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Global hyperbolicity of renormalization
for " unimodal mappings

By EDSON DE FARIA, WELINGTON DE MELO AND ALBERTO PINTO

Abstract

In this paper we extend M. Lyubich’s recent results on the global
hyperbolicity of renormalization of quadratic-like germs to the space of
C" unimodal maps with quadratic critical point. We show that in this
space the bounded-type limit sets of the renormalization operator have
an invariant hyperbolic structure provided r > 2 + o with « close to one.
As an intermediate step between Lyubich’s results and ours, we prove
that the renormalization operator is hyperbolic in a Banach space of real
analytic maps. We construct the local stable manifolds and prove that
they form a continuous lamination whose leaves are C' codimension one
Banach submanifolds of the ambient space, and whose holonomy is C'1*+#
for some 3 > 0. We also prove that the global stable sets are C'! immersed
(codimension one) submanifolds as well, provided r > 3 4+ a with « close
to one. As a corollary, we deduce that in generic one parameter families
of C" unimodal maps, the set of parameters corresponding to infinitely
renormalizable maps of bounded combinatorial type is a Cantor set with
Hausdorff dimension less than one.

1. Introduction

In 1978, M. Feigenbaum [10] and independently P. Coullet and C. Tresser

[4] made a startling discovery concerning certain rigidity properties in one-
dimensional dynamics. While analysing the transition between simple and
“chaotic” dynamical behavior in “typical” one-parameter families of unimodal
maps — such as the quadratic family x +— Az(1 — x) — they recorded the
parameter values A\, at which successive period-doubling bifurcations ocurred
in the family and found a remarkable universal scaling law, namely
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They also found universal scalings within the geometry of the post-critical set
of the limiting map corresponding to the parameter Ao, = lim A, (c¢f. the
work of E. Vul, Ya. Sinai and K. Khanin [29]). In an attempt to explain these
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phenomena, they introduced a certain non-linear operator acting on the space
of unimodal maps — the so-called period doubling operator. They conjectured
that the period-doubling operator has a unique fixed-point which is hyperbolic
with a one-dimensional unstable direction. They also conjectured that the
universal constants they found in their experiments are the eigenvalues of the
derivative of the operator at the fixed point.

A few years later (1982) this conjecture was confirmed by O. Lanford [18]
through a computer assisted proof. Working in a cleverly defined Banach space
of real analytic maps and using rigorous numerical analysis on the computer,
Lanford established at once the existence and hyperbolicity of the fixed point of
the period-doubling operator. Subsequent work by M. Campanino and H. Ep-
stein [2] (also Campanino et al. [3] and Epstein [9]) established the existence
(but neither uniqueness nor hyperbolicity) of the fixed point without essential
help from the computer.

It was soon realized by Lanford and others that the period-doubling op-
erator was just a restriction of another operator acting on the space of uni-
modal maps — the renormalization operator — whose dynamical behavior is
much richer. The hopes were high that the iterates of this operator would
reveal the small scale geometric properties of the critical orbits of many inter-
esting one-dimensional systems. Hence, the initial conjecture was generalized
to the following.

Renormalization Conjecture. The limit set of the renormalization operator
in the space of maps of bounded combinatorial type is a hyperbolic Cantor set
where the operator acts as the full shift in a finite number of symbols.

(For a precise formulation of what is meant by bounded combinatorial
type, see §2.2 below.)

In the path towards a proof of this conjecture, several new ideas were de-
veloped in the last 20 years by a number of mathematicians, especially D. Sulli-
van, C. McMullen and M. Lyubich. Among the deepest in Dynamical Systems,
these ideas have the complex dynamics of quadratic-like maps (in the sense of
Douady and Hubbard [6]) as a common thread. Sullivan proved in [28] that
all limits of renormalization are quadratic-like maps with a definite modulus.
Then, constructing certain Teichmiiller spaces from quadratic-like maps and
using a substitute of Schwarz’s lemma in these spaces, Sullivan established the
existence of horseshoe-like limit sets for renormalization. Later, using a differ-
ent approach based on Mostow rigidity, McMullen [23] gave another proof of
this result and went further by showing that the convergence (in the C? sense)
towards the limit set is exponential.

The final breakthrough came with the work of Lyubich [20]. He endowed
the space of germs of quadratic-like maps (modulo affine conjugacies) with a
very subtle complex structure, showing that the renormalization operator is
complex-analytic with respect to such structure. In Lyubich’s space, the stable
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sets of maps in the limit set of renormalization coincide with the very hybrid
classes of such maps, and inherit a natural structure making them (complex
codimension one) analytic submanifolds. Combining McMullen’s rigidity of
towers with Schwarz’s lemma in Banach spaces, Lyubich proved exponential
contraction along such stable leaves. To obtain expansion in the transversal
directions to such leaves at points of the limit set, Lyubich argued by contra-
diction: if expansion fails, then one can find a map in the limit set whose orbit
under renormalization is slowly shadowed by another orbit (the small orbits
theorem, page 323 of [20]). This however contradicts another theorem of his,
namely the combinatorial rigidity theorem of [21]. It follows that the limit set
is indeed hyperbolic in the space of germs. Based on this result of Lyubich and
using the real and complex bounds given by Sullivan, we prove in Theorem
2.4 that the attractor (for bounded combinatorics) is hyperbolic in a Banach
space of real analytic maps.

In the present paper, we give the last step in the proof of the above renor-
malization conjecture in the (much larger) space of C" smooth unimodal maps
with r sufficiently large. The very formulation of the conjecture in this setting
requires some care, because the renormalization operator is not differentiable
in C". For the correct formulation, see Theorem 2.5 below. To prove the
conjecture, we combine Theorem 2.4 with some non-linear functional analysis
inspired by the work of A. Davie [5]. In that work, Davie constructs the stable
manifold of the fixed point of the period doubling operator in the space of
C?*¢ maps “by hand”, showing it to be a C' codimension one submanifold of
the ambient space, even though the operator is not differentiable. To do this,
he first extends the hyperbolic splitting of the derivative at the fixed point
from Lanford’s Banach space of real-analytic maps to the larger space of C?*¢
maps (to which the derivative extends as a bounded linear operator). This
gives him an extended codimension one stable subspace in C?1¢ to work with,
and he views the local stable set in C?T¢ as the graph of a function over the
extended stable subspace. In attempting to prove that such function is C?,
he goes around the inherent loss of diferentiability of renormalization by first
noting that the local unstable manifold coming from Lanford’s theorem is still
there (and is still smooth in C?*€) and then showing that there is afterall a
contraction in C?T¢ towards that unstable manifold, whose elements are an-
alytic maps. Thus, the loss of differentiability is somehow compensated by
the contraction towards the unstable manifold. Davie’s crucial estimates show
that the renormalization operator in C?*¢ is sufficiently well-approximated by
the extension of its derivative in Lanford’s space to a bounded linear operator
in C?te.

Our approach is based on the idea that whatever Davie can do with Lan-
ford’s Banach space relative to the fixed point, we can do with the Banach
space obtained in Theorem 2.4 relative to the whole limit set. There is one



GLOBAL HYPERBOLICITY OF RENORMALIZATION 4

fundamental difference, however. The linear and non-linear estimates carried
out by Davie rely on the special fact that the period-doubling fixed point is
concave. This allows him to prove his main theorems in C?* for all € > 0. By
contrast, we cannot — and do not — rely on any such convexity assumptions.
We derive our estimates (in §5 and §8) directly from the geometric properties
of the postcritical set of maps in the limit set (these properties — proved in §5.2
— are a consequence of the real a-priori bounds). As a result, our local stable
manifold theorem in C" requires r > 2 4+ « with « close to one.

We go beyond the conjecture in at least three respects. First, we show
that the local stable manifolds form a C° lamination whose holonomy is C1*4
for some 3 > 0. In particular, every smooth curve which is transversal to such
lamination intersects it at a set of constant Hausdorff dimension less than one.
Second, we prove that the global stable sets are C'! (immersed) codimension
one submanifolds in C" provided r > 3 + « with « close to one (we globalize
the local stable manifolds via the implicit function theorem, hence the further
loss of one degree of differentiability). Third, we prove that in an open and
dense set of C* one-parameter families of C” unimodal maps (for any k > 2),
each family intersects the global stable lamination transversally at a Cantor
set of parameters and the small-scale geometry of this intersection is the same
for all nearby families. In particular, its Hausdorff dimension is strictly smaller
than one.

In the path towards these results, we have made an attempt to abstract
out the more general features of the renormalization operator in the form of
a few properties or “axioms” — the notion of a robust operator introduced in
§6. We prove a general local stable manifold theorem for robust operators in
§6. It is our hope that this might be useful in other renormalization problems.
For example in the case of critical circle maps (see [7] and [8]).

2. Preliminaries and statements of results

In this section, we introduce the basic notions of the theory of renormal-
ization of unimodal maps. Then we state Sullivan’s theorem on the existence
of topological limit sets for the renormalization operator, the exponential con-
vergence results of McMullen, and Lyubich’s theorem showing the full hyper-
bolicity of such limit sets in the space of germs of quadratic-like maps. Finally,
we state our main results extending Lyubich’s hyperbolicity theorem to the
space of C™ unimodal maps with r sufficiently large.

*We wish to thank M. Lyubich and A. Avila for several useful discussions and A. Douady
for his elegant proof of Lemma 9.4 (§9.2). We are greatful to the referee for his keen remarks
and for pointing out several corrections. We also thank FCUP, IMPA, IME-USP, KTH,
SUNY Stony Brook for their hospitality and support during the preparation of this paper.
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2.1. Quadratic unimodal maps

We describe here two types of ambient spaces of C" unimodal maps. These
will be determined by two families of Banach spaces, denoted A™ and B".

2.1.1. The Banach spaces A"

Let I = [—1,1] and for all » > 0 let C"(I) be the Banach space of C" real-
valued functions on I. Here r can be either a non-negative real number, say
r=k+awithk € Nand 0 < a < 1, in which case C"(I) is the space of C*
functions whose k-th derivative is a-Holder, or else r = k + Lip, in which case
C"(I) means the space of C* functions whose k-th derivative is Lipschitz (so
whenever we say that r is not an integer, we include the Lipschitz cases). Let
us denote by A" the space C7(I) consisting of all C" functions on I which are
even and vanish at the origin, in other words

A" ={ve C"(I):vis even and v(0) = 0} .

Then A" is a closed linear subspace of C"(I) and therefore also a Banach space
under the C™ norm. Now, for each r > 2, define

U™ C1+A" c C"(I)

to be the set of all maps f : I — I of the form f(z) =14 v(z), where v € A"
satisfies v”(0) < 0, which are unimodal. Then U” is a Banach manifold; indeed
it is an open subset of the affine space 1 + A”. Note that for all f € U" the
tangent space TyU" is naturally identified with A". The elements of U" are
called C" unimodal maps with a quadratic critical point.

2.1.2. The Banach spaces B"

We define B” to be the space of functions v : I — R of the form v = ¢ oq where
q(r) = 2% and ¢ € C"(]0, 1]) vanishes at the origin. The norm of v in this space
is given by the C" norm of . This makes B" into a Banach space. Note that
for each s < r the inclusion map j : B” — A is linear and continuous (hence
C1). Now, for each r > 1, let

V'cl1+B"

be the open subset of the affine space 1+ B" consisting of those f = ¢ o ¢ such
that ¢([0,1]) C (=1,1], ¢(0) = 1 and ¢'(z) < 0 for all 0 < 2z < 1. Just as
before, V" is a Banach manifold. Note that each f € V" is a unimodal map
belonging to U" when r > 2. Moreover, the inclusion of V" in U” is strict (for
each r > 2).
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2.2. Renormalization operator

A map f € U" is said to be renormalizable if there exist p = p(f) > 1 and
A = A(f) = fP(0) such that fP|[—|A],|A]] is unimodal and maps [—|A|, |A|]
into itself. In this case, taking the smallest possible value of p, the map Rf :
[—1,1] — [-1,1] given by

Rf(z) = % () (2.2.1)

is called the first renormalization of f. We have Rf € U". The intervals
FI([=IAL 1A, for 0 < j < p — 1, are pairwise disjoint and their relative order
inside [—1, 1] determines a unimodal permutation 6 of {0,1,...,p — 1}. The
set of all unimodal permutations is denoted P. The set of f € U” that are
renormalizable with the same unimodal permutation # € P is a connected
subset of U" denoted Uj. Hence we have an operator

R:|JUp - U, (2.2.2)
0P

the so-called renormalization operator.
Now let us fix a finite subset ® C P. Given an infinite sequence of

unimodal permutations 0y, 01,...,0,,... € O, write
botse 0, = Up NRTIUG N NR"U N---
and define
DT@ = U 50,61,'“,97“'“ °

(0,01, 0, )EON

The maps in Dg, are infinitely renormalizable maps with (bounded) combina-
torics belonging to ©. Note that R(Dg) C Dg, in fact

R( 507917"',97”'“) g U§17927"'79n+1,"' . (223)

We note that if f is a renormalizable map in V", then R(f) belongs to
V" also. Hence, taking Vi = Uy N V", the restriction of the renormalization
operator
R:|JVp >V (2.2.4)
0eP
is well-defined.

2.3. The limit sets of renormalization

In [28], Sullivan established the existence of horseshoe-like invariant sets for
the renormalization operator, showing that they all consist of real analytic
maps of a special kind, namely, restrictions to [—1,1] of quadratic-like maps
in the sense of Douady-Hubbard. We remind the reader that a quadratic-like
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map f : V — W is a holomorphic map with the property that V and W are
topological disks with V' compactly contained in W, and f is a proper degree
two branched covering map with a continuous extension to the boundary of V.
The conformal modulus of f is the modulus of the annulus W\ V.

We are interested only in quadratic-like maps that commute with complex
conjugation, for which V is symmetric about the real axis. Consider the real
Banach space Hy(V') of holomorphic functions which commute with complex
conjugation and are continuous up to the boundary of V, with the C° norm.
Let Ay C Ho(V) be the closed linear subspace of functions of the form ¢ = ¢oq,
where ¢(z) = 22 and ¢ : ¢(V) — C is holomorphic with ¢(0) = 0. Also, let
Uy be the set of functions of the form f = 14 ¢, where ¢ = ¢poq € Ay
and ¢ is univalent on some neighborhood of [—1,1] contained in V', such that
the restriction of f to [—1,1] is unimodal. Then Uy is an open subset of the
affine space 1 4+ Ay, which is linearly isomorphic to Ay via the translation by
1, and we shall regard Uy as an open subset of Ay itself via this identification.
For each a > 0, let us denote by £, the set of points in the complex plane
whose distance from the interval [—1, 1] is smaller than a. We may now state
Sullivan’s theorem as follows.

THEOREM 2.1. Let © C P be a non-empty finite set. Then there exist
a > 0, a compact subset K = Kg C Aq, N DE and p > 0 with the following
properties.

(i) Each f € K has a quadratic-like extension with conformal modulus boun-
ded from below by u.

(ii)) We have R(K) C K, and the restriction of R to K is a homeomorphism
which is topologically conjugate to the two-sided shift o : ©% — O%: in
other words, there exists a homeomorphism H : K — ©% such that the

diagram
K —% K
T
oF —— o
commutes.

(iii) For all g € Dg NV", with r > 2, there exists f € K with the property
that ||[R"(g) — R"(f)||lco(ry — 0 as n — oo.

For a detailed exposition of this theorem, see Chapter VI of [26].

Later, in [23], C. McMullen established the exponential convergence of
renormalization for bounded combinatorics (using rigidity of towers). His theo-
rem forms the basis for the contracting part of Lyubich’s hyperbolicity theorem
in [20].
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THEOREM 2.2. If f and g are infinitely renormalizable quadratic-like maps
with the same bounded combinatorial type in © C P, and with conformal mod-
uli greater than or equal to p, we have

|R"f = R"gllco(ry < CA"
for all n >0 where C = C(p,0) >0 and 0 < A = A(0) < 1.

The above result was extended by Lyubich to all combinatorics. In par-
ticular it follows, in the case of bounded combinatorics, that the exponent A
and the constant C in Theorem 2 do not depend on ©. The conclusion of the
above theorem can also be improved in bounded combinatorics: for r > 3, the
exponential convergence holds in the C" topology if the maps are in V" (see
[24] and [25]).

In [20], Lyubich considered the space of quadratic-like germs modulo affine
conjugacies in which the limit set K is naturally embedded. This space is a
manifold modeled on a complex topological vector space (arising as a direct
limit of Banach spaces of holomorphic maps). In this setting, Lyubich estab-
lished in [8] the full hyperbolicity of the renormalization operator. With the
help of Sullivan’s real and complex bounds and Lyubich’s theorem we prove
the hyperbolicity of some iterate of the renormalization operator acting on a
space Aq, for some a > 0 (see Theorem 2.4 in §2.5). Then we extend Davie’s
analysis for the Feigenbaum fixed point to the context of bounded combina-
torics to conclude that the hyperbolic picture also holds true in the much larger
space U" (see Theorem 2.5 in §2.5).

2.4. Hyperbolic basic sets

We need to introduce the well-known concept of hyperbolic basic set for non-
linear operators acting on Banach spaces. Let us consider a Banach space A,
and an open subset O C A.

DEFINITION 2.1. Let T : O — A be a smooth non-linear operator. A hy-
perbolic basic set of T' is a compact subset K C O with the following properties.

(i) K is T-invariant and T|K is a topologically transitive homeomor-
phism whose periodic points are dense.

(i1) Ify € O and all T-iterates of y are defined, then T"(y) converges
to K.

(111) There exist a continuous, DT -invariant splitting A = E3 @ EY,
for x € K, and uniform constants C' > 0 and 0 < 0 < 1 such that

IDT" (z) vl| < CO™|Jv]
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for allv € E3, as well as
|DT" (&) ol| = CO~"Jo] (2.4.1)
for allv e EY.

(iv) The dimension of E¥ is finite and constant.

The following notions are also standard. Let A(z, €) be the ball in A with
center = and radius e. The local stable manifold W2 (x) of T at x consists of all
points y € A(x,¢) such that, for all n > 0, we have T"(y) € A(T"™(z),e) and

IT"(y) — T"(z)|| — 0 when n — oo .

The local unstable manifold W*(x) of T at x consists of all points y € A(z,¢)
such that, setting yo = y, for all n > 1 there exists y, € A(T"(z),e) such
that y,—1 = T'(y,) and

|T7"(z) — yn|| — 0 when n — oo .
Finally the global stable set of T at x is defined as
Wé(z)={yeO : [|[T"(y) —T"(x)|| — 0 when n — oo} .

The question arises as to whether these sets have smooth manifold structures.
We have the following general result.

THEOREM 2.3. IfK is a hyperbolic basic set of a C* operator T : © — A
then

(i) the local stable (resp. unstable) set at x € K is a C' Banach
submanifold of A which is tangent to E (resp. EY) at x.

(ii) If y € W*(x) then
17" () = T"(W)ll < CO™ [l =yl -

Moreover, T(WX(z)) D WX(T'(z)), the restriction of T to W (x)
is one-to-one and for all y € W¥(x) we have

|77 (@) = T (y)|| < CO"||lx ]| .
(iii) If y € A(x,€) is such that T'(y) € A(T*(z),¢€) for i <n then
dist (T"(y), WE(T"(x))) < CO", as well as dist (y, Wi(x)) < CO"™.

(iv) The family of local stable manifolds (and also the family of local
unstable manifolds) form a C° lamination: the tangent spaces to
the leaves vary continuously.
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We do not prove this theorem here since we will not use it, but instead
make the following comments. Using the arguments of Hirsch-Pugh in [14], we
can prove that the local unstable set is a smooth manifold. The local stable
set is also a smooth manifold, but a different proof is needed: one can use the
ideas of Irwin in [16]. See also Theorem 2.1 in page 375 of [27]. In both cases
the smoothness can be improved to C* if the operator T is C*.

For invertible operators the global stable set is also a smooth submanifold.
In the non-invertible situation, this is not always true. However, we will prove
in §9.1 that this is the case for the renormalization operator acting on V7",
provided r > 3 + a and « > 0 is close to one.

2.5. Hyperbolicity of renormalization

In the present paper we prove three main theorems. The first main theorem
shows that there exists a real Banach space of analytic maps, containing the
topological limit set K of renormalization, on which the renormalization op-
erator R acts as a real-analytic operator and has K as a hyperbolic basic set.
More precisely, we have the following result.

THEOREM 2.4. (Hyperbolicity in a real Banach space) There exist a > 0,
an open set O C A = Aq, containing K = Kg and a positive integer N with the
following property. There exists a real analytic operator T : @O — A having K
as a hyperbolic basic set with co-dimension one stable manifolds at each point,
such that T(f)|[~1,1] = RN (f|[-1,1]), for all f € Q, is the N-th iterate of
the renormalization operator.

The proof of this theorem, presented in §3 (see Theorem 3.9), combines
Lyubich’s hyperbolicity results with Sullivan’s real and complex bounds.

The second main theorem establishes the “hyperbolicity” of renormaliza-
tion in U". As we have mentioned before, the renormalization operator is not
smooth in U", so the definition of hyperbolicity of an invariant set does not
even make sense. However, the hyperbolic picture holds in this situation. More
precisely, we have the following theorem.

THEOREM 2.5. (Hyperbolic Picture in U") If r > 2 + o, where o > 0 is
close to one, then statements (1), (i), (iii) and (iv) of Theorem 2.3 hold true
for the renormalization operator acting on U". Furthermore,

(i) the local unstable manifolds are real analytic curves;

(ii) the local stable manifolds are of class C*, and together they form
a continuous lamination whose holonomy is CYt8 for some > 0;

The main difficulty behind the proof of this theorem is the fact the op-
erator 1" is not Fréchet differentiable in C” (in fact it is only continuous in
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a dense subset of U"). However, as we shall see in §8.2, it is a C'! mapping
from its domain in U into U® if s < r — 1 (even for s = r — 1 if r is an inte-
ger). Hence its tangent map defines a continuous map L: K x A" — K x A®
by L(g,v) = (T'(g9), DT(g)(v)) = (T(g9), Ly(v)). The bounded linear mappings
Ly: A" — A® extend to bounded linear operators Ly : At - Al forall0 <t <r.
Although L, is not the derivative of T" at g in C", it is nevertheless a suffi-
ciently good linear approximation to 7" near g (see the properties of Definition
6.1, checked in §8).

COROLLARY 2.6. (Hyperbolic Picture in V") If r > 2+ o, where a > 0 is
close to one, then statements (i), (ii), (iii) and (iv) of Theorem 2.3 hold true
for the renormalization operator acting on V". Furthermore,

(i) the local unstable manifolds are real analytic curves;

(ii) the local stable manifolds are of class C*, and together they form
a continuous lamination whose holonomy is C'1P for some 3 > 0.

For the proofs of Theorem 2.5 and Corollary 2.6, see §8.

By an argument using the implicit function theorem and the results in
[24], which a priori are valid only in V", we shall prove in §9 our third main
theorem, which we state as follows.

THEOREM 2.7. Ifr > 34«, where a > 0 is close to one, then the following
assertions hold true for the renormalization operator acting in V":

(i) The global stable sets are C1 immersed submanifolds.

(ii) For each integer 2 < k < r, there exists an open dense set of
C* one-parameter families of maps in V" all of whose elements
intersect the global stable lamination of (T, Kg) transversally.

(iii) In each such family, the set of parameters where the intersec-
tions occur is a Cantor set which is locally C*™*P diffeomorphic to
the corresponding Cantor set of the quadratic family. In particular,
its Hausdorff dimension is a universal number depending only on
O which lies strictly between zero and one if © has more than one
element.

It is worth emphasizing that when a generic family (in the sense of the
above corollary) intersects the stable lamination at a point, then any neigh-
borhood of this point in parameter space contains a renormalization window
that is mapped under a suitable power of the renormalization operator onto a
full transversal family.
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3. Hyperbolicity in a Banach space of real analytic maps

In this section we give a proof of Theorem 2.4. Using the real and complex
bounds given by Sullivan in [28], we prove in §3.1 that there is an iterate of the
renormalization operator which extends as a real analytic map 7" to an open set
Ogq, of the Banach space Aq, consisting of real analytic maps whose domain
is an a-neighborhood of the interval [—1,1], for a suitable a > 0. The maps
g € K have unique extensions belonging to Qg . In §3.2, using lemmas 4.16
and 4.17 in Lyubich’s paper [20], we show that the hybrid conjugacy classes
of the maps g € K form a continuous lamination of codimension one real
analytic manifolds. Then in §3.4 we construct a skew-product renormalization
operator that satisfies properties (W1) to (W4) in page 395 of [20] in the
real analytic case (restated in §3.5). By theorems 8.2 and 8.8 in [20] the
skew-product renormalization operator will have fiberwise stable and unstable
leaves (as defined in §3.3). The local stable leaf at g € K is a relatively
open set of the hybrid conjugacy class of g. Then using the skew-product
renormalization operator, we prove in §3.5 that K is a basic set for the real
analytic renormalization operator 17" : O, — Aq, .

3.1. Real analyticity of the renormalization operator

Using Sullivan’s real and complex bounds in [28], we will show that there exists
a > 0 such that some iterate 7' : O, — Agq, of the renormalization operator
is a (well-defined) real analytic operator with a compact derivative.

For each f € K, let Zy C [—1,1] be the postcritical set of f (the Cantor
attractor of f). For each k > 0, we can write

RFf(x) = Ayt o fP* o Ay(z)

where

k—1
pr=p(f,k) = [ p(R'f)
=0

k—1
Me=A(fk) =[] MES)
=0
Ap(z)=A(f, k) (z) = M-, (3.1.1)

with p(-) and A(-) as defined in §2.2. Consider the renormalization intervals
Aok = Aok(f) = [=[Mls [A]] € [-1,1], and define Ay = A p(f) = f'(Aok)
for i = 0,1,...,pr — 1. The collection Cy, = {Agk,...,Ap,—1%} consists of
pairwise disjoint intervals at level k. Moreover, | J{A : A € Cpy1} € U{A:
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A € Cy} for all k£ > 0 and we have

oo pr—1

If:ﬂ UAM.

k=0 =0

DEFINITION 3.1. The set Iy has geometry bounded by 0 < 7 < 1 with
respect to (Cg)ren if the following conditions are met for k > 1.

(i) [f Aj’kdrl C Ai,k then 7 < ‘Aj,kJrl‘ / ’Al,k’ <l-—T.

(it) If I is a connected component of Ay \ U; Ajg+1 then T <
1/ 1Ak <1 —7.

By Sullivan’s real bounds (see [28] and Section VI.2 in page 453 of [26]),
there exists o > 0, such that for every g € K the set Z, has geometry bounded
by a with respect to (Cg)gen-

The following result is a consequence of Sullivan’s complex bounds (see
[28] and Section VL5 in page 483 of [26]).

THEOREM 3.1. There exist 4 > 0, Ng > 0 and a neighborhood V of the
dynamics with the following properties. Every g € K extends to a holomorphic
map g : V — C and for every N > Ny there exists a symmetric neighborhood
Og N of the interval Ao n(g) such that

(i) the diameter of the set g'(O4 ) C V is comparable to the length
|Ai N (g)| of the interval A; N(g) for every 0 <i < p=p(N,g);

(it) the map gP : Ogn — ¢P(Og4N) is a quadratic-like map with
conformal modulus greater than p > 0.

Applying Theorem 3.1 (ii) to g € K, we see that R"(g) has a quadratic-like
extension to

Ugn = A, (Og,n) (3.1.2)

(where Ay, = A(g, N)) and such extension has conformal modulus greater than
w>0.

Recall that the filled-in Julia set Kt of a quadratic-like map f : U — U’
is the set {z: f"2 € U,n =0,1,...}, and its boundary is the Julia set J; of f.
Since all maps in K have conformal modulus greater than or equal to u > 0,
we deduce from Proposition 4.8 in page 83 of McMullen’s book [23] that there
exists b > 0 such that for every g € K we have

Qb(’CRN(g)) C Ug,N . (3.1.3)

Here the notation Q.(K) means the set of all points whose distance from K is
less than £/2 times the diameter of K.
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For each neighborhood U of [—1, 1] in C, symmetric about the real axis, we
consider the real Banach space Ay of holomorphic functions defined earlier.
We denote by Ay (g,d) the open ball of radius ¢ around g. By (3.1.3), the
inclusion map ig N : Ay, , — Ag, is a well-defined compact linear operator for
every 0 < o < b.

LEMMA 3.2. Let > 0 and Ng > 0 be as in Theorem 3.1 and b > 0 as in
(3.1.3). For every 0 < a < b there exist N > Ny and 69 > 0 such that

1) for every g € K, the operator T, n : Aq_(g,00) — Ay, is well-
9, @ g, N
defined if we set

Tg,N(f) :Af_l OprAf : Ug,N —C,
where p = p(f,N) = p(g,N), Ay = A(f,N), and Ty n(f) is a

quadratic-like map with conformal modulus greater than p/2;

(it) the operator T' : Oq, — Aq, given by T = ign o Ty N is real
analytic with a compact derivative, where

Oq, = | J A, (g,60) .

geK

Proof. By Sullivan’s real bounds, there exist C; > 1 and 0 <11 <o <1
such that for all g € K, all £k € N and all 0 < j < p(k,g) — 1, we have
otk < |A;jk(g)] < C1v4 . Thus, by property (i) in Theorem 3.1, for every
a > 0 there is N > 0 so large that the open sets gj(Og,N) have diameter
smaller than /3 for all 0 < j < p(IV,g). Recall that Oy v = Ay(Uy n). By
a continuity argument, there is d; > 0 such that for every f € Aq_(g,dy),
the restriction f|[—1,1] is N-times renormalizable, f/(A;(U,n)) C Qo for
every 0 < j < p = p(N, f), and moreover fP : A¢(Uyn) — fP(Af(Ugn)) is a
quadratic-like map with conformal modulus greater than /2. By compactness
of Kin Agq,_, there is a finite set {g; : ¢ = 1,...,1} such that

!
K C | JAa,(9i.05./2) .
i=1
Set 09 = min;—;__;{dg,/2}. Then, for every g € K there exists i = i(g)
such that Aqg_(g,00) C Aq,(9:,04,). Hence T, n(f) is well-defined, and it
is a quadratic-like map with conformal modulus greater than u/2, for every
f € Aq_(g,00) which proves (i).

Note that the real Banach space Aq_ is naturally embedded in the complex
Banach space Aq_ ¢ of maps f : 2, — C which are holomorphic and continuous
up to the boundary and that Tj y extends to an operator Tg(?N in an open set
of Aq, c, given by the same expression. Applying Cauchy’s integral formula,
we see that T;?N is complex-analytic, and so Tj y is real analytic. Since by
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Montel’s theorem the inclusion i, x is a compact linear operator, we deduce
that T' : Oq, — Aq, is a real-analytic operator with a compact derivative,
which proves (ii). O

3.2. Real analytic hybrid conjugacy classes

We will introduce later (in §3.4) a skew-product renormalization operator. The
fiberwise local stable manifolds of such skew-product — which will be used to
determine the stable manifolds of the real-analytic operator T : Oq, — Aq,, for
some suitable a > 0 — turn out to be openly contained in the hybrid conjugacy
classes of the maps in the limit set K. Here we analyze the manifold structure
of hybrid classes in more detail.

A homeomorphism h : U — V, where U and V are contained in C or C,
is quasiconformal if it has locally square integrable distributional derivatives
Oh, Oh, and there exists € < 1 with the property that ‘gh/ah‘ < ¢ almost
everywhere. The Beltrami differential py of h is given by up = 0h/Oh. A
quasiconformal map h is K quasiconformal if K > (1 + ||pnlleo)/(1 — ||pta]leo)-

Two quadratic-like maps f and g are hybrid conjugate if there is a quasi-
conformal conjugacy h between f and g with the property that dh(z) = 0 for
almost every z € ICy. Let us denote by H(f) the hybrid conjugacy class of f.

By a slight abuse of notation, we will denote by K N Ay (g,d) the set of
maps f € Ay (g, ) with the property that f|[—1,1] belongs to K.

In the proof of the following theorem, we will need to work with the com-
plexification of Ay. Let Ay c be the complex Banach space of all holomorphic
maps f : V — C with a continuous extension to the boundary of V. Let
Ay c(f,6) be the open ball in Ay ¢ centered in f and with radius 6 > 0. Let
C : Ayc — Ay be the conjugation operator given by C(f) = co f oc, where
c(z) =z € C. We note that f € Ay if and only if f € Ay c and C(f) = f.

THEOREM 3.3. For every g € K, there exists a symmetric neighborhood
Vg of the reals such that g has a quadratic-like extension to Vg (which we
also denote by g), Vg contains a definite neighborhood of K4 and for every
neighborhood V. C ‘A/g symmetric with respect to R and with the property that
glV is a quadratic-like map, there is 6, > 0 such that for all f € KN
AV(ga(Sg,V):
Hy (f) = H(F) N Av(g,5,0)

are codimension one real analytic leaves varying continuously with f.

Proof. By lemmas 4.16 and 4.17 in page 354 of Lyubich’s paper [20],
we obtain that for all f € KN Ay.c(g,04v), Hve(f) = H(f) N Avc(g, bgv)
are codimension one complex analytic leaves varying continuously with f. If
f € Av(g,04,v) then the hybrid conjugacy class of f in Ay.c(g, d4,v) is invariant
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under the conjugation operator C. Hence, the tangent space Ty Hyc(f) at f
to its hybrid conjugacy class is invariant under the conjugation operator C,
and there is a one dimensional transversal E¢ to TyHy,c(f) which is also
invariant under the conjugation operator C. Locally Hy,c(f) is a graph of
G:7Z CTyHye(f) — Ef with the property that if h = v + G(v) then C(h) =
C(v) + G(C(v)). Thus, locally Hy (f) is also the graph of G|Z N Ay (g,64,v),
and so it is a codimension one real analytic leaf. Since the complex analytic
leaves Hy,c(f) vary continuously with f, we deduce that the real analytic
leaves Hy (f) also vary continuously with f. O

3.3. Hyperbolic skew-products

Before going further, we pause for a moment to introduce the elementary
concept of hyperbolic skew product in an abstract setting. Let K be a compact
metric space and assume that K is totally disconnected. Let F be a finite
collection of (real) Banach spaces, say F = {41, A, ..., Ax}, and assume we
have a locally constant map ¢ : K — F. We write A, = ¢(x) € F, for all
x € K. Let B = Ugeg{z} x A;. We endow E with a topology as follows. If
K; = ¢ 1(A;), then K; is an open and closed set in K, for each i = 1,2,..., N.
Note that E is the disjoint union of K; x A;, 1 = 1,2, ..., N. Hence endow each
factor K; x A; with the product topology and then F with the union topology.
It is clear that FE is metrizable also. The natural projection £ — K is open and
continuous. We shall assume that there exists a continuous injection K; — A;
for each i, and will accordingly identify each x € K; with its image in A;.

Now suppose T : K — K is a homeomorphism (in the case we are inter-
ested, T is transitive), and also that for each z € K we have a real-analytic
map Sy 1 Az (z,0) — Ap(y), where Ay (z,0) = {z +v € A, : [[v|la, <d}. We
define a skew-product operator S : E(J) — E over T, where

E©0) ={(z,y) :x € K,y € Ay, |ly — x4, <0},
by S(z,y) = (T(x), Sz(v))-

DEFINITION 3.2. We say that S is fiberwise hyperbolic if there exists a
continuous spliting Ay = ES @@ EY with dim E¥ = 1 which is invariant in the
sense that DSz (ES) C Ef ) and DS, (EY) C Ef () satisfying for all v* € E3
and all v* € EY} the inequalities

HD (Sn-1(z) 0. Sz) (ZL’)USHATMQD) <CO"||v%| A,

1D (Srrr@y - Sa) @0"| ., ZCTH07 0|4

= z )

where C' > 1 and 0 < 0 < 1 are uniform constants on g.

DEFINITION 3.3. The fiberwise local stable manifold Wj(x) of S at z con-
sists of all points y € Ayx(z, ) such that for alln > 1, we have Spn-1(z)0...0



GLOBAL HYPERBOLICITY OF RENORMALIZATION 17

S2(0) € Aoy (T7(2), 5) and
HSTn—l(x) 0...0 Sx(y) — STnfl(x) 0...0 Sw(l')HATn(I) < Co"

where C > 0 and 0 < 0 < 1 are uniform constants on x € K. The fiberwise
local unstable manifold W (x) of S at x consists of all points y € Ay(z,3)
such that setting yo = y, for each n > 1 there exists y, € .ATfn(x) such that

Yn—1 = ST*”(Q:) (Yn) and [|[T7(x) — ynHAT—"(m) = Co".

3.4. Skew-product renormalization operator

Our goal in this section is to build a skew-product renormalization operator
that will play a central role in the proof that K is a basic set for 7' : Oq, — Aq,,
for a suitable a > 0. Our skew-product is constructed so as to satisfy properties
(W1) to (W4) in page 395 of [20] in the real analytic case — restated in §3.5
— and therefore will have fiberwise stable and unstable manifolds, as we will
explain in that section.

Using Theorem 3.1 and (3.1.3), we know that for every 0 < o < b, K injects
continuously into Ag,. Hence for f, g € K we define distx(f,g) = ||f — gllaq,, -
We also denote by K(g, ) the ball of radius € centered at g in this metric. The
metric is compatible with the natural topology of K, independently of which
a we take.

LEMMA 3.4. The filled-in Julia set K4 varies continuously in the Haus-
dorff metric with respect to g € K.

Proof. We need to show that for every ¢ > 0 there exists § > 0 such
that if distx(f,g) < ¢ then (a) Ky C Q.(Kyf) and (b) Ky C Q. (k). Let U =
Ur-~o(g),ny, C C be the symmetric neighborhood of [~1,1] given by Lemma
3.2. Since the operator Tr-no () N, 18 continuous, every f € K sufficiently close
to g in Agq, is quadratic-like on U (f = Tr-no(g),n, (T~ (f)) : U — C ) and is
also close to g in Ay.

To prove (a), cover Ky by finitely many disks D(z;(g),£/2),i=1,2,...,m,
where each z;(g) is an expanding periodic point of g. For f sufficiently close to
g, the corresponding periodic points z;(f) € D(z;(g),£/2). Hence each z € K,
is at distance at most ¢ from some z;(f), which proves (a).

To prove (b), let n > 0 be so large that W = ¢7"(U) C Q.(K,). Since f
is close to g and W C U is symmetric f : W — f(W) is quadratic-like also,
whence Ky C W C Q.(K,y) and so (b) is proved. O

LEMMA 3.5. Let g € K and let V C C be a symmetric neighborhood of
[—1,1] which is compactly contained in y)9(Ky), where b is given by (3.1.3).
Then for all € > 0 sufficiently small KN Ay (g,€) is an open subset of K.
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Proof. Take 0 < a < b sufficiently small such that 2, is compactly
contained in V. By Theorem 3.1 and (3.1.3), every f € K is well-defined on
Op(K¢). Since by Lemma 3.4 the map f +— Ky is continuous in the Hausdorff
metric, there exists g > 0 such that if f € K is such that distx(f,g) < €o
then Q5 (Kg) C Q(Ky). Since V' C Q/9(Ky), it follows that f is well-defined
on V, that is f € Ay. Hence there is a well-defined injection K(g,e9) — Ay.
Such injection is continuous. Indeed, for f € K(g,¢0), the C° norm of f in
Q2(KCy) is uniformly bounded, while || f||a,, varies continuously with f. Since
Q, CV CV CQya(Ky), we deduce from Hadamard’s three circles theorem
(see Lemma 11.5 in page 415 of [20]) that ||f||s, varies continuously with f
also. Therefore the map K(g,e9) — Ay is continuous as asserted. Now let
feKnAy(g,e0). Since the inclusion Ay — Ag_ has Lipschitz constant one,
we have that f € K(g,e9). Hence, by continuity of the map K(g,e9) — Ay,
there exists €; > 0 such that K(f,e1) C KN Ay(g,£0), which shows that this
last set is open in K. This completes the proof. O

LEMMA 3.6. Let b > 0 be as defined in (3.1.3) and 69 > 0 as in Lemma
3.2. There exist v >0, 0 < § < dg, a finite set V of symmetric neighborhoods
of [-1,1] and a locally constant map K 5 g — V, € V with the following
properties:

(i) The neighborhood Vy is compactly contained in /o(Ky);

(ii) Every f € Ay, (g,0) is a quadratic-like map with conformal mod-
ulus larger than v;

(iii) If f € KNAy,(g,0) then H(f)NAvy,(g,0) is a codimension one
real analytic submanifold varying continuously with f.

Proof. For every g € K, let U, C C be a symmetric neighborood of [—1, 1]
where g is quadratic-like, and take ny, > 0 so large that Vg’ =g "™ (U, C
Qp/3(Ky) and V; C V,, where V, is as given in Theorem 3.3,

Let 64 > 0 be so small that each f € Ay, (9, 04) is quadratic-like in V] with
conformal modulus greater than v, > 0 and also so that Theorem 3.3 holds
true (for Vg/ and d,4). By Lemma 3.4, making 0, smaller if necessary, we see
that Vj = g7 (Uy) C Qy/2(Ky) for all f € KN Ay, (g,d).

By Lemma 3.5, each set KNAy, (9,04/2) is open in K. Since K is compact,
there exists a finite set {g; : ¢ = 1,...,1} such that

l

Kc U AVQ’7 (9 591/2) .
=1

Thus we can set

V= {Vg' vi=1,...,0}, 0 22311??,1{591'/2} and v = Eninl{ygi} .

it AR
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Therefore, since K is totally disconnected, there exists a locally constant map
K> g — V, € V so that properties (i), (ii) and (iii) are satisfied. O

We are now in a position to define the skew-product renormalization op-
erator. This is accomplished in our next lemma. Let us define first its range
and domain, respectively, as follows

E:{(g,f) :gGKandeAvg}
E(6)={(9.f) €E: f €Ay, (9.0} .

Let us now fix once and for all @ > 0 so small that Q, C Vy for every
g € K (this is possible because V in Lemma 3.6 is a finite set). The inclusion
kg : Ay, — Ag, is a well-defined compact linear operator. By (3.1.3) and
Lemma 3.6 (i) we also have

Vi (g) C Q2 (KRn(g)) € Q(KRn(g) C Ugn -

Therefore the inclusion jy v : Ay, , — Ay, is also a well-defined compact

] RN (g9)
linear operator.

LEMMA 3.7. Let 6 > 0 and V, € V be as in Lemma 3.6. Let N = N(a) >
0, Tyn and T : Oq, — Aq, be as in Lemma 3.2.

(i) For every g € K, the operator T, : Aq,(g,9) — Ay,

R
Ty = jgn o Ty N is real analytic with a compact derivative.

N, JiVEN by

(i) The skew-product renormalization operator S : E(§) — E given
by 5(g, f) = (T(9), S4([)), where Sg = Tyo kg : Av,(9,0) = Avy,.,

is well-defined. Furthermore,

kT(g) (¢] g = T (¢] k‘g . (341)

Proof. The proof is similar to the proof of Lemma 3.2 (ii). O

3.5. Hyperbolicity of the renormalization operator

The purpose of this section is to show that K is a hyperbolic basic set for the
operator T' : Oq, — Agq,. This will follow from the fact (Lemma 3.8 below)
that the skew-product renormalization operator has fiberwise real analytic sta-
ble manifolds and fiberwise one dimensional real analytic unstable manifolds.

We start by noting that our skew-product operator satisfies the conditions
W1-W4 in page 395 of Lyubich [20] in the real analytic case. Namely, we have

W1. The conformal modulus of each g € K is larger than an uniform constant
w> 0.

W2. There exists n > 0 such that if distx(f,g) < n for some f,g € K, then
Ay, = Ay,.
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W3. There exists § > 0 such that Sy(Av, (g,9)) € Ay, -

W4. The vertical fibers Z, (consisting of those normalized symmetric quadratic-
like germs whose external class is the same as that of g) sit locally in Ay,
for each g € K.

Condition W1 is satisfied because of the complex bounds (Theorem 3.1).
Condition W2 follows from Lemma 3.6. Condition W3 holds by the construc-
tion of S; in Lemma 3.7. Condition W4 is a consequence of Lemma 3.6 (iii).

Now we have the following result.

LEMMA 3.8. The skew-product renormalization operator S : E(§) — E
defined in Lemma 3.7 is fiberwise hyperbolic. Moreover

(i) The local stable set W3(g) of S at g is a co-dimension one sub-
manifold of Ay, which is relatively open in H(g) N Ay, (g,9), and
Wi (g) is tangent to Ey at g.

(ii) The local unstable set Wy'(g) C Ay, of S at g is a one-dimensional
real analytic manifold, and {g} x W§'(g) varies continuously with
geA inFE.

Proof. Since the operator S satisfies Lyubich’s conditions W1-W4 stated
above, part (i) follows from Theorem 8.2 in page 392 of [20] and Theorem 3.3,
and part (ii) follows from Theorem 8.8 in page 398 of Lyubich’s paper [20]. O

THEOREM 3.9. Let T : Qq, — Aq, be the real analytic operator defined
in Lemma 3.7. Then there is a continuous, DT-invariant splitting Aq, =
E; @ Ey, for g € K, such that if v € Ey and v® € E; then

IDT™(9)v" |5, = C~ 107" [0 A0, (3.5.1)
IDT™(g)v"|| 4, < CO™ V"]l 2c,

where C' > 1 and 0 < 0 < 1 are uniform constants on g.

Proof. Since for every g € K the map ky : Ay, — Agq, is linear and
injective, it follows from Lemma 3.8 (ii) that Z} = ky(Wj'(g)) is a real analytic
one dimensional manifold varying continuously with g. Let w, be the unitary
vector tangent to Wi'(g) at g. Then v, = ky(w,) is a vector tangent to Z;' at
g and also varies continuously with g. Since k; and kp(,) are linear maps we
see from (3.4.1) that if A, is such that DSy(g)w, = Agwrp(g) then DT (g)v, =
Agur(g)- Thus a natural candidate for £ is the one dimensional linear subspace
generated by vgy. In particular, (3.5.1) is satisfied.

Let us find the natural candidate for Ej. We have that DTy(g)vy = wrg)

and by hypothesis wrp(g) is transversal to the tangent space of W§(T'(g)). Thus,
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by the implicit function theorem Z7 = Tg_l(Wg(Tg)) is a codimension one
manifold transversal to Z;. Taking Ej equal to the tangent space of Z7, we
obtain that Ej P Ey = Ag,. By (3.4.1), we have that a neighborhood of
T'(g) intersected with Zg) 1s contained in T(Z;) and a neighborhood of T'(g)
intersected with T(Z;) is contained in Z%(g), which implies that the spliting
E; @ Ey is invariant under DT'. From assertion (i) in Lemma 3.8, we obtain
that EJ varies continuously with g and so the spliting Ej @Eg also varies
continuously with g.

Finally, let A > 0 be such that || DTy(g)|/a,, < M and note that ||kg| s, <
1 for all g € K. For all v* € Ej with unit norm, let u® = DTy(g)v° € Ay,
By Lemma 3.8 (i) and (3.4.1) there exists C; > 1 and 0 < # < 1 such that

IDT™(9)0% || g, = [k (g) © DSTn-1() (T (g)) © - .. © DSp(g)(T(9))tt"| s,
<|[DSpu-1(g)(T"(g)) 0 ... 0 DSrq) (T(9))v’llav,.,,,
<O MO,

which shows that (3.5.2) is satisfied. This completes the proof. O

With the above results, we have therefore established Theorem 2.4, to the
effect that a suitable power of the renormalization operator is indeed hyperbolic
in a suitable (real) Banach space of real analytic mappings. From now on, we
shall concentrate on the problem of extending such hyperbolicity to larger
ambient spaces of smooth mappings. Our journey will take us far into the
wilderness of non-linear functional analysis.

4. Extending invariant splittings

In this section we prove a certain result from functional analysis (Theorem
4.1 below) that is absolutely crucial for the stable manifold theorem that we
shall prove later. This result deals with the notion of compatibility presented
below and is a strong generalization of a key idea of Davie in [5]. In §5, we
shall use the results presented here to show that the invariant splitting for the
renormalization operator 7" in Aq, of §3 extends to an invariant splitting for
the action of T in the larger spaces A" of C" maps.

4.1. Compatibility

We are interested in the answer to the following question. Given a smooth
operator T' : O — A having a hyperbolic basic set K, and given a larger
ambient space B O A to which T extends (not necessarily smoothly), under
which conditions does K have a hyperbolic structure in B? To give a precise
meaning to this question (and then answer it!) we introduce the following
notion.
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We have a natural continuous map L : K — L(A, A) given by

Koz — L,: A=A
Ly(v) =DT(x)v .

We will also assume that for every z € K, EY is a one-dimensional subspace
and that we can chose a unit vector u, € EY varying continuously with z
so that Lz(uy) = 0 - up() with 6, > 0. In the case of the renormalization
operator there is a natural choice for the vectors u,: choose the unit vector
pointing in the direction of increasing topological entropy.

For every z € K, we denote DT™(x) = Lyn-1(3) 0+ 0 Ly by L,(Un) and

Orn-1(z) "+ 0z Dy 5§En). By hyperbolicity of K, there exist Cy > 0 and A > 1

such that for every « € K and every n > 1 we have
5 > CoA™ . (4.1.1)

We denote by X'(r) the open ball in the Banach space X' centered at the
origin and with radius r > 0.

DEFINITION 4.1. Let 8 < p < X where 0 is the contraction exponent of
the hyperbolic basic set K of the operator T and X is as in (4.1.1). The pair
(B,C) is p-compatible with (T,K) if the following conditions are satisfied.

A1l. The inclusions A — B — C are compact operators.

A2. There exists M > 0 such that each linear operator L, = DT (z)
extends to a linear operator L, : C — C with

L,

<M
C
L.(B)cB
Lo(w)[| < Mllolls

A3. The map L : K — L(B,C) given by L, = I:x|l3 18 CcOntinuous.

A4. There exists A > 1 such that B(A) N A is C-dense in B(1).

A5. There exist K > 1 and a positive integer m such that

 (m) < _"m
£ 0] < max{ 52 ol Kol |

REMARK 4.1. Note that neither the map L:KxC—KxC given by
L(z,v) = (T(z), Ly(v)) nor its restriction from K x B to K x B are necessarily
continuous.
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EXAMPLE 4.1. As we know from Theorem 2.4, K is a hyperbolic basic set
of the renormalization operator T = RN : O — A. In §5 (see Theorem 5.1),
we will show that the pair (A", A%) is p-compatible for r sufficiently close to 2
and 1-compatible for r > 2 non-integer.

Let 7% : A — EY and 7, : A — Ej be the canonical projections. We
define P, = W%( )© L, and Q, = 7@,( ) L, which have the property that L, =
Py +Qy and that Pp,)Qz = Q) Pr = 0. We also define the linear functional

: A — R by ni(v) = oz(v )ux, and observe that Pp(v) = 0,0.(v)up(y).
We note that the map o : K — L£(A,R) which associates to each x the linear
functional o, is continuous.

THEOREM 4.1. If (B,C) is p-compatible with (T,KK) then each stable func-
tional o, extends to a unique linear functional 6, € B* satisfying

|2 ) = 06 ()

5 < Co™vl|s (4.1.2)

for some C >0 and 0 < 6 < p. Furthermore, the map 6 : K — L(B,R) which
associates to each x the linear functional &, is continuous.

Proof. Let m and M be as given in Definition 4.1. Since by property Al
the C-closure of B(1) is compact, and since by property A4 the intersection
AN B(A) is C-dense in B(1) we can find a finite set

o C ANB(A)
such that for each w € B(1) there exists w’ € ® such that
pm
4K
Now let v € B(1), and let vy € ® be such that

lw = w'lle <

pm
— < — .
HU vollc oK

Since ||[v — vl < 1+ A, applying the inequality of property A5 to v — vy
yields

m

_r
21+ A)

10 = ) < { 52wl Kl — ol

<p™/2.

Therefore L™ (v) = iém)(vo) + (p"/2)w; for some w; € B(1). Repeating the
argument with w; replacing v and proceeding inductively in this fashion, we
get after k steps

s — ((k prm
L™ (v) = 7L;p(]m(jx) )(Uj) + ok

T Wk

.Mw

<
[l
o
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for some wy, € B(1) and v; € ®. Now recall that

k—j)m k—j)m ((k=g)m
Lty @) = P () + QUL )

k—j m
= 62(1“(jm(]x)) )UTJm(x)(Uj)uT’”"(z) +QT7m(x) )(Uj) .

Hence we can write

k— 1 'm
7=0 w
(4.1.3)

\ ‘ k—j)m) P
+ < ) Fonly? wp) + S
§=0
The first summation in parentheses converges to a limit because, by (4.1.1),
}&(fm)} > CoN™ > Cop’™ and {O'ij(x) (vj)} is bounded, as the v; run through
finitely many values and HUTi (@) H < M for all i. We therefore define

Gx(v) = klirrolo 2] (]m UT7m(x)(v]) . (4.1.4)

It will be clear in a moment that this extension of o, is independent of the
choices of approximants v; performed above, linear, continuous, and the unique
extension satisfying (4.1.2). We know that

o], < ciomes

for all j < k. Thus the second summation plus the last term in (4.1.3) add up
to a vector with B-norm bounded by

kzl Q m(k—j)+i e
% ok | P

This gives

LEF™ (v) = 88™ 6 (0) 0o (1)

o < Cslk+ )85, (4.1.5)

where 3 = max{1/2,0/p} < 1. Now choose 0 < 6 < p so that (k+ 1)8% <
C4( )km for all k. Since by property A2 for all x € K and for all v € B we

have || L. (v)||s < M|v||5, writing n = km + r and using the above estimates
we obtain the desired inequality (4.1.2).

Let us now verify that &,(v) is the unique value satisfying (4.1.2). In
particular, it does not depend on the choices of approximants v; taken in
(4.1.4). To do this we represent by o (v) a value satisfying (4.1.2), for instance
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obtained in (4.1.4) by taking another choice of approximants. Therefore we
have

—1 N
Ga (V)i — (80) L™ (0)

“6m(v)uTkm(z) — 0 (V)urin (g HB < B

71 N
- H (38m) ™ 29 (0) = 07 (0) gy
B

< 204k (5§km>) -

Letting k& — oo in this inequality we deduce that 6,(v) = o%(v). A similar
argument shows that &, is linear. Using inequality (4.1.5) with & = 1, we
obtain that ||6. || is bounded. Finally, the fact that 6, is continuous in z can
be deduced from (4.1.4) using property A3. O

COROLLARY 4.2. Let (B,C) be p-compatible with (T, A). Let the linear
functional 6, € B* be the extension of the stable functional o, satisfying
inequality (4.1.2) for all x € K. Then, there exists a continuous splitting
B = E5@ EY with the following properties:

(i) E¥ is the inclusion in B of the unstable linear space EY C A;
(ii) B3 = Ker(6,);
(iii) the splitting is invariant by Ly;
(iv) there exist a constant C > 0 such that
|22 @), = exiels

for all x € K, for all v € E;‘, and for all m € N (where A > 1 1is
the same as in (4.1.1));

(v) there exist constants C > 0 and 0 < 0 < p < X such that
|22 @), < comiolls

for all x € K, for allv € E;, and for all m € N. In particular, if
p<1thenf <1.

(vi) Let 75 : B — E2 and 7% : B — E¥ be the natural projections
such that

~S ~S __ &S ~U ~U AU ~S ~U AU ~S
Ty O My =Ty, Ty O0f, =@, and T, oty =7, 07, =0 .
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Let us define the operators Q. B—Band P,:B— B by QZI =
LT o7i and by P)* = Lywt¥. Then, there exists C' > 1 such that

Lo
[

<Co™
B

for all x € K and for all m € N.

Proof. First, we observe that for all x € K and for all v € B, we can write
v = (v—064(v)uy) +6.(v)u,, where v — &, (v)u, € Ker(é,) and 6, (v)u, € E¥.
Since 6,(u,) = 1 # 0, we obtain that B = ES @ E.

By inequality (4.1.2), there exists C' > 0 such that

| @), < comilolls (4.1.6)

for all z € K, for all v € Ker(6,), and for all m € N; if v € B\ Ker(6,) then
there exists C', > 0 such that

o], = e

Therefore, L,(Ker(6,)) C Ker(67(z)). Since Lp(Ey) = Ef, implies that
L, (E®

) = Ev. . the splitting is invariant by L.
z T(z)

By inequality (4.1.6), we obtain that property (v) and the first inequality
in property (vi) are satisfied. Since K is compact and the map K — R* which

associates ||uy|/p to each x is continuous, there is C' > 1 such that
CMvlla < |lvlls < Cllv]l.a (4.1.7)

for all x € K and for all v € E¥. Thus, property (iv) and the second inequality
in property (vi) follow from (4.1.1) and (4.1.7). O

5. Extending the invariant splitting for renormalization

Our aim in this section is to show that the invariant splitting on the
limit set K of the operator T given by Theorem 2.4, which is an iterate of
the renormalization operator, can be extended to an invariant splitting of the
same operator acting in the space of C" unimodal maps. Given the abstract
results of the previous section, namely Theorem 4.1 and Corollary 4.2, all we
have to do is find the appropriate compatible spaces and the corresponding
compatibility constants. More precisely, we shall prove the following theorem.

THEOREM b5.1. Let T and K be as above, and let \ be the expansion con-
stant satisfying (4.1.1).
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(i) For all o > 0 the pair of spaces (A2, AY) is 1-compatible with
(T, K).

(ii) For all 1 < p < X there exists a > 0 sufficiently small such that
(A2~ AY) is p-compatible with (T,K).

The path towards the proof of this theorem (presented in §5.3) leads us
to perform what amounts to a spectral analysis of the formal derivative of
the renormalization operator, which in turn call for certain estimates on the
geometry of the post-critical set of each map in the limit set of renormalization.
We have the following explicit formula for the derivative Ly = DT'(f) of T at
fek:

p—1
DT(f)o = ;b,§[jz>ff<fpf<Afa»>v<fpj1<Afx>>

) @) - ZDﬂﬂJ)Umlﬂ%

where as before Ay = fP(0) for some positive integer p = p(f, N). We observe
that the operator L; extends naturally to each of the spaces A7 for v > 0.
Properties A1, A2 and A3 of Definition 4.1 are easily verified in our
setting. Property A4 follows from a general result of Holder spaces that can
be proved via smoothing operators. Hence, the heart of the matter is verifying
property A5. This is where the geometric scaling properties of the invariant
Cantor set of a map in K become important — see §5.2. We follow Davie’s

observation that Lgcm) is a special sort of operator — what we call an L-operator
— which is amenable to analysis. The verification of the fifth property (with

(B,C) = (A7,A%) — presented in §5.3 — consists in controlling the norm of a
(m) .
5.3). Using the bounded dlstortlon properties of f € K and the geometry of
the invariant set of f, we show that the exponential growth rate of the C°
norm of LSZ:) is bounded by some p < X if v = 2 — o with a > 0 small enough
and is bounded by some p < 1 if v =2 4+ « with a > 0.

certain positive linear operator L : A — AY associated to L( ™) (see Lemma

5.1. Holder norms and L-operators

First we define what we mean by an L-operator, and to each such operator L
we associate another operator L., acting on continuous functions. Then, we
use local Holder estimates to control the norm of compositions L, 0---0Loo L
of L-operators L; by the norm of (L, o---0 Ly o Ly),.
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DEFINITION 5.1. An L-operator is a bounded linear operator L : CV(I) —
C7(I) that can be written in the form

Lo(z) = Zqﬁz‘(ﬂ?)v(lﬂz’(m)),

where ¢; € C(I) and p; € C(I) are maps such that ;(I) C I for i =
1,...,n, and where v1 > 0 and y2 > 1 are such that 0 < v < 1, 7v2.

EXAMPLE 5.1. For all f € K and all © > 0, the formal derivative L; =
DT (T'(f)) is an L-operator.

An L-operator L as above yields a positive, bounded linear operator L. :
CO(I) — C°(I) defined by

Lyo(w) =Y |6i(@) | Di() v (wi(x)) -
i=1
A straightforward computation yields the following result.

LEMMA 5.2. If Ly, Ly : C7(I) — C7(I) are L-operators, then (LioLy)y =
Ll?’y ° L27’Y'

We remind the reader that a function ¢ : I — I is a-Hélder continuous,
for a fixed 0 < o < 1, if there is ¢ > 0 such that |¢(z) — ¢(y)| < c|z — y|* for
all z,y € I. Let C*(I) be the Banach space of all a-Holder continuous real
functions on I, with norm

lolla = max {HsOHo, sup“"@)‘m”} .

TF£y ‘.’L‘ - y‘a

Let C*¥*%(I) be the Banach space of all real functions on I for which the k-th
derivative is a-Hoélder continuous, with norm

k
[@llkta = max{{lello, [|1D%¢la}

LEMMA 5.3. Let L; : CY(I) — C7(I) be a sequence of L-operators, and
assume that there exist constants 1 > 0 and C' > 0 such that for all n we have

I(Ln oo LyoLy)yll, < Cu™ . (5.1.1)

Then for all p > p and all € > 0 there exist m > 0 and K > 0 such that for
all v e CV(I) we have

|Lm o0 Ly o La(v)]], < max {ep™ o]y, K o]} -
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To prove the above proposition, we will use local Holder estimates for L-
operators given in our next lemma. For each n > 0 and each ¢ € C*(I), we
consider an associated semi-norm

lo(x) — p(y)]
[ollay = sup “———
0<|z—y|<n ‘33 y’

The corresponding semi-norm of ¢ € C*(I) for k > 0 is [|¢[lktan =
H‘P(k)”a,n'

LEMMA 5.4. Let L : C7(I) — C7(I) be an L-operator as defined above.
(i) For every e > 0, there exists n > 0 such that
[Lvllyg < (& + [[Lallco@)llvlly-
(ii) For everye >0 and 0 < & < =, there is n > 0 such that
[Lollen < ellvlly-
Proof. See Lemmas 1 and 2 in [5]. O

Proof of Lemma 5.3. Choosing m such that Cu™ < e€p™ /8, we have
Ep
8

By Lemma 5.4, given &’ = £p" /8, there exists n > 0 such that

m

M = ||Lm7’y O e O LlfYHO <

ep™
L 0'-'0L1(U)HW7 < (e’+M) o], < THUH’Y .

Taking K = 8Kk!||Ly, o --- o Li||o/n”, writing v = k + «, where k is an integer
and 0 < a < 1, and using interpolation of norms (see Lemma 4 in [5]), we
deduce that

2k!
HLmo-~~oL1(v)HW§4maX{HLm on-oLl(v)H,ym,77—’y | Ly o~-oL1(v)H0}

<max {ep"||v||~, K|lv|lo} O

5.2. Bounded geometry

Our aim in this section is to prove two crucial propositions concerning the
geometry of the invariant Cantor set of an infinitely renormalizable map in
the limit set of renormalization. They are important not only in the proof of
Theorem 5.1, but also in the proof (presented in §8) that the renormalization
operator is robust (in the sense of §6).

We recall our notation. For each f € K, let Ty C I be the closure of the
posteritical set of f (the Cantor attractor of f). For each k > 0, we can write

RS(@) = 5 7 )
k
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where p, = Hi':ol p(R'f) and )\, = Hi':ol A(R'f). Recall that the renor-
malization intervals Agr = [—| Akl [Mk]] € [=1,1], and A; = fi(Agyg) for
i=0,1,...,pr — 1. The collection C, = {Ag,...,Ap,—1,k} consists of pair-
wise disjoint intervals. Moreover, [ J{A : A € Cii1} CU{A: A € Ci} for all
k > 0 and we have

oo pr—1
Ir=() | Aix -
k=0 i=0

In our first proposition, f is a normalized, symmetric quadratic unimodal
map, infinitely renormalizable, sufficiently smooth (say C2) for Sullivan’s real
bounds to be true for f. But there are no restrictions on the combinatorics.
We shall use the general fact, due to Guckenheimer [12], that among those
renormalization intervals at the k-th level the one that contains the critical
point of f (namely, Agy) is the largest (up to multiplication by a constant).
This can be seen as follows. First suppose that f is also S-unimodal. If
n > 0 is such that f™(z) belongs to the interval with endpoints —x,z but
f7(x) does not, for all 1 < j < n, then |Df"(z)| > 1 — this uses the fact
that f has negative Schwarzian. From this it follows that if J C [—1,1] is
an interval that does not contain the critical point, whose iterates f7(.J) are
pairwise disjoint for 0 < j < n, such that f™(J) lies in the convex-hull of J
union its symmetric while the previous iterates f7(.J), 1 < j < n, do not, then
|f"(J)| > |J|. Hence, if f is renormalizable, symmetric and S-unimodal then
at each renormalization level the interval that contains the critical point is the
largest. If we drop the negative Schwarzian hypothesis, the same is true up to a
multiplicative constant. This is because every sufficiently deep renormalization
of f already has negative Schwarzian derivative.

PROPOSITION 5.5. For each oo > 0 there exist constants Co and 0 < pu < 1

such that
pr—1 ‘Ai,k’2+a

2

< Cou® . 5.2.1
2 Al = 21

Proof. Let £(A; ) be the level of A; , i.e., the largest integer j such that
Air € Ao\ Agjt1. Let d; i be the distance from A;j to zero (the critical
point). Using that A;; has space around itself we see that for all i # 0 and all
x € A, we have d; , < |z| < Kd;, where K > 1 is a constant that depends
only on the real bounds. Hence K~! < |z|/|y| < K whenever z,y € A;y.
These facts are implicitly used in the estimates below.

Now, we have |A; x|/|Ait1.k| = 1/|f'(z4)| for some z; ; € A; k. Since the
critical point is quadratic, we have |f’(z; )| > Ci|z; x|, and so

YAy 1
~ Chlzi g

(5.2.2)

|Ajt1k
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Therefore, for all 0 < 7 < k — 1 we have

Z |Aik|2 Scl_l Z ’Azk| e Z /
oA)=5 "2

UA; 1)=] i 0D x)=]

d Ag ;i
< 03/ = < 0410g7‘ 04 :
Ao, \Ao,j+1 |SL“ |A0:j+1|

With these estimates, and using the fact proved above that |Ag ;| > C5|A; k|
for all 0 <7 < pr — 1, we see that

pr—1 24 k—1
A Ag s
E ’ Zk| < Cemax A p|* | 1+ g log 7‘ 0

1
< Cs|Ao k|* (1 + log !A0k|>

S Ka’AO,k:|a/2 )

where K, is a positive constant depending on «. This proves (5.2.1) because
|Ao,x| decays exponentially with k& with uniform rate depending only on the
real bounds. O

In addition to Proposition 5.5 — valid for maps with arbitrary combina-
torial type — we shall need also an estimate that seems specific for maps with
bounded combinatorial type, namely Proposition 5.8 below. First, a couple of
lemmas.

For each f € K, let d; be the infimum of all positive numbers s such that

pr—1

Z Ak =0 as k—o0.

§=0
It is possible to prove, using some thermodynamic formalism, that d; agrees
with the Hausdorff dimension of Z;, but we will not need this fact. Let 0 <
D <1 be the supremum of dy as f ranges through K.

LEMMA 5.6. For each s > D there exist Cs > 0 and 0 < ns < 1 such that
for all f € K we have

pr—1
D 1Ak < Canf
j=0
Proof. Apply bounded geometry and the compactness of K. O

Next, let us define
Sik(fis) = > 1Al
LA K)=]
forj=0,1,....,k—1,all £ >0, and all f € K.
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LEMMA 5.7. For each s > D and each f € K we have Sji(f;s) <
C's)\j-nf*], where Cs > 0 and 0 < ns < 1 are the constants of Lemma 5.6,
and X\j = X(f,j) is as in (3.1.1).

Proof. Using renormalization, we see that Sjx(f;s) = AjSok—; (RI(f); s).
From Lemma 5.6, we know that
Sok—j (R (f);5) < Can ™.
The result follows. U

PROPOSITION 5.8. For each > 1 close to one, there exist 0 < a < 1—D
close to zero and C > 0 such that for all f € K we have

1
ka Aa <cpt
|Az+1 k’ .

Proof. Using (5.2.2) and the fact that |z; ;| > \j41 when €(A; ) = j, we
have

Z N Z [Airl A ea
‘Az+1k| |A2+ k|
k-1
<C 120k + DA Sik(fi1 - @)
j=0

If 1 — a > D then, applying Lemma 5.7 with s = 1 — o, we get

Pr— 1|Alk|2 @ k e )
Z < CCi-a Z A]amfi < Koty

|Az+1 k‘ =0
where K, > 0 and p, = max{\(f,1)"* : f € K} depend on «. But if « is
small enough we will have u, < u, and this completes the proof. O

REMARK 5.1. By a continuity argument and the real bounds, we can prove
that propositions 5.5 and 5.8 remain true for maps f € U? sufficiently close to
K. More precisely, for each k > 0 there exists €, > 0 such that for all f € K

and all f € U* with Hf— fHC4(1) < €k, the map f 1s k-times renormalizable,
and the statements of both propositions hold for f. This will be used in §8.4
only for real analytic maps in an open neighborhood of K in A .

5.3. Spectral estimates

In this section we prove Theorem 5.1. Fixing f € K and considering the
Banach space A given by Theorem 2.4, we recall that the Fréchet derivative
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Ly =DT(f): A— Ais given by formula (5.0.1). It is clear from that formula
that Ly extends to a bounded linear operator L I A% — A% and moreover
ﬁf(As) C A® for all s > 0 (because f is analytic).

We want to verify the compatibility properties of Definition 4.1 for the
spaces B = A® and C = A” when s is close to (but different from) 2. Properties
A1 and A2 are clearly satisfied, while A3 follows from Lemma 8.13. Property
A4 is a consequence of the following simple fact about Hélder spaces (see [15]).

LEMMA 5.9. There exists A > 1 such that ANA®(A) is CO-dense in A%(1).

Proof. By Theorem A.10 in page 43 of [15], there exists a family S, t > 0,
of smoothing operators preserving even functions and C' > 1 such that, for
all v € A%(1), we have [|Siv]|c: < C and [[v — Spvl|co < Ct°. By the Stone-
Weierstrass theorem, for all small 0 < € < C there is a polynomial w; with
real coefficients and vanishing at zero such that [w; — Syv|cs < €. Now let
vi(x) = $(w(x) +wi(—x)), so that v; € A and we still have ||v; — Sp||c= < e.
Then |lv¢||c= < ||Se(v)]|c= +€ < 2C on one hand, while ||jv; —v||co < e+ Ct* on
the other hand. For ¢ small enough, this gives ||v;—v||co < 2e with v, € A%(2C).
U

Hence all that remains is to check that property A5 is satisfied. By Lemma
5.3, this will be the case provided we can control the C° norms of IALSZZ) We
shall prove this now, with the help of Propositions 5.5 and 5.8.

Recall that for each m > 1 the operator j)gcm) is an L-operator and its
(m)
)8

associated positive, bounded linear operator L ¥ AY — A® is given by

—1
< (m 1 R o e . o
i) = 5= 20 IDP U Qua)lINeD P Qua) o747 )
5=0
(5.3.1)
where k = mN (recall that T'= R"). Now we have the following fact coming
from bounded geometry
A

IDf7(fP (M\ga))| =< m ;

for all 0 < j < pr — 1. Since |Df(Apx)| < CAj for some constant C' > 0
independent of k£ and uniform in f € K, and |Ag x| = 2\, we have
|DfPI7 ()| < ClAg k]| DI 72(f (k)] -

Again, by bounded geometry, for all 0 < j < pp — 2

(5.3.2)

. A, i
DI f ()| = Dot
|A1 g

and so

. A, i
1D ()| < C’AO,HM

5.3.3
TN (5.3.3)
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Using (5.3.2) and (5.3.3) in (5.3.1), we see that

Pr—2
I | g /\Z‘AOJJ kz: )\%s |A0,k\ ’Ap;rjfl,k\s
DY ‘ [Ap—jikl  |1A1x[*

But |Agk| = 2\, and since the critical point of f is quadratic, |Aqx| =
|Ag]? < )\i. Therefore, we arrive at
pr—1

|Ap,—j—1k]°
HL < ¢ Z p I=LRL (5.3.4)

Pk ]k|

The proof of part (i) of Theorem 5.1 now follows from Proposition 5.5, while
the proof of part (ii) is a consequence of Proposition 5.8. This ends the proof
of Theorem 5.1.

6. The local stable manifold theorem

In this section we isolate those features of the renormalization operator
that are essential for the promotion of “hyperbolicity” from the Banach space
A of Theorem 2.4 to the space U". This leads us to the definition of a robust
operator (see §6.1). Such definition is necessarily rather technical, since it
has to account for the fact that the renormalization operator is not Fréchet
differentiable in U". In particular a robust operator acts simultaneously on
four different Banach spaces (corresponding in the case of renormalization to
the space A given by Theorem 2.4, A", A® and A", where r > 1+ s and s is
close to 2), and satisfies several properties. The major goal of this section is
to prove a local stable manifold theorem for robust operators.

6.1. Robust operators

Before moving on to a precise definition of a robust operator, we give the
following informal description. A robust operator acts on four Banach spaces
A C B CC CD. In the smaller space A it acts smoothly and has a hyperbolic
basic set K. The pairs of spaces (B,D) and (C, D) are compatible with (7', K),
and in particular the invariant hyperbolic splitting for K in A extends to an
invariant hyperbolic splitting for K in B. Viewed as a map from B into C,
a robust operator is C'. It also satisfies a uniform Gateaux differentiability
condition in C for points and directions in B. Finally, as an operator in B, it is
reasonably well-approximated by the extension of its derivative at a point of
K in A to a bounded linear operator in B. It will take us considerable effort
(see §8) to verify that the renormalization operator indeed satisfies all these
conditions.

Let T : © — A be a C? operator having a compact hyperbolic basic set
K with the property that the unstable subspace of the DT-invariant splitting
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of the tangent space at each point of K is one-dimensional. By standard
invariant manifold theory (see [14]), we know that for all ¢ € K the local
unstable manifold W% (g) of T at g exists and is C2. In particular, we can find
a C? parametrization

t— ug(t) e W) C A

/

varying continuously with g such that ug = u,

a O? function t — d,(t) by
T(ug(t)) = wr(g)(d4(t)) -

This function also varies continuously with g and 5g(t) = Jgt + O(t?) for some
dg > 0. Recall that by hyperbolicity of K, there exist Cp > 0 and A > 1 such
that for every g € K and every m > 1 we have

5’1"711,71(9) ce (59 > Co\™ . (6.1.1)

(0) is a unit vector. We define

DEFINITION 6.1. Let A C B C C C D be Banach spaces, where each
inclusion is a compact linear operator. Let O 4 C A and Og C B be open sets
in their respective spaces such that O4 C Op. Let K C O4 be a hyperbolic
basic set of a C? operator T : Oy — A. We say that T is robust with respect
to (B,C, D) if it has an extension to an operator T : Op — B that satisfies the
following conditions.

B1. The pair (B,D) is 1-compatible with T, while the pair (C,D)
is pc-compatible with (T,K) for some pc < A (where X\ is as in

(6.1.1)).

B2. For each m > 0, the interior (’)l(gm) of the set {f € O : T'(f) €
Op, Vi < m} contains K, and T™ : Ogn) — C is C' and its
derivative is uniformly continuous in some neighbourhood of K.
Furthermore, for oll f € AN Ol(gm) the linear map

DT™(f):B—C

extends to a continuous linear operator L,, : D — D that satisfies
L, (X)C X, for X =B,C.

B3. For every m there exists Cy,1 > 1 with the property that for
each g € K there is an open set Vy C Op containing g such that for
all f €V, we have

HDTm(f)ug - DTm(g)ug”C < Cm,IHf —9ll5 -

B4. There exist C1 > 1 and p > 1 with the property that for each
g € K there is an open set V, C Op containing g such that for all
f1, f2 € V4 we have

|T(f1) = T(f2) = DT(f2)(f1 — f2)lle < Cillfr — fallt -
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B5. For all m > 0, there exists Cyp 2 > 0, and there exists vy, > 0
such that for all g € K and for oll f € B with || f — g|lg < vm we
have

[DT™(f) = DT™(g)llc < Cm2A™ .

Moreover, there exists mg > 0 such that for all m > mg we have
Cm,2 < Co/8 (where Cy and X are as in (6.1.1)).

B6. For allm > 0, there exists Cy, 3 > 0 such that for all g € K, for
all f € Awith ||f — glla < vm and for all v € B with ||v||g < vm,
we have

[T (f +v) = T™(f) = DT™(g)vll5 < Crmllv]|5 -

Moreover, there exists mg > 0 such that for all m > mgy we have
Cm’g < 1/4.

EXAMPLE 6.1. As one might expect, the main example of a robust op-
erator is provided by renormalization. We know from Theorem 2.4 that the
renormalization operator T = RN : @ — A is hyperbolic over K. We also
know that this renormalization operator is well-defined as a map from an open
set of UY containing K into U C 1+ A7 =2 AY for all v > 2. We will show
in §8 that T is robust with respect to the spaces A = A, B=A", C = A® and
D = A whenever s < 2 is close to 2 and r > s + 1 is not an integer.

6.2. Stable manifolds for robust operators

We can now formulate a general local stable manifold theorem for robust op-
erators.

THEOREM 6.1. Let T : Oyq — A be a C* with k > 2 (or real analytic)
hyperbolic operator over K C Oy, and robust with respect to (B,C,D). Then
conditions (1), (ii), (i) and (iv) of Theorem 2.3 hold true for the operator T
acting on B. The local unstable manifolds are C* with k > 2 (or real analytic)
curves, and the local stable manifolds are of class C* and form a C° lamination.

The proof of this theorem will occupy the rest of §6. In the end, the
theorem will follow by putting together Corollary 4.2, Proposition 6.13 and
Theorem 6.15.

6.3. Uniform bounds

Before proceeding we prove the following simple bounds that we will use quite
often.

LEMMA 6.2. There exist g > 0 and 1 < X\ < M such that for all g € K
and all t € R with |t| < po, ug(t) and d4(t) are well-defined and
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(i) M7IN' < 5priy) -0y < M™ and ‘Sg(t)’ < Mlt|;
(ii) M~' < |luglls < M and M~' < |ju,lc < M;
(iii) M~ <|logllg <M and M~ < ||og|l, < M;

(iv) M7t < Jlug(t) — glle < Mlt] and MMt < Jug(t) — gllg <
Mt];

(v) log (ug(t) = g)| > 3t].

Proof. (i) By Definition 2.1 and (6.1.1), there exist 1 < A < M such that
for all g € K and all n > 1 we have M 'A" < dpn-1(g) -6y < M and also
3,(t

(ii) For & equal to B and C, we have that g — uy as a map K — X is
continuous and does not vanish. Hence, by compactness of K there is My > 1
such that M, ! < |luy|lx < Moa.

(iii) Since o4(uy) = 1 and by property B1 in Definition 6.1, the functional
0,4 extends continuously to X and there is Mz > 1 such that M3 < |oy|, <
M.

(iv) Since t — uy(t) as a map R — X is C'! and varies continuously with
g € K, there is My > 0 and g2 > 0 such that [Jug(t) — ug(s)||x < Malt — s| for
all g € K and all ¢, s with |¢| < p2 and |s| < p2. Moreover, since

d
%ug(t) » =u, #0
there exists Ms > 0 and p3 > 0 such that [t — s| < Ms||lug(t) — ug(s)||x for
all g € K and all |t| < pu3. Hence (iv) follows by taking s = 0 and noting that
ug(0) = g.
(v) This follows from (iv) and the fact that o4(uy) = 1. O

< M |t| for all |t| < pq (where g3 > 0 is a uniform constant).

6.4. Contraction towards the unstable manifolds

The one-dimensional unstable manifolds of 7" in A are embedded in B, and
remain invariant. The first important estimate given by the following lemma
shows that in B the operator T' contracts towards such manifolds. Therefore,
if T" is to have unstable manifolds in B, these have to coincide with unstable
manifolds in A. In what follows, we fix ¢ € K and for simplicity of notation
we write

g; = Jth(g) , U = UTi(g) , U = uTi(g) N

and

m—1
07 = [ drsg): 07" = bpmosgy 00 bragq) -
j=t
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Set po > 0 as in Lemma 6.2.

LEMMA 6.3. For every m > 0 there exist 0 < ny, < po and By, > 0 such
that for every g € K and every v € B with ||v||g < nm and t € R with |t| < npy,

we have 87 (t + oo (v)) < po, uo(t) +v € (’)gm) and
|7 o) +v) = wm (8572 + 20 ())) |, < Bl -

Furthermore, there is mi > mg (where mq is as in B6) such that for all
m > my we have By, < 1/2.

Proof. We prove the second inequality only. The first is proven in the
same way. By property B6 in Definition 6.1, there is mg > 0 such that for all
m > myg, all v with ||v||g < Vm, and all ¢t € R with |t| < v, we have

1™ (uo(£) + v) — T™ (uo(£)) — DT™(g)v5 < %HUHB . (6.4.1)

By property B1 in Definition 6.1, (B, D) is 1-compatible with (7', K). Hence,
by Corollary 4.2, there exists m; > mg such that for all m > m; we have

IDT™(9)0 ~ B0 (w)umls < g lolls - (6:42)
Putting (6.4.1) and (6.4.2) together we get
[T (uo(t) +v) = T™(uo(t)) — &g o0(v)um|5 < g”vllts - (6.4.3)
Now, we know that T (ug(t)) = um (65"(t)) and ¢ — u,, o §7'(t) is C2. Hence,
[t © 8¢+ 00(0)) =t B (1) = 6500 v}t
<e1 ((00(v)* + [tloo(v))

<ca ([lvlls + [t]) lvll5 - (6.4.4)

Therefore, choosing 7, < vy, so small that Con,, < 1/16 and putting 6.4.3
and 6.4.4 together, we see that if |t| < 9, and ||v||g < 7, then

T™ (g (£) + ) — um 0 87t + o0 )| < ~llvlls
B~ 2

as desired. O

LEMMA 6.4. Let mq1 > 0 be as in Lemma 6.3. For all m > mq there exist
small constants 0 < 9 < €1 < g9 such that the following holds for every e < e4.
For every g € K and every v € B with ||v||g < €, the recursive scheme given
by fo=g+v, to =0, vg=v and

Jer1=T"(fr)

thi1= Slilf:l)m(tk + Okm(vr))

Vk+1 = fet1 = Ugg1)m (Bt 1) (6.4.5)
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is well-defined for all k = 0,..., ko — 1 where ko = ko(g, fo) = min{j : |t;| >
e1}. For all k < ko we have
|77+ ) = wm(80)]|, < 27 Wolls and |15 (g +0) =T (g)| < co/Mo
(6.4.6)

where Mo = M™2 + By + ...+ B,,, M is as in Lemma 6.2 and By, ..., B
are as in Lemma 6.3. Furthermore,

(i) €1 < |t | < €o;

(i) T4 (g +v) = Tom(g) 5 > ea.

(iii) |orom (TH™(g +v) = T*™(g))| > e2;

(iv) | T7+i(g + ) = THi(g || < My [T (g + ) — T+ (g) | (uhich
is less than €g) for all k < ko and alli=0,...,m.

Proof. For every g € K, let B(g,¢) be the open ball in B of radius € centered
at g. Let us fix m > my and choose g9 < min{ug, 71, ..., N} such that all the

properties B1 to B6 of Definition 6.1 are satisfied in UgeK B(g,€0) C (’)gn),
where pg is as in Lemma 6.2 and 71,...,7m, are as in Lemma 6.3. Since
m > mi, we have that B,, < 1/2 where B,, is as in Lemma 6.3. Let us take
M > 1 as in Lemma 6.2. We choose 0 < €9 < €1 < g9 < u such that

e1<eo/ (3MoM™*?) |
£9 <61/(2 +2M) . (6.4.7)

Now we work by induction on k. Let us assume that fj, tx, and v; have
been defined so that (6.4.6) holds. Hence || fr — 7™ (g HB < eg < p, and so

fr € (’)gn) and fry1 = T™(fy) is well-defined. Since |t;| < g1 and 2M™F e <
g0 < p, by Lemma 6.2 and (6.2), and by (6.4.5) and (6.4.7), we have that t51
is well-defined and

sl = |30 (b + o (04))| < M (t4] + [ (1))
<M™ (51 + M;%k) < 2M™Hle < e . (6.4.8)

Thus, by Lemma 6.2, (4 1)m (ter1) and vgy1 = fe1 — Ugt1)m(ths1) are also
well-defined. By Lemma 6.3 and by (6.4.5), we get

[ors1llp = | T™ (fi) = werrym (trs) || 5

- HT’” Uk + Uk (k) — Ukt 1)m (31&119;1)7”(“ + U’Cm(v’“)» H

B
<27 [fug ]l 5 < 2 HUOHB : (6.4.9)
Now, let us estimate ka+1 (ktL)m ( H From (6.4.5) and (6.4.9), we get

3
| frr1 — U(k+1)m(tk+1)HB < llverills < o - (6.4.10)



GLOBAL HYPERBOLICITY OF RENORMALIZATION 40

From Lemma 6.2 and by (6.4.8), we obtain
i) = 76| < Ml <2074 (6a)
Thus, by (6.4.7), (6.4.10) and (6.4.11) we have
kaﬂ - T(k“)m(g)Hlg <[ fer1r = v nym () || 5
+ H“(k+1)m(tk+1) - T(k+1)m(9)H
£
< op +2M e

< 3Mm+2.€1 < eo/Mp .

B

This completes the induction.
Now, we must prove (i), (ii), (iii) and (iv). Property (i) follows from
(6.4.8). Let us prove (ii). By property (i) and Lemma 6.2,

Juksnttin) = T 9)] 2 211
By (6.4.9), we get ||vg, ||z < e/2%. Thus, by (6.4.7), we obtain

|74+ v) = TR )| =||uatam(trn) + v, = T (9)|

B
> ‘Hukom(tko) - Tkom(g)HB - H”koHB’
-1 €
>M" e — oko
>&9 .

Let us prove (iii). Using property (i) and Lemma 6.2, we have
Ot (ko (tr, = T*"9))| = €1/2

Using Lemma 6.2 yet again and (6.4.9), we have |og,m, (v, )| < Me/2%. Thus,
by (6.4.7),we get

ok (T4 (9 + ) = T )| = 0% (ko (t1,)] = [0 ()] |

€2

1
=%~ Mo

>e9 .
Finally, let us prove (iv). Fix 0 < k < kg and 0 < i < m. Setting wy =
TF™(f) — T*™(g) we have by (6.4.6) that ||wg|ls < e0/Mo < n; where n; is as
in Lemma 6.3. Hence T*™(g) + wy, € (’)g) and by Lemma 6.3 we have
| 7@ (9) 4 we) = s (85 ) )|, < Bl
On the other hand, by Lemma 6.2, we have

[t (it (@rm (wr))) = Ti(g)|| - < M2 ]
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Therefore,

HTkarl(f) o Tkarz'(g)HB < ‘

THT ™ (g) + wk) — Ui (Sl]zfnlﬂ(a’fm(wk))) H

g (B rm(wn)) ) = T (g) 15
< (Bi + M™2)|lwg||s < eo

B

which ends the proof. O

6.5. Local stable sets

Let us now consider the local stable set W2(g) of T" at g in B which consists of
all points f € B(g,¢) such that for all n > 0, we have T"(f) € B(T"(g),¢) and

1T7(f) = T"(9)llg — 0 when n — oo .

Our aim in this section is to give a finite characterization of W2(g) and prove
that T contracts in the B-norm exponentially along W25(g). This is done in
Lemma 6.5 below (see also Remark 6.1).

From now on in this section, we let my and ¢y > €1 > €2 > ¢ be as in
Lemma 6.4. For all sufficiently small 0 < & < g9 and for all f € B(g,¢), we let
ko = ko(g, f) and t = tx(g, f) for k =0, ..., ko be as in Lemma 6.4. We write
B(g,€) = V. (9) UV(g) U V:H(g) where

Vo (9)={f € Blg.e) : —e0 < tiy (9, [) < —e1} ,
VX (9)={f € Blg,e) 1 e1 <ty (9, f) < e0} ,
V2(9)=B(g,) \ (V" (9) UV (9)) -
LEMMA 6.5. There exist an integer m and a positive constant Co with the
following properties. For all € > 0 sufficiently small and for all g € K, the sets

V= (g) and V" (g) are open subsets of B(g,e) (and so V2(g) is relatively closed
in B(g,e)), and for all f € VO(g)

IT7(f) =T (g)|| 5 < eCa277/™ . (6.5.1)
Furthermore, the local stable set W2(g) is a relatively open subset of VX(g) and

Wi(g) = {f € Veo(g) : HTj(f) —Tj(g) ‘B <eg forall0<j< mlogCg/logQ} .
(6.5.2)

Proof. The first assertion is a consequence of the definitions of V7 (g) and
V:*(g) and Lemma 6.4. It follows from property (i) of Lemma 6.4 that

V2(g) = {f € Blg,e) : [ta(g, f)] < e1, for all k >0} .

It also follows from property (ii) of Lemma 6.4 that if f € B(g, ¢) and |t, (g, f)| >
€1 then HTkomf - TkomgHB > ¢ where ko = ko(g, f). This shows that W?(g) C
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V(g), and therefore (6.5.1) implies (6.5.2). Furthermore, W2(g) is a relatively
open subset of V(g).

It remains to show that if f € V°(g) then (6.5.1) holds. Set 1 < A\ < M as
in Lemma 6.2. Fixing § > 2, by Lemma 6.2, there is m large enough such that
5,8:1)7” > M7\ > 3> 2 for every k > 0. By Lemma 6.4, for all k& > 0, we
know that t; = tx(g, f) and vy = vi(g, f) are well-defined, and satisfy |tx| < &1
and ||v||g < €27%. Furthermore, ty; = 5(k+1) (tk + okm(vk)). Since 5,2’:1)7”
is C% and HUkaB <M (see Lemma 6.2), there is ¢g > 1 so that

km
+ (5,@’3”””‘ (tr) = Sy ™t

<co (lorlls + [t]?)

<co <52—k + |tk|2) .
Hence (6.5.3) gives us

Ite| < ecoB™'27F + B g | + coB ]
Taking ¢ (in Lemma 6.4) so small that co3 e < 1/2, we get
Ite| < 2 (|te] — coB ™ tu|?) < e2c087127F + 287ty (6.5.3)

for all k > 0. Since 237! < 1, using induction in (6.5.3) and the fact that t;
is bounded, we get |ty| < ec127F with ¢; = 2¢p371/ (1 — 25_1) for all £ > 0.
Now this estimate together with Lemma 6.2 gives us

[wkm (t) = T*™(9) |5 < Mty| < ecyM27" .
Hence, using Lemma 6.4 again, we get
|7 ) = 9)| < el + [[wnm i) = T 9) |

<e27F 4 eey M27F = ccp27F .

B

Therefore, by (iv) in Lemma 6.4, for all ¢ € {1,...,m — 1} we have
|remicr) = msig)| < Mo [T () T g) | < st
which ends the proof. O

REMARK 6.1. Note that since the constant Cy is uniform (independent of
e) in the above Lemma, inequalz’ty (6.5.1) can be improved to

IT9(f) =TI (9)||g < C'277/™ If = glls »

where C' = 2Cy. Therefore, we have exponential contraction in B (along the
local stable sets) in the strong sense.
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6.6. Tangent spaces

Our next goal is to show that V°(g) is a C! manifold provided ¢ is sufficiently
small. The first step towards this goal is to find the natural candidate for the
tangent space at every point f € Vao(g). This will be accomplished in Lemma
6.7 below. The proof will require the following elementary bootstrapping result.

LEMMA 6.6. Let (ay,) be a sequence of real numbers such that, for some
co>0and alln > 1,

n—1

1 Co
jans1] < Jlanl + o > agl - (6.6.1)
j=1

Then |a,| < 127" for some ¢; > 0 and alln > 1.

Proof. We may assume that ¢y > 1. Let ng > 0 be such that cong/2™ <
1/2, and set b = maxi<j<n,{|a;|}. Then we see by induction from (6.6.1) that
lan| < b for all n > 1, and so
nbcy

2’!’1

<1|a | + be )"
=3 n 0 4 .

By induction, this yields |a,| < (2bcg)(2)" for all n > 1. Hence Y 0, |an| <
6bco. Using (6.6.1) once more, we deduce that

1
lant1] < 1|an| +

< 1 6bc2
|ant1] < Z'an| T on o
for all n > 1. Again by induction, this gives us |a,| < (24bc3)2™" for all n > 1,
which is the desired result. dJ

LEMMA 6.7. There exist an integer m, constants C3,Cyqy > 0 and € > 0
small enough with the following properties. For every g € K and for every
f € VO(g) there exists a linear functional 0rq € C* with norm bounded from
above by C3 and with the property that

HDTj(f)v - 5gef,g(v)ujHC < Cy8527 /Mol (6.6.2)

forallveC and all j > 1. If go,91 € K and f € V2(g1) NV (g2) then
9f791|8 = 9f792|B'

Furthermore, the map ¥ : Jyex VO(g) — B* given by W(f) = 05 = 0;4|B
(where g is any point of K such that f € VY(g)) is well-defined and uniformly
continuous.
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REMARK 6.2. Condition (6.6.2) entails that for every g € K, B is the
direct sum of the one dimensional unstable subspace Eg with the kernel of 0y,
i.e. B=FEy@ker(0y), provided f is sufficiently close to g. To see this, note
that we can write

v = Hf(v)(ef(ug))_lug + (v — Gf(v)(é?f(ug))_lug) )

Thus, from the continuity of f — 05 plus the fact that 6,(ug) # 0 it follows that
if f is close to g then uy is transversal to ker(0¢). The hyperplane ker(6y) is
the natural candidate to be the tangent space of VO(f) at f since it corresponds
to all vectors which expand under DTI(f) by a factor less than 56.

Proof. Let € > 0 be small enough such that Lemma 6.5 is satisfied and
eCy < vy, (where v, is as in property B5 in Definition 6.1 and Cy is as in
Lemma 6.5). Let Ry, = Ry = ((5’5’”)71 DT™ () and write f, = T*™(f), and
gr = T*™(g) for all k > 0. Then we have

Ria(v) = (857 DI™ () Buv) (6.6.3)

Let us take v € C with ||v|lc = 1. We can write Ri(v) = apugy, + wg, where
ar € R and wy, € C are defined recursively by ag = 0, wy = v and

Qpt1 = + O (wg)

-1
wirr = e (0 ™) (DT (£) = DT™ (90) i

+ (50™) 7 (DT () — DT (g1)) (6.6.4)
() @l

Now, by Lemma 6.5, we know that
I1fr — grlls < eC227% . (6.6.5)

Since, by property B3 of Definition 6.1, the map f — DT™( f)uy, is Lipschitz
at f = g, (as a map from B to C), we have that for all k large enough

IDT™ (fi) Wk — DT™(gk) Wkl < c1ll fe — grlls < e227F . (6.6.6)

By property B5 in Definition 6.1 and (6.6.5), for all m large enough we also

have
(k+1)m

IDT™(f) — DT™(gi)|» < ka . (6.6.7)

Since, by property B1 of Definition 6.1, (C, D) is p-compatible with (7', K), by
Corollary 4.2, for all m large enough we have

ot < S 009
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Using Lemma 6.2 and putting (6.6.6), (6.6.7) and (6.6.8) in (6.6.4) we get

1 _
lwit1lle < ZHwkllc + 327" o

-1

k

1 CgM

< qlwrlle + =5 > llwjllc - (6.6.9)
j=0

From (6.6.9) and Lemma 6.6, we deduce that ||wy||c < c427%. Thus, by (6.6.4)
we obtain |1 — ag| < ¢527F for all k > 0. Therefore, 07.4(v) = lim oy, exists
and
R (v) = 0. (0) g le < 627, (6.6.10)

for all v € C with [jv]lc = 1. If v € C and ||v||¢c # 1 then we define 0 4(v) =
|v]|cOf,g(v/||vlc). By (6.6.10) and by Lemma 6.2, for all v,w € C we have

0.(0) + 01, 00) — 0740+ )

< M (0) 0 + B ()05 — O (0 + )14

S M |[0,9(v)Upn — Ri(0)||o + M [|0f,g(w)tgn — Ri(w)]|,

+M ||05,4(v + w)akm — Ri(v + w)lle

<cr27" (flolle + llwlle) -
Hence, letting k go to infinity we deduce that 6, is a linear functional in
C*. Again by (6.6.10), ||0f4/lc is uniformly bounded and inequality (6.6.2) is

satisfied for j = km. By (6.6.10) and by property B3 in Definition 6.1, for
j=km+iwithie{l,...,m— 1}, we get

I3 (0) = 0500l < | (B7) ™ DT ) (B(0) = 010D

c

+

(o) - (DT (T*™ ) = DT(T™™9) ) 00 (0) 050 )

<27 vl (6.6.11)

which proves (6.6.2). In particular, there is My > 0 such that
[ Ri,p (V) < Mo, (6.6.12)

for all g € K, all f € V2(g) and all v € B with |jv||g = 1.

Let us prove that the map f +— 0y ,|B is continuous from V(g) into B* for
every g € K. By property B1 of Definition 6.1, for every k > 1 the functional
Okm 18 continuous on C and its norm is uniformly bounded. By property B2
in Definition 6.1, the map f + Ry, ; is continuous from B into C. Hence, the
mapping V2 (g) — B* given by f + ok, o Ry 5 is also continuous. By (6.6.11),
we obtain

|0k © R f (v) = O7,4(0)| = [okm (Ri(v) = Of.(0) k)]
<27 R o)l - (6.6.13)
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Therefore, the continuous maps f + oy, 0 Ry, s converge uniformly to f +— 6y 4,
which implies that f — 6y, is also a continuous map from V?(g) to B*.

Let us prove that 6 4|8 for f € J i V(g) does not depend on g € K. Let
us take f € U,k V9(g) and go, g1 € K such that f € V2(gg) and f € V2(g1).
By Lemma 6.5, for every k > 1 we get

|77 (90) = T (90) | < [T (g) = T ()| + | 7505 = T (90|
< 01062_k .
By property B1 of Definition 6.1, the map g — o, from K into C* is uniformly

continuous. Hence, for every € > 0 there is kg > 0 large enough such that for
all k > ko and all w € C with |Jw||¢c < My we have

ok (g) (W) = Oprm (g (w)| < /2. (6.6.14)
By (6.6.12), (6.6.13) and (6.6.14) and taking k large enough, we get

10f.9, (V) = 0.9, (V)| < |04, (V) = Oprm(g,) © R f(v)]
+ ‘O-len(gl) @) RkJ(?}) — O'Tkm(go) (e} Rk,f(v)‘
+|opim (gy) © R p (V) — 05,6, (0)]
<2927 % te/2<e
for all v € B with |v|][g = 1. Thus, 07,4, (v) = 04, (v) and so the map ¥ is
well-defined.
Let us prove that the map W is uniformly continuous. For every ag > 0,
let us choose ky > 0 large enough such that 2092 ko < @y /3. Since the map

g — 04 is uniformly continuous, there is a1 > 0 small enough such that for all
90,91 € K with ||g1 — gol|¢ < o1 and all w € B with ||w|¢ < My we get

log, (W) — g, (w)] < /3 . (6.6.15)

Let us choose k1 > kg large enough such that eCy27F < a1/3 where Cy > 0 is
the constant of Lemma 6.5. Since T : Op — C is a C! operator, by property
B2 of Definition 6.1, (and compactness of K), there is ap > 0 small enough
such that for all fo € V?(go) and f1 € V2(g1) with ||f1 — folls < a2 we obtain
that [|T%™(f1) — TM™(fo)|lc < a1/3. Hence, by Lemma 6.5, we get

47100 7 < 47100 <7 + o - o,
+ HTklm(fo) - Tklm(go)Hc
<2927 + /3 < ay . (6.6.16)
By (6.6.15) and (6.6.16), we get

|opram(gr) © iy, 1, (V) = Oram(go) © Riey gy (v)] < 0/3 (6.6.17)
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Using property B2 of Definition 6.1, choose 0 < a3 < a2 small enough such
that for all fi € Ugex V2 (9) with || f1 — folls < as we have || Ry, 1, (v) = Ry, (v) e <
ap/(3M), where v € B with ||[v||g = 1 and M is as in Lemma 6.2. Hence,

‘O—Tklm(go) o Rkhfl (U) — UTklm(go) o Rkl,fo (U)| < Oéo/3 (6.6.18)
By (6.6.13), (6.6.17) and (6.6.18), we obtain that

107, (v) = 05, (V)] < |07, (V) = Oprim(g) © Riy 1, (V)]
+ ‘O-Tkl’"'(gl) © Ry, f, (v) = OTkim(go) © Ry, 1, (U)’
+ ‘JThm(gO) 0 Ry, 1, (v) = oprim(gy) © Riy 1 (v)’
+orrim(g,) © Ry, (v) = O, ()]
<2e927% 4+ 200/3 < o .

Therefore, the map ¥ is uniformly continuous. O

6.7. The main estimates

Besides aiming at proving that the local stable set is a C' manifold, we want to
show that the local hyperbolicity picture holds (in B) near K. In other words
we want to show that if the iterates T (f1) of a point f; € B(g, ) remain in
B(T*™(g),¢) for a long time, that is for k = 0,1,..., N with N large, then f;
has to be very close to a point fy on the stable set W5(g) at the outset, and in
the end TV™(f1) has to be very close to the unstable manifold W(TN™(g)).

To prove these facts, we consider in this section (see Lemma 6.11) an
intermediate time [ for which we can find a good quantitative estimate for the
point on the unstable manifold W*(T"™(g)) that best approximates T (f1).
This estimate is provided by the value of 0, (fi1 — fo), and its most important
consequence is obtained when f; also belongs to the local stable set W2(g). In
this case we prove an inequality of the form |0, (f1 — fo)| < C||f1 — follz" ™ (see
Lemma 6.12). As we shall see in §6.8, this is precisely what we need to show
that the tangent space to the stable set at fy varies continuously with fj.

In this section we will fix m large enough and gy > &1 > €9 small enough
such that lemmas 6.4, 6.5 and 6.7 are satisfied for all € < €9 suficiently small.

LEMMA 6.8. There exist constants Cs,Cg,e > 0 with the following prop-
erty. For all g € K, all fo € VX(g), and all f1 € B(g,¢) such that ||fi1 — folc <
Cs (08)™F, we have

|74 (72) = T*(f0) = DT*(fo) (1 = o), < Co 61) " (6.7.1)
for all 0 < k < ko(g, f1), where

kO(gafl) = min {j € {07 . '7n} : ||Tj(f1) - Tj(g)HB > 50}
and p > 1 is as in property B4 of Definition 6.1.
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Proof. By lemmas 6.2 and 6.7, there are cg,c; > 0 and A > 1 such that
| T+ (1 10) |, < codt amd 6F > e X (6.7.2)
for all 0 < i < k. Define a sequence v; € C as follows: vo = T'(f1) — T'(fo) and
vi =T'(fr) = T'(fo) = DT (T""(f0)) (T""'(f1) = T (o)
for all 0 < 7 < k. Hence,
T'(f1) = T'(fo) = DT'(fo) (fr — fo) = >_ DT (T9 fo) v; . (6.7.3)

j=1
Applying property B4 of Definition 6.1, we get

lviille e [ T°) = T (o)l

- p
<cy | DT (fo) (fr = fo) + > _ DT (T f)vj|| . (6.74)
j:l I
Let us first choose Cg > 0 such that
_ 2P g
1-p 0¢q
for all 0 < 7 < k, and then choose C5 > 0 such that
Cs(60)?
Cg < 6( 0) ’
c2
1—p 1—
Cl 06(51)

Let us prove inductively for ¢ = 1,2,...,k that [jv]|, < Cs(6)”. Using
inequality (6.7.4) and (6.7.6), we get

lorlle < e2 171 = folle < 753 (51) ™" < Co(07) ™
Using the inequalities (6.7.2), (6.7.4), (6.7.5) and (6.7.6), we get
: p
”W—&—lHC <co C5C[)(56 ((58)_1 + Z CO(S;‘CG ((5;1) P
j=1

. P
1
SCZCS ( +7pz 51 ) ?H)—p

<Cs (6741) ", (6.7.7)
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which ends the induction. Thus, using (6.7.2) and (6.7.7) in (6.7.3), we get

k
|7* () = T8 = DT (51 = )| |, < D codtC (6
i=1
ceoCo ) S (88)' 7 < Do (s
<¢oCs (0) ;(z) _m(i) .
This proves the Lemma. O
LEMMA 6.9. Let Cs,Cs,e > 0, p > 1 and ko(g, f1) be as in Lemma 6.8.

There exist C7,Cs > 0 such that for all g € K, all fo € V2(g) and all f1 €
B(g,¢) such that || f1 — folle < Cs (08)™", we have

|7 h0) = T*(9) = ab0, (1 = fo) i
< Cg (60) 7 + eCr27F/m 4 Cg27k/m (7)™ (6.7.8)
for all k < I%O(g, f1)-
Proof. By Lemma 6.7, we get
HDTk(fo) (f1 = fo) = 8605, (f1 — fo) ukHC <c27MmspTh L (6.7.9)
By Lemma 6.5, we obtain that
HT’f(fo) - Tk(g)Hc <o HT’“(fo) - Tk(g)HB < ecoCr27Fm . (6.7.10)

Combining (6.7.1), (6.7.9) and (6.7.10), we get (6.7.8). O

DEFINITION 6.2. Given g € K and p > 1 we denote by | = l(g,p) the
smallest integer such that

(apmy? <2t (6.7.11)
where p > 1 is as in property B4 of Definition 6.1.
LEMMA 6.10. We have the following assertions:

(i) There exist 0 < g < p1 < 1 with the property that pop < 1 =
l(g,p) < p1p for all g € K and all p > 1.
(i) There exists 0 < 171 < 1 such that for all g € K and all fo, f1 €

1 B
B(g,2). if [lfo = fille = Cs (87™)  then (577) ™" < Callfo -
fillghs where Cy depends only upon Cs > 0.
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Proof. Let us prove part (i). Set 1 < A < M as in Lemma 6.2. Then, by
(6.7.11), we have
plog M~ + (pm —Im)plog A < plogd)' < llog2 < Imlog?2 .

Hence we get

plog A log A
for all p such that pm > Ny = max{2m, |2log M~1/log )\|} Thus, taking

p g (141982 g
Mo = plog)\ )

log 2 log M1
(145052 im = B g > B2

we get pop < [ for all such values of p. By (6.7.11) and by Lemma 6.2 there
exists a uniform constant 0 < ¢y < 1 such that ¢p2! < ((5?:: )p and so
log co + llog2 < plog 67 < p(pm — Im) log M .
Letting o = log2/ (plog M) > 0 and 3 = log o/ (plog M) we get
lm(l—i—g) Spm—ﬁﬁpm(l—i—ﬂ)
m 2m
for all p > —2(3/«. Thus, taking
2m+«a
O<py=7——"-<1
= 2(m+ «)
we obtain that lm < pjpm for all such values of p. Since d, varies continuously
with ¢ in the compact set K, we can extend the previous results to all p > 0
for some pp < pfy and pg > pf.
Let us prove part (ii). Take 0 < 71 = (1 — p1)log M/log A < 1. Then, by
Lemma 6.2, we have

(5§T:)71 < CO)\_(p_l)m < co)\_(l_ﬂl)pm
ScMTTPT < w (5((]p+1)m) o

<cillfo— fillZ -
[l

LEMMA 6.11. There exist € > 0 sufficiently small and Cig > 0 such that
the following holds for g € K, fo € V2(g) and f1 € B(g,¢). If p is the largest
integer such that

I = folle < Cs (™)~

then I = 1(g,p) < ko = ko(g, f1) and so t; = t;(g, f1) is well-defined (where [ is
as in Lemma 6.10, ko and t; are as in Lemma 6.4, and C5 > 0 is as in Lemma
6.9). Furthermore,

ty—06"05,(f1 — fo)) < Cyo (0. (6.7.12)
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where p > 1 is as in Lemma 6.9.

Proof. Let ko = l%o(g, f1) be as in Lemma 6.9. Let us prove that [ < kg. By
(iv) in Lemma 6.4, mko < ko. Hence it is enough to prove that min {lm, ];;0} <
mkgy. Let € > 0 be small enough such that lemmas 6.8 and 6.9 are satisfied.

Let us show that Im < ko. By inequality (6.7.8), for all k such that mk < ko
we have

1 (T77(12) = T (9))|

< llowmllc (95™ 167 (Fr = fo)l + o (9Fm) " +2cx27¥) . (6.7.13)

By Lemma 6.2 and Remark 6.2, there is M; > 1 such that M; ' < ||ogmllc <
My and M;' < ||6)]lc < M;. Since by Lemma 6.2, we have (5%:)71 <
MA=P=R)™ e deduce that
-1 —(p—
o167 (f1 — fo) | < (1) " N0slle < MALA-@=Rm — (67.14)

By Lemma 6.10, there is 0 < g1 < 1 such that for all p > 0 and all £ <[ we
have p—k > p—1> (1 — p1)p. Now, we make € > 0 small enough (and so p
large enough) such that the following inequalities are satisfied

€2

2||lokmllc
€2

Allokmllc ’

(co + My) M~ O=rpm
8612_k <

for all k such that km < min{im, l%o}. Therefore, for all such k, combining
(6.7.13) and (6.7.14) we deduce that

. (Tkm(fl) - Tkm(g)) <. (6.7.15)

Since f1 € B(g,¢) and (6.7.15) reverses the inequality (iii) in Lemma 6.4, we
obtain that min{im, 12:0} < mky, and so I < ko.

Now, let us prove (6.7.12). Since [ < ko, by (6.4.5) and (6.4.6) in Lemma
6.4, there is t; = t;(g, f1) such that

1T (f1) — wm (B) |5 < €27 < e (67) 7 . (6.7.16)
Since Im < ko, by lemmas 6.9 and 6.10 we get

|77 (f1) = T (g) — simlle < ez (F27) ™"
where s; = 56m0f0 (f1 — fo). Thus, using (6.7.16), we obtain that

[t (t) — T"™(9) — st lle < c3 (5hm) ™" .
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Since t — Uy, (t) is C? as a map R — C, we have
[wim (s1) = T"™(g) = spwmlc < casi
2
60" 07 (F1 — fo)‘

S (i

:C4

Therefore,
|wim (t1) — wim(s1)|le

< g (t) — sz( ) — siWmlle + lum (1) — T"™(g) — siwmllc

<y (30" s (o)

<es(0) "
because 1 < p < 2. Hence, applying Lemma 6.2, we get

it — s1| < M ugm (t) — i (s1) |l < e7 (557,7:)7[) :
O

LEMMA 6.12. There exist constants 7,€,C > 0 with the following proper-
ties: for all g € K and all fo, f1 € V2(g) we have

105, (f1 = f)l <ClA = follg™ -

Proof. We shall in fact prove a stronger inequality, with the C-norm re-
placing the B-norm. Let € > 0 be so small that lemmas 6.8 to 6.11 are satisfied
(¢ > 0 will be made even smaller in the course of the argument). Let p be
such that C5(50_(p+1)m < |Ifo = fille < C55,"" where C5 > 0 is as in Lemma
6.8. As in Lemma 6.4, set ko = ko(g, f1), t; = tj(g, f1) and v; = v;(g, f1) for
all 0 < j < ko. Also, let [ =(g,p) be as in Lemma 6.10. By Lemma 6.11, we
have [ < kg and so t; is well-defined. Thus, applying lemmas 6.4, 6.5 and 6.10,
we get

|mman—mm<ug\@mtl - ()| + [T - )|

§5002 S EC) (5;7;:) —r .

B

Hence, by Lemma 6.2 we see that || < c¢i (077) . Let us write t; =
-1 .
o (5?2:) for I < j < ko(g, f1)- Recalling that 5§‘Z:1)m > 3 > 2 for all j
and using Lemma 6.10, we have
(67m) ! < g (=mp and (spm) T2 < g (6.7.17)
where 79 = (1 — p1)(p — 1)/2. Hence, making ¢ > 0 smaller if necessary (and

so p large enough), we get

ap < 47E (o)~ gt < gy o (6.7.18)
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By Lemma 6.4, we have ||v;||g < &277 and t;41 = 5§§1)m(tj +0jm(v;)). Since

i Sj(gl)m(t) is C? as a map R — C, we deduce that

.
ti = 3 < ea (1 + s

<o (|t;> +e279)
<o (It +227070 (37m) )
Therefore, we get
|Ozj+1 - Olj| < <a?/3—(p—j+1) + 6(2ﬂ)_(j_l) (5%?)_@_1)) . (6.7.19)

Let us prove that ko(g, fi) > p. To do this, we need to show that [t;| < e;
for all j < p. Let us prove by induction a slightly stonger statement, namely,
that a; <271 (5%1)_(’7_1)/2 < ey forall j =1,...,p. This is certainly satisfied
for j = [, as we can see from (6.7.18). Suppose it is satisfied for a; for all
i=1,...,7. Using (6.7.17) and (6.7.19), and making £ > 0 even smaller (and
thus p large enough), we get

J
lajir — oy < Z [Eop——
i=l
J
< 1 (Z <C25—(p—z’+1) +4CQ€(25)—(i—l)>) ((5}’”?)’(”*1)

1=l

4

L[ Bt dege o ( spm\ —(p—1)/2
§4< + 1)5 p(élpm) g

1

1—p=1  1-(28)
< — (spmy~lem b2 (6.7.20)

o

Since a; < 471 (5;’;”)7(’)71)/2, we deduce that o1 < 21 (5%1)7(’071)/2 < g1
(in particular j + 1 < ko(g, f1)) which ends the induction.

Now set s; = s;(g, fo, f1) = 6)"0,(f1 — fo) for all j. Let us estimate
|tp — sp|. By Lemma 6.11 and the above estimates on «;’s, we have

m m\ —(p—1)/2
Ity — sp| < lay — cul + 60™ [ty — 1] < e (67™) 0TV (6.7.21)
On the other hand, from lemmas 6.4, 6.5 and 6.10, we also know that

[upm (tp) — Uupm (0) |5 < lupm(tp) — TP (f1)llz + 177" (f1) — TP (9)ll 5
<egcy27P

Hence, again by Lemma 6.2, we have |t,| < ec527P. Since p > [, we deduce
from Lemma 6.10 that

Ity < ec527! < ecs (67" (6.7.22)
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But Lemma 6.10, also tells us that there exists 71 > 0 such that (5;’7;”)_1 <
csllfo — f1ll¢- Moreover, (55™) " < el fo — fille by hypothesis. Therefore,
combining these facts with (6.7.21) and (6.7.22), we get at last

107, (f1 — fo)l < (85™) " |s,]
< (‘%)m)il (|tp‘ + |tp - 5p|)
<@ (ees (0F) " +es () 707)
<esllfo— filletmTI2

which finishes the proof. |

6.8. The local stable sets are graphs

We shall prove now that the local stable set of every gg € K in a sufficiently
small neighborhood of g is the graph of a function defined over Kerf, N8B (and
taking values on the one-dimensional subspace Ru, C B). The idea is to show
that every “vertical line” of the form f + Ru, with f close to g cuts the local
stable set W#(go) exactly at one point. All other points in the same vertical
line escape exponentially fast away from W7 (go) under iteration by 7" and the
time kgm each such point f takes to escape is logarithmic on the reciprocal of
its distance to W2(go). Moreover, T%™( f) will be exponentially close (in ko)
to W2(T*™(go))-

PROPOSITION 6.13. There exist 0 < ag, a1, a0 < €, 0 < po < p1 and
My > 1 with the following properties. If go € K and g € K is such that
lg — 9ollB < ao, then for every v € Ker 84 N B with ||v||g < a1, there exists
—ag/2 < 71(g,v) < aa/2 such that

(Z) fT(g,v) =go+v+ T(gav)ugo € W;(g) C ‘/80(9);
(i) fi = go+v+tuy, € VI (g) for all 7(g,v) <t < ag;
(iit) fi = go+v+tug, € V7 (g) for all —as <t < 7(g,v);

(iv) —polog(|t — 7(g,v)|) < ko(g, fr) < —palog(|t — 7(g,v)|), where
ko(g, ¢t) is as in Lemma 6.4.

Proof. Let € > 0 be sufficiently small such that lemmas 6.8 to 6.11 are
satisfied and 0 < &’ < € such that Lemma 6.5 is satisfied. Let M > 0 be as in
Lemma 6.2 and take positive numbers « and as such that

0 <8 M < ag and g + 2aaM < €'/2 . (6.8.1)

Take g € K and f € V.(go) with ||f — gl < €'/2. Let v € Ker 0, N B with
|v]lB < a1, and t € R with 2M||v||p < |t| < 2as. By the second inequality in
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(6.8.1), we have ¢y = f+v+tuy, € B(g,¢) and ||¢: — g||g < € for all |t]| < 2as.
Now, we have the following claim.

Claim. The family ¢; satisfies the following property

{ ¢ € V=r(g), if 2M|v[ls <t < 20z

b eV(g) i —2as<t<-—2M|v|s. (6.8.2)

To prove this claim, let C5 > 0 be as in Lemma 6.8 and let p be such
that Cs07 ™™ < |l¢r — flle < Cs80™. Set ko = kolg,00), tj = t;(g, bt)
and vj; = v;(g,¢¢) for all 0 < j < ko as in Lemma 6.4. Set s; = s;(g, f, ¢1) =
6" 0r(de—f). Set I =1(g,p) as in Lemma 6.10. Using Lemma 6.2 and Remark
6.2, there exist ¢ > 1 and « > 0 sufficiently small such that if ||g — gol|g < o
then

co 1t < 105(de — £)] < colt] (6.8.3)

(noting that ||f — g|lg < €’/2 and making ¢’ > 0 smaller if necessary). Since
tug, = ¢ — f + v and 2M|jv||g < |t|, by Lemma 6.2 there is ¢; > 1 such that

e T <t < e (BB™) T (6.8.4)
Hence, by (6.8.3), we obtain that
— my—1 my —1
e (00T < 10p(de — ) S ea (g™
Thus,
e (P TH < st < e (8P (6.8.5)

Recall that 877" > 3 > 2. By Lemma 6.10 we get (677) " < g=(-wpm,
Let us suppose from now on that 0¢(¢; — f) is positive and so s; > 0. Hence,
by Lemma 6.11, by (6.8.5) and making o and ao smaller if necessary (and so
p large enough), we obtain that

t1>s — [t —si| > sy (1 —c (5%)—(9—1))
> 8 (1 — c4ﬂ_(0_1)(1—u1)pm>
>5/2>0. (6.8.6)

Thus, ¢; is positive and so it has the same sign as 6¢(¢; — f). By induction on
J=1,...,ko(go, ¢:) let us show that t;;; > t; and so that each t; is positive
as well. By Lemma 6.4, ||vj||g < €277 and tj1 = 5§;1)m(tj + 0jm(vj)). Since
t— SJ(-gDm(t) is C? as a map R — C, we obtain that |tj11 — 5](-5:1)mtj <
s (1t + 1oy ). Thus,
tiv1> Bty — cslt|* — cee27?
>t;(B — csltj|) —cee27 . (6.8.7)
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Let 1 > 0 as given by Lemma 6.4 and recall that |t;| < e; and € < 1. Since
3 > 1 and by taking e; > 0 sufficiently small, there is 7/ > 0 with the property
that 8 — cs|tj| > B —cse1 > 1+ 27'. By (6.8.5) and (6.8.6), we get

(8 —esltyl =1 =) > t;7 >t > 7' /2> e (607) 1 . (6.8.8)
By Lemma 6.10, we obtain that
277 <27t < ()P (6.8.9)
Putting together (6.8.7), (6.8.8) and (6.8.9), we deduce that
tigr > (L4705 +er (00™) 71 = cee (7). (6.8.10)

Making g sufficiently small (and so p large enough) and recalling from Lemma
6.10 that [ is a fraction of p, we obtain that ¢z (6)") e (65 ~? > 0. Thus,
by (6.8.10), we get

tiv1 > (1+ 7 (6.8.11)

which implies that ¢;41 has the same sign as t; and that ¢, € V.7 (g). If we
suppose that 0r (¢ — f) is negative, the proof that ¢; is negative and that
tit1 < (1 + 7)t; follows in the same way for all j = [,...,ko(go,#:) and so
o1 € V- (g). Therefore (6.8.2) is satisfied and the claim is proved.

Let us now prove the assertions of the lemma. Take f = gy and consider
the family ¢, = go + v + tugy,. Since 2M||v||p < 2M a1 < ag/4, the claim tell

us that
{ (;StGV?(g), if /4 <t<2ay

qﬁtEV;_(g), if —a2<t§—a2/4.

Thus, by Lemma 6.5, there is at least one value —as/4 < 7(g,v) < /4 such
that ¢ (g.) = go + v+ 7(g,v)uy, € VO(g).

Next, take f = ¢r(y.), and define a new family 1 = ¢4, + tug,. Using
the claim again, this time to the family v (for which v = 0), we obtain that

wter(g), if 0<t<0&2/2
1/)756‘/;_(9), if —a2/2<t<0.

Therefore, 7(g,v) is the only value of t € R between —2as and 2as such
that ¢, € V2(g). Since [¢-(g0) — 9lls < ¢’ we deduce from Lemma 6.5 that
br(g,0) € WE(g)- This proves assertions (i), (i) and (iii).

Let us now prove assertion (iv). Set kg = ko(g,:). Using (6.8.11) and
then (6.8.6), we have

ltr,| > (14 7))k | > (14 7)o s]/2 . (6.8.12)
Combining (6.8.4) and (6.8.5), we see that
51| > e 'o0m (6™ > ea Bt (6.8.13)
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Taking 7”7 = min{1 + 7/, 5} and putting (6.8.13) back into 6.8.12 we get
[t | > eo(r")™t] . (6.8.14)

By Lemma 6.4, there are 0 < ¢; < g such that e < |tg,| < 9. Thus, by
(6.8.14), there is po > 0 such that kg > —puplog(t). By Lemma 6.4, |t | <
co™|t| and so there is p; > po such that kg < —puqlog(t), which proves
assertion (iv). O

6.9. Proof of the local stable manifold theorem

It will follow from Theorem 6.15 in this section that for every g € K the local
stable manifold at g is a C! submanifold varying continuously with g. In the
proof of this theorem will use the following basic fact of calculus.

LEMMA 6.14. Let X,Y be Banach spaces, let xg € X and consider a map
¢ : Bx(zo,e) — Y whose image in Y falls within By ({(x¢),€). Suppose we
have a bounded linear operator L : X — Y such that for all v € X with
|lv||lx <& we have

1€ (0 +v) — &(z0) — L(v)ly < o ([vllx + [1€(z0 +v) — &(zo)ly)™™ (6.9.1)
where cg > 0 and T > 0. If co(2e)” < 1 then & is differentiable at xo and

Proof. Say ||L(v)|ly < al|v||x for some a > 0. Noting that ||v||x + ||{(x0+
v) — &(z0)|ly < 2¢, we have from (6.9.1) that

1€(@o +v) = &(@o)lly < (a+co(26)7) ||v]lx + co(2e)7[|€(w0 + v) — E(wo)lly
whence
a+ co(2e)”
WHUHX = cifjvflx -
Putting this back into the right-hand side of (6.9.1) we get
1€ (@0 +v) = &(x0) — L(v) |y < ea (o] x)FT

and therefore DE(xg) exists and equals L. O

[€(@0 +v) = &(zo)|ly <

For every g € K and a; > 0, let us consider the following sets

By, ={v €ker b, : [jv]ls < en} ,
Fy={g+tu,:teR} ,
Ggo,={9+v+tu,:veE;, and teR}.

THEOREM 6.15. Set 0 < a9 < aq < € and 7(g,v) as in Proposition
6.13. For every go € K and every g € K with ||g — golls < o, the map
& Egy0n — Fy, given by £4(v) = go + 7(g,v)uy, is well-defined and has the
following properties:
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(i) The graph of &, is equal to W2 (g) N Gy, 0,5
(ii) &, is C1 and varies continuously with g.

Proof. Set a1 < ag < € and 0 < pg < pp as in Proposition 6.13. By
Proposition 6.13, the map &, : Ey, o, — Fy, is well-defined and assertion (i) is
satisfied. Let é’g : Egy o, — R be given by é’g(v) = 7(g,v) where 7(g,v) is given
by (i) in Proposition 6.13. To prove assertion (ii), it is enough to show that
ég : Egy0n — R is C! and varies continuously with g. Let vy, v2 € Ey 4, and
set A

J1= g0+ v1 + &(v1)uy, (6.9.2)

and fo = gg + vo + ég(vg)ugo. By Lemma 6.12, we get
67, (02 = 01) + 0, (119,) Gy (v2) = &y (01))

“ N 1+7
<o (Jluz = valls + &(v2) = & (00)])

By Lemma 6.7, and taking € > 0 sufficiently small, we have that 6, (ug,) is
uniformly bounded away from 0. Therefore, by Lemma 6.14, we deduce that

=0y, (f2 = f1)l

&g is differentiable at every vy with derivative given by

Déy(v1) = — (07, (ug,)) "0y, - (6.9.3)

From Lemma 6.7, 6y, varies continuously with f; and so ng(vl) also varies
continuously in a neighborhood of v;. Hence, ég is a C'' map.

Let us check that ég varies continuously with g in the C! sense; more
precisely, that the map K N B(go, ) — C'(Ey,q,,R) given by g ég is
continuous. Taking into account that Dég is given by (6.9.3) and that f;
is given by (6.9.2), and since by Lemma 6.7 the map f; — 6y, is uniformly
continuous (as a map into B*), it suffices to prove that g — ég is continuous
as a map into C(Ey, q,,R).

To do this, let v € Ey, o, be such that g = go + v + ég(v)ugo, take g1 € K
with [|g1 — golls < a0 and let w € Ey, o, be such that g1 = go +w + &, (w)uy,.
Now, we have the following claim.

Claim. There exist ¢; > 0 and 0 < vy < 1 such that

¢ g (w) = &g ()7 < 1y, (2) = &5(2)] < 1y, (w) = &), (6.9.4)
for all z € By q,-

Let us assume this claim for a moment. Its geometric meaning is that
the distances between corresponding points of the graphs of ég and fgl along
the vertical fibers ({z} x Fy,) are uniform. We want to control such distances
in terms of ||g1 — ¢||g. The above claim tell us that it is enough to control
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|égl (w) — ég(w)\. Hence, write
g—g1=v—w+ (ég(v) — &g (w)) ug,
=v—w+ (a+b)uy,

where a = ég(w) - égl (w) and b = ég(v) - ég(w). Since ég is C', we have
|b| < callv —w||g. On the other hand, since B = Ker 0y, @ Ruy, is a splitting
into closed subspaces, there exists a constant c3 > 0 such that

max {|[v — w||s, la + b} < esllg — g1l -
But then
lal <[lg — g1lls + [lv — wlls + [b]
<+t ecs)lg—als -
Hence |€,(w) — égl (w)| < callg — 91llB, and given the claim this proves that

g+ ég is indeed continuous.
R Finally, let us prove the claim. For each z € Ey q,, let h = go + 2z +
&g, (2)ug,. Set

t;c:tk(gugl): tgztk(g?h)7

u;’u‘ = Urkm(g) (t;g)7 u/k/ = Urkm(g) (t/k/) )

as given by Lemma 6.4, and set (also as in that lemma)

ko=Fko(g,91) = min{j : [t}] > 1}
ko =ko(g, h) = min{j : [t]| > e1} . (6.9.5)

Applying Lemma 6.4, we obtain, for all k& < min{kj, k{j }, the estimates

1T (g1) = wiolls <27" 191 — glls
IT*™ (h) — wills <27%||h — g5 - (6.9.6)

Since h € W2(g1), we also have, by Lemma 6.5,
IT*™(h) = T*"(g1) || < ecs27 . (6.9.7)
Combining (6.9.6) and (6.9.7), we get
luf, — uflls < 627" .
Hence, by Lemma 6.2, we get
tk(g, 91) — ti(g, )| < 27", (6.9.8)

for all £ < min{k{, kj}. Using (6.8.11) together with (6.9.8), we deduce that
there exists a uniform constant cg > 0 such that

k‘6 — C8 S kg S k6 + Ccg . (699)
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On the other hand, applying (iv) in Proposition 6.13, we also have
—po log(|7(g1, w) — 7(g, w)|) < ko < —palog(|7(g91,w) — (g, w)|)
(6.9.10)
—polog(|7(g1,2) — 7(g,2)]) < kg < —palog(I7(g1,2) — (g, 2)|) -
Combining (6.9.9) and (6.9.10) and noting that

~

T(glﬂw) = 591 (w) ) T(glvz) = 591(2) 77—(ng) = ég(w) and T(g,Z) = 59(2) )
we get at last

Ko/t w1/ to

65" | () = &) <€ (2) = &) < 0|y (w) = Gy )

for some cg > 1, and this proves the claim with v = po/p1 < 1 and ¢; = ¢9. O

REMARK 6.3. Note that by Proposition 6.13 there exists a uniform 0 <
€ < € such that WZ(g) C Gg,.a, for all go € K with ||go — 9|8 < 0.

7. Smooth holonomies

In the previous section we proved that a robust operator 7' has C! local
stable manifolds through each point of its hyperbolic basic set K, and that such
manifolds form a C° lamination (near each point of K). A natural question
that may be asked at this point is this: how smooth is the holonomy of this
lamination? To answer this question we shall assume that there exists a home-
omorphism H : ©% — K of a finite-type shift space onto K which conjugates
the two-sided full shift o : ©% — K to our robust operator T restricted to K.
Under this topological assumption, and an additional geometric assumption
concerning the unstable manifolds of points in the attractor —both of which
are satisfied by the renormalization operator— we shall prove below that the
holonomies of the local stable laminations are C'*+? for some 6 > 0.

7.1. Smooth holonomies for robust operators

Let K C O4 be a hyperbolic basic set of a C? operator T : O — A which is
topologically conjugated to a two-sided shift of finite type. For g > 0 small
enough and for every g € K let ¢ — u4(t) be a parametrization of the local
unstable manifold W (g). Set

Ky =KNWx(g) and Ky = uy ' (K,) .

Let
Y b b = {(0;) €0¥:0,=0; for allj< k} :
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If H(X. p,) NK, # 0 then denote by A g, (g) the smallest interval in R such
that ug(A__g,(9)) D H(X. g,)NKy. Let Cp(g) be the set of all these intervals

DEFINITION 7.1. We say that the local unstable manifolds W (g) have
geometry bounded by o > 0 if for every g € K, K, has geometry bounded by
a > 0 with respect to the collection (Ci(g))k>0 (in the sense of §3).

Now suppose in addition that the operator T is robust with respect to the
Banach spaces (B,C, D). By Theorem 6.1, the local stable manifolds of 7" in B
form a CY lamination Let F : [—puo, po] — B(g,€) be a C? curve transversal to
the stable lamination. Let K be the set of all values r € [—pug, o] such that

fr=Frye U W)

goEKNW (go)

The holonomy map ¢r : F(Kp) — W2 (g) associates to each f, the point
¢r(fr) such that f. € W2 (¢p(fr)). In local coordinates, the holonomy map
¢F is given by ¢p : Kp — Ky where ¢p(t) = ug 0 ¢ o F~1 and Kp, Ky CR.
The C? curve F : [—puo, io] — B(g,€) is an ordered transversal to the stable
foliation if F is transversal to the stable foliation, ¢r : F(Kp) — W (g)
extends to F([Tﬂg, to]) as an homeomorphism ¢ over its image such that
or(F(Kr)) = ¢r(F(Kr)) NK.

We note that, by Remark 6.2 and by Theorem 6.15, there is €1 < &g
small enough such that a C? transversal to WZ2 (g) in a point f is an ordered
transversal to the stable foliation in a small neighborhood of f.

THEOREM 7.1. Let K C O4 be a hyperbolic basic set of a C? operator
T : 04 — A which is robust with respect to (B,C, D). Suppose that there exits
g0 > 0 such that the local unstable manifolds W (g) of g € K have bounded
geometry. There exists 0 < € < ¢ with the property that for every C? ordered
transversal F : [—puo, o] — B(g,€) to the stable foliation in B, the holonomy
¢r : F(KFr) — W(g) has a C*0 diffeomorphic extension to F([—po, po)) for
some 6 > 0.

EXAMPLE 7.1. As we know from Theorem 2.4, the renormalization oper-
ator T = RN : Oy — A is hyperbolic over K. As we shall see in Theorem
8.1, T is robust with respect to (A", A%, A%) provided s > so with s sufficiently
close to 2 and r > s+1 is not an integer. By Theorem 2.1, there is a two-sided
full shift topologically conjugated to T|K. By lemmas 9.8 and 9.6 respectively
in pages 403 and 405 of Lyubich’s paper [20], there is o > 0 such that the local
unstable manifolds W2 (g) have geometry bounded by «.. Hence the renormal-
ization operator T satisfies the hypotheses of Theorem 7.1.
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In what follows the notation A = O(B) means that ,ul_lB < A< B and
the notation A = B(1+ O(C)) means that B(1 — u2C) < A < B(1+ u2C) for
some constants p; > 1 and pg > 0.

The proof of Theorem 7.1 will be a consequence of the following lemmas.

LEMMA 7.2. For every C? curve F : [—pug,po] — B(g, ) transversal to
the stable foliation and for all r,t € [—po, o] such that r < t, we have

1fe = frll e = O(It = 7])

105, (fe = f)[=0(t = 7)) (7.1.1)
and for all s,r,t € [—po, o] such that s < r < t,
Ife = frlla _ [t—7]
= 1+0O(]t—s
= folle s = E O 5D

15,5 = Flly It 1]
”gfr(fs_fr)HX s — 7|
where X € {B,C,D}.

1+0(t—s) . (7.1.2)

Proof. By Lemma 6.2, there are v1,v2 > 0 such that for all » € Ky,
|uy||» > v1 and |0y, (u,)| > vo. Since F is C2%, we have
fi — fr=0t—ru, 0t — %)
O, (fe = fr)=(t =)0y, (u;) £ Ot —r[) ,
and so (7.1.1) follows. Taking s < r < t, we get

1fe = frlle _ larlly [t = r[(1 4+ Ot = r[))
1fs = Frllx llurllx s = 7[(1 £+ O(s — 7))

s oge-s)).

|s — 7|

The second estimate in (7.1.2) is obtained in similar fashion. O

In what follows, it will be more convenient to denote ¢r(fr) by gy, (r)-
We will also work with a fixed 0 < € < g¢ for which Lemma 6.8 holds.

LeEMMA 7.3. Set | = (gy,(r),p) as in Lemma 6.10. Let F : [~po, ro] —
B(g,e) be a C? curve transversal to the stable foliation. For all p > 0 suffi-
ctently large and all s,r,t € Kp such that

i =0 (@) and Is—r=0 (@)
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we have
HTlm(ft) — Tlm(fr) . —0 <(5fr:7,n)_1>

() - (g )lle =0 (@) )
HTlm(ft) - Tlm(fr)HC _t=r] pmy —(p—1)
[T (fs) — T (f)lle @io(@m) )). (7.1.3)

|s — 7]

Proof. Using Lemma 6.2 and (7.1.1), we get
05,(fe = £l = O (™)) and 105,(f = F)l =0 (™) -
Thus, taking p sufficiently large and using lemmas 6.9 and 6.10 we deduce that
= ok — g =0 (@)
—o () o (@)
=o (@™ (7.1.4)

T (fs) = T"™(fr)||, = O ((6{’77?)71). This proves the first two
inequalities in (7.1.3). Combining (7.1.1) with (7.1.4), we see that

HTlm(ft) _Tlm(fT)HC ‘&mafr fi— fr } :]:O( 5pm >
[T (fs) =T (f)lle — |gtmay, (£, — ) \io( (67™) )

165U - l(txo (@)
=gl (10 (@)
Therefore, by Lemma 7.2, we get

|17 (f) = T (f)lle _ Je 7! ) ~(o-1)
Tl = e (20 ()

and this proves the last inequality in (7.1.3). O

[0 - 75

Similarly, |

LEMMA 7.4. Set | =1(gy,(r),p) as in Lemma 6.10. Let F : [—po, o] —
B(g,¢e) be a C? curve transversal to the stable foliation. For every s € Kr and
s =yrp(s) € Ky, we have

|7 (8) = T (90

—p
‘c =0 <(6%1) ) ’
Furthermore, for all p large enough and all s',7",t' € K, such that s =

vp (s),r = vp ()t = v (1) € Ky,
#=rl=0(@™M™) and |- =0 (@) .
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we have

7 ()~ TG _ [T e) ~ T3 S
)~ TG le = o0 Tl 4 € (66 777))

Proof. By lemmas 6.5 and 6.10, we get
|7 s = T 90|, < Co2 < 0 () )

Thus, applying Lemma 7.3 to the transversal given by the local unstable man-
ifold {g;} we get

c

(=0 (@ ™)
(1o (@)

c (1 +O ((5%)‘@‘1))) .

O

O e [P
1T () = Tl ~ jzim

Proof of Theorem 7.1. Let p > 0 be so large such that lemmas 7.3 and 7.4 are
satisfied and let ¢, s,7,t,s’,r’ be as in Lemma 7.4. First, a claim.

Claim. We have
t—r| =0 ((5gm)—1) and |s—r|=0O (<5gm)—1) .

Assuming this claim for a moment, we finish the proof of Theorem 7.1 as
follows. Set | = 1(g,,p) as in Lemma 6.10. By lemmas 6.10 and 7.2, there is
0 < 71 < 1 such that 6)"" < O (|t —+'|™). Therefore, by lemmas 7.3 and 7.4
we deduce that

=] _ 7" () =T (o)l pry~(=1)
FErR AR e G (GO I
( _

_ HTlm gt,) Tlm(gT,)HC pmy —(p—1)
=T (g0) — T (gl (1o (e ™))

— |t/ _ 7“/| (1 +0 <|t/ _ T’|—(P—1)Tl>) (7.1.5)

BT

Since 4 has bounded geometry and using Theorem 9.5 in page 549 of [26], the
inequalities (7.1.5) imply that the map ¢ r has a C'*? diffeomorphic extension
to R for some 0 < 0 < 1.

-1
Let us now prove the claim. Let p be such that |t —r| = O <(5§m) )
All that we have to show is that

- pl < O(1) (7.1.6)
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Set [ = I(gy,p) as in Lemma 6.10. By lemmas 6.9 and 6.11, and the estimates
in (7.1.1), for k¥ < min{l, !} we see that

|77 (90) = T (90)| = |36™00 (9 = )

+0 ((5};’2)‘” + 2"“)

|7t () = T 1) +0 ((6%?2)” + 2"@) (7.0.7)

o= |96 (= 1)

By Lemma 6.5, we get (for all £ < min {l, i})

|7 () =T 8| = |7 ) = T )
Let us consider separately the case (i) where p < p and the case (ii) where
p = p X
Case (i). Here | <[ and by Lemma 6.10 we get

o\ -1
() <@t <o (@) - (7.1.9)

By Lemma 7.3 applied to the transversal given by the local unstable manifold
{gt}, we have

JEO (z—k) . (7.1.8)

HT””(gt/) —T"(gw)

On the other hand, by (7.1.8), we have

=0 ((5;’;;1)*1) . (7.1.10)

|70 = T = || 7 (9) = T ge)|| £ 0 (27)
But 27 is much smaller than O ((6{’;”)71). Hence by (7.1.10) we get
HTlm(ft) —1'"(f,)|, =0 ((5{’;1)‘1) . (7.1.11)

Thus, by (7.1.7) and (7.1.9), we deduce that

_ ||im _ lm pm P -1
=" hy = T ) JEYe ((%) ) +0(27)
—o (@) xo ((553;?)_”) .

Since (617" )_1 is much larger than (5;37;" ) _p, it follows that

—o (@)

5570, 1)

046y (1~ 1)

This shows that
my—1
05, = f)l =0 (6™ ) -

Therefore, by Lemma 7.2, we get || f; — frllo = O ((5gm)_1), which in turn
implies (7.1.6).



GLOBAL HYPERBOLICITY OF RENORMALIZATION 66

Case (ii). Here [ <1, and Lemma 6.10 tells us that

(5?2)71 = (55;”)71 2'<0 <<5f7:) p) : (7.1.12)

Applying Lemma 7.3, we get
Lo\ -1
pm
0 ((%) ) . (7.1.13)

On the other hand, by (7.1.12) and (7.1.7), we have
Jro () ")

o\ ~ o\ -1
But ((552”) ? is much smaller than ((ﬁjm) . Hence, by (7.1.13), we get

|7 =1 s,

|7 (g =)

=0 (|d o5, (F~ £)

|75 =7 1)

=0 (|dtmor, (5= 1)

) . (7.1.14)

J£0 (2—[) .

But 27/ < O ((5;’;”) _p). Hence, again by (7.1.13), we deduce that

By (7.1.8), we have also

HTlm Tlm(

0= HT[m(gtf) ~T"(g,)

|75 =T (1)

N i pim
C—O(HT (9¢) =T (gr)
By Lemma 7.2 and (7.1.7), we have

1 R —p
pm pm
0 ((%) ) +0 <(5Zm) > .
Therefore, using (7.1.13) and (7.1.15) we obtain that
-1

— pm
=0 ((%) ) .

But then, using (7.1.14) and (7.1.15) once more, we deduce that
0. (fe= fl =0 (&™) -

Therefore, by Lemma 7.2, we get ||fy — frl]lp = O ((557”)71) which in turn
implies (7.1.6). O

(C) . (7.1.15)

“Tim(gt’) ~ T (g,.) 0=

|7 (ge) = T (g10)
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8. The renormalization operator is robust

From the very beginning, our main goal is to show that the renormal-
ization operator is “hyperbolic” in U", provided r is sufficiently large. More
precisely, we want to establish Theorem 2.5 and Corollary 2.6. We have already
at our disposal an abstract theorem (Theorem 6.1) showing that any robust
operator is indeed “hyperbolic”. Hence, our work has been essentially reduced
to showing that the renormalization operator 7T, or any one of its powers, is
robust (see Theorem 8.1 below). The proof of Theorem 2.5and the proof of
Corollary 2.6 will be given in §8.6.

We emphasize the important role played by the geometric estimates of §5.2
in the verification of properties B5 and B6 of a robust operator (Definition
6.1) for an iterate of the renormalization operator (see §8.4). Properties B2,
B3, and B4 are relatively straightforward consequences of the properties of
the composition operator studied in §8.1 and are proved in §8.2 and §8.3 .

In this section, we shall prove the following result (see §8.5).

THEOREM 8.1. Let T : O — A be the renormalization operator given by
Theorem 2.4. If s > so with so < 2 sufficiently close to 2 and r > s+ 1 not an
integer, then T is a robust operator with respect to (A”, A%, AD).

We shall present in the sequel complete proofs of all the estimates that are
necessary for establishing the above result, carefully checking all the properties
of robustness along the way.

In our estimates we will often concern ourselves with a power T™ of T.
For each m > 1, let Oy, C O be the (open) set of those f’s which are mN
times renormalizable. Then T™ is well-defined in O,,, and we can write

Tm(f):)\lf‘prAfa

where p = p(f,mN), Ay = fP(0), and Ay : x — Ayx is the linear scaling. Note
that p (and hence Ay and Ay) depends on m, but if m is held fixed then p
is a locally constant function of f € Q,,. To keep track of the dependence of
constants on m, we shall denote by K those constants that may depend on m,
and by c¢ those that are independent of m.

Likewise, we define O], to be an open set in U" containing K, all of whose
elements are mN times renormalizable, so that 7™ = R™V : Q7 — U" is
well-defined.

8.1. A closer look at composition

From a differentiable viewpoint, composition is a notoriously ill-behaved op-
eration. Such bad behavior is the source of most technical difficulties arising
in this work. Fortunately, some positive results lie at hand. For example, it
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is well-known that if r is a positive integer then composition, viewed as an
operator from C” x C"~1 into C"~!, is a C' map (see [11]). We shall need
not only this result but also a less well-known generalization of it for Holder
spaces: if r—1 > s > 1 are real numbers then composition, as an operator from
C" x C?® into C%, is a C' map (we can say a little bit more — see Proposition
8.7 below). For related results on the smoothness of composition, see [19].

Before we can prove this fact, some auxiliary results are in order. In what
follows, our definition of C” norm of ¢ € C"(I) is this: for r = k 4+ a with
ke Nand 0 <a <1 we write

leller = max{llelo, I¢'llos- - - ™ llos ™ lla} -

For r = k + Lip we define ||¢|c- as above with a = 1. This norm is
equivalent to the one introduced earlier in 5.1, and has the advantage that
leller = max{||¢llco, ||¢||cr-1} whenever » > 1. This allows us to prove
certain estimates by induction on k, which will be very useful later.

LEMMA 8.2. Given 0 < a < 1 and 0 < € < 1 — a, let w € C*T(I),
P, € Cl(I,I) and H@b—(pHcl <1.

(i) If € > 0 then there exists K = K (||¢||cx) > 0 such that

[wop —wodlg. < Kllwllgarellp —llen -

(ii) If € = 0 then there exist ¢ > 0 and K = K (||¢]|c1) > 0 such
that

oo 19| G
+K|w|celle — |2

lwe e —woylos <cflw]

Proof. Let us start proving part (i) of this lemma. By the mean value
theorem, we obtain

[wop—wodlco < [lwllcare [l — Pl (8.1.1)
If [y — 2| < [l — Y[ c- then
w o p(y) —wo (@) < collwllcarlpllE e — Yloaly — =

wop(y) — wo ()| < cif|wllcore [DIE e — Dllealy — 2| .

It |y —z[ > [l = Pllc, by (8.1.1) then

[wo —wop|co < eallwlgaselle — Ylloaly — |,
which ends the proof of part (i) of this lemma.

Let us prove part (ii) of this lemma. By the mean value theorem, we
obtain

[wop—wodlce < |lwllealle — |Eo. (8.1.2)
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Furthermore,
wo e(y) —wop(@) < csllwllesll¢'|Eoly — x|
wo(y) —worp(x)| < callwllee ¥ |Eo ly — 2|,
and so
lwo g —wo pllor < esllwle (I’ — ¥l + [ low)* (8.1.3)
which ends the proof of part (ii) of this lemma. O

We shall need also some estimates on polynomial operators coming from
simple algebraic considerations. For every polynomial P of degree d in n vari-
ables z1,xa, ..., z, over R, define v(P) as the sum of the absolute values of the
coefficients of P. This is a well-known valuation in the ring Rlz1, xo, ..., zy],
but all that really matters to us is that v(P+Q) < v(P)+v(Q) (sub-additivity),
and that v(9,, P) < dv(P).

LEMMA 8.3. Let P € Rz, z2,...,2,] be a polynomial of degree d, and
let ¢1,¢2,...,¢n € C°(I). Then, we have

1P (61, 2, .-, Sn)llce < v(P)2I MY,

where M = max{1, ||é1|lc=, [|o2llc=, - - - [|Pnllos}. Moreover, if 1,1, ... ¢y €
C3(I) also satisfy ||villcs < M for all 1 <i <mn, then

HP<¢17¢27 .. 7¢n) - P(w17’(/}27 tee 7¢TL)HCS S dV<P)25de_1 Z H¢l - wiHCS .

i=1

Proof. The first inequality is immediate from the definition of v(P). To
prove the second, note that P : (C*(I))" — C*(I) is a C! map (norm of
the sum in the domain of P). Using the mean value inequality and the first
inequality, we see that

”P(¢17¢27 v 7¢7L) - P(¢17¢27 cee ﬂbn)HC-‘;

<2° sup max ||y, P(té1+ (1= )1, .., tdn + (1= )¢n)llos Y llds — vl o

KA
0<t<1 —

<2(dv(P)2 VM) Y i — dille-
=1

which is the desired result. O

We can now use the estimate given in the above lemmas to prove the
following general proposition. Let 7, s > 1 be real numbers and for each w €
C"(I), let

Oy : C(1,1) — C*°(1)

be the operator given by ©,,(¢) = w o ¢.
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ProproSITION 8.4. Let r,s > 1 be real numbers both non-integer, and let
we C(I), g, € C*(I,1) with || — ¢ <1.

(i) If r > s then there exists K = K (||¢||cs) > 0 such that
lwop—woilo: < Klwle-llp — e
where € = min{l — {s},r — s} ({s} denotes the fractional part of
s). In particular, ©, : C*(1,I) — C*(I) is e-Hdlder continuous.
(i1) If r = s there exists ¢ > 0 and K = K (||¢|lc:) > 0 such that
lwop—wotlcr < clwlerllvllce + Kllwler e = ¥lIE-

where a = {s} is the fractional part of s.

Part (ii) of the above proposition shows one of the main difficulties in this
theory which is the fact that for w € C*(I) the operator ©,, : C*(I,I) — C*(I)
is not even CV.

Proof. Let us write s = k + «, with &k an integer and 0 < o = {s} < 1,
and let
A=wop—-—wo1).

Since w, p,7 € C! and € < 1 — o, applying Lemma 8.2 we get

[Alloe < Killwllerlle = ¢llen

By Faa-di-Bruno’s Formula (see [13], p.42), for all 1 <[ < k we can write
AU =Bi(p) - B (¥)

where
l

Bi(¢) =) wW oo Py(d.¢",....¢"7),
j=1
each Pj; being a (universal, homogeneous) polynomial of degree j in I — j
variables (with integer coefficients explicitly computable from [ and j, see [13],
p.42). We only need the expression of P, ; for j = [; it is easy to check that
P(¢) = (gb’)l . Then, we can decompose AY) = €} + D;, where

C = ]Zl; w? o ©- (Pl,j (ﬁpl, o 7SO(lfj)) — P <w/’ W 71/’([7]')))

D= zl: (w(j) 0p—wdo w) Py (W’ W 71/,(1—]')) .

j=1

By Lemma 8.3 applied to each P, ;, we have

HPz,j (¢ ) = B (00" D) H <Ko —lles -

C
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Therefore, for all 1 <1 < k we get
1Cllee < Ksllwlleslle — e

Let us now rewrite D; = E; + F; where,
-1

E=Y%" (w@) op—wdo w) Py (W’ o W(H’))

j=1
= (wm op—w®o w) (@)

In bounding the first summation in Fj, we apply Lemma 8.2. Since w9, p, Y
is at least C'' we get

Hw(j) 0w — w? o cha < K4 Hw(j)HC1 o — wHIC_la

for all with 1 < j <[ — 1. From this and Lemma 8.3, for all 1 <[ < k we
obtain that
I1Billce < Ksllwlle:lo = ¢llg- -
Our task has been reduced to bounding the C“ norm of F;. Here, we will do
separately the proof of part (i) and part (ii) of this Proposition.
Let us prove part (i) first. Here, for all 1 <[ < k we have that ¢, 1 are at
least C'! and that w(® is at least C*¢, and so by Lemma 8.2 we get

Hw) op—who z/;HCW < Kgllw]|orraselle — )| -
Thus, for all 1 < < k we obtain
[ Fillce < Kr||w]

which ends the proof of part (i).
Let us now prove part (ii). We know that w", p,¢ € C* for all 1 <1 <
k — 1, and so by Lemma 8.2 we have

o — Y|

€
cr Cs

[0 oo —uw®oy| < Kslwlonale —ple: -
Thus, for all 1 <[ < k — 1 we obtain

[Fillce < Kollwllolle — ¢lIE. -

Therefore, we just have to bound ||Fj|/c~. Here, w*) is only C®. From the
inequalities (8.1.2) and (8.1.3) in the proof of Lemma 8.2, we get

[0® 0 —w® oy  <erlwlerle - v

[ o= o] <caltwtior (4 + I = )" -
and so
1Fxllow < eslldl|Ensallwllor llo — 1
Feallgles fwlles (191l + ll¢" = ¥'llea)”
which ends the proof of part (ii). O
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LEMMA 8.5. Given 0 < a <1 and 0 < e < 1—a, let f € Cate(),
g € CYHI,I) and v € CY(I) with ||v||c: <1 and g +v € CY(I,I). There exists
K =K (||gl]lcr) > 0 such that
[folg+v)=fog—fog v|e. < Klfllcrolvlct.

In particular, there exists K = K (||g||c1) > 0 such that
[fo(g+v) = Foglloe < Klfllcrarellvllcr -

Proof. Note that we have the following identity:

1
(Folg+v)—fog—fog v)(x)=v(x) /0 [ (g(a) + to(x)) — (g(x))] dt .

Applying Lemma 8.2 with w = f/, ¢ = g + tv and ¢ = g, we can bound
the C* norm of the integrand by Kt||f'||ce+c||v||Gi. This proves the first
stated estimate in slightly stronger form. The second estimate is an immediate
consequence of the first. O

PROPOSITION 8.6. Let 2 < s+ 1 < r be real numbers, and let f € C"(I),
g € C5(1,1). There exists K = K (||g]lc:) > 0 such that, for all v € C*(I)
with [[v]|cs <1 and g+v € C°(1,1), we have

|folg+v)=fog—fog vle <Klflellvlct (8.1.4)

where § = min{1—{s},r—s—1}. In particular, (a) the operator ©; : C*(I1,I) —
C*(I) is Ct and its derivative is given by DOs(g)v = f' o g-v, and (b) there
exists K = K (||g||c) > 0 such that for all v as above we have

[folg+v)—foglles < Klfllerllvlle

(8.1.5)

Proof. In this proof we use K7, Ks,... to denote constants that depend
only on ||g|/cs. Consider the remainder term

F=fo(gtv)—fog—fogv,
as well as its derivative IV = A + B, where
A=(f'o(g+v)—fog—f'og-v)-d
B=(f'o(g+v)—fog) v
We want to show that

1]l < Kall Flle-llvllct?

The proof will be by induction on the integral part of s. Note however that the
mean value theorem already gives us ||F||co < Kal|f”||co||v||%e independently
of s.
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First we deal with the base of induction, namely when 1 < s < 2, say
s =14 a. By Lemma 8.5, we have
1Al ge < K[l lgrraso (0lle)
The same Lemma 8.5 yields
1Bl < Kallflloreass ([[0llcrse)

This establishes the base of induction.
Now suppose that our lemma holds for s > 1. We will prove from this
that it holds for s + 1. To do this, it suffices to show that

1]l < Kl fllerlloll gt - (8.1.6)

The proof is more of the same. By the induction hypothesis applied to f/, we
have

0
1Allgs < Koll £l (olles) ™ (8.1.7)
The same fact also gives
1Bllg. < Kol fle (lellcs)? (5.1.8)
Putting (8.1.7) and (8.1.8) together we get (8.1.6), and so the induction is
complete. |

PROPOSITION 8.7. Let 2 < s+ 1 < r be real numbers. The composition
operator © : CT(I) x C°(I,I) — C*(I) given by O(f,g) = fog is C'? and
its derivative is given by DO(f, g)(u,v) =uog+ f og-v. In particular, there
exists K = K (| fllor. lgllc-) > O such that, for all Jullcr < 1 and Ju]e- < 1
with g +v € C5(I, 1), we have

where § = min{l — {s},r — s —1}.

o+ < K(|luller+|lolle:)™*? , (8.1.9)

Proof. In this proof, we denote by K1, Ks, ... positive constants depending
only on ||g|/c=. Let us take v € C"(I) and v € C*(I) such that ||ul/c- <1 and
|v||c= < 1, respectively. We have

F=0O(f+u,g+v)-O(f.g) —uog—flog-v
=fo(g+v)—fog—fog-vt+uo(g+v)—uog.
Using Proposition 8.6, we see that
[folg+v)—fog—fog-v|o < Kilfller(lvc:) ™.

The same Proposition 8.6 with u replacing f yields

)1+9

o- <l o g-vllcs + Kallullor(||v]l -
< Kslluller ol -

|uo(g+wv)—uog|
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Therefore we get
IFllc: < Kill flle-(vlle)'™? + Ksllullerlvlle-
which proves that © is C! and that (8.1.9) is satisfied. Now, we have that
DO(f + ¢,9+ V) (u,v) — DO(f,g)(u,v) = A+ B+ C
where
A=uo(9+¢)—uoyg
B=(f'o(g+)—fog) v
C=¢o(g+y) v.
By Proposition 8.4, we obtain that
1Alles < Kallullor (191
IBllcs < Ksll flle-[911&- - vl e

Letting k£ be the integer part of s and ¢ = g + %, and using Faa-di-Bruno’s
Formula, we have

cr

k
k . _
(¢ 00) W =3¢tV 0. B¢, ..., 0" )
j=1
each P ; being a (universal, homogeneous) polynomial of degree j in k — j
variables. Hence, using Lemma 8.3, we get that |Cllc: = Kg||Af|lcr||v]cs.
Thus, © is a C'*? operator. O

COROLLARY 8.8. Let r,s > 0 be real numbers withr —1 > s > 1 and for
each positive integer m, let Qu, : C"(I,I) — C*(1,I) be the operator given by

(i) Let 0 <t <7 andlet U : CY(I, 1) — C*(I,I) be a C'* operator
for some 0 < 6 < 1. Then the operator Uy, : C"(I1,I) — C*(1,1I)
given by Up(f) = QmoU(f) is C1H for some 0 < 0 = 0'(0,r,s) <
1.

(i3) In particular, the operator Q, : C"(I,1) — C*(I,I) is C1+%"
for some0 < 0" =0"(r,s) < 1 and there exists K = K (m, || f|lc-) >
0 such that

1Qu(f +u) = Qu(f) = DQm(f)ullc: < K|lu|

Proof. First note that Up,4+1(f) = O(f,Un(f)). The operator U; arises
as the composition of the operator C"(I,I) — C"(I,I) x C*(I,I) given by
f— (f,U(f)), which is C1*? because U is C1*% (and C" (I, I) embeds in C?),
with the composition operator © : C"(I,I) x C*(1,I) — C*(1,I), which is

Lt (8.1.10)
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C'*9" for some 0 < 0" = 6"(r,s) < 1 by Proposition 8.7. The desired result
for part (i) then follows by induction. Part (ii) is a corollary of part (i), and
by a computation (8.1.10) follows from (8.1.9). O

PROPOSITION 8.9. Letr,s,t be real numbers with 2 < s+1 <r andt > 0.
Let U : CYI,I) — C*(I,I) be a C* operator. Then for each ¢ € C"(I) and
each ¢ € C*'(I,1) there exists a function oy : RT — R with oy (h)/h — 0
as h — 0, varying continuously with v, such that for all v € C'(I) with
Y +v e ClI,I) we have

[poU®W +v) = ¢oUW) — ¢ o U) - DU < oy([vfler) . (8.1.11)

Proof. As before, we denote by K71, Ko, ... positive constants that depend
only on |[¢||ct. We have that

$oU(+v) —poUW) — ¢ oUW) DU = A+ B
where
A=¢oU(p+v) —¢poU(h) = ¢' o U(¥) - (U +v) = U(¥))
B=¢'oU®¥) (U +v)—-U(y)—DU¥)v) .

Since U is C1, there exists a continuous function vy : RT™ — RT with v, (h)/h —
0 as h — 0, varying continuously with v, such that

1T +v) =U(¥) = DU()ollge < wvy([lvflcr) -

Hence, applying Proposition 8.6 with f = ¢ and g = U(¢) and v replaced by
U +v)—U(W), we get

[4lle: < Kallglle (IUG +v) - U)o
<Ksllollc- (1D o]E?)

s)1+0

and

1Bllcs < Kallpllorvy(lv]lc:)

where K3 = K3 (|[U(W)]|cs, [|DU ()|, vy) and K4 = Ko (|JU(%)||cs). There-
fore,

1A+ Bllc: < Ksllglle-llvllgf” + Kallglle-vp(lvlle) -
This completes the proof. |

COROLLARY 8.10. Let r,s,t be real numbers with r —1 > s > 1 and
0<t<r, andlet U:C*I,I) — C5(I,I) be a C' operator. For each positive
integer n the operator Vi, : C"(I,1) — C5(I) given by Vi, (f) = (f™) o U(f) is
differentiable at every g € C™TY(1,1) C C"(I,I), and as map from C™(I,1)
into L(C"(I),C*(I)), the derivative operator g — DV, (g) is continuous.
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Proof. First note that by the chain rule,
n—1 n—1
V) =110 (£ 0u(n) =TT £ 0 Us(h) -
j=0 j=0

This reduces the problem to the case n = 1. We claim that the linear operator
L(v) =v'oU(g) +¢" o U(g) - DU(g)v
is the derivative of V; at g € C"T(I,I). Indeed, we have
Vilg +v) = Vilg) - L(v) = A+ B,
where
A=g'oU(g+v)—g'oU(g) —g" o Ul(g)  DU(g)v
B=v0oU(g+v)—2v0oU(g) .
By Proposition 8.9 applied to ¢ = ¢’ and ¢ = g, there exists K1 = K1 (||g]|cr+1)

such that

[Allee < Kioy(([vller)
where oy, : Rt — R7 is a continuous function varying continuously with ¢ such
that oy (h)/h — 0 as h — 0. On the other hand, by part (%) of Proposition 8.4
and since U is C', we have

[Bllc: < Kz2||vl[c-[[U(g +v) = U(g)lle-

<Kz (|[v]ler) ™
where 0 < € = min{l — {s},r — s} < 1, Ky = Ko(|U(g9)|lc:) and K3 =
K3(|U(9)llcs, 1DU(g)|], o (||v]|cr)). Combining these inequalities, we deduce

that V7 is differentiable at g and DVi(g) = L as claimed. It is clear from the
expression defining it that L varies continuously with g € C"*1(I,1). O

8.2. Checking properties B2 and B3

We now proceed to verify that the operator T satisfies properties B2 and B3 of
robustness. They will follow respectively from lemmas 8.12 and 8.13. First it is
necessary to analyze the behavior of the linear scaling used in such operators.
Let us fix a positive integer p and for each f € C"(I,I) let Ay be the linear
map = — Ayx, where Ay = fP(0).

LEMMA 8.11. For r > 2, the maps A : C"(I,I) — L(R,R) given by
A(f) = Ap and X : C"(I,I) — R given by A(f) = As are both C1*0 for some
0<60=0(r,s) <1. In particular, there is K = K(p, ||f|lcr) > 0 such that for
allv e C™(I) with ||v||cr <1 and f+v € C"(I,1), we have

NS +0) = A(f) = DA )ellor < Klolig:” (8:2.1)

The above inequality also holds replacing A by A.
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Proof. Choosing 1 < s < r — 1, we see that A = F o ), where @, :
C"(I,I) — C*(1,1) is the operator Q,(f) = fP, which is C11? for some 0 <
0 =0(r,s) <1,and E : C°(I,I) — R is the evaluation map E(g) = ¢(0),
which is linear. Therefore, by Corollary 8.8, A is C'*% and (8.2.1) follows from
(8.1.10) and the linearity of E. The proof for A is entirely analogous. dJ

We will also need to use the operators U, : C"(I,I) — C*(I) given by
Un(f) = f" oAy for alln > 0.

Property B2 for the operator T is a consequence of the following lemma
(the first assertion in B2 is actually a consequence of Lemma 8.14 below).

LEMMA 8.12. For 2 < s+ 1 < r and for each n > 0, the operator U, :
Cr(I,I) — C*(I) is C**Y for some 0 < 6 = O(r,s) < 1. In particular, T™ :

Qr, — U is also a C'*9 operator.

Proof. This follows at once from Lemma 8.11 and Corollary 8.8 applied
to U = A. O

The following lemma is all we need to verify property B3 for the operator
T. In this case g is a map in the limit set K of 7", hence analytic, and v = u,
is a tangent vector to the unstable manifold of g, which is analytic as well.

LEMMA 8.13. For 2 < s+ 1 < r, the map O], — U® given by f —
DT™(f)v is differentiable at f = g € K. Furthermore, for every m > 1
there exist Cp, > 1 and vy, > 0 such that for each g € K and f € QF, with
|f —gllcr < vm and all v € A" with ||v||c- = 1 we have

|DT™ (f)o — DT™(g)ellc- < Cunllf — glle- - (8.2.2)

Proof. Let E: C*(I,I) — R be the evaluation map E(g) = ¢g(0), which is
linear. Recall that the derivative of T™ is given by the expression

p—1

DT (f)e = A1f2<fj>’ o Up i(f) 00Uy s 1(f) (3.2.3)
=0
p—1
+jf[id- @Y — TS E((F) 0 Up 5(5) - E (v Up s 1(f))

j=0

where Ay = F o fP and id : R — R is the identity map. Each term of the
first summation in (8.2.3) is differentiable at f = g. To see this apply Lemma
8.12 and Corollary 8.10 to each of the operators f +— (f7) o U,—;(f) as well as
Proposition 8.6 to each of the operators f +— v o Up_;(f). On the other hand,
each term of the second summation in (8.2.3) equals the corresponding term
in the first summation post-composed with the evaluation map E (which is
linear), and is therefore differentiable at f = g. The analysis of the expression
in square brackets in (8.2.3) is similar. By Lemma 8.11 and Corollary 8.10, the
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operator f — T™(f) = (fP) o Ay is differentiable at f = g, and the operator
f = T™(f) = Ag- fP oAy is also differentiable at f = g by Lemma 8.11
and Corollary 8.8. From this fact and compactness of K the inequality (8.2.2)
follows. |

8.3. Checking property B4

The fifth property is verified in Lemma 8.16 below. First we will need to prove
the following two lemmas about the operators U; : C*+1+e(I, I) — C*(I) with
t > 1. Recall that U;(f) = fio Ay.

LEMMA 8.14. For every f € C***(I 1) and all v € C*(I) with small
norm and such that f +v € C'(I,I), we have

[Ui(f +v) = Ui(f)ller < Kllv]ler
for all 0 <i < p where K = K (p, || f|lct+1+<).

Proof. Note that
Uit1(f +v) = Uisa(f) = fo Ui(f +v) — fo Ui(f) + vo Ui(f +v)
By Proposition 8.6, there is K7 = K (p, || f||¢t+1+<) such that
Uit (f +v) = Uira(f)ller < KallUi(f +v) = Us(f)ller + lv o Us(f + v)llc:

The required estimate now follows by induction, because Uy is C!. O

LEMMA 8.15. For every f € CYE(I 1) and all v € CHIFE(D) with
small norm and such that f +v € CTT(I 1), we have
Ui (f + ) = Ui(f) = DUi(f)vlloe < Kol
for all 0 <i <p, for some 0 < =06(t,e) <1 and K = K(p, | flc:) > 0.

Proof. In this proof we denote by Ki, Ko,... the positive constants de-
pending only on m and ||U;(f)||ct+1+c. Again we use induction; the case i =0
follows from the differentiability of the scaling f — A; and inequality (8.2.1).
We have

Uit1(f +v) = Uita(f) = DU (flv=A+ B+ C

where
A=foUf+v) = foU(f) = f oUf) (Ui(f +v) = Ui(f))
B=f"oU(f) (Ui(f +v) = Us(f) — DU;(f)v)
C=volU(f+wv)—volUlf) .
By Proposition 8.6, we have
IAllce < Kal|Ui(f +v) = Ui(f) e
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Using Lemma 8.14, we get
[Alleer < Kallvllgte -

On the other hand, since v is C*T1+¢/2 we know again from Proposition 8.6
that

[Clle: < Ksllvllcenee Us(f +v) = Us(f)llor < Kaflv]

Cr+l+e/2 ||’UHCt .

Since v has bounded C**!'*¢ norm, by an interpolation of norms, we have
|v]| gesrere < K5H1)Hg$,, for some #; > 0. Therefore, taking = min{e, 61} we
get

ICller < Kool ot

This allows the induction as desired. O

Property B4 for the operator T is a direct consequence of the following
lemma.

LEMMA 8.16. For every f € Q*T1F¢ and all v € A5t with small norm
such that f +v € QT we have

IT(f +v) =T(f) = DT(f)(v)]|

for some 0 <7 =7(s,€) <1 and K(p, ||f|cs+1+) > 0.

o < K|llgt™,

Proof. In this proof we denote by K, Ko,... the positive constants de-
pending only on m and ||U;(f)||c-. Start observing that since T'(f) = )\;1 .
Up(f), we have

T(f+v)—T(f) - DT(f)lv=A+B+C
where

A=271 (Up(f +0) = Up(f) = DU(f)v)

B= (A;iv A7 - DA,il(v)) Up(f +)

C=DA;'(v) - (Up(f +v) = Up(f)) -
Applying Lemma 8.15 with ¢t = s we get

1+6
IAllc: = Killollct™

for some 0 < 0; = 61(s,€) < 1. By Lemma 8.11 there is 0 < 63 = {s} < 1 such
that
1Bllcs < Kalloll&t® -

By Lemma 8.14, we have ||Up(f +v) — Up(f)[lc- < Ksl|v[|c- and so

ICller < Kallol% -

Therefore, it is enough to take 7 = min{6;,602}. O
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8.4. Checking properties B5 and B6

We now move on to the task of proving that the operator T = R"™ of Theorem
2.4 satisfies properties B5 and B6 in the definition of robustness. Unlike the
previous ones, the verification of these (last) two properties depends upon the
geometry of the post-critical sets of maps near in A to the limit set K of T'.
The estimates performed here are the most delicate, and involve the results of
§5.2.

Recall that T™ is well-defined on an open set Q,, in the Banach space
A = Agq, (see §3), which contains K. We shall denote the renormalization
intervals AO,mNa Al,mN: ce ey Ap,mN simply by Al = Ai,mN (thiS shortened
notation should cause no harm, because N is fixed since Theorem 2.4, and m
will be fixed in the particular estimates involving these intervals).

We can write the derivative of 7™ in the following form

p—1
DT™(f)v = ZB (f)-D(f)ZEij(f)'Eocj(f)
where E is the evaluatmn map and
A(f) =7,
Bi(£)= () o Upi(f) .
Cj(f)zvo p—j— 1(f)7
D(f)=id- (f7) o Uo(f) = Ay - Up(f) -

To carry out our estimates for 7™, we shall use the operators U; : f —
fioAs (i > 0). Note that Up(f) = Ay, hence Up is C! in whichever space
C"(I,I) we work in, because the scaling f — Ay is C' by Lemma 8.11.

First we need some estimates for U;. It is clear that |U;(f)||co < 1 always,
but more is true.

LEMMA 8.17. There exists C > 0 with the following property. For every
m > 0, there exists an open neigbourhood O, C O, of K such that for all
f € O, we have
Aol
|Ap—j’ 7
for all 0 < j < p—1. Furthermore, |U;(f)||co < C|A;|, for all 0 < i < p.

1B (Hllee < C

Proof. Use bounded distortion and the real bounds (see §5.2). O

LEMMA 8.18. For all f € O,, and all v € A" with small norm, we have
[Ui(f +v) = Ui(f)ller < Kllvller
for all 0 <i < p, where K = K(m) > 0.
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Proof. This lemma follows from Lemma 8.14. O

Next, we show an essential result to prove that the renormalization oper-
ator satisfies properties B5 and B6. Here, we use again in a crucial way the
geometric properties of the postcritical set of f € Q,, proved in §5.

PROPOSITION 8.19. (i) For every t > 2 which is not an integer there exist
0 <p<1andC >0 with the following property. For every g € K and for
every m > 0, there is an n > 0 such that for all f € O, with |f — g|la <7
and for all w € A with |w||ce < n we have

p—1
A DY Bi(h) (Ci(f +w) = Ci(H)]| < Cu™|vllor - (8.4.1)
J=0 o
(ii) For every u > 1 close to one, there is s < 2 close to two and C > 0 with
the following property: for every g € K and for every m, there is an n > 0
such that for all f € Qy, with ||f —glla <n and for all w € A with ||w|c: <n
we have that inequality (8.4.1) above is also satisfied.

Proof. Below, the positive constants ¢, ca, ... depend only on ¢ (and the
real bounds), while the positive constants Ky, K1, Ko, ... may depend also on
m.

Let k£ and 0 < a < 1 be respectively the integer and the fractional part of
t (when t = k + Lip take o = 1). We start observing that for each j we have

1B (f) (Ci(f +w) = Ci(FDlle < NBi(NlleellC5(f +w) = Ci(Hllcr

+ Kol B (Nl |C (f +w) = Ci(f)llex - (8.4.2)

Note that in the right-hand side of (8.4.2) only the second term carries a
constant Ky. By Lemma 8.17, there is ¢; > 0 such that for every integer
m there is an open neighbourhood O,, of K with the property that for each
f € O, we have

A
1B;(F)llen < e 120 (8.4.3)
Ayl

In that neighborhood, we also have ||B;(f)||c: < Ki1. By Proposition 8.4 and
Lemma 8.18, taking 0 < € < 1 such that a — € > 0, we obtain

1G5 (f +w) = Ci(Hllex <NCi(f +w) = Ci(Hller—

< Kal[v]lct [Up—j-1(f +w) = Up—j-1(f)lle

< Kslollc el - (5.4.4)
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On the other hand, putting together Proposition 8.4 with Lemma 8.17 and
with Lemma 8.18, we get

1C5(f +w) = Ci(f)ller < eallUp—jr () w0
+ Kal[Upjmr(F +w) = Upejmr (D)l o
< gl By folle + Kolwll® oo . (8.4.5)

The first term on the last line of (8.4.5) looks a bit dangerous. What saves us
here is the geometric control on the post-critical set of f (hence on the intervals
A;) that we have at our disposal since §5.2. Substituting (8.4.3), (8.4.4) and
(8.4.5) in (8.4.2) and adding up the terms with j =0,...,p — 1 we arrive at

p—1
AN S Bi(f) (Ci(f +w) — Ci(f))
j:() Ct
1 2 A Ayt .
< ¢4 szo At Esllep e

But as we have seen in §5.2 :

(i) By Proposition 5.5 and Remark 5.1, if ¢ > 2 there exist 0 <y < 1
and C' > 0 with the following property. For every g € K and
every m > 0, there exists an n > 0 such that for all f € Q,, with
IIf —glla < n we have

p—1
1A,

< Cy™Y | (8.4.6)
JAVESY

(ii) By Propostion 5.8 and Remark 5.1, for every v > 1 close to one,
there exists ¢ < 2 close to two and C' > 0 with the following prop-
erty. For every g € K and every m > 0, there exists n > 0 such
that for all f € O, with ||f — g||]a < n we have that the inequality
(8.4.6) above is also satisfied.

These last estimates end the proof of this proposition, provided we take = v~
and n < p™/e. O

We arrive at last to the main two results of this section.

THEOREM 8.20. (i) If t > 2 is not an integer, there exist 0 < pu < 1 and
C > 0 with the following property. For every g € K and for every m > 0, there
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is an 1 > 0 such that for all f € Oy, with |f — glla < n and for all w € Al
with ||w|c: < n we have

IDT™(f +w)o — DT™(f)v]ler < Cu™[[o]lex - (8.4.7)

(i1) For every p > 1 close to one, there exist t < 2 close to 2 and C > 0 with
the following property. For every g € K and every m > 0, there exists n > 0
such that for all f € Qy, with ||f — glla <1 and all w € A" with ||w|c: < 7,
the inequality (8.4.7) above is also satisfied.

Part (ii) of this theorem with ¢ = s implies property B5 and part (i) is
used later (for ¢ = r) to prove property B6.

Proof. In this proof the positive constants K1, Ko, ... depend only on r and
Oy, and also on m. Let E : CY(I,I) — R be the evaluation map E(f) = f(0),
which is linear, and let U, : C*(I,I) — C*(I) be as before. Let us write
DTm(f + 'LU)U — DTm(f)(’U) =F1+ FEs+ Es+ E4 + E5 + Fg + E7, where

p—1
Ey=(A(f +w) — A(f)) > _Bi(f +w) - Ci(f + w)
=0
p—1
Ey=A(f) ) (Bj(f+w)—Bi(f)) Ci(f +w)
5=0
p—1
E3s=A(f) ) B;i(f) - (Ci(f +w)—C5(f))
=0
p—1
Ey=(A(f +w) — A(f)) - D(f +w) > _EoBj(f+w) EoCi(f+uw)
j=0
p—1
Es=A(f) - (D(f +w) = D(f) Y EoBj(f +w) - EoCj(f +w)
=0

I
—

p
Es=A(f) - D(f) p_(EoBj(f +w) = (EoB;(f)) - EoCj(f +w)

= .
[l
- o

Er=A(f)-D(f) p_E°Bj(f) - (EoCi(f+w)—EocCj(f)) .

<.
I
o

By Lemma 8.11, we get
A(f +w) = A = oo = A < Killwller - (8.4.8)
Hence,

[Erllor < Kallwlleellvllee and [[Eallee < Kzfwllcefvllce -
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By Proposition 8.6 and Lemma 8.18, we obtain

1B(f +w) = Bi(£)llx < KallUpes (f +w) = Upy (Hllce
< Ksllwler - (8.4.9)

Since FE is a bounded linear operator and from the last inequality, we obtain
[E2llce < Kellwl|cellvllee and [ Egller < Krllwllcelvllcr -
Taking j = p in (8.4.9), we get
1Bp(f 4+ w) = Bp(f)ller < Kslwllee -
By Lemma 8.18 and by (8.4.8), we get

IAr+w - Up(f +w) = Ap - Up(f)ller < Kyllwlice -

Combining the last two inequalities, we get ||Es||ct < Kiol|w||ct||v] et -

Let £ and 0 < a < 1 be the integer and the fractional part of ¢, and let
0 < € < 1 be such that & —e > 0. From inequality (8.4.4), and since F is a
bounded linear operator, we get

[E(C(f +w)) = E(C;(f)| < Kullwle:lvllor -

Thus, || E7|ct < Ki2||w||ge||v]|ct - The only thing left to do is to bound || E3]|c,
and this follows at once from Proposition 8.19. O

THEOREM 8.21. If r > 2 is not an integer, there exist 0 < u < 1 and
C > 0 with the following property. For every g € K and for every m > 0, there
is an n > 0 such that for all f € Oy, with ||f —gl|la < n and for all v € A" with
|v]|lcr < 1 we have

|77 (f +v) = T™(f) = DT™(f)ollcr < Cu™ullor - (3.4.10)
This theorem together with Theorem 8.20 (i) for ¢ = r imply that the
renormalization operator satisfies property B6.

Proof. In this proof the constants 0,601, 0o, ... are greater than zero and
smaller than one and just depend upon r. The positive constants ¢, cq, ca, ...
depend only on r and O,,, and the positive constants K, K1, Ks,... depend
also on m. Start observing that since 7" (f) = )\;1 -Up(f), we have T™(f +
v) =T"(f) — DT™(f)v = A+ B + C, where

A=X71 - (U(f + ) = Up(f) = DU(f))
B= (31, = A = DASI(0)) - Uy(f + )
C=DX; () - (Up(f +v) — Ty(f)) -

By Lemma 8.11, we have that f — )\;1 is C! and that there is #; such that
IBllcr < Ki|v||5E. Since |U,(f 4+ v) — Up(f)llcr < Ka|v||lcr, we have also
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|Cller < Ks||v||4.. Hence inequality (8.4.10) will be established if we prove
the following claim.

Claim. If r > 2 there exist 0 < p < 1 and ¢; > 0 with the following property:
for every g € K and for every m, there is an 1 > 0 such that for all f € Q,,
with || f — g]|a <7 and for all v € A™ with ||v||c- < 1 we have

1Up(f +0) = Up(f) = DUp(f)vller < crp™ [ Asllv]ler - (8.4.11)

To prove this claim, we will proceed recursively. Let us write for ¢ =

0,...,p,
R; = Ui(f +v) = Ui(f) — DU(f)v .

Note that R;y1 = E; + F; + f o U;(f) - R;, where
Ei=foU(f+v) = foUlf) = f o Ui(f) - (Ui(f +v) = Ui(f))
Fi=voU(f+wv)—voUylf) .
Thus, working recursively from these expressions, we get
p—1
R, = Ry-Gp+ Z(Ez Gpi1+Fi-Gp_i1)
i=0
where Gp—i—1 = (fP""1) o Uiy1(f) and Ry = Apyy — Ap — DAg(v). Since
f € O,,, by Proposition 8.6 and Lemma 8.18, we get

IEillcr < Ka|Ui(f +v) = Us(f)l|leE < Ks o6t

for 8 =1 — {r}. Therefore, ‘Zf:_& E;- Gp_i_lHC" < KGHUHEZQQ. By Lemma

8.11, there is 3 such that ||Rplcr < K7H1)H};93. Hence, ||Ro - Gpllcr <
K8||v\|é§t03. Finally, by Proposition 8.19, there exists 64 > 0 such that

p—1
Z Fz : Gp—z'—l
1=0

This proves our original claim. O

< Kollol|eh™ + eap™ Mg |lollc -
C’r

8.5. Proof of Theorem 8.1

All the pieces of the puzzle may now be put together. We want to check
robustness of T relative to the spaces A = A, B= A", C = A* and D = A".
By Theorem 5.1, the pair (A?,A%) is p,-compatible with (T,K) and p, < A
for « sufficiently close to 2 and is 1-compatible for v > 2. Hence property
B1 is satisfied because s > sg with sg < 2 close to 2 and r > s+ 1 > 2.
Since 7 > s + 1, we know from Lemma 8.12 that T satisfies property B2.
It also satisfies property B3 by Lemma 8.13, and property B4 by Lemma



GLOBAL HYPERBOLICITY OF RENORMALIZATION 86

8.16. Finally, T satisfies property B5 by Theorem 8.20, and property B6 by
Theorem 8.21. Therefore the renormalization operator 7T is indeed robust with
respect to (A", A%, A0).

8.6. Proof of hyperbolic picture

Having established that the renormalization operator 7' is robust, we are now
ready to show that the hyperbolic picture holds true for 7" acting on each of
the spaces U" and V.

8.6.1. Proof of Theorem 2.5

We divide the proof of Theorem 2.5 into two cases: (i) r is not an integer
(including the Lipschitz case r = k + Lip), and (ii) r = k is an integer.

Proof of case (i): Putting together Theorem 6.1 with Theorem 8.1 we
deduce all the assertions of Theorem 2.5 except the fact that the holonomies
are C'P for some B > 0. This last fact follows if we combine Theorem 7.1
with Example 7.1.

Proof of case (ii): To prove this case, let us consider the Banach space
AF~1FLIP - Note that the natural inclusion i : A¥ — AF~I+LP i5 an isometric
embedding. Indeed, for all v € A* we have ||v||c+ = ||v||, by the mean-value
theorem. Applying case (i) to A¥ 171 we see that for every g € K the
local stable set W7 ’k_HLip(g) is a codimension one C'* Banach submanifold of
AR=IHLP Tp fact, there exists a C! function ® : Oy — R, where Oy C Ak~ 1+Lip

is an open set containing g, such that 0 € R is a regular value for ®, with
71(0) = Oy NIWH1HiR(g)

and such that D®(g)u, # 0. Let O1 = i~%(Op) C A*. Then O; is open and
®oi: O — RisCL Since u, € A*¥ and D(® 0i)(g)u, = D®(g)u, # 0, it
follows that 0 € R is a regular value for ® o4 at g. Hence, by the implicit
function theorem,

O1NWH(g) = O NWEF 1P (g) = O N (@ 0d)71(0)

is a C', codimension one Banach submanifold of A*. Since by case (i) the
local stable manifolds in A*~!*LP form a continuous lamination, we deduce
that the same is true for the local stable manifolds in A*, because i is an
isometric embedding. Finally, if F' is a C? ordered transversal (in the sense of
§7) to the stable lamination in U, then i o F is a C? ordered transversal to
the stable lamination in A*~1*MP and therefore by case (i) its holonomy in
Uk—1+LP 5 0140 for some 6 > 0. But then it follows that the holonomy of the
transversal F in U* is C119 also.
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8.6.2. Proof of Corollary 2.6

A similar argument to the one used in the proof of Theorem 2.5 can be used
here. The map i is replaced throughout by the inclusion j : B" — A", which is
a bounded linear operator (see §2.1). Hence the pre-images by j of the local
stable leaves in U” are C'!' manifolds and form a C® lamination in V”. Using
[24] (see Remark 9.1 below), we see that the leaves of such lamination contain
the local stable sets of each g € K in V",

9. Global stable manifolds and one parameter families

In this section, we prove Theorem 2.7. The first part will follow from
Theorem 9.1 and the second part will follow from Theorem 9.2.

9.1. The global stable manifolds of renormalization

In this section we construct the global stable manifolds of the renormalization
operator T in V", for all r sufficiently large.

Let g be an element of the (bounded-type) invariant set K of 7. Recall
that the global stable set W*"(g) of g € V" is given by

W (g) = {f € V" |T7(f) — T"(g)|

From Corollary 2.6, we know that the convergence is exponential, and the
exponential rate of convergence is independent of f and g, provided r > 2 4+ «
with 0 < o < 1 close to one.

cr — 0 when n — oo} .

THEOREM 9.1. For everyr > 34+a with a < 1 sufficiently close to 1, and

every g € K, the global stable set W*"(g) is an immersed, codimension one C!
Banach submanifold of V™.

REMARK 9.1. By [24], if the invariant set K of the renormalization op-
erator is of bounded type then for every r > 3 and every g € K we have that
W#T(g) coincides with the set of all maps f € V" with the same combinatorial

type of g.

Proof. We already know that the local stable sets are C' submanifolds.
The idea is to pull-back such manifold structure by 7" using the implicit func-
tion theorem. More precisely, by Corollary 2.6 there exist €, > 0 so small that
WET17F(g) is a codimension one C' Banach submanifold of V"=2% for all
g € K. We may assume that ¢ > 0 is so small that the vector u, is transversal
to the local stable set WS 177 (g) at each one of its points.

Now fix g € K and let f € W*"(g). There exists N = N(f) > 0 so large
that

TN(f) € W2 (TN (g)) € W2 P(TN(g)) -
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Since v = ugw (g is transversal at TV (f) to WETP(TN(g)), There exist a
small open set @y C V" ~177 containing TV (f) and a C! function ® : Qg — R
such that ®~1(0) = W2 "P(TN(g)) € Qp for which 0 € R is a regular
value and D®(TN(f))v # 0. The operator TV is C' as a map from V" into
V=178, Let @1 C V" be an open set containing f such that TV (0y) C Q.
We want to show that 0 € R is a regular value for ® o TV : O; — R. Defining
F, = TN(f)+tv (for |t| small), we get a C'* family {F}} of maps in V" which is
transversal to WS 9(TN (¢)) at Fy = TN(f). Now, we have the following
claim.

Claim. There exists a C! family {f;} with f; € V" such that for all small ¢ we
have TV (f;) = Fy.

Let us assume this claim for a moment. Setting

d
ft7

w= —
dt =0

we obtain that
D(® o TN)(f)w = D®(Fy)v #0 .

Therefore, ® o TV is a C! local submersion at f. By the implicit function
theorem (® o TV)~1(0) is a codimension one, C'!' Banach submanifold of Q;
(or V7). Furthermore, if h € (® o TV)=1(0) then TV (h) € W™ P (TN (g)),
and so h belongs to the global stable set W*"1=8(g). Using [24] (see Remark
9.1), we deduce that h belongs in fact to W*"(g). This proves that W*"(g) is
an immersed C'! manifold as asserted.

It remains to prove the claim. We first note that F; = h; o Fy where each
hy € C™(I,1) is a C" diffeomorphism of I = [~1,1]. Since TV (f) = Fp, there
exist p > 0 and closed, pairwise disjoint intervals 0 € Ag, Aq,..., A, 1 C T
with f(Al) - A/L'Jrl for0<i<p-—1and f(Apfl) C Ay, such that

Fo=TN(f)=A;"o fPoly,

where Af : I — Ag is the map = — fP(0)z. Let h: : Ag — Ag be the C”
diffeomorphism given by hy = A fohgo A;l. Consider a C" extension of hy to
a diffeomorphism H; : I — I with the property that H;|A; is the identity for
all i # 0. Then let f; € V" be the map f; = Hy o f. Note that f{(0) = f(0)
for all 0 < i <p, that f; is N-times renormalizable (under 7") and that

TN(ft)ZAfloffOAf
=Af o (Hio f)|a,y 0 (Heo f)|a,u0.- 0 (Ho f)|a, 0 Ay
:A;lOEtoprAf
:A]jloAthto (A;lofpoAf>
—hyoFy
=rI,
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which proves the claim. O

9.2. One-parameter families

A one-parameter family of maps is a map ¢ : [0,1] x I — I (where I = [—1,1]
is the phase space) such that ¢, = (¢, ) belongs to V" for all t € [0, 1]. If ¢ is
a C* map, then we say that 1 is a C* family (of C" unimodal maps). We often
identify the family ¢ with the curve {¢:}o<t<1 of unimodal maps in V". We
shall denote by UF* the space of all C¥ families with the C* topology (UF k
is a subset of C*([0,1] x I)).

We say that two families are C'* equivalent if there exist a diffeomorphism
from one into the other which sends each infinitely renormalizable map (with
a fixed bounded combinatorial type) to a map with the same combinatorics.
We are now in a position to state the result we have in mind.

THEOREM 9.2. Letr > 3+ « with o > 0 close to 1, and let 2 < k < r.
There exists an open and dense subset O CUF® of one-parameter C* families
of C" unimodal maps having the following properties:

(i) Every family 1) € O intersects the global stable lamination L of
renormalization transversally.

(ii) For every ¢ € O, there exist 0 =ty < t1 < ... < t, = 1 such
that for each i = 0,1,...,n — 1 the sub-arc {¢y : t; <t < ti11}
is CY*8 diffeomorphic, via a holonomy-preserving diffeomorphism,
to a corresponding sub-arc in the quadratic family. Here 8 > 0 is
given by Corollary 2.6.

The proof will require a few lemmas. The first Lemma says that every C*
family can be approximated (in the C* sense) by a real analytic family.

LEMMA 9.3. If ¢ € UF*, then for each ¢ > 0 there exists a real analytic
family f € UF* such that || — fllcro,1xr) < €-

Proof. Write each 1; € V" as hy o q, where g(z) = 22 and h; is a diffeo-
morphism, and consider the C* map h : [0,1] x I — I given by h(t,z) = h(z),
a CF family of C" diffeomorphisms. To approximate h by a real analytic
family of diffeomorphisms, consider the convolution of h with the heat kernel
k(t,z,e) = e~ (*+2)/4 for ¢ > 0 sufficiently small (see [1]). O

Given this “denseness” result, the idea will be to show that arbitrarily close
to an f as in Lemma 9.3 we can find a C* family which is also transversal to the
global stable lamination £® of renormalization, by some kind of perturbation
argument, to eliminate possible tangencies between {f;} and L°.
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We will reduce our problem to the following general result about lamina-
tions with complex analytic leaves, whose elegant proof is due to Douady.

LEMMA 9.4. Let £L C C? be a C° lamination whose leaves are complex
one-manifolds, and let F' : D — C be a holomorphic function whose graph is
tangent of finite order at (0,F(0)) to a leaf Lo € L. Then the tangency is
isolated: there exists a neighborhood of (0, F(0)) in C? on which every other
intersection of the graph of F with the leaves of L is a transversal intersection.

Proof. Using a suitable chart, we may assume that the leaf Ly is the
horizontal plane w = 0 in C?, and that the other leaves of £ in that chart are
the graphs of holomorphic functions ¢, : D — C (with ¢,(0) = p € D, where
D C C is some open disk around zero, and ¢ = 0).

Since £ is a C° lamination, ¢, converges to 0 uniformly in D as u tends
to 0. Hence, for |u| small enough, we have ¢, (D) C D. Moreover, ¢,(z) # 0
for all z € D (leaves cannot intersect), so in fact ¢, (D) C D*.

Now, we have F(0) = F'(0) = ... = F¢=D(0) = 0 # F®)(0), for some
k > 2. Composing the chart with a bi-holomorphic map if necessary, we may
therefore assume that F(z) = 2*.

Let us fix p € D\ {0} and suppose that zy € D is such that ¢,(z) =
F(zp). We assume that |z9| < 1/2 (taking || small enough). To show that
this intersection between ¢, and F' is transversal, it suffices to show that
¢\, (20) # F'(20). But, by Schwarz’s Lemma, the derivative ¢/ (z9) measured
with respect to the Poincaré metrics of domain D and range D* must be less
than or equal to 1, that is to say

()] (1= 120%)
[u(z0)10g (Iu(z0)l ")

|l (o)l p = <1.

Thus, we have
4 k -1
[ (z0)] < k0l log (120 ") -
On the other hand,
‘F/(Zo)‘ = k’ZO‘kfl .

This shows that !@L(zo)‘ /|F'(20)| converges to 0 as p tends to 0, whence
¢, (20) # F'(20) for all sufficiently small |u|. Therefore (0, F'(0)) is an isolated
tangency as claimed. |

We may now state and prove the result on laminations with real analytic
leaves which is needed for the proof of Theorem 9.2.

LEMMA 9.5. Let F C [a,b] x R be a C° foliation whose leaves are the
graphs of real analytic functions ¢, : [a,b] — R with, say, ¢,(a) = p € [0,1].
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Let L C F be a sub-lamination which is transversally totally disconnected (i.e.
Ko={pe€0,1] : gr(pu) € L} is a totally disconnected set). If F : [a,b] — R
is a real analytic function, then

(i) gr(F) is tangent to F at only finitely many points;

(ii) for all € > 0 and all k > 0, there exists a real analytic G :
[a,b] — R such that ||F — G|lcx < € and all tangencies of gr(Q)
with F belong to F \ L; in particular, gr(G) is transversal to L.

Proof. (i) Complexifying F (i.e. the leaves ¢,) as well as F', we put
ourselves in the situation of Lemma 9.4. All tangencies are therefore isolated,
and since [a, b] is compact, there are only finitely many such, say at x; € [a, b],
i=1,2,....n.

(ii) Let d; be the order of tangency of F' with F at (z;, F'(z;)). Then for every
real analytic G sufficiently close to F' in the C* topology with k large (k >
Yo di will do), the number n(G) of tangencies of gr(G) with F — not counting
multiplicies — is bounded by Y ; d;. Hence we can find G : [a,b] — R real
analytic with ||F'— Gy||cx < £/2 such that n(Gp) is maximal. All tangencies of
Go with F must be first-order tangencies (d; = 1). Indeed, if, say, d; > 1, then
adding a suitable polynomial with small C* norm to Gy, vanishing of very high
order at 2,3, ..., ZTy(q,), We could unfold the tangency at x1 to produce a
new real analytic G with n(G) > n(Gp). Now we may consider Gy : [a,b] — R
given by Gi(x) = Go(z) +t for |t| < €/2. Since first-order tangencies are
persistent, each tangency (z;, Go(z;)) of Go with F generates a continuous,
non-constant path (x;(t), G¢(wi(t))) € gr(pu, ) of (first-order) tangencies of
Gy with F. Each function ¢ — p;(t), ¢ = 1,2,...,n(Gp), is continuous and
non-constant. Since Ky is totally disconnected, there exists ¢ (with |t| < €/2)
such that p;(t) € [0,1] \ Ky for all i. Therefore, all tangencies of G; with F
fall in F \ £, whence G; is transversal to L. O

Proof of Theorem 9.2. Both properties (i) and (ii) are easily seen to be open,
hence we concentrate in proving that they are dense. Let € > 0.

Take any family ¢ € UF*. By Lemma 9.3, there exists a real analytic
family f € UF¥ whose C* distance from ¢ is less than £/2. The corresponding
curve { f;} in V" may fail to be transversal to the global stable lamination £, so
let us show how to perturb it locally to get a transversal family. Let tg € [0, 1]
be such that f;, € £° (and {f:} is tangent to £* at f:,). Since f;, is infinitely
renormalizable and real analytic, there exists N > 0 such that RV (f;,) € Aq,
(where a > 0 is the constant in Theorem 2.4). Let J C [0, 1] be an interval
containing to such that R (f;) is well-defined and belongs to Aq, for all t € J.
We restrict our attention to the sub-family {f;}:c; from now on.
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First we embed {f;}1cs in a two-parameter family in the following way.
Note that each f; belongs to Aq_ for some (fixed) @ > 0. As a map from (an
open subset of) Aq_ into Ag,_, RV is a real analytic operator.

Claim. There exist analytic vectors v € Aq, and w € A, with the property
that DRY (f;,)v = w and w is transversal to £ = £° N Aq, at RN (f;,) € L.

To see this, take any wo € Agq, transversal to the (co-dimension one) lamination
L2 at RN (f;,). The same construction used in the proof of Theorem 9.1 yields
a C™ vector vy at f;, such that DR (f;,)vg = wp. Now approximate vy by an
analytic vector v € Ag,_ (in the C™ sense for m > r). Then w = DR (fy)v
will still be transversal to £5. Shrinking .J if necessary, we may in fact assume
that DR (f;)v is transversal to £5 for all t € J. Hence, let us consider the
two-parameter family of maps f; s € Aq_ given by fi s = fi +sv with t € J
and |s| < ¢ with § small. We have

W ={fis: tclJ, sc[-60}=Jx[-63 CR?,

and RN|W : W — Agq, is an injective, real analytic map. Recall now that in
Agq, we have a C foliation F with real analytic leaves (coming from hybrid
classes, ¢f. §3) and that £5 C F is the sub-lamination corresponding to the
stable leaves of renormalization, which is transversally totally disconnected.
Taking Fiy = R™N(F) € W and £, = RN(£5) € W and noting that
DRN(f;s)v = w is transversal to £ for all t € J, s € [~6, 6] (making § smaller
if necessary) we deduce that Fy is a C? foliation (in W) by real analytic
curves, and Ly, € Fw is a sub-lamination. Therefore we can apply Lemma
9.5 to this situation (with 7 = Fw and £ = Ljj,), obtaining a new analytic
curve {g; ey with || fi — g¢llcr < €/2, transversal to L}, in W, and such that
{RN(gy)} is transversal to £ at RY(g4,). Since by Corollary 2.6 the holonomy
of £ is C'*F for some 8 > 0 (and the quadratic family is transversal to £5)
we deduce that {g;} satisfies properties (a) and (b) of the statement. This
completes the proof. O
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10. A short list of symbols

For the reader’s convenience, we present below a short list of symbols used

in this paper.

P Period of renormalization
Af Scaling factor Ay = fP(0)
Ay Linear scaling Ay : x — fP(0) - x
R Renormalization operator RN f = A;l ofPoly
K Bounded type limit set of R
Dk Number of renormalization intervals at level k
Ajr(f) Renormalization intervals at level k (0 < j < p, — 1)
Iy Post-critical set of f
Ay Real Banach space of continuous maps V — C,
holomorphic in V, symmetric about real axis
T=RN:0— Aq, Real analytic operator for which
K c O is a hyperbolic basic set
ug(t) Parametrization of local unstable manifold W*(g)
u, Unit vector tangent to W (g) at g
g Unique real number such that DT(g)u, = dgur(y)
55" The product 8467y) - - - 67-1(g)
Ly =DT(f) Derivative of T at f
\% C" unimodal maps with quadratic critical point at 0
A" Tangent space to unimodal maps contained in V"
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