5362) 237 (7178) 303 (9102)
10 33 (29.16) 40 (42.31) 47 (58.20) 52 (75.55) 57 (94.59)
0.1 17 (8.28) 19 (8.70) 19 (9.21) 19 (9.50) 19 (9.65)

0.001 18 (8.83) 18 (8.95) 18 (9.46) 18 (9.83) 18 (10.08)

Table 2. PCG/BDD iterations count and condition numbers for different values of
the coefficients and the local mesh sizes on the red subdomains only. The coefficients
and the local mesh sizes on the black subdomains are kept fixed. The subdomains
are also kept fixed to 4× 4.

7 Final remarks

We end this paper by mentioning extensions and alternative Neumann-
Neumann methods for DG discretizations where the Theorem 1 holds: 1)
The BDD algorithms can be straightforwardly extended to three-dimensional
problems; 2) Additive Schwarz versions and inexact local Neumann solvers
can be considered; see [DGS07b]; 3) On faces Fij where hi and hj are of the
same order, the values of (17) and (18) at interior nodes x of the faces Fij

and Fji can be replaced by
√

ρi√
ρi+

√
ρj

. 4) Similarly, on faces Fij where ρi and
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ρj are of the same order, we can replace (17) and (18) at interior nodes x
of the faces Fij and Fji by hi

hi+hj
. Finally, we remark the conditioning of the

preconditioned systems deteriorates as we increase the penalty parameter δ
to large values.
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