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Global hyperbolicity of renormalization
for Cr unimodal mappings

By Edson de Faria, Welington de Melo and Alberto Pinto

Abstract

In this paper we extend M. Lyubich’s recent results on the global
hyperbolicity of renormalization of quadratic-like germs to the space of
Cr unimodal maps with quadratic critical point. We show that in this
space the bounded-type limit sets of the renormalization operator have
an invariant hyperbolic structure provided r ≥ 2 + α with α close to one.
As an intermediate step between Lyubich’s results and ours, we prove
that the renormalization operator is hyperbolic in a Banach space of real
analytic maps. We construct the local stable manifolds and prove that
they form a continuous lamination whose leaves are C1 codimension one
Banach submanifolds of the ambient space, and whose holonomy is C1+β

for some β > 0. We also prove that the global stable sets are C1 immersed
(codimension one) submanifolds as well, provided r ≥ 3 + α with α close
to one. As a corollary, we deduce that in generic one parameter families
of Cr unimodal maps, the set of parameters corresponding to infinitely
renormalizable maps of bounded combinatorial type is a Cantor set with
Hausdorff dimension less than one.

1. Introduction

In 1978, M. Feigenbaum [10] and independently P. Coullet and C. Tresser
[4] made a startling discovery concerning certain rigidity properties in one-
dimensional dynamics. While analysing the transition between simple and
“chaotic” dynamical behavior in “typical” one-parameter families of unimodal
maps – such as the quadratic family x 7→ λx(1 − x) – they recorded the
parameter values λn at which successive period-doubling bifurcations ocurred
in the family and found a remarkable universal scaling law, namely

λn − λn−1

λn+1 − λn
→ 4.669 . . . .

They also found universal scalings within the geometry of the post-critical set
of the limiting map corresponding to the parameter λ∞ = limλn (cf. the
work of E. Vul, Ya. Sinai and K. Khanin [29]). In an attempt to explain these
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phenomena, they introduced a certain non-linear operator acting on the space
of unimodal maps – the so-called period doubling operator. They conjectured
that the period-doubling operator has a unique fixed-point which is hyperbolic
with a one-dimensional unstable direction. They also conjectured that the
universal constants they found in their experiments are the eigenvalues of the
derivative of the operator at the fixed point.

A few years later (1982) this conjecture was confirmed by O. Lanford [18]
through a computer assisted proof. Working in a cleverly defined Banach space
of real analytic maps and using rigorous numerical analysis on the computer,
Lanford established at once the existence and hyperbolicity of the fixed point of
the period-doubling operator. Subsequent work by M. Campanino and H. Ep-
stein [2] (also Campanino et al. [3] and Epstein [9]) established the existence
(but neither uniqueness nor hyperbolicity) of the fixed point without essential
help from the computer.

It was soon realized by Lanford and others that the period-doubling op-
erator was just a restriction of another operator acting on the space of uni-
modal maps – the renormalization operator – whose dynamical behavior is
much richer. The hopes were high that the iterates of this operator would
reveal the small scale geometric properties of the critical orbits of many inter-
esting one-dimensional systems. Hence, the initial conjecture was generalized
to the following.

Renormalization Conjecture. The limit set of the renormalization operator

in the space of maps of bounded combinatorial type is a hyperbolic Cantor set

where the operator acts as the full shift in a finite number of symbols.

(For a precise formulation of what is meant by bounded combinatorial
type, see §2.2 below.)

In the path towards a proof of this conjecture, several new ideas were de-
veloped in the last 20 years by a number of mathematicians, especially D. Sulli-
van, C. McMullen and M. Lyubich. Among the deepest in Dynamical Systems,
these ideas have the complex dynamics of quadratic-like maps (in the sense of
Douady and Hubbard [6]) as a common thread. Sullivan proved in [28] that
all limits of renormalization are quadratic-like maps with a definite modulus.
Then, constructing certain Teichmüller spaces from quadratic-like maps and
using a substitute of Schwarz’s lemma in these spaces, Sullivan established the
existence of horseshoe-like limit sets for renormalization. Later, using a differ-
ent approach based on Mostow rigidity, McMullen [23] gave another proof of
this result and went further by showing that the convergence (in the C0 sense)
towards the limit set is exponential.

The final breakthrough came with the work of Lyubich [20]. He endowed
the space of germs of quadratic-like maps (modulo affine conjugacies) with a
very subtle complex structure, showing that the renormalization operator is
complex-analytic with respect to such structure. In Lyubich’s space, the stable
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sets of maps in the limit set of renormalization coincide with the very hybrid
classes of such maps, and inherit a natural structure making them (complex
codimension one) analytic submanifolds. Combining McMullen’s rigidity of
towers with Schwarz’s lemma in Banach spaces, Lyubich proved exponential
contraction along such stable leaves. To obtain expansion in the transversal
directions to such leaves at points of the limit set, Lyubich argued by contra-
diction: if expansion fails, then one can find a map in the limit set whose orbit
under renormalization is slowly shadowed by another orbit (the small orbits
theorem, page 323 of [20]). This however contradicts another theorem of his,
namely the combinatorial rigidity theorem of [21]. It follows that the limit set
is indeed hyperbolic in the space of germs. Based on this result of Lyubich and
using the real and complex bounds given by Sullivan, we prove in Theorem
2.4 that the attractor (for bounded combinatorics) is hyperbolic in a Banach
space of real analytic maps.

In the present paper, we give the last step in the proof of the above renor-
malization conjecture in the (much larger) space of Cr smooth unimodal maps
with r sufficiently large. The very formulation of the conjecture in this setting
requires some care, because the renormalization operator is not differentiable
in Cr. For the correct formulation, see Theorem 2.5 below. To prove the
conjecture, we combine Theorem 2.4 with some non-linear functional analysis
inspired by the work of A. Davie [5]. In that work, Davie constructs the stable
manifold of the fixed point of the period doubling operator in the space of
C2+ε maps “by hand”, showing it to be a C1 codimension one submanifold of
the ambient space, even though the operator is not differentiable. To do this,
he first extends the hyperbolic splitting of the derivative at the fixed point
from Lanford’s Banach space of real-analytic maps to the larger space of C2+ε

maps (to which the derivative extends as a bounded linear operator). This
gives him an extended codimension one stable subspace in C2+ε to work with,
and he views the local stable set in C2+ε as the graph of a function over the
extended stable subspace. In attempting to prove that such function is C1,
he goes around the inherent loss of diferentiability of renormalization by first
noting that the local unstable manifold coming from Lanford’s theorem is still
there (and is still smooth in C2+ε) and then showing that there is afterall a
contraction in C2+ε towards that unstable manifold, whose elements are an-
alytic maps. Thus, the loss of differentiability is somehow compensated by
the contraction towards the unstable manifold. Davie’s crucial estimates show
that the renormalization operator in C2+ε is sufficiently well-approximated by
the extension of its derivative in Lanford’s space to a bounded linear operator
in C2+ε.

Our approach is based on the idea that whatever Davie can do with Lan-
ford’s Banach space relative to the fixed point, we can do with the Banach
space obtained in Theorem 2.4 relative to the whole limit set. There is one
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fundamental difference, however. The linear and non-linear estimates carried
out by Davie rely on the special fact that the period-doubling fixed point is
concave. This allows him to prove his main theorems in C2+ε for all ε > 0. By
contrast, we cannot – and do not – rely on any such convexity assumptions.
We derive our estimates (in §5 and §8) directly from the geometric properties
of the postcritical set of maps in the limit set (these properties – proved in §5.2
– are a consequence of the real a-priori bounds). As a result, our local stable
manifold theorem in Cr requires r ≥ 2 + α with α close to one.

We go beyond the conjecture in at least three respects. First, we show
that the local stable manifolds form a C0 lamination whose holonomy is C1+β

for some β > 0. In particular, every smooth curve which is transversal to such
lamination intersects it at a set of constant Hausdorff dimension less than one.
Second, we prove that the global stable sets are C1 (immersed) codimension
one submanifolds in Cr provided r ≥ 3 + α with α close to one (we globalize
the local stable manifolds via the implicit function theorem, hence the further
loss of one degree of differentiability). Third, we prove that in an open and
dense set of Ck one-parameter families of Cr unimodal maps (for any k ≥ 2),
each family intersects the global stable lamination transversally at a Cantor
set of parameters and the small-scale geometry of this intersection is the same
for all nearby families. In particular, its Hausdorff dimension is strictly smaller
than one.

In the path towards these results, we have made an attempt to abstract
out the more general features of the renormalization operator in the form of
a few properties or “axioms” – the notion of a robust operator introduced in
§6. We prove a general local stable manifold theorem for robust operators in
§6. It is our hope that this might be useful in other renormalization problems.
For example in the case of critical circle maps (see [7] and [8]).

2. Preliminaries and statements of results

In this section, we introduce the basic notions of the theory of renormal-
ization of unimodal maps. Then we state Sullivan’s theorem on the existence
of topological limit sets for the renormalization operator, the exponential con-
vergence results of McMullen, and Lyubich’s theorem showing the full hyper-
bolicity of such limit sets in the space of germs of quadratic-like maps. Finally,
we state our main results extending Lyubich’s hyperbolicity theorem to the
space of Cr unimodal maps with r sufficiently large.

*We wish to thank M. Lyubich and A. Avila for several useful discussions and A. Douady
for his elegant proof of Lemma 9.4 (§9.2). We are greatful to the referee for his keen remarks
and for pointing out several corrections. We also thank FCUP, IMPA, IME-USP, KTH,
SUNY Stony Brook for their hospitality and support during the preparation of this paper.
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2.1. Quadratic unimodal maps

We describe here two types of ambient spaces of Cr unimodal maps. These
will be determined by two families of Banach spaces, denoted Ar and Br.

2.1.1. The Banach spaces Ar

Let I = [−1, 1] and for all r ≥ 0 let Cr(I) be the Banach space of Cr real-
valued functions on I. Here r can be either a non-negative real number, say
r = k + α with k ∈ N and 0 ≤ α < 1, in which case Cr(I) is the space of Ck

functions whose k-th derivative is α-Hölder, or else r = k + Lip, in which case
Cr(I) means the space of Ck functions whose k-th derivative is Lipschitz (so
whenever we say that r is not an integer, we include the Lipschitz cases). Let
us denote by Ar the space Cr

e (I) consisting of all Cr functions on I which are
even and vanish at the origin, in other words

Ar = {v ∈ Cr(I) : v is even and v(0) = 0} .

Then Ar is a closed linear subspace of Cr(I) and therefore also a Banach space
under the Cr norm. Now, for each r ≥ 2, define

Ur ⊂ 1 + Ar ⊂ Cr(I)

to be the set of all maps f : I → I of the form f(x) = 1 + v(x), where v ∈ Ar

satisfies v′′(0) < 0, which are unimodal. Then Ur is a Banach manifold; indeed
it is an open subset of the affine space 1 + Ar. Note that for all f ∈ Ur the
tangent space TfUr is naturally identified with Ar. The elements of Ur are
called Cr unimodal maps with a quadratic critical point.

2.1.2. The Banach spaces Br

We define Br to be the space of functions v : I → R of the form v = ϕ◦q where
q(x) = x2 and ϕ ∈ Cr([0, 1]) vanishes at the origin. The norm of v in this space
is given by the Cr norm of ϕ. This makes Br into a Banach space. Note that
for each s ≤ r the inclusion map j : Br → As is linear and continuous (hence
C1). Now, for each r ≥ 1, let

Vr ⊂ 1 + Br

be the open subset of the affine space 1 +Br consisting of those f = φ ◦ q such
that φ([0, 1]) ⊆ (−1, 1], φ(0) = 1 and φ′(x) < 0 for all 0 ≤ x ≤ 1. Just as
before, Vr is a Banach manifold. Note that each f ∈ Vr is a unimodal map
belonging to Ur when r ≥ 2. Moreover, the inclusion of Vr in Ur is strict (for
each r ≥ 2).
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2.2. Renormalization operator

A map f ∈ Ur is said to be renormalizable if there exist p = p(f) > 1 and
λ = λ(f) = fp(0) such that fp|[−|λ|, |λ|] is unimodal and maps [−|λ|, |λ|]
into itself. In this case, taking the smallest possible value of p, the map Rf :
[−1, 1] → [−1, 1] given by

Rf(x) =
1
λ

fp(λx) (2.2.1)

is called the first renormalization of f . We have Rf ∈ Ur. The intervals
f j([−|λ|, |λ|]), for 0 ≤ j ≤ p− 1, are pairwise disjoint and their relative order
inside [−1, 1] determines a unimodal permutation θ of {0, 1, . . . , p − 1}. The
set of all unimodal permutations is denoted P. The set of f ∈ Ur that are
renormalizable with the same unimodal permutation θ ∈ P is a connected
subset of Ur denoted Ur

θ. Hence we have an operator

R :
⋃

θ∈P

Ur
θ → Ur , (2.2.2)

the so-called renormalization operator.
Now let us fix a finite subset Θ ⊆ P. Given an infinite sequence of

unimodal permutations θ0, θ1, . . . , θn, . . . ∈ Θ, write

Ur
θ0,θ1,··· ,θn,··· = Ur

θ0
∩R−1Ur

θ1
∩ · · · ∩R−nUr

θn
∩ · · · ,

and define
Dr

Θ =
⋃

(θ0,θ1,··· ,θn,··· )∈ΘN

Ur
θ0,θ1,··· ,θn,··· .

The maps in Dr
Θ are infinitely renormalizable maps with (bounded) combina-

torics belonging to Θ. Note that R(Dr
Θ) ⊆ Dr

Θ, in fact

R(Ur
θ0,θ1,··· ,θn,···) ⊆ Ur

θ1,θ2,··· ,θn+1,··· . (2.2.3)

We note that if f is a renormalizable map in Vr, then R(f) belongs to
Vr also. Hence, taking Vr

θ = Ur
θ ∩ Vr, the restriction of the renormalization

operator
R :

⋃

θ∈P

Vr
θ → Vr (2.2.4)

is well-defined.

2.3. The limit sets of renormalization

In [28], Sullivan established the existence of horseshoe-like invariant sets for
the renormalization operator, showing that they all consist of real analytic
maps of a special kind, namely, restrictions to [−1, 1] of quadratic-like maps
in the sense of Douady-Hubbard. We remind the reader that a quadratic-like
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map f : V → W is a holomorphic map with the property that V and W are
topological disks with V compactly contained in W , and f is a proper degree
two branched covering map with a continuous extension to the boundary of V .
The conformal modulus of f is the modulus of the annulus W \ V .

We are interested only in quadratic-like maps that commute with complex
conjugation, for which V is symmetric about the real axis. Consider the real
Banach space H0(V ) of holomorphic functions which commute with complex
conjugation and are continuous up to the boundary of V , with the C0 norm.
Let AV ⊂ H0(V ) be the closed linear subspace of functions of the form ϕ = φ◦q,
where q(z) = z2 and φ : q(V ) → C is holomorphic with φ(0) = 0. Also, let
UV be the set of functions of the form f = 1 + ϕ, where ϕ = φ ◦ q ∈ AV

and φ is univalent on some neighborhood of [−1, 1] contained in V , such that
the restriction of f to [−1, 1] is unimodal. Then UV is an open subset of the
affine space 1 +AV , which is linearly isomorphic to AV via the translation by
1, and we shall regard UV as an open subset of AV itself via this identification.
For each a > 0, let us denote by Ωa the set of points in the complex plane
whose distance from the interval [−1, 1] is smaller than a. We may now state
Sullivan’s theorem as follows.

Theorem 2.1. Let Θ ⊆ P be a non-empty finite set. Then there exist
a > 0, a compact subset K = KΘ ⊆ AΩa

∩ Dω
Θ and µ > 0 with the following

properties.

(i) Each f ∈ K has a quadratic-like extension with conformal modulus boun-
ded from below by µ.

(ii) We have R(K) ⊆ K, and the restriction of R to K is a homeomorphism
which is topologically conjugate to the two-sided shift σ : ΘZ → ΘZ: in
other words, there exists a homeomorphism H : K → ΘZ such that the
diagram

K R−−−−→ K

H

y
yH

ΘZ −−−−→
σ

ΘZ

commutes.

(iii) For all g ∈ Dr
Θ ∩ Vr, with r ≥ 2, there exists f ∈ K with the property

that ||Rn(g)−Rn(f)||C0(I) → 0 as n →∞.

For a detailed exposition of this theorem, see Chapter VI of [26].
Later, in [23], C. McMullen established the exponential convergence of

renormalization for bounded combinatorics (using rigidity of towers). His theo-
rem forms the basis for the contracting part of Lyubich’s hyperbolicity theorem
in [20].
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Theorem 2.2. If f and g are infinitely renormalizable quadratic-like maps
with the same bounded combinatorial type in Θ ⊂ P , and with conformal mod-
uli greater than or equal to µ, we have

‖Rnf −Rng‖C0(I) ≤ Cλn

for all n ≥ 0 where C = C(µ,Θ) > 0 and 0 < λ = λ(Θ) < 1.

The above result was extended by Lyubich to all combinatorics. In par-
ticular it follows, in the case of bounded combinatorics, that the exponent λ

and the constant C in Theorem 2 do not depend on Θ. The conclusion of the
above theorem can also be improved in bounded combinatorics: for r ≥ 3, the
exponential convergence holds in the Cr topology if the maps are in Vr (see
[24] and [25]).

In [20], Lyubich considered the space of quadratic-like germs modulo affine
conjugacies in which the limit set K is naturally embedded. This space is a
manifold modeled on a complex topological vector space (arising as a direct
limit of Banach spaces of holomorphic maps). In this setting, Lyubich estab-
lished in [8] the full hyperbolicity of the renormalization operator. With the
help of Sullivan’s real and complex bounds and Lyubich’s theorem we prove
the hyperbolicity of some iterate of the renormalization operator acting on a
space AΩa

for some a > 0 (see Theorem 2.4 in §2.5). Then we extend Davie’s
analysis for the Feigenbaum fixed point to the context of bounded combina-
torics to conclude that the hyperbolic picture also holds true in the much larger
space Ur (see Theorem 2.5 in §2.5).

2.4. Hyperbolic basic sets

We need to introduce the well-known concept of hyperbolic basic set for non-
linear operators acting on Banach spaces. Let us consider a Banach space A,
and an open subset O ⊆ A.

Definition 2.1. Let T : O → A be a smooth non-linear operator. A hy-
perbolic basic set of T is a compact subset K ⊂ O with the following properties.

(i) K is T -invariant and T |K is a topologically transitive homeomor-
phism whose periodic points are dense.

(ii) If y ∈ O and all T -iterates of y are defined, then Tn(y) converges
to K.

(iii) There exist a continuous, DT -invariant splitting A = Es
x

⊕
Eu

x ,
for x ∈ K, and uniform constants C > 0 and 0 < θ < 1 such that

‖DTn(x) v‖ ≤ Cθn‖v‖
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for all v ∈ Es
x, as well as

‖DTn(x) v‖ ≥ Cθ−n‖v‖ (2.4.1)

for all v ∈ Eu
x .

(iv) The dimension of Eu
x is finite and constant.

The following notions are also standard. Let A(x, ε) be the ball in A with
center x and radius ε. The local stable manifold W s

ε (x) of T at x consists of all
points y ∈ A(x, ε) such that, for all n > 0, we have Tn(y) ∈ A(Tn(x), ε) and

‖Tn(y)− Tn(x)‖ → 0 when n →∞ .

The local unstable manifold W u
ε (x) of T at x consists of all points y ∈ A(x, ε)

such that, setting y0 = y, for all n ≥ 1 there exists yn ∈ A(T−n(x), ε) such
that yn−1 = T (yn) and

‖T−n(x)− yn‖ → 0 when n →∞ .

Finally the global stable set of T at x is defined as

W s(x) = {y ∈ O : ‖Tn(y)− Tn(x)‖ → 0 when n →∞} .

The question arises as to whether these sets have smooth manifold structures.
We have the following general result.

Theorem 2.3. If K is a hyperbolic basic set of a C1 operator T : O → A
then

(i) the local stable (resp. unstable) set at x ∈ K is a C1 Banach
submanifold of A which is tangent to Es

x (resp. Eu
x) at x.

(ii) If y ∈ W s(x) then

‖Tn(x)− Tn(y)‖ ≤ Cθn‖x− y‖ .

Moreover, T (W u
ε (x)) ⊇ W u

ε (T (x)), the restriction of T to W u
ε (x)

is one-to-one and for all y ∈ W u
ε (x) we have

∥∥T−n(x)− T−n(y)
∥∥ ≤ Cθn‖x− y‖ .

(iii) If y ∈ A(x, ε) is such that T i(y) ∈ A(T i(x), ε) for i ≤ n then

dist (Tn(y),W u
ε (Tn(x))) ≤ Cθn, as well as dist (y, W s

ε (x)) ≤ Cθn .

(iv) The family of local stable manifolds (and also the family of local
unstable manifolds) form a C0 lamination: the tangent spaces to
the leaves vary continuously.
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We do not prove this theorem here since we will not use it, but instead
make the following comments. Using the arguments of Hirsch-Pugh in [14], we
can prove that the local unstable set is a smooth manifold. The local stable
set is also a smooth manifold, but a different proof is needed: one can use the
ideas of Irwin in [16]. See also Theorem 2.1 in page 375 of [27]. In both cases
the smoothness can be improved to Ck if the operator T is Ck.

For invertible operators the global stable set is also a smooth submanifold.
In the non-invertible situation, this is not always true. However, we will prove
in §9.1 that this is the case for the renormalization operator acting on Vr,
provided r ≥ 3 + α and α > 0 is close to one.

2.5. Hyperbolicity of renormalization

In the present paper we prove three main theorems. The first main theorem
shows that there exists a real Banach space of analytic maps, containing the
topological limit set K of renormalization, on which the renormalization op-
erator R acts as a real-analytic operator and has K as a hyperbolic basic set.
More precisely, we have the following result.

Theorem 2.4. (Hyperbolicity in a real Banach space) There exist a > 0,
an open set O ⊂ A = AΩa

containing K = KΘ and a positive integer N with the
following property. There exists a real analytic operator T : O → A having K
as a hyperbolic basic set with co-dimension one stable manifolds at each point,
such that T (f)|[−1, 1] = RN (f |[−1, 1]), for all f ∈ O, is the N -th iterate of
the renormalization operator.

The proof of this theorem, presented in §3 (see Theorem 3.9), combines
Lyubich’s hyperbolicity results with Sullivan’s real and complex bounds.

The second main theorem establishes the “hyperbolicity” of renormaliza-
tion in Ur. As we have mentioned before, the renormalization operator is not
smooth in Ur, so the definition of hyperbolicity of an invariant set does not
even make sense. However, the hyperbolic picture holds in this situation. More
precisely, we have the following theorem.

Theorem 2.5. (Hyperbolic Picture in Ur) If r ≥ 2 + α, where α > 0 is
close to one, then statements (i), (ii), (iii) and (iv) of Theorem 2.3 hold true
for the renormalization operator acting on Ur. Furthermore,

(i) the local unstable manifolds are real analytic curves;

(ii) the local stable manifolds are of class C1, and together they form
a continuous lamination whose holonomy is C1+β for some β > 0;

The main difficulty behind the proof of this theorem is the fact the op-
erator T is not Fréchet differentiable in Cr (in fact it is only continuous in
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a dense subset of Ur). However, as we shall see in §8.2, it is a C1 mapping
from its domain in Ur into Us if s < r − 1 (even for s = r − 1 if r is an inte-
ger). Hence its tangent map defines a continuous map L : K × Ar → K × As

by L(g, v) = (T (g), DT (g)(v)) = (T (g), Lg(v)). The bounded linear mappings
Lg : Ar → As extend to bounded linear operators Lg : At → At for all 0 ≤ t ≤ r.
Although Lg is not the derivative of T at g in Cr, it is nevertheless a suffi-
ciently good linear approximation to T near g (see the properties of Definition
6.1, checked in §8).

Corollary 2.6. (Hyperbolic Picture in Vr) If r ≥ 2 + α, where α > 0 is
close to one, then statements (i), (ii), (iii) and (iv) of Theorem 2.3 hold true
for the renormalization operator acting on Vr. Furthermore,

(i) the local unstable manifolds are real analytic curves;

(ii) the local stable manifolds are of class C1, and together they form
a continuous lamination whose holonomy is C1+β for some β > 0.

For the proofs of Theorem 2.5 and Corollary 2.6, see §8.
By an argument using the implicit function theorem and the results in

[24], which a priori are valid only in Vr, we shall prove in §9 our third main
theorem, which we state as follows.

Theorem 2.7. If r ≥ 3+α, where α > 0 is close to one, then the following
assertions hold true for the renormalization operator acting in Vr:

(i) The global stable sets are C1 immersed submanifolds.

(ii) For each integer 2 ≤ k ≤ r, there exists an open dense set of
Ck one-parameter families of maps in Vr all of whose elements
intersect the global stable lamination of (T,KΘ) transversally.

(iii) In each such family, the set of parameters where the intersec-
tions occur is a Cantor set which is locally C1+β diffeomorphic to
the corresponding Cantor set of the quadratic family. In particular,
its Hausdorff dimension is a universal number depending only on
Θ which lies strictly between zero and one if Θ has more than one
element.

It is worth emphasizing that when a generic family (in the sense of the
above corollary) intersects the stable lamination at a point, then any neigh-
borhood of this point in parameter space contains a renormalization window
that is mapped under a suitable power of the renormalization operator onto a
full transversal family.
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3. Hyperbolicity in a Banach space of real analytic maps

In this section we give a proof of Theorem 2.4. Using the real and complex
bounds given by Sullivan in [28], we prove in §3.1 that there is an iterate of the
renormalization operator which extends as a real analytic map T to an open set
OΩa

of the Banach space AΩa
consisting of real analytic maps whose domain

is an a-neighborhood of the interval [−1, 1], for a suitable a > 0. The maps
g ∈ K have unique extensions belonging to OΩa

. In §3.2, using lemmas 4.16
and 4.17 in Lyubich’s paper [20], we show that the hybrid conjugacy classes
of the maps g ∈ K form a continuous lamination of codimension one real
analytic manifolds. Then in §3.4 we construct a skew-product renormalization
operator that satisfies properties (W1) to (W4) in page 395 of [20] in the
real analytic case (restated in §3.5). By theorems 8.2 and 8.8 in [20] the
skew-product renormalization operator will have fiberwise stable and unstable
leaves (as defined in §3.3). The local stable leaf at g ∈ K is a relatively
open set of the hybrid conjugacy class of g. Then using the skew-product
renormalization operator, we prove in §3.5 that K is a basic set for the real
analytic renormalization operator T : OΩa

→ AΩa
.

3.1. Real analyticity of the renormalization operator

Using Sullivan’s real and complex bounds in [28], we will show that there exists
a > 0 such that some iterate T : OΩa

→ AΩa
of the renormalization operator

is a (well-defined) real analytic operator with a compact derivative.
For each f ∈ K, let If ⊆ [−1, 1] be the postcritical set of f (the Cantor

attractor of f). For each k ≥ 0, we can write

Rkf(x) = Λ−1
k ◦ fpk ◦ Λk(x)

where

pk = p(f, k) =
k−1∏

i=0

p(Rif) ,

λk =λ(f, k) =
k−1∏

i=0

λ(Rif) ,

Λk(x)= Λ(f, k)(x) = λk · x , (3.1.1)

with p(·) and λ(·) as defined in §2.2. Consider the renormalization intervals
∆0,k = ∆0,k(f) = [−|λk|, |λk|] ⊂ [−1, 1], and define ∆i,k = ∆i,k(f) = f i(∆0,k)
for i = 0, 1, . . . , pk − 1. The collection Ck = {∆0,k, . . . , ∆pk−1,k} consists of
pairwise disjoint intervals at level k. Moreover,

⋃{∆ : ∆ ∈ Ck+1} ⊆
⋃{∆ :
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∆ ∈ Ck} for all k ≥ 0 and we have

If =
∞⋂

k=0

pk−1⋃

i=0

∆i,k .

Definition 3.1. The set If has geometry bounded by 0 < τ < 1 with
respect to (Ck)k∈N if the following conditions are met for k ≥ 1.

(i) If ∆j,k+1 ⊂ ∆i,k then τ < |∆j,k+1| / |∆i,k| < 1− τ .

(ii) If I is a connected component of ∆i,k \
⋃

j ∆j,k+1 then τ <

|I| / |∆i,k| < 1− τ .

By Sullivan’s real bounds (see [28] and Section VI.2 in page 453 of [26]),
there exists α > 0, such that for every g ∈ K the set Ig has geometry bounded
by α with respect to (Ck)k∈N.

The following result is a consequence of Sullivan’s complex bounds (see
[28] and Section VI.5 in page 483 of [26]).

Theorem 3.1. There exist µ > 0, N0 > 0 and a neighborhood V of the
dynamics with the following properties. Every g ∈ K extends to a holomorphic
map g : V → C and for every N ≥ N0 there exists a symmetric neighborhood
Og,N of the interval ∆0,N (g) such that

(i) the diameter of the set gi(Og,N ) ⊂ V is comparable to the length
|∆i,N (g)| of the interval ∆i,N (g) for every 0 ≤ i ≤ p = p(N, g);

(ii) the map gp : Og,N → gp(Og,N ) is a quadratic-like map with
conformal modulus greater than µ > 0.

Applying Theorem 3.1 (ii) to g ∈ K, we see that RN (g) has a quadratic-like
extension to

Ug,N = Λ−1
g (Og,N ) (3.1.2)

(where Λg = Λ(g, N)) and such extension has conformal modulus greater than
µ > 0.

Recall that the filled-in Julia set Kf of a quadratic-like map f : U → U ′

is the set {z : fnz ∈ U, n = 0, 1, . . .}, and its boundary is the Julia set Jf of f .
Since all maps in K have conformal modulus greater than or equal to µ > 0,
we deduce from Proposition 4.8 in page 83 of McMullen’s book [23] that there
exists b > 0 such that for every g ∈ K we have

Ωb(KRN (g)) ⊂ Ug,N . (3.1.3)

Here the notation Ωε(K) means the set of all points whose distance from K is
less than ε/2 times the diameter of K.
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For each neighborhood U of [−1, 1] in C, symmetric about the real axis, we
consider the real Banach space AU of holomorphic functions defined earlier.
We denote by AU (g, δ) the open ball of radius δ around g. By (3.1.3), the
inclusion map ig,N : AUg,N

→ AΩα
is a well-defined compact linear operator for

every 0 < α < b.

Lemma 3.2. Let µ > 0 and N0 > 0 be as in Theorem 3.1 and b > 0 as in
(3.1.3). For every 0 < α < b there exist N > N0 and δ0 > 0 such that

(i) for every g ∈ K, the operator Tg,N : AΩα
(g, δ0) → AUg,N

is well-
defined if we set

Tg,N (f) = Λf
−1 ◦ fp ◦ Λf : Ug,N → C ,

where p = p(f,N) = p(g,N), Λf = Λ(f,N), and Tg,N (f) is a
quadratic-like map with conformal modulus greater than µ/2;

(ii) the operator T : OΩα
→ AΩα

given by T = ig,N ◦ Tg,N is real
analytic with a compact derivative, where

OΩα
=

⋃

g∈K
AΩα

(g, δ0) .

Proof. By Sullivan’s real bounds, there exist C1 > 1 and 0 < ν1 < ν2 < 1
such that for all g ∈ K, all k ∈ N and all 0 ≤ j ≤ p(k, g) − 1, we have
C−1

1 νk
1 < |∆j,k(g)| < C1ν

k
2 . Thus, by property (i) in Theorem 3.1, for every

α > 0 there is N > 0 so large that the open sets gj(Og,N ) have diameter
smaller than α/3 for all 0 ≤ j ≤ p(N, g). Recall that Og,N = Λg(Ug,N ). By
a continuity argument, there is δg > 0 such that for every f ∈ AΩα

(g, δg),
the restriction f |[−1, 1] is N -times renormalizable, f j(Λf (Ug,N )) ⊂ Ωα/2 for
every 0 ≤ j ≤ p = p(N, f), and moreover fp : Λf (Ug,N ) → fp(Λf (Ug,N )) is a
quadratic-like map with conformal modulus greater than µ/2. By compactness
of K in AΩα

, there is a finite set {gi : i = 1, . . . , l} such that

K ⊂
l⋃

i=1

AΩα
(gi, δgi

/2) .

Set δ0 = mini=1,...,l{δgi
/2}. Then, for every g ∈ K there exists i = i(g)

such that AΩα
(g, δ0) ⊂ AΩα

(gi, δgi
). Hence Tg,N (f) is well-defined, and it

is a quadratic-like map with conformal modulus greater than µ/2, for every
f ∈ AΩα

(g, δ0) which proves (i).
Note that the real Banach space AΩα

is naturally embedded in the complex
Banach space AΩα,C of maps f : Ωα → C which are holomorphic and continuous
up to the boundary and that Tg,N extends to an operator TCg,N in an open set
of AΩα,C, given by the same expression. Applying Cauchy’s integral formula,
we see that TCg,N is complex-analytic, and so Tg,N is real analytic. Since by
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Montel’s theorem the inclusion ig,N is a compact linear operator, we deduce
that T : OΩα

→ AΩα
is a real-analytic operator with a compact derivative,

which proves (ii).

3.2. Real analytic hybrid conjugacy classes

We will introduce later (in §3.4) a skew-product renormalization operator. The
fiberwise local stable manifolds of such skew-product – which will be used to
determine the stable manifolds of the real-analytic operator T : OΩa

→ AΩa
, for

some suitable a > 0 – turn out to be openly contained in the hybrid conjugacy
classes of the maps in the limit set K. Here we analyze the manifold structure
of hybrid classes in more detail.

A homeomorphism h : U → V , where U and V are contained in C or C,
is quasiconformal if it has locally square integrable distributional derivatives
∂h, ∂h, and there exists ε < 1 with the property that

∣∣∂h/∂h
∣∣ ≤ ε almost

everywhere. The Beltrami differential µh of h is given by µh = ∂h/∂h. A
quasiconformal map h is K quasiconformal if K ≥ (1 + ||µh||∞)/(1− ||µh||∞).

Two quadratic-like maps f and g are hybrid conjugate if there is a quasi-
conformal conjugacy h between f and g with the property that ∂h(z) = 0 for
almost every z ∈ Kf . Let us denote by H(f) the hybrid conjugacy class of f .

By a slight abuse of notation, we will denote by K ∩ AV (g, δ) the set of
maps f ∈ AV (g, δ) with the property that f |[−1, 1] belongs to K.

In the proof of the following theorem, we will need to work with the com-
plexification of AV . Let AV,C be the complex Banach space of all holomorphic
maps f : V → C with a continuous extension to the boundary of V . Let
AV,C(f, δ) be the open ball in AV,C centered in f and with radius δ > 0. Let
C : AV,C → AV,C be the conjugation operator given by C(f) = c ◦ f ◦ c, where
c(z) = z ∈ C. We note that f ∈ AV if and only if f ∈ AV,C and C(f) = f .

Theorem 3.3. For every g ∈ K, there exists a symmetric neighborhood
V̂g of the reals such that g has a quadratic-like extension to V̂g (which we
also denote by g), V̂g contains a definite neighborhood of Kg and for every
neighborhood V ⊂ V̂g symmetric with respect to R and with the property that
g|V is a quadratic-like map, there is δg,V > 0 such that for all f ∈ K ∩
AV (g, δg,V ),

HV (f) = H(f) ∩ AV (g, δg,V )

are codimension one real analytic leaves varying continuously with f .

Proof. By lemmas 4.16 and 4.17 in page 354 of Lyubich’s paper [20],
we obtain that for all f ∈ K ∩ AV,C(g, δg,V ), HV,C(f) = H(f) ∩ AV,C(g, δg,V )
are codimension one complex analytic leaves varying continuously with f . If
f ∈ AV (g, δg,V ) then the hybrid conjugacy class of f in AV,C(g, δg,V ) is invariant



GLOBAL HYPERBOLICITY OF RENORMALIZATION 16

under the conjugation operator C. Hence, the tangent space TfHV,C(f) at f

to its hybrid conjugacy class is invariant under the conjugation operator C,
and there is a one dimensional transversal Ef to TfHV,C(f) which is also
invariant under the conjugation operator C. Locally HV,C(f) is a graph of
G : Z ⊂ TfHV,C(f) → Ef with the property that if h = v + G(v) then C(h) =
C(v) + G(C(v)). Thus, locally HV (f) is also the graph of G|Z ∩ AV (g, δg,V ),
and so it is a codimension one real analytic leaf. Since the complex analytic
leaves HV,C(f) vary continuously with f , we deduce that the real analytic
leaves HV (f) also vary continuously with f .

3.3. Hyperbolic skew-products

Before going further, we pause for a moment to introduce the elementary
concept of hyperbolic skew product in an abstract setting. Let K be a compact
metric space and assume that K is totally disconnected. Let F be a finite
collection of (real) Banach spaces, say F = {A1,A2, . . . ,AN}, and assume we
have a locally constant map ϕ : K → F . We write Ax = ϕ(x) ∈ F , for all
x ∈ K. Let E = ∪x∈K{x} × Ax. We endow E with a topology as follows. If
Ki = ϕ−1(Ai), then Ki is an open and closed set in K, for each i = 1, 2, . . . , N .
Note that E is the disjoint union of Ki×Ai, i = 1, 2, . . . , N . Hence endow each
factor Ki×Ai with the product topology and then E with the union topology.
It is clear that E is metrizable also. The natural projection E → K is open and
continuous. We shall assume that there exists a continuous injection Ki → Ai

for each i, and will accordingly identify each x ∈ Ki with its image in Ai.
Now suppose T : K → K is a homeomorphism (in the case we are inter-

ested, T is transitive), and also that for each x ∈ K we have a real-analytic
map Sx : Ax(x, δ) → AT (x), where Ax(x, δ) = {x + v ∈ Ax : ‖v‖Ax

< δ}. We
define a skew-product operator S : E(δ) → E over T , where

E(δ) = {(x, y) : x ∈ K, y ∈ Ax, ‖y − x‖Ax
< δ} ,

by S(x, y) = (T (x), Sx(y)).

Definition 3.2. We say that S is fiberwise hyperbolic if there exists a
continuous spliting Ax = Es

x

⊕
Eu

x with dim Eu
x = 1 which is invariant in the

sense that DSx(Es
x) ⊆ Es

T (x) and DSx(Eu
x) ⊆ Eu

T (x), satisfying for all vs ∈ Es
x

and all vu ∈ Eu
x the inequalities

∥∥D
(
ST n−1(x) ◦ . . . Sx

)
(x)vs

∥∥
AT n(x)

≤Cθn‖vs‖Ax∥∥D
(
ST n−1(x) ◦ . . . Sx

)
(x)vu

∥∥
AT n(x)

≥C−1θ−n‖vu‖Ax
,

where C > 1 and 0 < θ < 1 are uniform constants on g.

Definition 3.3. The fiberwise local stable manifold W s
β(x) of S at x con-

sists of all points y ∈ Ax(x, β) such that for all n ≥ 1, we have ST n−1(x) ◦ . . . ◦
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Sx(y) ∈ AT n(x)(Tn(x), β) and
∥∥ST n−1(x) ◦ . . . ◦ Sx(y)− ST n−1(x) ◦ . . . ◦ Sx(x)

∥∥
AT n(x)

≤ Cθn

where C > 0 and 0 < θ < 1 are uniform constants on x ∈ K. The fiberwise
local unstable manifold W u

β (x) of S at x consists of all points y ∈ Ax(x, β)
such that setting y0 = y, for each n ≥ 1 there exists yn ∈ AT−n(x) such that
yn−1 = ST−n(x)(yn) and ‖T−n(x)− yn‖AT−n(x)

≤ Cθn.

3.4. Skew-product renormalization operator

Our goal in this section is to build a skew-product renormalization operator
that will play a central role in the proof that K is a basic set for T : OΩa

→ AΩa
,

for a suitable a > 0. Our skew-product is constructed so as to satisfy properties
(W1) to (W4) in page 395 of [20] in the real analytic case – restated in §3.5
– and therefore will have fiberwise stable and unstable manifolds, as we will
explain in that section.

Using Theorem 3.1 and (3.1.3), we know that for every 0 < α < b, K injects
continuously into AΩα

. Hence for f, g ∈ K we define distK(f, g) = ‖f − g‖AΩα
.

We also denote by K(g, ε) the ball of radius ε centered at g in this metric. The
metric is compatible with the natural topology of K, independently of which
α we take.

Lemma 3.4. The filled-in Julia set Kg varies continuously in the Haus-
dorff metric with respect to g ∈ K.

Proof. We need to show that for every ε > 0 there exists δ > 0 such
that if distK(f, g) < δ then (a) Kg ⊂ Ωε(Kf ) and (b) Kf ⊂ Ωε(Kg). Let U =
UR−N0 (g),N0

⊂ C be the symmetric neighborhood of [−1, 1] given by Lemma
3.2. Since the operator TR−N0 (g),N0

is continuous, every f ∈ K sufficiently close
to g in AΩε

is quadratic-like on U (f = TR−N0 (g),N0
(T−1(f)) : U → C ) and is

also close to g in AU .
To prove (a), cover Kg by finitely many disks D(zi(g), ε/2), i = 1, 2, . . . , m,

where each zi(g) is an expanding periodic point of g. For f sufficiently close to
g, the corresponding periodic points zi(f) ∈ D(zi(g), ε/2). Hence each z ∈ Kg

is at distance at most ε from some zi(f), which proves (a).
To prove (b), let n > 0 be so large that W = g−n(U) ⊂ Ωε(Kg). Since f

is close to g and W ⊆ U is symmetric f : W → f(W ) is quadratic-like also,
whence Kf ⊂ W ⊂ Ωε(Kg) and so (b) is proved.

Lemma 3.5. Let g ∈ K and let V ⊂ C be a symmetric neighborhood of
[−1, 1] which is compactly contained in Ωb/2(Kg), where b is given by (3.1.3).
Then for all ε > 0 sufficiently small K ∩ AV (g, ε) is an open subset of K.
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Proof. Take 0 < α < b sufficiently small such that Ωα is compactly
contained in V . By Theorem 3.1 and (3.1.3), every f ∈ K is well-defined on
Ωb(Kf ). Since by Lemma 3.4 the map f 7→ Kf is continuous in the Hausdorff
metric, there exists ε0 > 0 such that if f ∈ K is such that distK(f, g) < ε0

then Ωb/2(Kg) ⊂ Ωb(Kf ). Since V ⊂ Ωb/2(Kg), it follows that f is well-defined
on V , that is f ∈ AV . Hence there is a well-defined injection K(g, ε0) → AV .
Such injection is continuous. Indeed, for f ∈ K(g, ε0), the C0 norm of f in
Ωb/2(Kg) is uniformly bounded, while ‖f‖AΩα

varies continuously with f . Since
Ωα ⊂ V ⊂ V ⊂ Ωb/2(Kg), we deduce from Hadamard’s three circles theorem
(see Lemma 11.5 in page 415 of [20]) that ‖f‖AV

varies continuously with f

also. Therefore the map K(g, ε0) → AV is continuous as asserted. Now let
f ∈ K ∩ AV (g, ε0). Since the inclusion AV → AΩα

has Lipschitz constant one,
we have that f ∈ K(g, ε0). Hence, by continuity of the map K(g, ε0) → AV ,
there exists ε1 > 0 such that K(f, ε1) ⊆ K ∩ AV (g, ε0), which shows that this
last set is open in K. This completes the proof.

Lemma 3.6. Let b > 0 be as defined in (3.1.3) and δ0 > 0 as in Lemma
3.2. There exist ν > 0, 0 < δ < δ0, a finite set V of symmetric neighborhoods
of [−1, 1] and a locally constant map K 3 g 7→ Vg ∈ V with the following
properties:

(i) The neighborhood Vg is compactly contained in Ωb/2(Kg);

(ii) Every f ∈ AVg
(g, δ) is a quadratic-like map with conformal mod-

ulus larger than ν;

(iii) If f ∈ K∩AVg
(g, δ) then H(f)∩AVg

(g, δ) is a codimension one
real analytic submanifold varying continuously with f .

Proof. For every g ∈ K, let Ug ⊂ C be a symmetric neighborood of [−1, 1]
where g is quadratic-like, and take ng > 0 so large that V ′

g = g−ng(Ug) ⊂
Ωb/3(Kg) and V ′

g ⊆ V̂g, where V̂g is as given in Theorem 3.3.
Let δg > 0 be so small that each f ∈ AV ′g (g, δg) is quadratic-like in V ′

g with
conformal modulus greater than νg > 0 and also so that Theorem 3.3 holds
true (for V ′

g and δg). By Lemma 3.4, making δg smaller if necessary, we see
that V ′

g = g−ng(Ug) ⊂ Ωb/2(Kf ) for all f ∈ K ∩ AV ′g (g, δg).
By Lemma 3.5, each set K∩AV ′g (g, δg/2) is open in K. Since K is compact,

there exists a finite set {gi : i = 1, . . . , l} such that

K ⊂
l⋃

i=1

AV ′gi
(gi, δgi

/2) .

Thus we can set

V =
{
V ′

gi
: i = 1, . . . , l

}
, δ = min

i=1,...,l
{δgi

/2} and ν = min
i=1,...,l

{νgi
} .
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Therefore, since K is totally disconnected, there exists a locally constant map
K 3 g 7→ Vg ∈ V so that properties (i), (ii) and (iii) are satisfied.

We are now in a position to define the skew-product renormalization op-
erator. This is accomplished in our next lemma. Let us define first its range
and domain, respectively, as follows

E =
{
(g, f) : g ∈ K and f ∈ AVg

}

E(δ)=
{
(g, f) ∈ E : f ∈ AVg

(g, δ)
}

.

Let us now fix once and for all a > 0 so small that Ωa ⊂ Vg for every
g ∈ K (this is possible because V in Lemma 3.6 is a finite set). The inclusion
kg : AVg

→ AΩa
is a well-defined compact linear operator. By (3.1.3) and

Lemma 3.6 (i) we also have

VRN (g) ⊂ Ωb/2(KRN (g)) ⊂ Ωb(KRN (g)) ⊂ Ug,N .

Therefore the inclusion jg,N : AUg,N
→ AVRN (g)

is also a well-defined compact
linear operator.

Lemma 3.7. Let δ > 0 and Vg ∈ V be as in Lemma 3.6. Let N = N(a) >

0, Tg,N and T : OΩa
→ AΩa

be as in Lemma 3.2.

(i) For every g ∈ K, the operator Tg : AΩa
(g, δ) → AVRN (g)

given by
Tg = jg,N ◦ Tg,N is real analytic with a compact derivative.

(ii) The skew-product renormalization operator S : E(δ) → E given
by S(g, f) = (T (g), Sg(f)), where Sg = Tg ◦ kg : AVg

(g, δ) → AVT (g),
is well-defined. Furthermore,

kT (g) ◦ Sg = T ◦ kg . (3.4.1)

Proof. The proof is similar to the proof of Lemma 3.2 (ii).

3.5. Hyperbolicity of the renormalization operator

The purpose of this section is to show that K is a hyperbolic basic set for the
operator T : OΩa

→ AΩa
. This will follow from the fact (Lemma 3.8 below)

that the skew-product renormalization operator has fiberwise real analytic sta-
ble manifolds and fiberwise one dimensional real analytic unstable manifolds.

We start by noting that our skew-product operator satisfies the conditions
W1-W4 in page 395 of Lyubich [20] in the real analytic case. Namely, we have

W1. The conformal modulus of each g ∈ K is larger than an uniform constant
µ > 0.

W2. There exists η > 0 such that if distK(f, g) < η for some f, g ∈ K, then
AVf

= AVg
.
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W3. There exists δ > 0 such that Sg(AVg
(g, δ)) ⊆ AVT (g) .

W4. The vertical fibers Zg (consisting of those normalized symmetric quadratic-
like germs whose external class is the same as that of g) sit locally in AVg

for each g ∈ K.

Condition W1 is satisfied because of the complex bounds (Theorem 3.1).
Condition W2 follows from Lemma 3.6. Condition W3 holds by the construc-
tion of Sg in Lemma 3.7. Condition W4 is a consequence of Lemma 3.6 (iii).

Now we have the following result.

Lemma 3.8. The skew-product renormalization operator S : E(δ) → E

defined in Lemma 3.7 is fiberwise hyperbolic. Moreover

(i) The local stable set W s
δ (g) of S at g is a co-dimension one sub-

manifold of AVg
which is relatively open in H(g) ∩ AVg

(g, δ), and
W s

δ (g) is tangent to Es
g at g.

(ii) The local unstable set W u
δ (g) ⊂ AVg

of S at g is a one-dimensional
real analytic manifold, and {g} ×W u

δ (g) varies continuously with
g ∈ A in E.

Proof. Since the operator S satisfies Lyubich’s conditions W1-W4 stated
above, part (i) follows from Theorem 8.2 in page 392 of [20] and Theorem 3.3,
and part (ii) follows from Theorem 8.8 in page 398 of Lyubich’s paper [20].

Theorem 3.9. Let T : OΩa
→ AΩa

be the real analytic operator defined
in Lemma 3.7. Then there is a continuous, DT -invariant splitting AΩa

=
Es

g

⊕
Eu

g , for g ∈ K, such that if vu ∈ Eu
g and vs ∈ Es

g then

‖DTn(g)vu‖AΩa
≥C−1θ−n‖vu‖AΩa

(3.5.1)

‖DTn(g)vs‖AΩa
≤Cθn‖vs‖AΩa

, (3.5.2)

where C > 1 and 0 < θ < 1 are uniform constants on g.

Proof. Since for every g ∈ K the map kg : AVg
→ AΩa

is linear and
injective, it follows from Lemma 3.8 (ii) that Zu

g = kg(W u
δ (g)) is a real analytic

one dimensional manifold varying continuously with g. Let wg be the unitary
vector tangent to W u

δ (g) at g. Then vg = kg(wg) is a vector tangent to Zu
g at

g and also varies continuously with g. Since kg and kT (g) are linear maps we
see from (3.4.1) that if λg is such that DSg(g)wg = λgwT (g) then DT (g)vg =
λgvT (g). Thus a natural candidate for Eu

g is the one dimensional linear subspace
generated by vg. In particular, (3.5.1) is satisfied.

Let us find the natural candidate for Es
g . We have that DTg(g)vg = wT (g)

and by hypothesis wT (g) is transversal to the tangent space of W s
δ (T (g)). Thus,
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by the implicit function theorem Zs
g = T−1

g (W s
δ (Tg)) is a codimension one

manifold transversal to Zu
g . Taking Es

g equal to the tangent space of Zs
g , we

obtain that Es
g

⊕
Eu

g = AΩa
. By (3.4.1), we have that a neighborhood of

T (g) intersected with Zu
T (g) is contained in T (Zu

g ) and a neighborhood of T (g)
intersected with T (Zs

g) is contained in Zs
T (g), which implies that the spliting

Es
g

⊕
Eu

g is invariant under DT . From assertion (i) in Lemma 3.8, we obtain
that Es

g varies continuously with g and so the spliting Es
g

⊕
Eu

g also varies
continuously with g.

Finally, let M > 0 be such that ‖DTg(g)‖AΩa
≤ M and note that ‖kg‖AΩa

≤
1 for all g ∈ K. For all vs ∈ Es

g with unit norm, let us = DTg(g)vs ∈ AVT (g) .
By Lemma 3.8 (i) and (3.4.1) there exists C1 > 1 and 0 < θ < 1 such that

‖DTn(g)vs‖AΩa
= ‖kT n(g) ◦DST n−1(g)(T

n−1(g)) ◦ . . . ◦DST (g)(T (g))us‖AΩa

≤‖DST n−1(g)(T
n−1(g)) ◦ . . . ◦DST (g)(T (g))us‖AVT n(g)

≤C1Mθn−1 ,

which shows that (3.5.2) is satisfied. This completes the proof.

With the above results, we have therefore established Theorem 2.4, to the
effect that a suitable power of the renormalization operator is indeed hyperbolic
in a suitable (real) Banach space of real analytic mappings. From now on, we
shall concentrate on the problem of extending such hyperbolicity to larger
ambient spaces of smooth mappings. Our journey will take us far into the
wilderness of non-linear functional analysis.

4. Extending invariant splittings

In this section we prove a certain result from functional analysis (Theorem
4.1 below) that is absolutely crucial for the stable manifold theorem that we
shall prove later. This result deals with the notion of compatibility presented
below and is a strong generalization of a key idea of Davie in [5]. In §5, we
shall use the results presented here to show that the invariant splitting for the
renormalization operator T in AΩa

of §3 extends to an invariant splitting for
the action of T in the larger spaces Ar of Cr maps.

4.1. Compatibility

We are interested in the answer to the following question. Given a smooth
operator T : O → A having a hyperbolic basic set K, and given a larger
ambient space B ⊇ A to which T extends (not necessarily smoothly), under
which conditions does K have a hyperbolic structure in B? To give a precise
meaning to this question (and then answer it!) we introduce the following
notion.
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We have a natural continuous map L : K→ L(A,A) given by

K 3 x 7→ Lx : A → A
Lx(v) = DT (x) v .

We will also assume that for every x ∈ K, Eu
x is a one-dimensional subspace

and that we can chose a unit vector ux ∈ Eu
x varying continuously with x

so that Lx(ux) = δx · uT (x) with δx > 0. In the case of the renormalization
operator there is a natural choice for the vectors ux: choose the unit vector
pointing in the direction of increasing topological entropy.

For every x ∈ K, we denote DTn(x) = LT n−1(x) ◦ · · · ◦ Lx by L
(n)
x and

δT n−1(x) · · · δx by δ
(n)
x . By hyperbolicity of K, there exist C0 > 0 and λ > 1

such that for every x ∈ K and every n ≥ 1 we have

δ(n)
x > C0λ

n . (4.1.1)

We denote by X (r) the open ball in the Banach space X centered at the
origin and with radius r > 0.

Definition 4.1. Let θ < ρ < λ where θ is the contraction exponent of
the hyperbolic basic set K of the operator T and λ is as in (4.1.1). The pair
(B, C) is ρ-compatible with (T,K) if the following conditions are satisfied.

A1. The inclusions A → B → C are compact operators.

A2. There exists M > 0 such that each linear operator Lx = DT (x)
extends to a linear operator L̂x : C → C with

∥∥∥L̂x

∥∥∥
C
< M

L̂x(B)⊂B∥∥∥L̂x(v)
∥∥∥
B

< M‖v‖B

A3. The map L̃ : K→ L(B, C) given by L̃x = L̂x|B is continuous.

A4. There exists ∆ > 1 such that B(∆) ∩ A is C-dense in B(1).

A5. There exist K > 1 and a positive integer m such that
∥∥∥L̂(m)

x (v)
∥∥∥
B
≤ max

{
ρm

2(1 + ∆)
‖v‖B,K‖v‖C

}
.

Remark 4.1. Note that neither the map L̂ : K × C → K × C given by
L̂(x, v) = (T (x), L̂x(v)) nor its restriction from K×B to K×B are necessarily
continuous.
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Example 4.1. As we know from Theorem 2.4, K is a hyperbolic basic set
of the renormalization operator T = RN : O → A. In §5 (see Theorem 5.1),
we will show that the pair (Ar,A0) is ρ-compatible for r sufficiently close to 2
and 1-compatible for r > 2 non-integer.

Let πu
x : A → Eu

x and πs
x : A → Es

x be the canonical projections. We
define Px = πu

T (x) ◦Lx and Qx = πs
T (x) ◦Lx which have the property that Lx =

Px +Qx and that PT (x)Qx = QT (x)Px = 0. We also define the linear functional
σx : A → R by πu

x(v) = σx(v)ux, and observe that Px(v) = δxσx(v)uT (x).
We note that the map σ : K → L(A,R) which associates to each x the linear
functional σx is continuous.

Theorem 4.1. If (B, C) is ρ-compatible with (T,K) then each stable func-
tional σx extends to a unique linear functional σ̂x ∈ B∗ satisfying

∥∥∥L̂(n)
x (v)− δ(n)

x σ̂x(v)uT n(x)

∥∥∥
B
≤ Cθ̂n‖v‖B (4.1.2)

for some C > 0 and 0 < θ̂ < ρ. Furthermore, the map σ̂ : K→ L(B,R) which
associates to each x the linear functional σ̂x is continuous.

Proof. Let m and M be as given in Definition 4.1. Since by property A1
the C-closure of B(1) is compact, and since by property A4 the intersection
A ∩ B(∆) is C-dense in B(1) we can find a finite set

Φ ⊆ A ∩ B(∆)

such that for each w ∈ B(1) there exists w′ ∈ Φ such that

‖w − w′‖C <
ρm

4K
.

Now let v ∈ B(1), and let v0 ∈ Φ be such that

‖v − v0‖C <
ρm

2K
.

Since ‖v − v0‖B < 1 + ∆, applying the inequality of property A5 to v − v0

yields
∥∥∥L̂(m)

x (v − v0)
∥∥∥
B
≤max

{
ρm

2(1 + ∆)
‖v − v0‖B,K‖v − v0‖C

}

<ρm/2 .

Therefore L̂
(m)
x (v) = L̂

(m)
x (v0) + (ρm/2)w1 for some w1 ∈ B(1). Repeating the

argument with w1 replacing v and proceeding inductively in this fashion, we
get after k steps

L̂(km)
x (v) =

k−1∑

j=0

ρjm

2j
L

((k−j)m)
T jm(x) (vj) +

ρkm

2k
wk
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for some wk ∈ B(1) and vj ∈ Φ. Now recall that

L
((k−j)m)
T jm(x) (vj) = P

((k−j)m)
T jm(x) (vj) + Q

((k−j)m)
T jm(x) (vj)

= δ
((k−j)m)
T jm(x) σT jm(x)(vj)uT km(x) + Q

((k−j)m)
T jm(x) (vj) .

Hence we can write

L̂(km)
x (v) = δ(km)

x




k−1∑

j=0

1
2j

ρjm

δ
(jm)
x

σT jm(x)(vj)


 uT km(x)

+
k−1∑

j=0

(
ρm

2

)j

Q
((k−j)m)
T jm(x) (vj) +

ρkm

2k
wk

(4.1.3)

The first summation in parentheses converges to a limit because, by (4.1.1),∣∣∣δ(jm)
x

∣∣∣ ≥ C0λ
jm > C0ρ

jm and
{
σT jm(x)(vj)

}
is bounded, as the vj run through

finitely many values and
∥∥σT i(x)

∥∥ ≤ M for all i. We therefore define

σ̂x(v) = lim
k→∞

k−1∑

j=0

1
2j

ρjm

δ
(jm)
x

σT jm(x)(vj) . (4.1.4)

It will be clear in a moment that this extension of σx is independent of the
choices of approximants vj performed above, linear, continuous, and the unique
extension satisfying (4.1.2). We know that

∥∥∥Q
((k−j)m)
T jm(x)

∥∥∥
A
≤ C1θ

m(k−j)

for all j < k. Thus the second summation plus the last term in (4.1.3) add up
to a vector with B-norm bounded by

C2




k−1∑

j=0

1
2j

(
θ

ρ

)m(k−j)

+
1
2k


 ρkm .

This gives
∥∥∥L̂(km)

x (v)− δ(km)
x σ̂x(v)uT km(x)

∥∥∥
B
≤ C3(k + 1)βkρkm , (4.1.5)

where β = max{1/2, θ/ρ} < 1. Now choose 0 < θ̂ < ρ so that (k + 1)βk <

C4( θ̂
ρ)km for all k. Since by property A2 for all x ∈ K and for all v ∈ B we

have ‖L̂x(v)‖B < M‖v‖B, writing n = km + r and using the above estimates
we obtain the desired inequality (4.1.2).

Let us now verify that σ̂x(v) is the unique value satisfying (4.1.2). In
particular, it does not depend on the choices of approximants vj taken in
(4.1.4). To do this we represent by σ∗x(v) a value satisfying (4.1.2), for instance
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obtained in (4.1.4) by taking another choice of approximants. Therefore we
have
∥∥σ̂x(v)uT km(x) − σ∗x(v)uT km(x)

∥∥
B≤

∥∥∥∥σ̂x(v)uT km(x) −
(
δ(km)
x

)−1
L̂(km)

x (v)
∥∥∥∥
B

+
∥∥∥∥
(
δ(km)
x

)−1
L̂(km)

x (v)− σ∗x(v)uT km(x)

∥∥∥∥
B

≤ 2Cθ̂km
(
δ(km)
x

)−1
.

Letting k → ∞ in this inequality we deduce that σ̂x(v) = σ∗x(v). A similar
argument shows that σ̂x is linear. Using inequality (4.1.5) with k = 1, we
obtain that ‖σ̂x‖B is bounded. Finally, the fact that σ̂x is continuous in x can
be deduced from (4.1.4) using property A3.

Corollary 4.2. Let (B, C) be ρ-compatible with (T,A). Let the linear
functional σ̂x ∈ B∗ be the extension of the stable functional σx satisfying
inequality (4.1.2) for all x ∈ K. Then, there exists a continuous splitting
B = Ês

x

⊕
Êu

x with the following properties:

(i) Êu
x is the inclusion in B of the unstable linear space Eu

x ⊂ A;

(ii) Ês
x = Ker(σ̂x);

(iii) the splitting is invariant by L̂x;

(iv) there exist a constant C > 0 such that
∥∥∥L̂m

x (v)
∥∥∥
B
≥ Cλm‖v‖B

for all x ∈ K, for all v ∈ Êu
x , and for all m ∈ N (where λ > 1 is

the same as in (4.1.1));

(v) there exist constants C > 0 and 0 < θ̂ < ρ < λ such that
∥∥∥L̂m

x (v)
∥∥∥
B
≤ Cθ̂m‖v‖B

for all x ∈ K, for all v ∈ Ês
x, and for all m ∈ N. In particular, if

ρ ≤ 1 then θ̂ < 1.

(vi) Let π̂s
x : B → Ês

x and π̂u
x : B → Êu

x be the natural projections
such that

π̂s
x ◦ π̂s

x = π̂s
x, π̂u

x ◦ π̂u
x = π̂u

x and π̂s
x ◦ π̂u

x = π̂u
x ◦ π̂s

x = 0 .
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Let us define the operators Q̂x : B → B and P̂x : B → B by Q̂m
x =

L̂m
x ◦ π̂s

x and by P̂m
x = L̂◦xπ̂u

x . Then, there exists C > 1 such that
∥∥∥Q̂m

x

∥∥∥
B
≤Cθ̂m

∥∥∥P̂m
∥∥∥
B
≥C−1λm

for all x ∈ K and for all m ∈ N.

Proof. First, we observe that for all x ∈ K and for all v ∈ B, we can write
v = (v− σ̂x(v)ux)+ σ̂x(v)ux, where v− σ̂x(v)ux ∈ Ker(σ̂x) and σ̂x(v)ux ∈ Êu

x .
Since σ̂x(ux) = 1 6= 0, we obtain that B = Ês

x

⊕
Êu

x .
By inequality (4.1.2), there exists C > 0 such that

∥∥∥L̂(m)
x (v)

∥∥∥
B
≤ Cθ̂m‖v‖B (4.1.6)

for all x ∈ K, for all v ∈ Ker(σ̂x), and for all m ∈ N; if v ∈ B \ Ker(σ̂x) then
there exists Cv > 0 such that

∥∥∥L̂(m)
x (v)

∥∥∥
B
≥ Cvλ

m .

Therefore, L̂x(Ker(σ̂x)) ⊂ Ker(σ̂T (x)). Since Lx(Eu
x) = Eu

T (x) implies that

L̂x(Êu
x) = Êu

T (x), the splitting is invariant by L̂x.
By inequality (4.1.6), we obtain that property (v) and the first inequality

in property (vi) are satisfied. Since K is compact and the map K→ R+ which
associates ‖ux‖B to each x is continuous, there is C > 1 such that

C−1‖v‖A < ‖v‖B < C‖v‖A (4.1.7)

for all x ∈ K and for all v ∈ Eu
x . Thus, property (iv) and the second inequality

in property (vi) follow from (4.1.1) and (4.1.7).

5. Extending the invariant splitting for renormalization

Our aim in this section is to show that the invariant splitting on the
limit set K of the operator T given by Theorem 2.4, which is an iterate of
the renormalization operator, can be extended to an invariant splitting of the
same operator acting in the space of Cr unimodal maps. Given the abstract
results of the previous section, namely Theorem 4.1 and Corollary 4.2, all we
have to do is find the appropriate compatible spaces and the corresponding
compatibility constants. More precisely, we shall prove the following theorem.

Theorem 5.1. Let T and K be as above, and let λ be the expansion con-
stant satisfying (4.1.1).



GLOBAL HYPERBOLICITY OF RENORMALIZATION 27

(i) For all α > 0 the pair of spaces (A2+α,A0) is 1-compatible with
(T,K).

(ii) For all 1 < ρ < λ there exists α > 0 sufficiently small such that
(A2−α,A0) is ρ-compatible with (T,K).

The path towards the proof of this theorem (presented in §5.3) leads us
to perform what amounts to a spectral analysis of the formal derivative of
the renormalization operator, which in turn call for certain estimates on the
geometry of the post-critical set of each map in the limit set of renormalization.
We have the following explicit formula for the derivative Lf = DT (f) of T at
f ∈ K:

DT (f)v =
1
λf

p−1∑

j=0

Df j(fp−j(λfx))v(fp−j−1(λfx))

+
1
λf

[x(Tf)′(x)− Tf(x)]
p−1∑

j=0

Df j(fp−j(0))v(fp−j−1(0)) ,

where as before λf = fp(0) for some positive integer p = p(f, N). We observe
that the operator Lf extends naturally to each of the spaces Aγ for γ ≥ 0.

Properties A1, A2 and A3 of Definition 4.1 are easily verified in our
setting. Property A4 follows from a general result of Hölder spaces that can
be proved via smoothing operators. Hence, the heart of the matter is verifying
property A5. This is where the geometric scaling properties of the invariant
Cantor set of a map in K become important – see §5.2. We follow Davie’s
observation that L

(m)
f is a special sort of operator – what we call an L-operator

– which is amenable to analysis. The verification of the fifth property (with
(B, C) = (Aγ ,A0)) – presented in §5.3 – consists in controlling the norm of a
certain positive linear operator L

(m)
f,γ : A0 → A0 associated to L

(m)
f (see Lemma

5.3). Using the bounded distortion properties of f ∈ K and the geometry of
the invariant set of f , we show that the exponential growth rate of the C0

norm of L
(m)
f,γ is bounded by some µ < λ if γ = 2−α with α > 0 small enough

and is bounded by some µ < 1 if γ = 2 + α with α > 0.

5.1. Hölder norms and L-operators

First we define what we mean by an L-operator, and to each such operator L

we associate another operator Lγ , acting on continuous functions. Then, we
use local Hölder estimates to control the norm of compositions Lm◦· · ·◦L2◦L1

of L-operators Li by the norm of (Lm ◦ · · · ◦ L2 ◦ L1)γ .
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Definition 5.1. An L-operator is a bounded linear operator L : Cγ(I) →
Cγ(I) that can be written in the form

Lv(x) =
n∑

i=1

φi(x)v(ψi(x)),

where φi ∈ Cγ1(I) and ψi ∈ Cγ2(I) are maps such that ψi(I) ⊂ I for i =
1, . . . , n, and where γ1 > 0 and γ2 ≥ 1 are such that 0 < γ < γ1, γ2.

Example 5.1. For all f ∈ K and all i ≥ 0, the formal derivative Lf =
DT (T i(f)) is an L-operator.

An L-operator L as above yields a positive, bounded linear operator Lγ :
C0(I) → C0(I) defined by

Lγv(x) =
n∑

i=1

|φi(x)‖Dψi(x)|γv(ψi(x)) .

A straightforward computation yields the following result.

Lemma 5.2. If L1, L2 : Cγ(I) → Cγ(I) are L-operators, then (L1◦L2)γ =
L1,γ ◦ L2,γ.

We remind the reader that a function ϕ : I → I is α-Hölder continuous,
for a fixed 0 < α < 1, if there is c > 0 such that |ϕ(x)− ϕ(y)| ≤ c|x− y|α for
all x, y ∈ I. Let Cα(I) be the Banach space of all α-Hölder continuous real
functions on I, with norm

‖ϕ‖α = max

{
‖ϕ‖0 , sup

x6=y

|ϕ(x)− ϕ(y)|
|x− y|α

}
.

Let Ck+α(I) be the Banach space of all real functions on I for which the k-th
derivative is α-Hölder continuous, with norm

‖ϕ‖k+α = max{‖ϕ‖0, ‖Dkϕ‖α}.

Lemma 5.3. Let Li : Cγ(I) → Cγ(I) be a sequence of L-operators, and
assume that there exist constants µ > 0 and C > 0 such that for all n we have

‖(Ln ◦ · · · ◦ L2 ◦ L1)γ‖0 ≤ Cµn . (5.1.1)

Then for all ρ > µ and all ε > 0 there exist m > 0 and K > 0 such that for
all v ∈ Cγ(I) we have

‖Lm ◦ · · · ◦ L2 ◦ L1(v)‖γ ≤ max {ερm‖v‖γ ,K‖v‖0} .
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To prove the above proposition, we will use local Hölder estimates for L-
operators given in our next lemma. For each η > 0 and each ϕ ∈ Cα(I), we
consider an associated semi-norm

‖ϕ‖α,η = sup
0<|x−y|<η

|ϕ(x)− ϕ(y)|
|x− y|α .

The corresponding semi-norm of ϕ ∈ Ck+α(I) for k > 0 is ‖ϕ‖k+α,η =
‖ϕ(k)‖α,η.

Lemma 5.4. Let L : Cγ(I) → Cγ(I) be an L-operator as defined above.

(i) For every ε > 0, there exists η > 0 such that

‖Lv‖γ,η ≤ (ε + ‖Lγ‖C0(I))‖v‖γ .

(ii) For every ε > 0 and 0 < ξ < γ, there is η > 0 such that

‖Lv‖ξ,η ≤ ε‖v‖γ .

Proof. See Lemmas 1 and 2 in [5].

Proof of Lemma 5.3. Choosing m such that Cµm < ερm/8, we have

M = ‖Lm,γ ◦ · · · ◦ L1,γ‖0 <
ερm

8
.

By Lemma 5.4, given ε′ = ερm/8, there exists η > 0 such that

‖Lm ◦ · · · ◦ L1(v)‖γ,η ≤
(
ε′ + M

) ‖v‖γ ≤ ερm

4
‖v‖γ .

Taking K = 8k!‖Lm ◦ · · · ◦ L1‖0/ηγ , writing γ = k + α, where k is an integer
and 0 < α < 1, and using interpolation of norms (see Lemma 4 in [5]), we
deduce that

‖Lm ◦ · · · ◦ L1(v)‖γ ≤ 4max
{
‖Lm ◦ · · · ◦ L1(v)‖γ,η ,

2k!
ηγ

‖Lm ◦ · · · ◦ L1(v)‖0

}

≤max {ερm‖v‖γ ,K‖v‖0} .

5.2. Bounded geometry

Our aim in this section is to prove two crucial propositions concerning the
geometry of the invariant Cantor set of an infinitely renormalizable map in
the limit set of renormalization. They are important not only in the proof of
Theorem 5.1, but also in the proof (presented in §8) that the renormalization
operator is robust (in the sense of §6).

We recall our notation. For each f ∈ K, let If ⊆ I be the closure of the
postcritical set of f (the Cantor attractor of f). For each k ≥ 0, we can write

Rkf(x) =
1
λk
· fpk(λkx)
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where pk =
∏k−1

i=0 p(Rif) and λk =
∏k−1

i=0 λ(Rif). Recall that the renor-
malization intervals ∆0,k = [−|λk|, |λk|] ⊂ [−1, 1], and ∆i,k = f i(∆0,k) for
i = 0, 1, . . . , pk − 1. The collection Ck = {∆0,k, . . . ,∆pk−1,k} consists of pair-
wise disjoint intervals. Moreover,

⋃{∆ : ∆ ∈ Ck+1} ⊆
⋃{∆ : ∆ ∈ Ck} for all

k ≥ 0 and we have

If =
∞⋂

k=0

pk−1⋃

i=0

∆i,k .

In our first proposition, f is a normalized, symmetric quadratic unimodal
map, infinitely renormalizable, sufficiently smooth (say C2) for Sullivan’s real
bounds to be true for f . But there are no restrictions on the combinatorics.
We shall use the general fact, due to Guckenheimer [12], that among those
renormalization intervals at the k-th level the one that contains the critical
point of f (namely, ∆0,k) is the largest (up to multiplication by a constant).
This can be seen as follows. First suppose that f is also S-unimodal. If
n > 0 is such that fn(x) belongs to the interval with endpoints −x, x but
f j(x) does not, for all 1 ≤ j < n, then |Dfn(x)| > 1 – this uses the fact
that f has negative Schwarzian. From this it follows that if J ⊂ [−1, 1] is
an interval that does not contain the critical point, whose iterates f j(J) are
pairwise disjoint for 0 ≤ j ≤ n, such that fn(J) lies in the convex-hull of J

union its symmetric while the previous iterates f j(J), 1 ≤ j < n, do not, then
|fn(J)| > |J |. Hence, if f is renormalizable, symmetric and S-unimodal then
at each renormalization level the interval that contains the critical point is the
largest. If we drop the negative Schwarzian hypothesis, the same is true up to a
multiplicative constant. This is because every sufficiently deep renormalization
of f already has negative Schwarzian derivative.

Proposition 5.5. For each α > 0 there exist constants C0 and 0 < µ < 1
such that

pk−1∑

i=0

|∆i,k|2+α

|∆i+1,k| ≤ C0µ
k . (5.2.1)

Proof. Let `(∆i,k) be the level of ∆i,k, i.e., the largest integer j such that
∆i,k ⊆ ∆0,j \ ∆0,j+1. Let di,k be the distance from ∆i,k to zero (the critical
point). Using that ∆i,k has space around itself we see that for all i 6= 0 and all
x ∈ ∆i,k we have di,k ≤ |x| ≤ Kdi,k, where K > 1 is a constant that depends
only on the real bounds. Hence K−1 ≤ |x|/|y| ≤ K whenever x, y ∈ ∆i,k.
These facts are implicitly used in the estimates below.

Now, we have |∆i,k|/|∆i+1,k| = 1/|f ′(xi,k)| for some xi,k ∈ ∆i,k. Since the
critical point is quadratic, we have |f ′(xi,k)| ≥ C1|xi,k|, and so

|∆i,k|
|∆i+1,k| ≤

1
C1|xi,k| . (5.2.2)
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Therefore, for all 0 ≤ j ≤ k − 1 we have
∑

`(∆i,k)=j

|∆i,k|2
|∆i+1,k| ≤ C−1

1

∑

`(∆i,k)=j

|∆i,k|
|xi,k| ≤ C2

∑

`(∆i,k)=j

∫

∆i,k

dx

|x|

≤ C3

∫

∆0,j\∆0,j+1

dx

|x| ≤ C4 log
|∆0,j |
|∆0,j+1| .

With these estimates, and using the fact proved above that |∆0,k| ≥ C5|∆i,k|
for all 0 ≤ i ≤ pk − 1, we see that

pk−1∑

i=0

|∆i,k|2+α

|∆i+1,k| ≤ C6 max |∆i,k|α

1 +

k−1∑

j=0

log
|∆0,j |
|∆0,j+1|




≤ C6|∆0,k|α
(

1 + log
1

|∆0,k|
)

≤ Kα|∆0,k|α/2 ,

where Kα is a positive constant depending on α. This proves (5.2.1) because
|∆0,k| decays exponentially with k with uniform rate depending only on the
real bounds.

In addition to Proposition 5.5 – valid for maps with arbitrary combina-
torial type – we shall need also an estimate that seems specific for maps with
bounded combinatorial type, namely Proposition 5.8 below. First, a couple of
lemmas.

For each f ∈ K, let df be the infimum of all positive numbers s such that

pk−1∑

j=0

|∆j,k|s → 0 as k →∞ .

It is possible to prove, using some thermodynamic formalism, that df agrees
with the Hausdorff dimension of If , but we will not need this fact. Let 0 <

D < 1 be the supremum of df as f ranges through K.

Lemma 5.6. For each s > D there exist Cs > 0 and 0 < ηs < 1 such that
for all f ∈ K we have

pk−1∑

j=0

|∆j,k|s < Csη
k
s .

Proof. Apply bounded geometry and the compactness of K.

Next, let us define

Sj,k(f ; s) =
∑

`(∆i,k)=j

|∆i,k|s ,

for j = 0, 1, . . . , k − 1, all k ≥ 0, and all f ∈ K.
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Lemma 5.7. For each s > D and each f ∈ K we have Sj,k(f ; s) ≤
Csλ

s
jη

k−j
s , where Cs > 0 and 0 < ηs < 1 are the constants of Lemma 5.6,

and λj = λ(f, j) is as in (3.1.1).

Proof. Using renormalization, we see that Sj,k(f ; s) = λs
jS0,k−j(Rj(f); s).

From Lemma 5.6, we know that

S0,k−j(Rj(f); s) ≤ Csη
k−j
s .

The result follows.

Proposition 5.8. For each µ > 1 close to one, there exist 0 < α < 1−D

close to zero and C > 0 such that for all f ∈ K we have
pk−1∑

i=0

|∆i,k|2−α

|∆i+1,k| ≤ Cµk .

Proof. Using (5.2.2) and the fact that |xi,k| ≥ λj+1 when `(∆i,k) = j, we
have

pk−1∑

i=0

|∆i,k|2−α

|∆i+1,k| =
pk−1∑

i=0

|∆i,k|
|∆i+1,k| |∆i,k|1−α

≤C


|∆0,k|−α +

k−1∑

j=0

λ−1
j Sj,k(f ; 1− α)


 .

If 1− α > D then, applying Lemma 5.7 with s = 1− α, we get
pk−1∑

i=0

|∆i,k|2−α

|∆i+1,k| ≤ CC1−α

k∑

j=0

λ−α
j ηk−j

1−α ≤ Kαµk
α ,

where Kα > 0 and µα = max{λ(f, 1)−α : f ∈ K} depend on α. But if α is
small enough we will have µα < µ, and this completes the proof.

Remark 5.1. By a continuity argument and the real bounds, we can prove
that propositions 5.5 and 5.8 remain true for maps f̃ ∈ U 4 sufficiently close to
K. More precisely, for each k > 0 there exists εk > 0 such that for all f ∈ K
and all f̃ ∈ U4 with

∥∥∥f̃ − f
∥∥∥

C4(I)
< εk, the map f̃ is k-times renormalizable,

and the statements of both propositions hold for f̃ . This will be used in §8.4
only for real analytic maps in an open neighborhood of K in A .

5.3. Spectral estimates

In this section we prove Theorem 5.1. Fixing f ∈ K and considering the
Banach space A given by Theorem 2.4, we recall that the Fréchet derivative
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Lf = DT (f) : A → A is given by formula (5.0.1). It is clear from that formula
that Lf extends to a bounded linear operator L̂f : A0 → A0, and moreover
L̂f (As) ⊆ As for all s ≥ 0 (because f is analytic).

We want to verify the compatibility properties of Definition 4.1 for the
spaces B = As and C = A0 when s is close to (but different from) 2. Properties
A1 and A2 are clearly satisfied, while A3 follows from Lemma 8.13. Property
A4 is a consequence of the following simple fact about Hölder spaces (see [15]).

Lemma 5.9. There exists ∆ > 1 such that A∩As(∆) is C0-dense in As(1).

Proof. By Theorem A.10 in page 43 of [15], there exists a family St, t > 0,
of smoothing operators preserving even functions and C ≥ 1 such that, for
all v ∈ As(1), we have ‖Stv‖Cs ≤ C and ‖v − Stv‖C0 ≤ Cts. By the Stone-
Weierstrass theorem, for all small 0 < ε < C there is a polynomial wt with
real coefficients and vanishing at zero such that ‖wt − Stv‖Cs < ε. Now let
vt(x) = 1

2(wt(x) + wt(−x)), so that vt ∈ A and we still have ‖vt − Stv‖Cs < ε.
Then ‖vt‖Cs < ‖St(v)‖Cs +ε < 2C on one hand, while ‖vt−v‖C0 < ε+Cts on
the other hand. For t small enough, this gives ‖vt−v‖C0 < 2ε with vt ∈ As(2C).

Hence all that remains is to check that property A5 is satisfied. By Lemma
5.3, this will be the case provided we can control the C0 norms of L̂

(m)
f,s . We

shall prove this now, with the help of Propositions 5.5 and 5.8.
Recall that for each m ≥ 1 the operator L̂

(m)
f is an L-operator and its

associated positive, bounded linear operator L̂
(m)
f,s : A0 → A0 is given by

L̂
(m)
f,s (v) =

1
λk

pk−1∑

j=0

|Df j(fpk−j(λkx))||λkDfpk−j−1(λkx)|sv(fpk−j−1(λkx)) ,

(5.3.1)
where k = mN (recall that T = RN ). Now we have the following fact coming
from bounded geometry

|Df j(fpk−j(λkx))| ³ |∆0,k|
|∆pk−j,k| , (5.3.2)

for all 0 ≤ j ≤ pk − 1. Since |Df(λkx)| ≤ Cλk for some constant C > 0
independent of k and uniform in f ∈ K, and |∆0,k| = 2λk we have

|Dfpk−j−1(λkx)| ≤ C|∆0,k||Dfpk−j−2(f(λkx))| .

Again, by bounded geometry, for all 0 ≤ j ≤ pk − 2

|Dfpk−j−2(f(λkx))| ³ |∆pk−j−1,k|
|∆1,k| ,

and so

|Dfpk−j−1(λkx)| ≤ C|∆0,k|
|∆pk−j−1,k|
|∆1,k| . (5.3.3)
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Using (5.3.2) and (5.3.3) in (5.3.1), we see that

‖L̂(m)
f,s ‖ ≤ C

λk


λs

k|∆0,k|
|∆1,k| +

pk−2∑

j=0

λ2s
k

|∆0,k|
|∆pk−j,k|

|∆pk−j−1,k|s
|∆1,k|s


 .

But |∆0,k| = 2λk and since the critical point of f is quadratic, |∆1,k| ³
|∆0,k|2 ³ λ2

k. Therefore, we arrive at

‖L̂(m)
f,s ‖ ≤ C1

pk−1∑

j=0

|∆pk−j−1,k|s
|∆pk−j,k| . (5.3.4)

The proof of part (i) of Theorem 5.1 now follows from Proposition 5.5, while
the proof of part (ii) is a consequence of Proposition 5.8. This ends the proof
of Theorem 5.1.

6. The local stable manifold theorem

In this section we isolate those features of the renormalization operator
that are essential for the promotion of “hyperbolicity” from the Banach space
A of Theorem 2.4 to the space Ur. This leads us to the definition of a robust
operator (see §6.1). Such definition is necessarily rather technical, since it
has to account for the fact that the renormalization operator is not Fréchet
differentiable in Ur. In particular a robust operator acts simultaneously on
four different Banach spaces (corresponding in the case of renormalization to
the space A given by Theorem 2.4, Ar, As and A0, where r > 1 + s and s is
close to 2), and satisfies several properties. The major goal of this section is
to prove a local stable manifold theorem for robust operators.

6.1. Robust operators

Before moving on to a precise definition of a robust operator, we give the
following informal description. A robust operator acts on four Banach spaces
A ⊂ B ⊂ C ⊂ D. In the smaller space A it acts smoothly and has a hyperbolic
basic set K. The pairs of spaces (B,D) and (C,D) are compatible with (T,K),
and in particular the invariant hyperbolic splitting for K in A extends to an
invariant hyperbolic splitting for K in B. Viewed as a map from B into C,
a robust operator is C1. It also satisfies a uniform Gateaux differentiability
condition in C for points and directions in B. Finally, as an operator in B, it is
reasonably well-approximated by the extension of its derivative at a point of
K in A to a bounded linear operator in B. It will take us considerable effort
(see §8) to verify that the renormalization operator indeed satisfies all these
conditions.

Let T : O → A be a C2 operator having a compact hyperbolic basic set
K with the property that the unstable subspace of the DT -invariant splitting
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of the tangent space at each point of K is one-dimensional. By standard
invariant manifold theory (see [14]), we know that for all g ∈ K the local
unstable manifold W u(g) of T at g exists and is C2. In particular, we can find
a C2 parametrization

t 7→ ug(t) ∈ W u(g) ⊆ A
varying continuously with g such that ug = u′g(0) is a unit vector. We define
a C2 function t 7→ δ̂g(t) by

T (ug(t)) = uT (g)(δ̂g(t)) .

This function also varies continuously with g and δ̂g(t) = δgt + O(t2) for some
δg > 0. Recall that by hyperbolicity of K, there exist C0 > 0 and λ > 1 such
that for every g ∈ K and every m ≥ 1 we have

δT m−1(g) · · · δg > C0λ
m . (6.1.1)

Definition 6.1. Let A ⊆ B ⊆ C ⊆ D be Banach spaces, where each
inclusion is a compact linear operator. Let OA ⊆ A and OB ⊆ B be open sets
in their respective spaces such that OA ⊆ OB. Let K ⊂ OA be a hyperbolic
basic set of a C2 operator T : OA → A. We say that T is robust with respect
to (B, C,D) if it has an extension to an operator T : OB → B that satisfies the
following conditions.

B1. The pair (B,D) is 1-compatible with T , while the pair (C,D)
is ρC-compatible with (T,K) for some ρC < λ (where λ is as in
(6.1.1)).

B2. For each m > 0, the interior O(m)
B of the set {f ∈ OB : T i(f) ∈

OB, ∀i < m} contains K, and Tm : O(m)
B → C is C1 and its

derivative is uniformly continuous in some neighbourhood of K.
Furthermore, for all f ∈ A ∩O(m)

B the linear map

DTm(f) : B → C
extends to a continuous linear operator Lm : D → D that satisfies
Lm(X ) ⊆ X , for X = B, C.

B3. For every m there exists Cm,1 > 1 with the property that for
each g ∈ K there is an open set Vg ⊆ OB containing g such that for
all f ∈ Vg we have

‖DTm(f)ug −DTm(g)ug‖C ≤ Cm,1‖f − g‖B .

B4. There exist C1 > 1 and ρ > 1 with the property that for each
g ∈ K there is an open set Vg ⊆ OB containing g such that for all
f1, f2 ∈ Vg we have

‖T (f1)− T (f2)−DT (f2)(f1 − f2)‖C ≤ C1‖f1 − f2‖ρ
C .
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B5. For all m > 0, there exists Cm,2 > 0, and there exists νm > 0
such that for all g ∈ K and for all f ∈ B with ‖f − g‖B < νm we
have

‖DTm(f)−DTm(g)‖C ≤ Cm,2λ
m .

Moreover, there exists m0 > 0 such that for all m > m0 we have
Cm,2 < C0/8 (where C0 and λ are as in (6.1.1)).

B6. For all m > 0, there exists Cm,3 > 0 such that for all g ∈ K, for
all f ∈ A with ‖f − g‖A < νm and for all v ∈ B with ‖v‖B < νm,
we have

‖Tm(f + v)− Tm(f)−DTm(g)v‖B ≤ Cm,3‖v‖B .

Moreover, there exists m0 > 0 such that for all m > m0 we have
Cm,3 < 1/4.

Example 6.1. As one might expect, the main example of a robust op-
erator is provided by renormalization. We know from Theorem 2.4 that the
renormalization operator T = RN : O → A is hyperbolic over K. We also
know that this renormalization operator is well-defined as a map from an open
set of Uγ containing K into Uγ ⊂ 1 + Aγ ∼= Aγ for all γ ≥ 2. We will show
in §8 that T is robust with respect to the spaces A = A, B = Ar, C = As and
D = A0 whenever s < 2 is close to 2 and r > s + 1 is not an integer.

6.2. Stable manifolds for robust operators

We can now formulate a general local stable manifold theorem for robust op-
erators.

Theorem 6.1. Let T : OA → A be a Ck with k ≥ 2 (or real analytic)
hyperbolic operator over K ⊂ OA, and robust with respect to (B, C,D). Then
conditions (i), (ii), (iii) and (iv) of Theorem 2.3 hold true for the operator T

acting on B. The local unstable manifolds are Ck with k ≥ 2 (or real analytic)
curves, and the local stable manifolds are of class C1 and form a C0 lamination.

The proof of this theorem will occupy the rest of §6. In the end, the
theorem will follow by putting together Corollary 4.2, Proposition 6.13 and
Theorem 6.15.

6.3. Uniform bounds

Before proceeding we prove the following simple bounds that we will use quite
often.

Lemma 6.2. There exist µ0 > 0 and 1 < λ < M such that for all g ∈ K
and all t ∈ R with |t| < µ0, ug(t) and δ̂g(t) are well-defined and
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(i) M−1λn < δT n−1(g) · · · δg < Mn and
∣∣∣δ̂g(t)

∣∣∣ < M |t|;

(ii) M−1 < ‖ug‖B < M and M−1 < ‖ug‖C < M ;

(iii) M−1 < ‖σg‖B < M and M−1 < ‖σg‖C < M ;

(iv) M−1|t| < ‖ug(t)− g‖C < M |t| and M−1|t| < ‖ug(t)− g‖B <

M |t|;
(v) |σg (ug(t)− g)| > 1

2 |t|.

Proof. (i) By Definition 2.1 and (6.1.1), there exist 1 < λ < M1 such that
for all g ∈ K and all n ≥ 1 we have M−1

1 λn < δT n−1(g) · · · δg < Mn
1 and also∣∣∣δ̂g(t)

∣∣∣ < M1|t| for all |t| ≤ µ1 (where µ1 > 0 is a uniform constant).
(ii) For X equal to B and C, we have that g 7→ ug as a map K → X is

continuous and does not vanish. Hence, by compactness of K there is M2 > 1
such that M−1

2 < ‖ug‖X < M2.
(iii) Since σg(ug) = 1 and by property B1 in Definition 6.1, the functional

σg extends continuously to X and there is M3 > 1 such that M−1
3 < ‖σg‖X <

M3.
(iv) Since t → ug(t) as a map R→ X is C1 and varies continuously with

g ∈ K, there is M4 > 0 and µ2 > 0 such that ‖ug(t)− ug(s)‖X ≤ M4|t− s| for
all g ∈ K and all t, s with |t| < µ2 and |s| < µ2. Moreover, since

d

dt
ug(t)

∣∣∣∣
t=0

= ug 6= 0

there exists M5 > 0 and µ3 > 0 such that |t − s| ≤ M5‖ug(t) − ug(s)‖X for
all g ∈ K and all |t| < µ3. Hence (iv) follows by taking s = 0 and noting that
ug(0) = g.

(v) This follows from (iv) and the fact that σg(ug) = 1.

6.4. Contraction towards the unstable manifolds

The one-dimensional unstable manifolds of T in A are embedded in B, and
remain invariant. The first important estimate given by the following lemma
shows that in B the operator T contracts towards such manifolds. Therefore,
if T is to have unstable manifolds in B, these have to coincide with unstable
manifolds in A. In what follows, we fix g ∈ K and for simplicity of notation
we write

σi = σT i(g) , ui = uT i(g) , ui = uT i(g) ,

and

δm
i =

m−1∏

j=i

δT j(g), δ̂m
i = δ̂T m−1(g) ◦ · · · ◦ δ̂T i(g) .
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Set µ0 > 0 as in Lemma 6.2.

Lemma 6.3. For every m > 0 there exist 0 < ηm < µ0 and Bm > 0 such
that for every g ∈ K and every v ∈ B with ‖v‖B < ηm and t ∈ R with |t| < ηm,
we have δ̂m

0 (t + σ0(v)) < µ0, u0(t) + v ∈ O(m)
B and

∥∥∥Tm(u0(t) + v)− um

(
δ̂m
0 (t + σ0(v))

)∥∥∥
B

< Bm‖v‖B .

Furthermore, there is m1 > m0 (where m0 is as in B6) such that for all
m > m1 we have Bm < 1/2.

Proof. We prove the second inequality only. The first is proven in the
same way. By property B6 in Definition 6.1, there is m0 > 0 such that for all
m > m0, all v with ‖v‖B < νm, and all t ∈ R with |t| < νm we have

‖Tm(u0(t) + v)− Tm(u0(t))−DTm(g)v‖B ≤
1
4
‖v‖B . (6.4.1)

By property B1 in Definition 6.1, (B,D) is 1-compatible with (T,K). Hence,
by Corollary 4.2, there exists m1 > m0 such that for all m > m1 we have

‖DTm(g)v − δm
0 σ0(v)um‖B ≤

1
8
‖v‖B . (6.4.2)

Putting (6.4.1) and (6.4.2) together we get

‖Tm(u0(t) + v)− Tm(u0(t))− δm
0 σ0(v)um‖B ≤

3
8
‖v‖B . (6.4.3)

Now, we know that Tm(u0(t)) = um(δ̂m
0 (t)) and t → um ◦ δ̂m

0 (t) is C2. Hence,∥∥∥um ◦ δ̂m
0 (t + σ0(v))− um ◦ δ̂m

0 (t) − δm
0 σ0(v)um‖B

≤ c1

(
(σ0(v))2 + |t|σ0(v)

)

≤ c2 (‖v‖B + |t|) ‖v‖B . (6.4.4)

Therefore, choosing ηm < νm so small that C2ηm < 1/16 and putting 6.4.3
and 6.4.4 together, we see that if |t| < ηm and ‖v‖B < ηm then

∥∥∥Tm(u0(t) + v)− um ◦ δ̂m
0 (t + σ0(v))

∥∥∥
B
≤ 1

2
‖v‖B

as desired.

Lemma 6.4. Let m1 > 0 be as in Lemma 6.3. For all m > m1 there exist
small constants 0 < ε2 < ε1 < ε0 such that the following holds for every ε < ε2.
For every g ∈ K and every v ∈ B with ‖v‖B < ε, the recursive scheme given
by f0 = g + v, t0 = 0, v0 = v and

fk+1 = Tm(fk)

tk+1 = δ̂
(k+1)m
km (tk + σkm(vk))

vk+1 = fk+1 − u(k+1)m(tk+1) (6.4.5)
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is well-defined for all k = 0, . . . , k0 − 1 where k0 = k0(g, f0) = min{j : |tj | ≥
ε1}. For all k ≤ k0 we have∥∥∥T km(g + v)− ukm(tk)

∥∥∥
B

< 2−k‖v‖B and
∥∥∥T km(g + v)− T km(g)

∥∥∥
B

< ε0/M0 ,

(6.4.6)
where M0 = Mm+2 + B1 + . . . + Bm, M is as in Lemma 6.2 and B1, . . . , Bm

are as in Lemma 6.3. Furthermore,

(i) ε1 ≤ |tk0 | < ε0;

(ii)
∥∥T k0m(g + v)− T k0m(g)

∥∥
B > ε2.

(iii)
∣∣σk0m

(
T k0m(g + v)− T k0m(g)

)∣∣ > ε2;

(iv)
∥∥T km+i(g + v)− T km+i(g)

∥∥
B < M0

∥∥T km(g + v)− T km(g)
∥∥
B (which

is less than ε0) for all k ≤ k0 and all i = 0, . . . , m.

Proof. For every g ∈ K, let B(g, ε) be the open ball in B of radius ε centered
at g. Let us fix m > m1 and choose ε0 < min{µ0, η1, . . . , ηm} such that all the
properties B1 to B6 of Definition 6.1 are satisfied in

⋃
g∈K B(g, ε0) ⊂ O(m)

B ,
where µ0 is as in Lemma 6.2 and η1, . . . , ηm are as in Lemma 6.3. Since
m > m1, we have that Bm < 1/2 where Bm is as in Lemma 6.3. Let us take
M > 1 as in Lemma 6.2. We choose 0 < ε2 < ε1 < ε0 < µ such that

ε1 < ε0/
(
3M0M

m+2
)

,

ε2 < ε1/(2 + 2M) . (6.4.7)

Now we work by induction on k. Let us assume that fk, tk, and vk have
been defined so that (6.4.6) holds. Hence

∥∥fk − Tmk(g)
∥∥
B ≤ ε0 ≤ µ, and so

fk ∈ O(m)
B and fk+1 = Tm(fk) is well-defined. Since |tk| ≤ ε1 and 2Mm+1ε1 ≤

ε0 ≤ µ, by Lemma 6.2 and (6.2), and by (6.4.5) and (6.4.7), we have that tk+1

is well-defined and

|tk+1|=
∣∣∣δ̂(k+1)m

km (tk + σkm(vk))
∣∣∣ ≤ Mm(|tk|+ |σkm(vk)|)

≤Mm
(
ε1 + M

ε

2k

)
< 2Mm+1ε1 < ε0 . (6.4.8)

Thus, by Lemma 6.2, u(k+1)m(tk+1) and vk+1 = fk+1 − u(k+1)m(tk+1) are also
well-defined. By Lemma 6.3 and by (6.4.5), we get

‖vk+1‖B =
∥∥Tm(fk)− u(k+1)m(tk+1)

∥∥
B

=
∥∥∥Tm(vk + ukm(tk))− u(k+1)m

(
δ̂
(k+1)m
km (tk + σkm(vk))

)∥∥∥
B

≤ 2−1 ‖vk‖B ≤ 2k+1 ‖v0‖B . (6.4.9)

Now, let us estimate
∥∥fk+1 − T (k+1)m(g)

∥∥
B. From (6.4.5) and (6.4.9), we get

∥∥fk+1 − u(k+1)m(tk+1)
∥∥
B ≤ ‖vk+1‖B ≤

ε

2k
. (6.4.10)
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From Lemma 6.2 and by (6.4.8), we obtain∥∥∥u(k+1)m(tk+1)− T (k+1)m(g)
∥∥∥
B
≤ M |tk+1| ≤ 2Mm+2ε1 . (6.4.11)

Thus, by (6.4.7), (6.4.10) and (6.4.11) we have∥∥∥fk+1 − T (k+1)m(g)
∥∥∥
B
≤∥∥fk+1 − u(k+1)m(tk+1)

∥∥
B

+
∥∥∥u(k+1)m(tk+1)− T (k+1)m(g)

∥∥∥
B

≤ ε

2k
+ 2Mm+2ε1

≤ 3Mm+2ε1 < ε0/M0 .

This completes the induction.
Now, we must prove (i), (ii), (iii) and (iv). Property (i) follows from

(6.4.8). Let us prove (ii). By property (i) and Lemma 6.2,∥∥∥uk0m(tk0)− T k0m(g)
∥∥∥
B
≥ M−1ε1 ,

By (6.4.9), we get ‖vk0‖B ≤ ε/2k0 . Thus, by (6.4.7), we obtain
∥∥∥T k0m(g + v)− T k0m(g)

∥∥∥
B

=
∥∥∥uk0m(tk0) + vk0 − T k0m(g)

∥∥∥
B

≥
∣∣∣
∥∥∥uk0m(tk0)− T k0m(g)

∥∥∥
B
− ‖vk0‖B

∣∣∣
≥M−1ε1 − ε

2k0

≥ ε2 .

Let us prove (iii). Using property (i) and Lemma 6.2, we have∣∣∣σk0m(uk0m(tk0 − T k0mg))
∣∣∣ ≥ ε1/2 .

Using Lemma 6.2 yet again and (6.4.9), we have |σk0m(vk0)| ≤ Mε/2k0 . Thus,
by (6.4.7),we get∣∣∣σk0m

(
T k0m(g + v)− T k0mg

)∣∣∣≥ | |σk0m(uk0m(tk0))| − |σk0m(vk0)| |

≥ 1
2
ε1 −M

ε2

2k0

≥ ε2 .

Finally, let us prove (iv). Fix 0 ≤ k ≤ k0 and 0 ≤ i ≤ m. Setting wk =
T km(f)− T km(g) we have by (6.4.6) that ‖wk‖B < ε0/M0 < ηi where ηi is as
in Lemma 6.3. Hence T km(g) + wk ∈ O(i)

B and by Lemma 6.3 we have
∥∥∥T i(T km(g) + wk)− ukm+i

(
δ̂km+i
km (σkm(wk))

)∥∥∥
B
≤ Bi‖wk‖B .

On the other hand, by Lemma 6.2, we have∥∥∥ukm+i

(
δ̂km+i
km (σkm(wk))

)
− T km+i(g)

∥∥∥
B
≤ Mm+2‖wk‖B .
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Therefore,

‖T km+i(f)− T km+i(g)‖B≤
∥∥∥T i(T km(g) + wk)− ukm+i

(
δ̂km+i
km (σkm(wk))

)∥∥∥
B

+‖uj

(
δ̂km+i
km (σkm(wk))

)
− T km+i(g)‖B

≤ (Bi + Mm+2)‖wk‖B ≤ ε0 ,

which ends the proof.

6.5. Local stable sets

Let us now consider the local stable set W s
ε (g) of T at g in B which consists of

all points f ∈ B(g, ε) such that for all n > 0, we have Tn(f) ∈ B(Tn(g), ε) and

‖Tn(f)− Tn(g)‖B → 0 when n →∞ .

Our aim in this section is to give a finite characterization of W s
ε (g) and prove

that T contracts in the B-norm exponentially along W s
ε (g). This is done in

Lemma 6.5 below (see also Remark 6.1).
From now on in this section, we let m1 and ε0 > ε1 > ε2 > ε be as in

Lemma 6.4. For all sufficiently small 0 < ε < ε2 and for all f ∈ B(g, ε), we let
k0 = k0(g, f) and tk = tk(g, f) for k = 0, . . . , k0 be as in Lemma 6.4. We write
B(g, ε) = V −

ε (g) ∪ V 0
ε (g) ∪ V +

ε (g) where

V −
ε (g) = {f ∈ B(g, ε) : −ε0 < tk0(g, f) < −ε1} ,

V +
ε (g) = {f ∈ B(g, ε) : ε1 < tk0(g, f) < ε0} ,

V 0
ε (g) =B(g, ε) \ (

V −
ε (g) ∪ V +

ε (g)
)

.

Lemma 6.5. There exist an integer m and a positive constant C2 with the
following properties. For all ε > 0 sufficiently small and for all g ∈ K, the sets
V −

ε (g) and V +
ε (g) are open subsets of B(g, ε) (and so V 0

ε (g) is relatively closed
in B(g, ε)), and for all f ∈ V 0

ε (g)
∥∥T j(f)− T j(g)

∥∥
B ≤ εC22−j/m . (6.5.1)

Furthermore, the local stable set W s
ε (g) is a relatively open subset of V 0

ε (g) and

W s
ε (g) =

{
f ∈ V 0

ε (g) :
∥∥T j(f)− T j(g)

∥∥
B < ε, for all 0 ≤ j ≤ m log C2/ log 2

}
.

(6.5.2)

Proof. The first assertion is a consequence of the definitions of V −
ε (g) and

V +
ε (g) and Lemma 6.4. It follows from property (i) of Lemma 6.4 that

V 0
ε (g) = {f ∈ B(g, ε) : |tk(g, f)| < ε1, for all k ≥ 0} .

It also follows from property (ii) of Lemma 6.4 that if f ∈ B(g, ε) and |tk0(g, f)| ≥
ε1 then

∥∥T k0mf − T k0mg
∥∥
B > ε where k0 = k0(g, f). This shows that W s

ε (g) ⊂



GLOBAL HYPERBOLICITY OF RENORMALIZATION 42

V 0
ε (g), and therefore (6.5.1) implies (6.5.2). Furthermore, W s

ε (g) is a relatively
open subset of V 0

ε (g).
It remains to show that if f ∈ V 0

ε (g) then (6.5.1) holds. Set 1 < λ < M as
in Lemma 6.2. Fixing β > 2, by Lemma 6.2, there is m large enough such that
δ
(k+1)m
km ≥ M−1λm > β > 2 for every k ≥ 0. By Lemma 6.4, for all k ≥ 0, we

know that tk = tk(g, f) and vk = vk(g, f) are well-defined, and satisfy |tk| < ε1

and ‖vk‖B ≤ ε2−k. Furthermore, tk+1 = δ̂
(k+1)m
km (tk + σkm(vk)). Since δ

(k+1)m
km

is C2 and ‖σkm‖B < M (see Lemma 6.2), there is c0 > 1 so that
∣∣∣tk+1 − δ

(k+1)m
km tk

∣∣∣≤
∣∣∣δ̂(k+1)m

km (tk + σkm(vk))− δ̂
(k+1)m
km (tk)

∣∣∣
+

∣∣∣δ̂(k+1)m
km (tk)− δ

(k+1)m
km tk

∣∣∣
≤ c0

(‖vk‖B + |tk|2
)

≤ c0

(
ε2−k + |tk|2

)
.

Hence (6.5.3) gives us

|tk| ≤ εc0β
−12−k + β−1|tk+1|+ c0β

−1|tk|2 .

Taking ε (in Lemma 6.4) so small that c0β
−1ε < 1/2, we get

|tk| ≤ 2
(|tk| − c0β

−1|tk|2
) ≤ ε2c0β

−12−k + 2β−1|tk+1| , (6.5.3)

for all k ≥ 0. Since 2β−1 < 1, using induction in (6.5.3) and the fact that tk
is bounded, we get |tk| ≤ εc12−k with c1 = 2c0β

−1/
(
1− 2β−1

)
for all k ≥ 0.

Now this estimate together with Lemma 6.2 gives us

‖ukm(tk)− T km(g)‖B ≤ M |tk| ≤ εc1M2−k .

Hence, using Lemma 6.4 again, we get
∥∥∥T km(f)− T km(g)

∥∥∥
B
≤‖vk‖B +

∥∥∥ukm(tk)− T km(g)
∥∥∥
B

≤ ε2−k + εc1M2−k = εc22−k .

Therefore, by (iv) in Lemma 6.4, for all i ∈ {1, . . . , m− 1} we have
∥∥∥T km+i(f)− T km+i(g)

∥∥∥
B
≤ M0

∥∥∥T km(f)− T km(g)
∥∥∥
B
≤ εc32−k ,

which ends the proof.

Remark 6.1. Note that since the constant C2 is uniform (independent of
ε) in the above Lemma, inequality (6.5.1) can be improved to

∥∥T j(f)− T j(g)
∥∥
B ≤ C ′2−j/m ‖f − g‖B ,

where C ′ = 2C2. Therefore, we have exponential contraction in B (along the
local stable sets) in the strong sense.
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6.6. Tangent spaces

Our next goal is to show that V 0
ε (g) is a C1 manifold provided ε is sufficiently

small. The first step towards this goal is to find the natural candidate for the
tangent space at every point f ∈ V 0

ε (g). This will be accomplished in Lemma
6.7 below. The proof will require the following elementary bootstrapping result.

Lemma 6.6. Let (an) be a sequence of real numbers such that, for some
c0 > 0 and all n ≥ 1,

|an+1| ≤ 1
4
|an|+ c0

2n

n−1∑

j=1

|aj | . (6.6.1)

Then |an| ≤ c12−n for some c1 > 0 and all n ≥ 1.

Proof. We may assume that c0 ≥ 1. Let n0 > 0 be such that c0n0/2n0 <

1/2, and set b = max1≤j≤n0{|aj |}. Then we see by induction from (6.6.1) that
|an| ≤ b for all n ≥ 1, and so

|an+1| ≤ 1
4
|an|+ nbc0

2n

≤ 1
4
|an|+ bc0

(
3
4

)n

.

By induction, this yields |an| ≤ (2bc0)(3
4)n for all n ≥ 1. Hence

∑∞
n=1 |an| ≤

6bc0. Using (6.6.1) once more, we deduce that

|an+1| ≤ 1
4
|an|+ 6bc2

0

2n
,

for all n ≥ 1. Again by induction, this gives us |an| ≤ (24bc2
0)2

−n for all n ≥ 1,
which is the desired result.

Lemma 6.7. There exist an integer m, constants C3, C4 > 0 and ε > 0
small enough with the following properties. For every g ∈ K and for every
f ∈ V 0

ε (g) there exists a linear functional θf,g ∈ C∗ with norm bounded from
above by C3 and with the property that

∥∥∥DT j(f)v − δj
0θf,g(v)uj

∥∥∥
C
≤ C4δ

j
02
−j/m‖v‖C , (6.6.2)

for all v ∈ C and all j ≥ 1. If g0, g1 ∈ K and f ∈ V 0
ε (g1) ∩ V 0

ε (g2) then

θf,g1 |B = θf,g2 |B.

Furthermore, the map Ψ :
⋃

g∈K V 0
ε (g) → B∗ given by Ψ(f) = θf = θf,g|B

(where g is any point of K such that f ∈ V 0
ε (g)) is well-defined and uniformly

continuous.
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Remark 6.2. Condition (6.6.2) entails that for every g ∈ K, B is the
direct sum of the one dimensional unstable subspace Eu

g with the kernel of θf ,
i.e. B = Eu

g

⊕
ker(θf ), provided f is sufficiently close to g. To see this, note

that we can write

v = θf (v)(θf (ug))−1ug +
(
v − θf (v)(θf (ug))−1ug

)
.

Thus, from the continuity of f 7→ θf plus the fact that θg(ug) 6= 0 it follows that
if f is close to g then ug is transversal to ker(θf ). The hyperplane ker(θf ) is
the natural candidate to be the tangent space of V 0

ε (f) at f since it corresponds
to all vectors which expand under DT j(f) by a factor less than δj

0.

Proof. Let ε > 0 be small enough such that Lemma 6.5 is satisfied and
εC2 < νm (where νm is as in property B5 in Definition 6.1 and C2 is as in
Lemma 6.5). Let Rk = Rf,k =

(
δkm
0

)−1
DTmk(f) and write fk = T km(f), and

gk = T km(g) for all k ≥ 0. Then we have

Rk+1(v) =
(
δ
(k+1)m
km

)−1
DTm(fk)Rk(v) . (6.6.3)

Let us take v ∈ C with ‖v‖C = 1. We can write Rk(v) = αkukm + wk, where
αk ∈ R and wk ∈ C are defined recursively by α0 = 0, w0 = v and

αk+1 =αk + σkm(wk)

wk+1 =αk

(
δ
(k+1)m
km

)−1
(DTm(fk)−DTm(gk))ukm

+
(
δ
(k+1)m
km

)−1
(DTm(fk)−DTm(gk))wk (6.6.4)

+
(
δ
(k+1)m
km

)−1
Q

(k+1)m−1
km (wk) .

Now, by Lemma 6.5, we know that

‖fk − gk‖B ≤ εC22−k . (6.6.5)

Since, by property B3 of Definition 6.1, the map f → DTm(f)ukm is Lipschitz
at f = gk (as a map from B to C), we have that for all k large enough

‖DTm(fk)ukm −DTm(gk)ukm‖C ≤ c1‖fk − gk‖B ≤ c22−k . (6.6.6)

By property B5 in Definition 6.1 and (6.6.5), for all m large enough we also
have

‖DTm(fk)−DTm(gk)‖C ≤
δ
(k+1)m
km

8
. (6.6.7)

Since, by property B1 of Definition 6.1, (C,D) is ρ-compatible with (T,K), by
Corollary 4.2, for all m large enough we have

∥∥∥Q
(k+1)m−1
km

∥∥∥
C
≤ δ

(k+1)m
km

8
. (6.6.8)
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Using Lemma 6.2 and putting (6.6.6), (6.6.7) and (6.6.8) in (6.6.4) we get

‖wk+1‖C ≤ 1
4
‖wk‖C + c32−k|αk|

≤ 1
4
‖wk‖C +

c3M

2k

k−1∑

j=0

‖wj‖C . (6.6.9)

From (6.6.9) and Lemma 6.6, we deduce that ‖wk‖C < c42−k. Thus, by (6.6.4)
we obtain |αk+1 − αk| ≤ c52−k for all k ≥ 0. Therefore, θf,g(v) = limαk exists
and

‖Rk(v)− θf,g(v)ukm‖C ≤ c62−k , (6.6.10)

for all v ∈ C with ‖v‖C = 1. If v ∈ C and ‖v‖C 6= 1 then we define θf,g(v) =
‖v‖Cθf,g(v/‖v‖C). By (6.6.10) and by Lemma 6.2, for all v, w ∈ C we have

|θf,g(v) + θf,g(w)− θf,g(v + w)|
≤M ‖θf,g(v)ukm + θf,g(w)ukm − θf,g(v + w)ukm‖C
≤M ‖θf,g(v)ukm −Rk(v)‖C + M ‖θf,g(w)ukm −Rk(w)‖C

+M ‖θf,g(v + w)ukm −Rk(v + w)‖C
≤ c72−k (‖v‖C + ‖w‖C) .

Hence, letting k go to infinity we deduce that θf,g is a linear functional in
C∗. Again by (6.6.10), ‖θf,g‖C is uniformly bounded and inequality (6.6.2) is
satisfied for j = km. By (6.6.10) and by property B3 in Definition 6.1, for
j = km + i with i ∈ {1, . . . ,m− 1}, we get

‖Rj(v)− θf,g(v)uj‖C ≤
∥∥∥∥
(
δkm+i
km

)−1
DT i(T kmf)(Rk(v)− θf,g(v)ukm)

∥∥∥∥
C

+
∥∥∥∥
(
δkm+i
km

)−1 (
DT i(T kmf)−DT i(T kmg)

)
θf,g(v)ukm

∥∥∥∥
C

≤ c82−k ‖v‖C , (6.6.11)

which proves (6.6.2). In particular, there is M0 > 0 such that

‖Rk,f (v)‖C ≤ M0 , (6.6.12)

for all g ∈ K, all f ∈ V 0
ε (g) and all v ∈ B with ‖v‖B = 1.

Let us prove that the map f 7→ θf,g|B is continuous from V 0
ε (g) into B∗ for

every g ∈ K. By property B1 of Definition 6.1, for every k ≥ 1 the functional
σkm is continuous on C and its norm is uniformly bounded. By property B2
in Definition 6.1, the map f 7→ Rk,f is continuous from B into C. Hence, the
mapping V 0

ε (g) → B∗ given by f 7→ σkm ◦Rk,f is also continuous. By (6.6.11),
we obtain

|σkm ◦Rk,f (v)− θf,g(v)|= |σkm (Rk(v)− θf,g(v)ukm)|
≤ c92−k ‖v‖B . (6.6.13)
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Therefore, the continuous maps f 7→ σkm◦Rk,f converge uniformly to f 7→ θf,g,
which implies that f → θf,g is also a continuous map from V 0

ε (g) to B∗.
Let us prove that θf,g|B for f ∈ ⋃

g∈K V 0
ε (g) does not depend on g ∈ K. Let

us take f ∈ ⋃
g∈K V 0

ε (g) and g0, g1 ∈ K such that f ∈ V 0
ε (g0) and f ∈ V 0

ε (g1).
By Lemma 6.5, for every k ≥ 1 we get

∥∥∥T km(g1)− T km(g0)
∥∥∥
B
≤

∥∥∥T km(g1)− T km(f)
∥∥∥
B

+
∥∥∥T km(f)− T km(g0)

∥∥∥
B

≤ c10ε2−k .

By property B1 of Definition 6.1, the map g 7→ σg from K into C∗ is uniformly
continuous. Hence, for every ε > 0 there is k0 > 0 large enough such that for
all k > k0 and all w ∈ C with ‖w‖C ≤ M0 we have

∣∣σT km(g1)(w)− σT km(g0)(w)
∣∣ ≤ ε/2 . (6.6.14)

By (6.6.12), (6.6.13) and (6.6.14) and taking k large enough, we get

|θf,g1(v)− θf,g0(v)| ≤ ∣∣θf,g1(v)− σT km(g1) ◦Rk,f (v)
∣∣

+
∣∣σT km(g1) ◦Rk,f (v)− σT km(g0) ◦Rk,f (v)

∣∣
+

∣∣σT km(g0) ◦Rk,f (v)− θf,g0(v)
∣∣

≤ 2c92−k + ε/2 ≤ ε

for all v ∈ B with ‖v‖B = 1. Thus, θf,g1(v) = θf,g0(v) and so the map Ψ is
well-defined.

Let us prove that the map Ψ is uniformly continuous. For every α0 > 0,
let us choose k0 > 0 large enough such that 2c92−k0 ≤ α0/3. Since the map
g → σg is uniformly continuous, there is α1 > 0 small enough such that for all
g0, g1 ∈ K with ‖g1 − g0‖C < α1 and all w ∈ B with ‖w‖C ≤ M0 we get

|σg1(w)− σg0(w)| ≤ α0/3 . (6.6.15)

Let us choose k1 > k0 large enough such that εC22−k1 ≤ α1/3 where C2 > 0 is
the constant of Lemma 6.5. Since T : OB → C is a C1 operator, by property
B2 of Definition 6.1, (and compactness of K), there is α2 > 0 small enough
such that for all f0 ∈ V 0

ε (g0) and f1 ∈ V 0
ε (g1) with ‖f1 − f0‖B < α2 we obtain

that ‖T k1m(f1)− T k1m(f0)‖C ≤ α1/3. Hence, by Lemma 6.5, we get
∥∥∥T k1m(g1)− T k1m(g0)

∥∥∥
C
≤

∥∥∥T k1m(g1)− T k1m(f1)
∥∥∥
C

+
∥∥∥T k1m(f1)− T k1m(f0)

∥∥∥
C

+
∥∥∥T k1m(f0)− T k1m(g0)

∥∥∥
C

≤ 2εC22−k1 + α1/3 ≤ α1 . (6.6.16)

By (6.6.15) and (6.6.16), we get
∣∣σT k1m(g1) ◦Rk1,f1(v)− σT k1m(g0) ◦Rk1,f1(v)

∣∣ ≤ α0/3 . (6.6.17)
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Using property B2 of Definition 6.1, choose 0 < α3 < α2 small enough such
that for all f1 ∈

⋃
g∈K V 0

ε (g) with ‖f1 − f0‖B < α3 we have ‖Rk1,f1(v)−Rk1,f0(v)‖C ≤
α0/(3M), where v ∈ B with ‖v‖B = 1 and M is as in Lemma 6.2. Hence,

∣∣σT k1m(g0) ◦Rk1,f1(v)− σT k1m(g0) ◦Rk1,f0(v)
∣∣ ≤ α0/3 (6.6.18)

By (6.6.13), (6.6.17) and (6.6.18), we obtain that

|θf1(v)− θf0(v)| ≤ ∣∣θf1(v)− σT k1m(g1) ◦Rk1,f1(v)
∣∣

+
∣∣σT k1m(g1) ◦Rk1,f1(v)− σT k1m(g0) ◦Rk1,f1(v)

∣∣
+

∣∣σT k1m(g0) ◦Rk1,f1(v)− σT k1m(g0) ◦Rk1,f0(v)
∣∣

+
∣∣σT k1m(g0) ◦Rk1,f0(v)− θf0(v)

∣∣
≤ 2c92−k1 + 2α0/3 ≤ α0 .

Therefore, the map Ψ is uniformly continuous.

6.7. The main estimates

Besides aiming at proving that the local stable set is a C1 manifold, we want to
show that the local hyperbolicity picture holds (in B) near K. In other words
we want to show that if the iterates T km(f1) of a point f1 ∈ B(g, ε) remain in
B(T km(g), ε) for a long time, that is for k = 0, 1, . . . , N with N large, then f1

has to be very close to a point f0 on the stable set W s
ε (g) at the outset, and in

the end TNm(f1) has to be very close to the unstable manifold W u
ε (TNm(g)).

To prove these facts, we consider in this section (see Lemma 6.11) an
intermediate time l for which we can find a good quantitative estimate for the
point on the unstable manifold W u

ε (T lm(g)) that best approximates T lm(f1).
This estimate is provided by the value of θf0(f1 − f0), and its most important
consequence is obtained when f1 also belongs to the local stable set W s

ε (g). In
this case we prove an inequality of the form |θf0(f1 − f0)| ≤ C‖f1−f0‖1+τ

B (see
Lemma 6.12). As we shall see in §6.8, this is precisely what we need to show
that the tangent space to the stable set at f0 varies continuously with f0.

In this section we will fix m large enough and ε0 > ε1 > ε2 small enough
such that lemmas 6.4, 6.5 and 6.7 are satisfied for all ε < ε2 suficiently small.

Lemma 6.8. There exist constants C5, C6, ε > 0 with the following prop-
erty. For all g ∈ K, all f0 ∈ V 0

ε (g), and all f1 ∈ B(g, ε) such that ‖f1− f0‖C ≤
C5 (δn

0 )−1, we have
∥∥∥T k(f1)− T k(f0)−DT k(f0) (f1 − f0)

∥∥∥
C
≤ C6 (δn

k )−ρ , (6.7.1)

for all 0 ≤ k ≤ k̂0(g, f1), where

k̂0(g, f1) = min
{
j ∈ {0, . . . , n} : ‖T j(f1)− T j(g)‖B ≥ ε0

}

and ρ > 1 is as in property B4 of Definition 6.1.



GLOBAL HYPERBOLICITY OF RENORMALIZATION 48

Proof. By lemmas 6.2 and 6.7, there are c0, c1 > 0 and λ > 1 such that∥∥∥DT k−i
(
T if0

)∥∥∥
C
≤ c0δ

k
i and δk

i > c1λ
k−i (6.7.2)

for all 0 ≤ i < k. Define a sequence vi ∈ C as follows: v0 = T (f1)− T (f0) and

vi = T i(f1)− T i(f0)−DT
(
T i−1(f0)

) (
T i−1(f1)− T i−1(f0)

)
,

for all 0 < i ≤ k. Hence,

T i(f1)− T i(f0)−DT i(f0) (f1 − f0) =
i∑

j=1

DT i−j
(
T jf0

)
vj . (6.7.3)

Applying property B4 of Definition 6.1, we get

‖vi+1‖C ≤ c2

∥∥T i(f1)− T i(f0)
∥∥ρ

C

≤ c2

∥∥∥∥∥∥
DT i(f0) (f1 − f0) +

i∑

j=1

DT i−j(T jf)vj

∥∥∥∥∥∥

ρ

C

. (6.7.4)

Let us first choose C6 > 0 such that

C1−ρ
6 > c2

(
2c0c

1−ρ
1

(δi)ρ(1− λ1−ρ)

)ρ

, (6.7.5)

for all 0 < i ≤ k, and then choose C5 > 0 such that

Cρ
5 <

C6(δ0)ρ

c2
,

C5 <
c1−ρ
1 C6(δi)1−ρ

1− λ1−ρ
. (6.7.6)

Let us prove inductively for i = 1, 2, . . . , k that ‖vi‖C ≤ C6 (δn
i )−ρ. Using

inequality (6.7.4) and (6.7.6), we get

‖v1‖C ≤ c2 ‖f1 − f0‖ρ
C ≤

c2C
ρ
5

(δ0)ρ
(δn

1 )−ρ ≤ C6(δn
1 )−ρ .

Using the inequalities (6.7.2), (6.7.4), (6.7.5) and (6.7.6), we get

‖vi+1‖C ≤ c2


C5c0δ

i
0 (δn

0 )−1 +
i∑

j=1

c0δ
i
jC6

(
δn
j

)−ρ




ρ

≤ c2c
ρ
0


C5

δi
+

C6

(δi)
ρ

i∑

j=1

(
δi
j

)1−ρ




ρ

(
δn
i+1

)−ρ

≤ c2c
ρ
0

(
C5

δi
+

c1−ρ
1 C6

(δi)
ρ (1− λ1−ρ)

)ρ (
δn
i+1

)−ρ

≤C6

(
δn
i+1

)−ρ
, (6.7.7)



GLOBAL HYPERBOLICITY OF RENORMALIZATION 49

which ends the induction. Thus, using (6.7.2) and (6.7.7) in (6.7.3), we get

∥∥∥T k(f1)− T k(f)−DT k(f) (f1 − f0)
∥∥∥
C
≤

k∑

i=1

c0δ
k
i C6 (δn

i )−ρ

≤ c0C6 (δn
k )−ρ

k∑

i=1

(
δk
i

)1−ρ
≤ c0c

1−ρ
1 C6

1− λ1−ρ
(δn

i )−ρ .

This proves the Lemma.

Lemma 6.9. Let C5, C6, ε > 0, ρ > 1 and k̂0(g, f1) be as in Lemma 6.8.
There exist C7, C8 > 0 such that for all g ∈ K, all f0 ∈ V 0

ε (g) and all f1 ∈
B(g, ε) such that ‖f1 − f0‖C ≤ C5 (δn

0 )−1, we have
∥∥∥T k(f1)− T k(g)− δk

0θf0 (f1 − f0)uk

∥∥∥
C

≤ C6 (δn
k )−ρ + εC72−k/m + C82−k/m (δn

k )−1 , (6.7.8)

for all k ≤ k̂0(g, f1).

Proof. By Lemma 6.7, we get
∥∥∥DT k(f0) (f1 − f0)− δk

0θf0 (f1 − f0)uk

∥∥∥
C
≤ C42−k/m (δn

k )−1 . (6.7.9)

By Lemma 6.5, we obtain that
∥∥∥T k(f0)− T k(g)

∥∥∥
C
≤ c0

∥∥∥T k(f0)− T k(g)
∥∥∥
B
≤ εc0C22−k/m . (6.7.10)

Combining (6.7.1), (6.7.9) and (6.7.10), we get (6.7.8).

Definition 6.2. Given g ∈ K and p ≥ 1 we denote by l = l(g, p) the
smallest integer such that (

δpm
lm

)ρ ≤ 2l , (6.7.11)

where ρ > 1 is as in property B4 of Definition 6.1.

Lemma 6.10. We have the following assertions:

(i) There exist 0 < µ0 < µ1 < 1 with the property that µ0p ≤ l =
l(g, p) ≤ µ1p for all g ∈ K and all p ≥ 1.

(ii) There exists 0 < τ1 < 1 such that for all g ∈ K and all f0, f1 ∈
B(g, ε), if ‖f0 − f1‖C ≥ C5

(
δ
(p+1)m
0

)−1
then

(
δpm
lm

)−1 ≤ C9‖f0 −
f1‖τ1

C , where C9 depends only upon C5 > 0.
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Proof. Let us prove part (i). Set 1 < λ < M as in Lemma 6.2. Then, by
(6.7.11), we have

ρ log M−1 + (pm− lm)ρ log λ < ρ log δpm
lm < l log 2 < lm log 2 .

Hence we get
(

1 +
log 2

ρ log λ

)
lm ≥ log M−1

log λ
+ pm >

pm

2
,

for all p such that pm > N0 = max{2m,
∣∣2 log M−1/ log λ

∣∣}. Thus, taking

µ′0 = 2−1

(
1 +

log 2
ρ log λ

)−1

> 0 ,

we get µ′0p ≤ l for all such values of p. By (6.7.11) and by Lemma 6.2 there
exists a uniform constant 0 < c0 ≤ 1 such that c02l ≤ (

δpm
lm

)ρ and so

log c0 + l log 2 < ρ log δpm
lm ≤ ρ(pm− lm) log M .

Letting α = log 2/ (ρ log M) > 0 and β = log c0/ (ρ log M) we get

lm
(
1 +

α

m

)
≤ pm− β ≤ pm

(
1 +

α

2m

)

for all p > −2β/α. Thus, taking

0 < µ′1 =
2m + α

2(m + α)
< 1

we obtain that lm ≤ µ′1pm for all such values of p. Since δg varies continuously
with g in the compact set K, we can extend the previous results to all p ≥ 0
for some µ0 ≤ µ′0 and µ1 ≥ µ′1.

Let us prove part (ii). Take 0 < τ1 = (1− µ1) log M/ log λ < 1. Then, by
Lemma 6.2, we have

(
δpm
lm

)−1≤ c0λ
−(p−l)m ≤ c0λ

−(1−µ1)pm

≤ c0M
−τ1pm ≤ c1ω

(
δ
(p+1)m
0

)−τ1

≤ c1‖f0 − f1‖τ1
C .

Lemma 6.11. There exist ε > 0 sufficiently small and C10 > 0 such that
the following holds for g ∈ K, f0 ∈ V 0

ε (g) and f1 ∈ B(g, ε). If p is the largest
integer such that

‖f1 − f0‖C ≤ C5 (δpm
0 )−1

then l = l(g, p) ≤ k0 = k0(g, f1) and so tl = tl(g, f1) is well-defined (where l is
as in Lemma 6.10, k0 and tl are as in Lemma 6.4, and C5 > 0 is as in Lemma
6.9). Furthermore, ∣∣∣tl − δlm

0 θf0(f1 − f0)
∣∣∣ ≤ C10

(
δpm
lm

)−ρ
. (6.7.12)



GLOBAL HYPERBOLICITY OF RENORMALIZATION 51

where ρ > 1 is as in Lemma 6.9.

Proof. Let k̂0 = k̂0(g, f1) be as in Lemma 6.9. Let us prove that l ≤ k0. By
(iv) in Lemma 6.4, mk0 < k̂0. Hence it is enough to prove that min

{
lm, k̂0

}
≤

mk0. Let ε > 0 be small enough such that lemmas 6.8 and 6.9 are satisfied.
Let us show that lm ≤ k̂0. By inequality (6.7.8), for all k such that mk ≤ k̂0

we have ∣∣∣σkm

(
T km(f1)− T km(g)

)∣∣∣
≤ ‖σkm‖C

(
δkm
0 |θf (f1 − f0)|+ c0

(
δpm
km

)−1 + εc12−k
)

. (6.7.13)

By Lemma 6.2 and Remark 6.2, there is M1 > 1 such that M−1
1 ≤ ‖σkm‖C ≤

M1 and M−1
1 ≤ ‖θf0‖C ≤ M1. Since by Lemma 6.2, we have

(
δpm
km

)−1 ≤
Mλ−(p−k)m we deduce that

δkm
0 |θf (f1 − f0) | ≤

(
δpm
km

)−1 ‖θf‖C ≤ MM1λ
−(p−k)pm . (6.7.14)

By Lemma 6.10, there is 0 < µ1 < 1 such that for all p > 0 and all k ≤ l we
have p − k ≥ p − l ≥ (1 − µ1)p. Now, we make ε > 0 small enough (and so p

large enough) such that the following inequalities are satisfied

(c0 + M1)Mλ−(1−µ1)pm <
ε2

2‖σkm‖C ,

εc12−k <
ε2

4‖σkm‖C ,

for all k such that km ≤ min{lm, k̂0}. Therefore, for all such k, combining
(6.7.13) and (6.7.14) we deduce that

|σkm

(
T km(f1)− T km(g)

)
| < ε2 . (6.7.15)

Since f1 ∈ B(g, ε) and (6.7.15) reverses the inequality (iii) in Lemma 6.4, we
obtain that min{lm, k̂0} ≤ mk0, and so l ≤ k0.

Now, let us prove (6.7.12). Since l ≤ k0, by (6.4.5) and (6.4.6) in Lemma
6.4, there is tl = tl(g, f1) such that

‖T lm(f1)− ulm(tl)‖B ≤ ε2−l ≤ ε
(
δpm
lm

)−ρ
. (6.7.16)

Since lm < k̂0, by lemmas 6.9 and 6.10 we get

‖T lm(f1)− T lm(g)− slulm‖C ≤ c2

(
δpm
lm

)−ρ
,

where sl = δlm
0 θf0(f1 − f0). Thus, using (6.7.16), we obtain that

‖ulm(tl)− T lm(g)− slulm‖C ≤ c3

(
δpm
lm

)−ρ
.
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Since t → ulm(t) is C2 as a map R→ C, we have

‖ulm(sl)− T lm(g)− slulm‖C ≤ c4s
2
l

= c4

∣∣∣δlm
0 θf0(f1 − f0)

∣∣∣
2

≤ c5

(
δpm
lm

)−2
.

Therefore,

‖ulm(tl)− ulm(sl)‖C
≤ ‖ulm(tl)− T lm(g)− slulm‖C + ‖ulm(sl)− T lm(g)− slulm‖C
≤ c3

(
δpm
lm

)−ρ + c5

(
δpm
lm

)−2

≤ c6

(
δpm
lm

)−ρ
,

because 1 < ρ < 2. Hence, applying Lemma 6.2, we get

|tl − sl| ≤ M−1‖ulm(tl)− ulm(sl)‖C ≤ c7

(
δpm
lm

)−ρ
.

Lemma 6.12. There exist constants τ, ε, C > 0 with the following proper-
ties: for all g ∈ K and all f0, f1 ∈ V 0

ε (g) we have

|θf0(f1 − f0)| ≤ C ‖f1 − f0‖1+τ
B .

Proof. We shall in fact prove a stronger inequality, with the C-norm re-
placing the B-norm. Let ε > 0 be so small that lemmas 6.8 to 6.11 are satisfied
(ε > 0 will be made even smaller in the course of the argument). Let p be
such that C5δ

−(p+1)m
0 < ‖f0 − f1‖C ≤ C5δ

−pm
0 where C5 > 0 is as in Lemma

6.8. As in Lemma 6.4, set k0 = k0(g, f1), tj = tj(g, f1) and vj = vj(g, f1) for
all 0 ≤ j ≤ k0. Also, let l = l(g, p) be as in Lemma 6.10. By Lemma 6.11, we
have l ≤ k0 and so tl is well-defined. Thus, applying lemmas 6.4, 6.5 and 6.10,
we get

‖ulm(tl)− ulm(0)‖B≤
∥∥∥ulm(tl)− T lm(f1)

∥∥∥
B

+
∥∥∥T lm(f1)− T lm(g)

∥∥∥
B

≤ εc02−l ≤ εc0

(
δpm
lm

)−ρ
.

Hence, by Lemma 6.2 we see that |tl| ≤ c1

(
δpm
lm

)−ρ. Let us write tj =

αj

(
δpm
jm

)−1
for l ≤ j ≤ k0(g, f1). Recalling that δ

(j+1)m
jm > β > 2 for all j

and using Lemma 6.10, we have
(
δpm
lm

)−1 ≤ β−(1−µ1)p and
(
δpm
lm

)−(ρ−1)/2 ≤ β−τ2p (6.7.17)

where τ2 = (1 − µ1)(ρ − 1)/2. Hence, making ε > 0 smaller if necessary (and
so p large enough), we get

αl < 4−1
(
δpm
lm

)−(ρ−1)/2
< 4−1β−τ2p < ε1/2 . (6.7.18)
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By Lemma 6.4, we have ‖vj‖B ≤ ε2−j and tj+1 = δ̂
(j+1)m
jm (tj + σjm(vj)). Since

t 7→ δ̂
(j+1)m
jm (t) is C2 as a map R→ C, we deduce that

∣∣∣tj+1 − δ
(j+1)m
jm tj

∣∣∣≤ c2

(|tj |2 + ‖vj‖B
)

≤ c2

(|tj |2 + ε2−j
)

≤ c2

(
|tj |2 + ε2−(j−l)

(
δpm
lm

)−ρ
)

.

Therefore, we get

|αj+1 − αj | ≤ c2

(
α2

jβ
−(p−j+1) + ε(2β)−(j−l)

(
δpm
lm

)−(ρ−1)
)

. (6.7.19)

Let us prove that k0(g, f1) > p. To do this, we need to show that |tj | < ε1

for all j ≤ p. Let us prove by induction a slightly stonger statement, namely,
that αj ≤ 2−1

(
δpm
lm

)−(ρ−1)/2
< ε1 for all j = l, . . . , p. This is certainly satisfied

for j = l, as we can see from (6.7.18). Suppose it is satisfied for αi for all
i = l, . . . , j. Using (6.7.17) and (6.7.19), and making ε > 0 even smaller (and
thus p large enough), we get

|αj+1 − αl| ≤
j∑

i=l

|αi+1 − αi|

≤ 1
4

(
j∑

i=l

(
c2β

−(p−i+1) + 4c2ε(2β)−(i−l)
))

(
δpm
lm

)−(ρ−1)

≤ 1
4

(
c2β

−1

1− β−1
+

4c2ε

1− (2β)−1

)
β−τ2p

(
δpm
lm

)−(ρ−1)/2

≤ 1
4

(
δpm
lm

)−(ρ−1)/2
. (6.7.20)

Since αl ≤ 4−1
(
δpm
lm

)−(ρ−1)/2, we deduce that αj+1 ≤ 2−1
(
δpm
lm

)−(ρ−1)/2
< ε1

(in particular j + 1 ≤ k0(g, f1)) which ends the induction.
Now set sj = sj(g, f0, f1) = δjm

0 θf0(f1 − f0) for all j. Let us estimate
|tp − sp|. By Lemma 6.11 and the above estimates on αj ’s, we have

|tp − sp| ≤ |αp − αl|+ δpm
lm |tl − sl| ≤ c3

(
δpm
lm

)−(ρ−1)/2
. (6.7.21)

On the other hand, from lemmas 6.4, 6.5 and 6.10, we also know that

‖upm(tp)− upm(0)‖B≤‖upm(tp)− T pm(f1)‖B + ‖T pm(f1)− T pm(g)‖B
≤ εc42−p

Hence, again by Lemma 6.2, we have |tp| ≤ εc52−p. Since p ≥ l, we deduce
from Lemma 6.10 that

|tp| ≤ εc52−l ≤ εc5

(
δpm
lm

)−ρ
. (6.7.22)
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But Lemma 6.10, also tells us that there exists τ1 > 0 such that
(
δpm
lm

)−1 ≤
c6‖f0 − f1‖τ1

C . Moreover, (δpm
0 )−1 ≤ c7‖f0 − f1‖C by hypothesis. Therefore,

combining these facts with (6.7.21) and (6.7.22), we get at last

|θf0(f1 − f0)| ≤ (δpm
0 )−1 |sp|

≤ (δpm
0 )−1 (|tp|+ |tp − sp|)

≤ (δpm
0 )−1

(
εc5

(
δpm
lm

)−ρ + c3

(
δpm
lm

)−(ρ−1)/2
)

≤ c8‖f0 − f1‖1+τ1(ρ−1)/2
C ,

which finishes the proof.

6.8. The local stable sets are graphs

We shall prove now that the local stable set of every g0 ∈ K in a sufficiently
small neighborhood of g is the graph of a function defined over Kerθg ∩B (and
taking values on the one-dimensional subspace Rug ⊂ B). The idea is to show
that every “vertical line” of the form f + Rug with f close to g cuts the local
stable set W s

ε (g0) exactly at one point. All other points in the same vertical
line escape exponentially fast away from W s

ε (g0) under iteration by T and the
time k0m each such point f takes to escape is logarithmic on the reciprocal of
its distance to W s

ε (g0). Moreover, T k0m(f) will be exponentially close (in k0)
to W u

ε (T k0m(g0)).

Proposition 6.13. There exist 0 < α0, α1, α2 < ε, 0 < µ0 < µ1 and
M0 > 1 with the following properties. If g0 ∈ K and g ∈ K is such that
‖g − g0‖B < α0, then for every v ∈ Ker θg0 ∩ B with ‖v‖B < α1, there exists
−α2/2 < τ(g, v) < α2/2 such that

(i) fτ(g,v) = g0 + v + τ(g, v)ug0 ∈ W s
ε (g) ⊂ V 0

ε (g);

(ii) ft = g0 + v + tug0 ∈ V +
ε (g) for all τ(g, v) < t < α2;

(iii) ft = g0 + v + tug0 ∈ V −
ε (g) for all −α2 < t < τ(g, v);

(iv) −µ0 log(|t− τ(g, v)|) ≤ k0(g, ft) ≤ −µ1 log(|t− τ(g, v)|), where
k0(g, φt) is as in Lemma 6.4.

Proof. Let ε > 0 be sufficiently small such that lemmas 6.8 to 6.11 are
satisfied and 0 < ε′ < ε such that Lemma 6.5 is satisfied. Let M > 0 be as in
Lemma 6.2 and take positive numbers α1 and α2 such that

0 < 8α1M < α2 and α1 + 2α2M < ε′/2 . (6.8.1)

Take g ∈ K and f ∈ Vε(g0) with ‖f − g‖B < ε′/2. Let v ∈ Ker θg0 ∩ B with
‖v‖B < α1, and t ∈ R with 2M‖v‖B < |t| < 2α2. By the second inequality in
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(6.8.1), we have φt = f +v + tug0 ∈ B(g, ε) and ‖φt−g‖B < ε′ for all |t| < 2α2.
Now, we have the following claim.

Claim. The family φt satisfies the following property
{

φt ∈ V +
ε (g), if 2M‖v‖B < t < 2α2

φt ∈ V −
ε (g), if − 2α2 < t < −2M‖v‖B .

(6.8.2)

To prove this claim, let C5 > 0 be as in Lemma 6.8 and let p be such
that C5δ

(p+1)m
0 < ‖φt − f‖C ≤ C5δ

pm
0 . Set k0 = k0(g, φt), tj = tj(g, φt)

and vj = vj(g, φt) for all 0 ≤ j ≤ k0 as in Lemma 6.4. Set sj = sj(g, f, φt) =
δjm
0 θf (φt−f). Set l = l(g, p) as in Lemma 6.10. Using Lemma 6.2 and Remark

6.2, there exist c0 > 1 and α0 > 0 sufficiently small such that if ‖g−g0‖B < α0

then
c−1
0 |t| ≤ |θf (φt − f)| ≤ c0|t| , (6.8.3)

(noting that ‖f − g‖B < ε′/2 and making ε′ > 0 smaller if necessary). Since
tug0 = φt − f + v and 2M‖v‖B < |t|, by Lemma 6.2 there is c1 > 1 such that

c−1
1 (δpm

0 )−1 ≤ |t| ≤ c1 (δpm
0 )−1

. (6.8.4)

Hence, by (6.8.3), we obtain that

c−1
2 (δpm

0 )−1 ≤ |θf (φt − f)| ≤ c2 (δpm
0 )−1

.

Thus,
c−1
3

(
δpm
lm

)−1 ≤ |sl| ≤ c3

(
δpm
lm

)−1
. (6.8.5)

Recall that δ
(j+1)m
jm > β > 2. By Lemma 6.10 we get

(
δpm
lm

)−1 ≤ β−(1−µ1)pm.
Let us suppose from now on that θf (φt − f) is positive and so sl > 0. Hence,
by Lemma 6.11, by (6.8.5) and making α1 and α2 smaller if necessary (and so
p large enough), we obtain that

tl≥ sl − |tl − sl| ≥ sl

(
1− c4

(
δpm
lm

)−(ρ−1)
)

≥ sl

(
1− c4β

−(ρ−1)(1−µ1)pm
)

>sl/2 > 0 . (6.8.6)

Thus, tl is positive and so it has the same sign as θf (φt − f). By induction on
j = l, . . . , k0(g0, φt) let us show that tj+1 ≥ tj and so that each tj is positive
as well. By Lemma 6.4, ‖vj‖B ≤ ε2−j and tj+1 = δ̂

(j+1)m
jm (tj + σjm(vj)). Since

t 7→ δ̂
(j+1)m
jm (t) is C2 as a map R → C, we obtain that

∣∣∣tj+1 − δ
(j+1)m
jm tj

∣∣∣ ≤
c5

(|tj |2 + ‖vj‖B
)
. Thus,

tj+1≥βtj − c5|tj |2 − c6ε2−j

≥ tj(β − c5|tj |)− c6ε2−j . (6.8.7)
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Let ε1 > 0 as given by Lemma 6.4 and recall that |tj | < ε1 and ε < ε1. Since
β > 1 and by taking ε1 > 0 sufficiently small, there is τ ′ > 0 with the property
that β − c5|tj | > β − c5ε1 > 1 + 2τ ′. By (6.8.5) and (6.8.6), we get

tj(β − c5|tj | − 1− τ ′) >tjτ
′ ≥ tlτ

′ > slτ
′/2 > c7

(
δpm
lm

)−1
. (6.8.8)

By Lemma 6.10, we obtain that

2−j ≤ 2−l ≤ (
δpm
lm

)−ρ
. (6.8.9)

Putting together (6.8.7), (6.8.8) and (6.8.9), we deduce that

tj+1 ≥ (1 + τ ′)tj + c7

(
δpm
lm

)−1 − c6ε
(
δpm
lm

)−ρ
. (6.8.10)

Making α2 sufficiently small (and so p large enough) and recalling from Lemma
6.10 that l is a fraction of p, we obtain that c7

(
δpm
lm

)−1−c6ε
(
δpm
lm

)−ρ ≥ 0. Thus,
by (6.8.10), we get

tj+1 > (1 + τ ′)tj (6.8.11)

which implies that tj+1 has the same sign as tj and that φt ∈ V +
ε (g). If we

suppose that θf0(φt − f) is negative, the proof that tl is negative and that
tj+1 < (1 + τ ′)tj follows in the same way for all j = l, . . . , k0(g0, φt) and so
φt ∈ V −

ε (g). Therefore (6.8.2) is satisfied and the claim is proved.
Let us now prove the assertions of the lemma. Take f = g0 and consider

the family φt = g0 + v + tug0 . Since 2M‖v‖B < 2Mα1 < α2/4, the claim tell
us that {

φt ∈ V +
ε (g), if α2/4 ≤ t < 2α2

φt ∈ V −
ε (g), if − α2 < t ≤ −α2/4 .

Thus, by Lemma 6.5, there is at least one value −α2/4 < τ(g, v) < α2/4 such
that φτ(g,v) = g0 + v + τ(g, v)ug0 ∈ V 0

ε (g).
Next, take f = φτ(g,v), and define a new family ψt = φτ(g,v) + tug0 . Using

the claim again, this time to the family ψt (for which v = 0), we obtain that
{

ψt ∈ V +
ε (g), if 0 < t < α2/2

ψt ∈ V −
ε (g), if − α2/2 < t < 0 .

Therefore, τ(g, v) is the only value of t ∈ R between −2α2 and 2α2 such
that φt ∈ V 0

ε (g). Since ‖φτ(g,v) − g‖B < ε′ we deduce from Lemma 6.5 that
φτ(g,v) ∈ W s

ε (g). This proves assertions (i), (ii) and (iii).
Let us now prove assertion (iv). Set k0 = k0(g, ψt). Using (6.8.11) and

then (6.8.6), we have

|tk0 | ≥ (1 + τ ′)k0−l|tl| ≥ (1 + τ ′)k0−l|sl|/2 . (6.8.12)

Combining (6.8.4) and (6.8.5), we see that

|sl| ≥ c−1
3 δlm

0 (δpm
0 )−1 ≥ c8β

l|t| . (6.8.13)
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Taking τ ′′ = min{1 + τ ′, β} and putting (6.8.13) back into 6.8.12 we get

|tk0 | ≥ c9(τ ′′)k0 |t| . (6.8.14)

By Lemma 6.4, there are 0 < ε1 < ε0 such that ε1 ≤ |tk0 | ≤ ε0. Thus, by
(6.8.14), there is µ0 > 0 such that k0 ≥ −µ0 log(t). By Lemma 6.4, |tk0 | ≤
c9β

k0 |t| and so there is µ1 ≥ µ0 such that k0 ≤ −µ1 log(t), which proves
assertion (iv).

6.9. Proof of the local stable manifold theorem

It will follow from Theorem 6.15 in this section that for every g ∈ K the local
stable manifold at g is a C1 submanifold varying continuously with g. In the
proof of this theorem will use the following basic fact of calculus.

Lemma 6.14. Let X, Y be Banach spaces, let x0 ∈ X and consider a map
ξ : BX(x0, ε) → Y whose image in Y falls within BY (ξ(x0), ε). Suppose we
have a bounded linear operator L : X → Y such that for all v ∈ X with
‖v‖X ≤ ε we have

‖ξ(x0 + v)− ξ(x0)− L(v)‖Y ≤ c0 (‖v‖X + ‖ξ(x0 + v)− ξ(x0)‖Y )1+τ (6.9.1)

where c0 > 0 and τ > 0. If c0(2ε)τ < 1 then ξ is differentiable at x0 and
Dξ(x0) = L.

Proof. Say ‖L(v)‖Y ≤ a‖v‖X for some a > 0. Noting that ‖v‖X +‖ξ(x0 +
v)− ξ(x0)‖Y < 2ε, we have from (6.9.1) that

‖ξ(x0 + v)− ξ(x0)‖Y ≤ (a + c0(2ε)τ ) ‖v‖X + c0(2ε)τ‖ξ(x0 + v)− ξ(x0)‖Y

whence
‖ξ(x0 + v)− ξ(x0)‖Y ≤ a + c0(2ε)τ

1− c0(2ε)τ
‖v‖X = c1‖v‖X .

Putting this back into the right-hand side of (6.9.1) we get

‖ξ(x0 + v)− ξ(x0)− L(v)‖Y ≤ c2 (‖v‖X)1+τ

and therefore Dξ(x0) exists and equals L.

For every g ∈ K and α1 > 0, let us consider the following sets

Eg,α1 = {v ∈ ker θg : ‖v‖B < α1} ,

Fg = {g + tug : t ∈ R} ,

Gg,α1 = {g + v + tug : v ∈ Eg,α1 and t ∈ R} .

Theorem 6.15. Set 0 < α0 < α1 < ε and τ(g, v) as in Proposition
6.13. For every g0 ∈ K and every g ∈ K with ‖g − g0‖B < α0, the map
ξg : Eg0,α1 → Fg0 given by ξg(v) = g0 + τ(g, v)ug0 is well-defined and has the
following properties:
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(i) The graph of ξg is equal to W s
ε (g) ∩Gg0,α1;

(ii) ξg is C1 and varies continuously with g.

Proof. Set α1 < α2 < ε and 0 < µ0 < µ1 as in Proposition 6.13. By
Proposition 6.13, the map ξg : Eg0,α1 → Fg0 is well-defined and assertion (i) is
satisfied. Let ξ̂g : Eg0,α1 → R be given by ξ̂g(v) = τ(g, v) where τ(g, v) is given
by (i) in Proposition 6.13. To prove assertion (ii), it is enough to show that
ξ̂g : Eg0,α1 → R is C1 and varies continuously with g. Let v1, v2 ∈ Eg0,α1 and
set

f1 = g0 + v1 + ξ̂g(v1)ug0 (6.9.2)

and f2 = g0 + v2 + ξ̂g(v2)ug0 . By Lemma 6.12, we get
∣∣∣θf1(v2 − v1) + θf1(ug0)(ξ̂g(v2)− ξ̂g(v1))

∣∣∣ = |θf1(f2 − f1)|

≤ c0

(
‖v2 − v1‖B + |ξ̂g(v2)− ξ̂g(v1)|

)1+τ

By Lemma 6.7, and taking ε > 0 sufficiently small, we have that θf1(ug0) is
uniformly bounded away from 0. Therefore, by Lemma 6.14, we deduce that
ξ̂g is differentiable at every v1 with derivative given by

Dξ̂g(v1) = −(θf1(ug0))
−1θf1 . (6.9.3)

From Lemma 6.7, θf1 varies continuously with f1 and so Dξ̂g(v1) also varies
continuously in a neighborhood of v1. Hence, ξ̂g is a C1 map.

Let us check that ξ̂g varies continuously with g in the C1 sense; more
precisely, that the map K ∩ B(g0, α0) → C1(Eg0,α1 ,R) given by g 7→ ξ̂g is
continuous. Taking into account that Dξ̂g is given by (6.9.3) and that f1

is given by (6.9.2), and since by Lemma 6.7 the map f1 7→ θf1 is uniformly
continuous (as a map into B∗), it suffices to prove that g 7→ ξ̂g is continuous
as a map into C0(Eg0,α1 ,R).

To do this, let v ∈ Eg0,α1 be such that g = g0 + v + ξ̂g(v)ug0 , take g1 ∈ K
with ‖g1− g0‖B < α0 and let w ∈ Eg0,α1 be such that g1 = g0 + w + ξ̂g1(w)ug0 .
Now, we have the following claim.

Claim. There exist c1 > 0 and 0 < γ < 1 such that

c−1
1 |ξ̂g1(w)− ξ̂g(w)|1/γ ≤ |ξ̂g1(z)− ξ̂g(z)| ≤ c1|ξ̂g1(w)− ξ̂g(w)|γ , (6.9.4)

for all z ∈ Eg0,α1 .

Let us assume this claim for a moment. Its geometric meaning is that
the distances between corresponding points of the graphs of ξ̂g and ξ̂g1 along
the vertical fibers ({z} × Fg0) are uniform. We want to control such distances
in terms of ‖g1 − g‖B. The above claim tell us that it is enough to control
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|ξ̂g1(w)− ξ̂g(w)|. Hence, write

g − g1 = v − w +
(
ξ̂g(v)− ξ̂g1(w)

)
ug0

= v − w + (a + b)ug0

where a = ξ̂g(w) − ξ̂g1(w) and b = ξ̂g(v) − ξ̂g(w). Since ξ̂g is C1, we have
|b| ≤ c2‖v − w‖B. On the other hand, since B = Ker θg0

⊕
Rug0 is a splitting

into closed subspaces, there exists a constant c3 > 0 such that

max {‖v − w‖B, |a + b|} ≤ c3‖g − g1‖B .

But then

|a| ≤ ‖g − g1‖B + ‖v − w‖B + |b|
≤ (1 + c3 + c2c3)‖g − g1‖B .

Hence
∣∣∣ξ̂g(w)− ξ̂g1(w)

∣∣∣ ≤ c4‖g − g1‖B, and given the claim this proves that

g 7→ ξ̂g is indeed continuous.
Finally, let us prove the claim. For each z ∈ Eg0,α1 , let h = g0 + z +

ξ̂g1(z)ug0 . Set
t′k = tk(g, g1), t′′k = tk(g, h),
u′k = uT km(g)(t′k), u′′k = uT km(g)(t′′k) ,

as given by Lemma 6.4, and set (also as in that lemma)

k′0 = k0(g, g1) = min{j : |t′j | ≥ ε1}
k′′0 = k0(g, h) = min{j : |t′′j | ≥ ε1} . (6.9.5)

Applying Lemma 6.4, we obtain, for all k ≤ min{k′0, k′′0}, the estimates

‖T km(g1)− u′k‖B≤ 2−k‖g1 − g‖B
‖T km(h)− u′′k‖B≤ 2−k‖h− g‖B . (6.9.6)

Since h ∈ W s
ε (g1), we also have, by Lemma 6.5,

‖T km(h)− T km(g1)‖B ≤ εc52−k . (6.9.7)

Combining (6.9.6) and (6.9.7), we get

‖u′k − u′′k‖B ≤ c62−k .

Hence, by Lemma 6.2, we get

|tk(g, g1)− tk(g, h)| ≤ c72−k , (6.9.8)

for all k ≤ min{k′0, k′′0}. Using (6.8.11) together with (6.9.8), we deduce that
there exists a uniform constant c8 > 0 such that

k′0 − c8 ≤ k′′0 ≤ k′0 + c8 . (6.9.9)
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On the other hand, applying (iv) in Proposition 6.13, we also have

−µ0 log(|τ(g1, w)− τ(g, w)|)≤ k′0 ≤ −µ1 log(|τ(g1, w)− τ(g, w)|)
(6.9.10)

−µ0 log(|τ(g1, z)− τ(g, z)|)≤ k′′0 ≤ −µ1 log(|τ(g1, z)− τ(g, z)|) .

Combining (6.9.9) and (6.9.10) and noting that

τ(g1, w) = ξ̂g1(w) , τ(g1, z) = ξ̂g1(z) , τ(g, w) = ξ̂g(w) and τ(g, z) = ξ̂g(z) ,

we get at last

c−1
9

∣∣∣ξ̂g1(w)− ξ̂g(w)
∣∣∣
µ0/µ1 ≤

∣∣∣ξ̂g1(z)− ξ̂g(z)
∣∣∣ ≤ c9

∣∣∣ξ̂g1(w)− ξ̂g(w)
∣∣∣
µ1/µ0

.

for some c9 > 1, and this proves the claim with γ = µ0/µ1 < 1 and c1 = c9.

Remark 6.3. Note that by Proposition 6.13 there exists a uniform 0 <

ε̃ < ε such that W s
ε̃ (g) ⊂ Gg0,α1 for all g0 ∈ K with ‖g0 − g‖B < α0.

7. Smooth holonomies

In the previous section we proved that a robust operator T has C1 local
stable manifolds through each point of its hyperbolic basic set K, and that such
manifolds form a C0 lamination (near each point of K). A natural question
that may be asked at this point is this: how smooth is the holonomy of this
lamination? To answer this question we shall assume that there exists a home-
omorphism H : ΘZ → K of a finite-type shift space onto K which conjugates
the two-sided full shift σ : ΘZ → K to our robust operator T restricted to K.
Under this topological assumption, and an additional geometric assumption
concerning the unstable manifolds of points in the attractor –both of which
are satisfied by the renormalization operator– we shall prove below that the
holonomies of the local stable laminations are C1+θ for some θ > 0.

7.1. Smooth holonomies for robust operators

Let K ⊂ OA be a hyperbolic basic set of a C2 operator T : OA → A which is
topologically conjugated to a two-sided shift of finite type. For ε0 > 0 small
enough and for every g ∈ K let t → ug(t) be a parametrization of the local
unstable manifold W u

ε0
(g). Set

Kg = K ∩W u
ε0

(g) and Kg = u−1
g (Kg) .

Let
Σ...,θk−1,θk

=
{(

θ′j
) ∈ ΘZ : θ′j = θj for allj ≤ k

}
.
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If H(Σ...,θk
) ∩Kg 6= ∅ then denote by ∆...,θk

(g) the smallest interval in R such
that ug(∆...,θk

(g)) ⊃ H(Σ...,θk
)∩Kg. Let Ck(g) be the set of all these intervals

∆...,θk
(g).

Definition 7.1. We say that the local unstable manifolds W u
ε0

(g) have
geometry bounded by α > 0 if for every g ∈ K, Kg has geometry bounded by
α > 0 with respect to the collection (Ck(g))k≥0 (in the sense of §3).

Now suppose in addition that the operator T is robust with respect to the
Banach spaces (B, C,D). By Theorem 6.1, the local stable manifolds of T in B
form a C0 lamination Let F : [−µ0, µ0] → B(g, ε) be a C2 curve transversal to
the stable lamination. Let KF be the set of all values r ∈ [−µ0, µ0] such that

fr = F (r) ∈
⋃

g0∈K∩W u
ε0

(g0)

W s
ε0

(g0) .

The holonomy map φF : F (KF ) → W u
ε0

(g) associates to each fr the point
φF (fr) such that fr ∈ W s

ε0
(φF (fr)). In local coordinates, the holonomy map

φF is given by ψF : KF → Kg where ψF (t) = ug ◦ φF ◦ F−1 and KF ,Kg ⊂ R.
The C2 curve F : [−µ0, µ0] → B(g, ε) is an ordered transversal to the stable
foliation if F is transversal to the stable foliation, φF : F (KF ) → W u

ε0
(g)

extends to F ([−µ0, µ0]) as an homeomorphism φ̂F over its image such that
φF (F (KF )) = φ̂F (F (KF )) ∩K.

We note that, by Remark 6.2 and by Theorem 6.15, there is ε1 < ε0

small enough such that a C2 transversal to W s
ε1

(g) in a point f is an ordered
transversal to the stable foliation in a small neighborhood of f .

Theorem 7.1. Let K ⊂ OA be a hyperbolic basic set of a C2 operator
T : OA → A which is robust with respect to (B, C,D). Suppose that there exits
ε0 > 0 such that the local unstable manifolds W u

ε0
(g) of g ∈ K have bounded

geometry. There exists 0 < ε < ε0 with the property that for every C2 ordered
transversal F : [−µ0, µ0] → B(g, ε) to the stable foliation in B, the holonomy
φF : F (KF ) → W u

ε0
(g) has a C1+θ diffeomorphic extension to F ([−µ0, µ0]) for

some θ > 0.

Example 7.1. As we know from Theorem 2.4, the renormalization oper-
ator T = RN : OA → A is hyperbolic over K. As we shall see in Theorem
8.1, T is robust with respect to (Ar,As,A0) provided s > s0 with s0 sufficiently
close to 2 and r > s+1 is not an integer. By Theorem 2.1, there is a two-sided
full shift topologically conjugated to T |K. By lemmas 9.3 and 9.6 respectively
in pages 403 and 405 of Lyubich’s paper [20], there is α > 0 such that the local
unstable manifolds W u

ε0
(g) have geometry bounded by α. Hence the renormal-

ization operator T satisfies the hypotheses of Theorem 7.1.
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In what follows the notation A = O(B) means that µ−1
1 B ≤ A ≤ µ1B and

the notation A = B(1±O(C)) means that B(1− µ2C) ≤ A ≤ B(1 + µ2C) for
some constants µ1 > 1 and µ2 > 0.

The proof of Theorem 7.1 will be a consequence of the following lemmas.

Lemma 7.2. For every C2 curve F : [−µ0, µ0] → B(g, ε) transversal to
the stable foliation and for all r, t ∈ [−µ0, µ0] such that r < t, we have

‖ft − fr‖X =O(|t− r|)
|θfr

(ft − fr)|=O(|t− r|) , (7.1.1)

and for all s, r, t ∈ [−µ0, µ0] such that s < r < t,

‖ft − fr‖X
‖fs − fr‖X

=
|t− r|
|s− r|(1±O(|t− s|))

‖θfr
(ft − fr)‖X

‖θfr
(fs − fr)‖X

=
|t− r|
|s− r|(1±O(|t− s|)) , (7.1.2)

where X ∈ {B,C, D}.

Proof. By Lemma 6.2, there are ν1, ν2 > 0 such that for all r ∈ Kf ,
‖ur‖X > ν1 and |θfr

(ur)| > ν2. Since F is C2, we have

ft − fr =(t− r)ur ±O(|t− r|2)
θfr

(ft − fr)= (t− r)θfr
(ur)±O(|t− r|2) ,

and so (7.1.1) follows. Taking s < r < t, we get

‖ft − fr‖X
‖fs − fr‖X

=
‖ur‖X |t− r|(1±O(|t− r|))
‖ur‖X |s− r|(1±O(|s− r|))

=
|t− r|
|s− r|(1±O(|t− s|)) .

The second estimate in (7.1.2) is obtained in similar fashion.

In what follows, it will be more convenient to denote φF (fr) by gψF (r).
We will also work with a fixed 0 < ε < ε0 for which Lemma 6.8 holds.

Lemma 7.3. Set l = l(gψF (r), p) as in Lemma 6.10. Let F : [−µ0, µ0] →
B(g, ε) be a C2 curve transversal to the stable foliation. For all p > 0 suffi-
ciently large and all s, r, t ∈ KF such that

|t− r| = O
(
(δpm

0 )−1
)

and |s− r| = O
(
(δpm

0 )−1
)
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we have ∥∥∥T lm(ft)− T lm(fr)
∥∥∥
C

=O
((

δpm
lm

)−1
)

‖T lm(fs)− T lm(fr)‖C =O
((

δpm
lm

)−1
)

∥∥T lm(ft)− T lm(fr)
∥∥
C

‖T lm(fs)− T lm(fr)‖C
=
|t− r|
|s− r|

(
1±O

((
δpm
lm

)−(ρ−1)
))

. (7.1.3)

Proof. Using Lemma 6.2 and (7.1.1), we get

|θfr
(ft − fr)| = O

(
(δpm

0 )−1
)

and |θfr
(fs − fr)| = O

(
(δpm

0 )−1
)

.

Thus, taking p sufficiently large and using lemmas 6.9 and 6.10 we deduce that
∥∥∥T lm(ft)− T lm(fr)

∥∥∥
C
=

∣∣∣δlm
0 θfr

(ft − fr)
∣∣∣±O

((
δpm
lm

)−ρ
)

=O
((

δpm
lm

)−1
)
±O

((
δpm
lm

)−ρ
)

=O
((

δpm
lm

)−1
)

. (7.1.4)

Similarly,
∥∥T lm(fs)− T lm(fr)

∥∥
C = O

((
δpm
lm

)−1
)
. This proves the first two

inequalities in (7.1.3). Combining (7.1.1) with (7.1.4), we see that
∥∥T lm(ft)− T lm(fr)

∥∥
C

‖T lm(fs)− T lm(fr)‖C
=

∣∣δlm
0 θfr

(ft − fr)
∣∣±O

((
δpm
lm

)−ρ
)

∣∣δlm
0 θfr

(fs − fr)
∣∣±O

((
δpm
lm

)−ρ
)

=
|θfr

(ft − fr)|
(
1±O

((
δpm
lm

)−(ρ−1)
))

|θfr
(fs − fr)|

(
1±O

((
δpm
lm

)−(ρ−1)
)) .

Therefore, by Lemma 7.2, we get
∥∥T lm(ft)− T lm(fr)

∥∥
C

‖T lm(fs)− T lm(fr)‖C
=
|t− r|
|s− r|

(
1±O

((
δpm
lm

)−(ρ−1)
))

,

and this proves the last inequality in (7.1.3).

Lemma 7.4. Set l = l
(
gψF (r), p

)
as in Lemma 6.10. Let F : [−µ0, µ0] →

B(g, ε) be a C2 curve transversal to the stable foliation. For every s ∈ KF and
s′ = ψF (s) ∈ Kg, we have

∥∥∥T lm(fs)− T lm(gs′)
∥∥∥
C
≤ O

((
δpm
lm

)−ρ
)

.

Furthermore, for all p large enough and all s′, r′, t′ ∈ Kg such that s =
ψ−1

F (s′), r = ψ−1
F (r′), t = ψ−1

F (t′) ∈ Kf ,

|t′ − r′| = O
(
(δpm

0 )−1
)

and |s′ − r′| = O
(
(δpm

0 )−1
)

,
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we have∥∥T lm(ft)− T lm(fr)
∥∥
C

‖T lm(fs)− T lm(fr)‖C
=

∥∥T lm(gt′)− T lm(gr′)
∥∥
C

‖T lm(gs′)− T lm(gr′)‖C
(
1±O

((
δpm
lm

)−(ρ−1)
))

.

Proof. By lemmas 6.5 and 6.10, we get
∥∥∥T lm(fs)− T lm(gs′)

∥∥∥
C
≤ C3ε2−l ≤ O

((
δpm
lm

)−ρ
)

.

Thus, applying Lemma 7.3 to the transversal given by the local unstable man-
ifold {gt} we get

∥∥T lm(ft)− T lm(fr)
∥∥
C

‖T lm(fs)− T lm(fr)‖C
=

∥∥T lm(gt′)− T lm(gr′)
∥∥
C
(
1±O

((
δpm
lm

)−(ρ−1)
))

‖T lm(gs′)− T lm(gr′)‖C
(
1±O

((
δpm
lm

)−(ρ−1)
))

=

∥∥T lm(gt′)− T lm(gr′)
∥∥
C

‖T lm(gs′)− T lm(gr′)‖C
(
1±O

((
δpm
lm

)−(ρ−1)
))

.

Proof of Theorem 7.1. Let p > 0 be so large such that lemmas 7.3 and 7.4 are
satisfied and let t, s, r, t′, s′, r′ be as in Lemma 7.4. First, a claim.

Claim. We have

|t− r| = O
(
(δpm

0 )−1
)

and |s− r| = O
(
(δpm

0 )−1
)

.

Assuming this claim for a moment, we finish the proof of Theorem 7.1 as
follows. Set l = l(gr′ , p) as in Lemma 6.10. By lemmas 6.10 and 7.2, there is
0 < τ1 < 1 such that δpm

lm ≤ O (|t′ − r′|τ1). Therefore, by lemmas 7.3 and 7.4
we deduce that

|t− r|
|s− r| =

∥∥T lm(ft)− T lm(fr)
∥∥
C

‖T lm(fs)− T lm(fr)‖C
(
1±O

((
δpm
lm

)−(ρ−1)
))

=

∥∥T lm(gt′)− T lm(gr′)
∥∥
C

‖T lm(gs′)− T lm(gr′)‖C
(
1±O

((
δpm
lm

)−(ρ−1)
))

=
|t′ − r′|
|s′ − r′|

(
1±O

(
|t′ − r′|−(ρ−1)τ1

))
(7.1.5)

Since Kg has bounded geometry and using Theorem 9.5 in page 549 of [26], the
inequalities (7.1.5) imply that the map ψF has a C1+θ diffeomorphic extension
to R for some 0 < θ < 1.

Let us now prove the claim. Let p̂ be such that |t − r| = O
((

δp̂m
0

)−1
)

.

All that we have to show is that

|p̂− p| ≤ O(1) (7.1.6)
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Set l̂ = l̂(gr′ , p̂) as in Lemma 6.10. By lemmas 6.9 and 6.11, and the estimates
in (7.1.1), for k ≤ min{l, l̂} we see that

∥∥∥T km(gt′)− T km(gr′)
∥∥∥
C
=

∣∣∣δkm
0 θgr

(gt′ − gr′)
∣∣∣±O

((
δpm
km

)−ρ + 2−k
)

∥∥∥T km(ft)− T km(fr)
∥∥∥
C
=

∣∣∣δkm
0 θfr

(ft − fr)
∣∣∣±O

((
δp̂m
km

)−ρ
+ 2−k

)
.(7.1.7)

By Lemma 6.5, we get (for all k ≤ min
{

l, l̂
}

)
∥∥∥T km(ft)− T km(fr)

∥∥∥
C
=

∥∥∥T km(gt′)− T km(gr′)
∥∥∥
C
±O

(
2−k

)
. (7.1.8)

Let us consider separately the case (i) where p ≤ p̂ and the case (ii) where
p ≥ p̂.
Case (i). Here l ≤ l̂ and by Lemma 6.10 we get

(
δp̂m
lm

)−1
≤ (

δpm
lm

)−1 2−l ≤ O
((

δpm
lm

)−ρ
)

. (7.1.9)

By Lemma 7.3 applied to the transversal given by the local unstable manifold
{gt}, we have ∥∥∥T lm(gt′)− T lm(gr′)

∥∥∥
C

= O
((

δpm
lm

)−1
)

. (7.1.10)

On the other hand, by (7.1.8), we have
∥∥∥T lm(ft)− T lm(fr)

∥∥∥
C

=
∥∥∥T lm(gt′)− T lm(gr′)

∥∥∥
C
±O

(
2−l

)
.

But 2−l is much smaller than O
((

δpm
lm

)−1
)
. Hence by (7.1.10) we get

∥∥∥T lm(ft)− T lm(fr)
∥∥∥
C

= O
((

δpm
lm

)−1
)

. (7.1.11)

Thus, by (7.1.7) and (7.1.9), we deduce that
∣∣∣δlm

0 θfr
(ft − fr)

∣∣∣ =
∥∥∥T lm(ft)− T lm(fr)

∥∥∥
C
±O

((
δp̂m
lm

)−ρ
)
±O

(
2−l

)

=O
((

δpm
lm

)−1
)
±O

((
δp̂m
lm

)−ρ
)

.

Since
(
δpm
lm

)−1 is much larger than
(
δp̂m
lm

)−ρ
, it follows that

∣∣∣δlm
0 θfr

(ft − fr)
∣∣∣ = O

((
δpm
lm

)−1
)

.

This shows that
|θfr

(ft − fr)| = O
(
(δpm

0 )−1
)

.

Therefore, by Lemma 7.2, we get ‖ft − fr‖C = O
(
(δpm

0 )−1
)
, which in turn

implies (7.1.6).
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Case (ii). Here l̂ ≤ l, and Lemma 6.10 tells us that
(
δpm

l̂m

)−1
≤

(
δp̂m

l̂m

)−1
2−l̂ ≤ O

((
δp̂m

l̂m

)−ρ
)

. (7.1.12)

Applying Lemma 7.3, we get
∥∥∥T l̂m(ft)− T l̂m(fr)

∥∥∥
C

= O
((

δp̂m

l̂m

)−1
)

. (7.1.13)

On the other hand, by (7.1.12) and (7.1.7), we have
∥∥∥T l̂m(ft)− T l̂m(fr)

∥∥∥
C

= O
(∣∣∣δ l̂m

0 θfr
(ft − fr)

∣∣∣
)
±O

((
δp̂m

l̂m

)−ρ
)

.

But
(
δp̂m

l̂m

)−ρ
is much smaller than

(
δp̂m

l̂m

)−1
. Hence, by (7.1.13), we get

∥∥∥T l̂m(ft)− T l̂m(fr)
∥∥∥
C

= O
(∣∣∣δ l̂m

0 θfr
(ft − fr)

∣∣∣
)

. (7.1.14)

By (7.1.8), we have also
∥∥∥T l̂m(ft)− T l̂m(fr)

∥∥∥
C

=
∥∥∥T l̂m(gt′)− T l̂m(gr′)

∥∥∥
C
±O

(
2−l̂

)
.

But 2−l̂ ≤ O
((

δp̂m

l̂m

)−ρ
)

. Hence, again by (7.1.13), we deduce that

∥∥∥T l̂m(ft)− T l̂m(fr)
∥∥∥
C

= O
(∥∥∥T l̂m(gt′)− T l̂m(gr′)

∥∥∥
C

)
. (7.1.15)

By Lemma 7.2 and (7.1.7), we have
∥∥∥T l̂m(gt′)− T l̂m(gr′)

∥∥∥
C

= O
((

δpm

l̂m

)−1
)

+O
((

δp̂m

l̂m

)−ρ
)

.

Therefore, using (7.1.13) and (7.1.15) we obtain that
∥∥∥T l̂m(gt′)− T l̂m(gr′)

∥∥∥
C

= O
((

δpm

l̂m

)−1
)

.

But then, using (7.1.14) and (7.1.15) once more, we deduce that

|θfr
(ft − fr)| = O

(
(δpm

0 )−1
)

.

Therefore, by Lemma 7.2, we get ‖ft − fr‖C = O
(
(δpm

0 )−1
)

which in turn
implies (7.1.6).
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8. The renormalization operator is robust

From the very beginning, our main goal is to show that the renormal-
ization operator is “hyperbolic” in Ur, provided r is sufficiently large. More
precisely, we want to establish Theorem 2.5 and Corollary 2.6. We have already
at our disposal an abstract theorem (Theorem 6.1) showing that any robust
operator is indeed “hyperbolic”. Hence, our work has been essentially reduced
to showing that the renormalization operator T , or any one of its powers, is
robust (see Theorem 8.1 below). The proof of Theorem 2.5and the proof of
Corollary 2.6 will be given in §8.6.

We emphasize the important role played by the geometric estimates of §5.2
in the verification of properties B5 and B6 of a robust operator (Definition
6.1) for an iterate of the renormalization operator (see §8.4). Properties B2,
B3, and B4 are relatively straightforward consequences of the properties of
the composition operator studied in §8.1 and are proved in §8.2 and §8.3 .

In this section, we shall prove the following result (see §8.5).

Theorem 8.1. Let T : O → A be the renormalization operator given by
Theorem 2.4. If s > s0 with s0 < 2 sufficiently close to 2 and r > s + 1 not an
integer, then T is a robust operator with respect to (Ar,As,A0).

We shall present in the sequel complete proofs of all the estimates that are
necessary for establishing the above result, carefully checking all the properties
of robustness along the way.

In our estimates we will often concern ourselves with a power Tm of T .
For each m ≥ 1, let Om ⊆ O be the (open) set of those f ’s which are mN

times renormalizable. Then Tm is well-defined in Om and we can write

Tm(f) =
1
λf

· fp ◦ Λf ,

where p = p(f, mN), λf = fp(0), and Λf : x 7→ λfx is the linear scaling. Note
that p (and hence λf and Λf ) depends on m, but if m is held fixed then p

is a locally constant function of f ∈ Om. To keep track of the dependence of
constants on m, we shall denote by K those constants that may depend on m,
and by c those that are independent of m.

Likewise, we define Or
m to be an open set in Ur containing K, all of whose

elements are mN times renormalizable, so that Tm = RmN : Or
m → Ur is

well-defined.

8.1. A closer look at composition

From a differentiable viewpoint, composition is a notoriously ill-behaved op-
eration. Such bad behavior is the source of most technical difficulties arising
in this work. Fortunately, some positive results lie at hand. For example, it
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is well-known that if r is a positive integer then composition, viewed as an
operator from Cr × Cr−1 into Cr−1, is a C1 map (see [11]). We shall need
not only this result but also a less well-known generalization of it for Hölder
spaces: if r−1 > s ≥ 1 are real numbers then composition, as an operator from
Cr × Cs into Cs, is a C1 map (we can say a little bit more – see Proposition
8.7 below). For related results on the smoothness of composition, see [19].

Before we can prove this fact, some auxiliary results are in order. In what
follows, our definition of Cr norm of ϕ ∈ Cr(I) is this: for r = k + α with
k ∈ N and 0 ≤ α < 1 we write

‖ϕ‖Cr = max{‖ϕ‖0, ‖ϕ′‖0, . . . , ‖ϕ(k)‖0; ‖ϕ(k)‖α} .

For r = k + Lip we define ‖ϕ‖Cr as above with α = 1. This norm is
equivalent to the one introduced earlier in 5.1, and has the advantage that
‖ϕ‖Cr = max{‖ϕ‖C0 , ‖ϕ′‖Cr−1} whenever r ≥ 1. This allows us to prove
certain estimates by induction on k, which will be very useful later.

Lemma 8.2. Given 0 ≤ α < 1 and 0 ≤ ε ≤ 1 − α, let w ∈ Cα+ε(I),
ϕ, ψ ∈ C1(I, I) and ||ψ − ϕ||C1 ≤ 1.

(i) If ε > 0 then there exists K = K (‖ψ‖C1) > 0 such that

‖w ◦ ϕ− w ◦ ψ‖Cα ≤ K‖w‖Cα+ε‖ϕ− ψ‖ε
C1 .

(ii) If ε = 0 then there exist c > 0 and K = K (‖ψ‖C1) > 0 such
that

‖w ◦ ϕ− w ◦ ψ‖Cα ≤ c‖w‖Cα‖ψ′‖α
C0

+K‖w‖Cα‖ϕ− ψ‖α
C1 .

Proof. Let us start proving part (i) of this lemma. By the mean value
theorem, we obtain

‖w ◦ ϕ− w ◦ ψ‖C0 ≤ ‖w‖Cα+ε‖ϕ− ψ‖α+ε
C0 . (8.1.1)

If |y − x| ≤ ‖ϕ− ψ‖Cα then

|w ◦ ϕ(y)− w ◦ ϕ(x)| ≤ c0‖w‖Cα+ε‖ϕ‖α+ε
C1 ‖ϕ− ψ‖ε

Cα |y − x|α
|w ◦ ψ(y)− w ◦ ψ(x)| ≤ c1‖w‖Cα+ε‖ψ‖α+ε

C1 ‖ϕ− ψ‖ε
Cα |y − x|α .

If |y − x| > ‖ϕ− ψ‖Cα , by (8.1.1) then

‖w ◦ ψ − w ◦ ϕ‖C0 ≤ c2‖w‖Cα+ε‖ϕ− ψ‖ε
Cα |y − x|α ,

which ends the proof of part (i) of this lemma.
Let us prove part (ii) of this lemma. By the mean value theorem, we

obtain
‖w ◦ ϕ− w ◦ ψ‖C0 ≤ ‖w‖Cα‖ϕ− ψ‖α

C0 . (8.1.2)
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Furthermore,

|w ◦ ϕ(y)− w ◦ ϕ(x)| ≤ c3‖w‖Cα‖ϕ′‖α
C0 |y − x|α

|w ◦ ψ(y)− w ◦ ψ(x)| ≤ c4‖w‖Cα‖ψ′‖α
C0 |y − x|α ,

and so

‖w ◦ ϕ− w ◦ ψ‖Cα ≤ c5‖w‖Cα(‖ϕ′ − ψ′‖C0 + ‖ψ′‖C0)α (8.1.3)

which ends the proof of part (ii) of this lemma.

We shall need also some estimates on polynomial operators coming from
simple algebraic considerations. For every polynomial P of degree d in n vari-
ables x1, x2, . . . , xn over R, define ν(P ) as the sum of the absolute values of the
coefficients of P . This is a well-known valuation in the ring R[x1, x2, . . . , xn],
but all that really matters to us is that ν(P+Q) ≤ ν(P )+ν(Q) (sub-additivity),
and that ν(∂xi

P ) ≤ dν(P ).

Lemma 8.3. Let P ∈ R[x1, x2, . . . , xn] be a polynomial of degree d, and
let φ1, φ2, . . . , φn ∈ Cs(I). Then, we have

‖P (φ1, φ2, . . . , φn)‖Cs ≤ ν(P )2sdMd ,

where M = max{1, ‖φ1‖Cs , ‖φ2‖Cs , . . . , ‖φn‖Cs}. Moreover, if ψ1, ψ2, . . . , ψn ∈
Cs(I) also satisfy ‖ψi‖Cs ≤ M for all 1 ≤ i ≤ n, then

‖P (φ1, φ2, . . . , φn)− P (ψ1, ψ2, . . . , ψn)‖Cs ≤ dν(P )2sdMd−1
n∑

i=1

‖φi − ψi‖Cs .

Proof. The first inequality is immediate from the definition of ν(P ). To
prove the second, note that P : (Cs(I))n → Cs(I) is a C1 map (norm of
the sum in the domain of P ). Using the mean value inequality and the first
inequality, we see that

‖P (φ1, φ2, . . . , φn)− P (ψ1, ψ2, . . . , ψn)‖Cs

≤ 2s sup
0≤t≤1

max
i
‖∂xi

P (tφ1 + (1− t)ψ1, . . . , tφn + (1− t)ψn)‖Cs

n∑

i=1

‖φi − ψi‖Cs

≤ 2s(dν(P )2s(d−1)Md−1)
n∑

i=1

‖φi − ψi‖Cs ,

which is the desired result.

We can now use the estimate given in the above lemmas to prove the
following general proposition. Let r, s ≥ 1 be real numbers and for each w ∈
Cr(I), let

Θw : Cs(I, I) → Cs(I)

be the operator given by Θw(ϕ) = w ◦ ϕ.



GLOBAL HYPERBOLICITY OF RENORMALIZATION 70

Proposition 8.4. Let r, s > 1 be real numbers both non-integer, and let
w ∈ Cr(I), ϕ,ψ ∈ Cs(I, I) with ‖ϕ− ψ‖Cs ≤ 1.

(i) If r > s then there exists K = K (‖ϕ‖Cs) > 0 such that

‖w ◦ ϕ− w ◦ ψ‖Cs ≤ K‖w‖Cr‖ϕ− ψ‖ε
Cs

where ε = min{1 − {s}, r − s} ({s} denotes the fractional part of
s). In particular, Θw : Cs(I, I) → Cs(I) is ε-Hölder continuous.

(ii) If r = s there exists c > 0 and K = K (‖ϕ‖Cs) > 0 such that

‖w ◦ ϕ− w ◦ ψ‖Cr ≤ c‖w‖Cr‖ψ′‖r
C0 + K‖w‖Cr‖ϕ− ψ‖α

Cr ,

where α = {s} is the fractional part of s.

Part (ii) of the above proposition shows one of the main difficulties in this
theory which is the fact that for w ∈ Cs(I) the operator Θw : Cs(I, I) → Cs(I)
is not even C0.

Proof. Let us write s = k + α, with k an integer and 0 < α = {s} < 1,
and let

A = w ◦ ϕ− w ◦ ψ .

Since w, ϕ, ψ ∈ C1 and ε ≤ 1− α, applying Lemma 8.2 we get

‖A‖Cα ≤ K1‖w‖C1‖ϕ− ψ‖ε
C1 .

By Faa-di-Bruno’s Formula (see [13], p.42), for all 1 ≤ l ≤ k we can write

A(l) = Bl (ϕ)−Bl (ψ)

where

Bl(φ) =
l∑

j=1

w(j) ◦ φ · Pl,j(φ′, φ′′, . . . , φ(l−j)) ,

each Pl,j being a (universal, homogeneous) polynomial of degree j in l − j

variables (with integer coefficients explicitly computable from l and j, see [13],
p.42). We only need the expression of Pl,j for j = l; it is easy to check that
Pl,l(φ′) = (φ′)l . Then, we can decompose A(l) = Cl + Dl, where

Cl =
l∑

j=1

w(j) ◦ ϕ ·
(
Pl,j

(
ϕ′, ϕ′′, . . . , ϕ(l−j)

)
− Pl,j

(
ψ′, ψ′′, . . . , ψ(l−j)

))

Dl =
l∑

j=1

(
w(j) ◦ ϕ− w(j) ◦ ψ

)
· Pl,j

(
ψ′, ψ′′, . . . , ψ(l−j)

)
.

By Lemma 8.3 applied to each Pl,j , we have
∥∥∥Pl,j

(
ϕ′, ϕ′′, . . . , ϕ(l−j)

)
− Pl,j

(
ψ′, ψ′′, . . . , ψ(l−j)

)∥∥∥
Cα
≤K2‖ϕ− ψ‖Cs .
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Therefore, for all 1 ≤ l ≤ k we get

‖Cl‖Cα ≤ K3‖w‖Cs‖ϕ− ψ‖Cs .

Let us now rewrite Dl = El + Fl where,

El =
l−1∑

j=1

(
w(j) ◦ ϕ− w(j) ◦ ψ

)
· Pl,j

(
ψ′, ψ′′, . . . , ψ(l−j)

)

Fl =
(
w(l) ◦ ϕ− w(l) ◦ ψ

)
· (ψ′)l

.

In bounding the first summation in El, we apply Lemma 8.2. Since w(j), ϕ, ψ

is at least C1 we get∥∥∥w(j) ◦ ϕ− w(j) ◦ ψ
∥∥∥

Cα
≤ K4

∥∥∥w(j)
∥∥∥

C1
‖ϕ− ψ‖1−α

C1

for all with 1 ≤ j ≤ l − 1. From this and Lemma 8.3, for all 1 ≤ l ≤ k we
obtain that

‖El‖Cα ≤ K5‖w‖Cs‖ϕ− ψ‖1−α
Cs .

Our task has been reduced to bounding the Cα norm of Fl. Here, we will do
separately the proof of part (i) and part (ii) of this Proposition.

Let us prove part (i) first. Here, for all 1 ≤ l ≤ k we have that ϕ, ψ are at
least C1 and that w(l) is at least Cα+ε, and so by Lemma 8.2 we get∥∥∥w(l) ◦ ϕ− w(l) ◦ ψ

∥∥∥
Cα+ε

≤ K6‖w‖Cl+α+ε‖ϕ− ψ‖ε
C1 .

Thus, for all 1 ≤ l ≤ k we obtain

‖Fl‖Cα ≤ K7‖w‖Cr‖ϕ− ψ‖ε
Cs ,

which ends the proof of part (i).
Let us now prove part (ii). We know that w(l), ϕ, ψ ∈ C1 for all 1 ≤ l ≤

k − 1, and so by Lemma 8.2 we have∥∥∥w(l) ◦ ϕ− w(l) ◦ ψ
∥∥∥

Cα+ε
≤ K8‖w‖Cl+α+ε‖ϕ− ψ‖α

C1 .

Thus, for all 1 ≤ l ≤ k − 1 we obtain

‖Fl‖Cα ≤ K9‖w‖Cr‖ϕ− ψ‖α
Cs .

Therefore, we just have to bound ‖Fk‖Cα . Here, w(k) is only Cα. From the
inequalities (8.1.2) and (8.1.3) in the proof of Lemma 8.2, we get∥∥∥w(k) ◦ ϕ− w(k) ◦ ψ

∥∥∥
C0
≤ c1‖w‖Cr‖ϕ− ψ‖α

C0

∥∥∥w(k) ◦ ϕ− w(k) ◦ ψ
∥∥∥

Cα
≤ c2‖w‖Cr

(∥∥ψ′
∥∥

C0 +
∥∥ϕ′ − ψ′

∥∥
C0

)α
,

and so

‖Fk‖Cα ≤ c3‖ψ‖k
C1+α‖w‖Cr‖ϕ− ψ‖α

C0

+c4‖ψ‖k
C1‖w‖Cr

(∥∥ψ′
∥∥

C0 +
∥∥ϕ′ − ψ′

∥∥
C0

)α
,

which ends the proof of part (ii).



GLOBAL HYPERBOLICITY OF RENORMALIZATION 72

Lemma 8.5. Given 0 ≤ α < 1 and 0 < ε ≤ 1 − α, let f ∈ C1+α+ε(I),
g ∈ C1(I, I) and v ∈ C1(I) with ‖v‖C1 ≤ 1 and g + v ∈ C1(I, I). There exists
K = K (‖g‖C1) > 0 such that

∥∥f ◦ (g + v)− f ◦ g − f ′ ◦ g · v∥∥
Cα ≤ K‖f‖C1+α+ε‖v‖1+ε

C1 .

In particular, there exists K = K (‖g‖C1) > 0 such that

‖f ◦ (g + v)− f ◦ g‖Cα ≤ K‖f‖C1+α+ε‖v‖C1 .

Proof. Note that we have the following identity:

(f ◦ (g + v)− f ◦ g − f ′ ◦ g · v)(x) = v(x)
∫ 1

0

[
f ′(g(x) + tv(x))− f ′(g(x))

]
dt .

Applying Lemma 8.2 with w = f ′, ϕ = g + tv and ψ = g, we can bound
the Cα norm of the integrand by Kt‖f ′‖Cα+ε‖v‖ε

C1 . This proves the first
stated estimate in slightly stronger form. The second estimate is an immediate
consequence of the first.

Proposition 8.6. Let 2 ≤ s + 1 < r be real numbers, and let f ∈ Cr(I),
g ∈ Cs(I, I). There exists K = K (‖g‖Cs) > 0 such that, for all v ∈ Cs(I)
with ‖v‖Cs ≤ 1 and g + v ∈ Cs(I, I), we have

∥∥f ◦ (g + v)− f ◦ g − f ′ ◦ g · v∥∥
Cs ≤ K‖f‖Cr‖v‖1+θ

Cs , (8.1.4)

where θ = min{1−{s}, r−s−1}. In particular, (a) the operator Θf : Cs(I, I) →
Cs(I) is C1 and its derivative is given by DΘf (g)v = f ′ ◦ g · v, and (b) there
exists K = K (‖g‖Cs) > 0 such that for all v as above we have

‖f ◦ (g + v)− f ◦ g‖Cs ≤ K‖f‖Cr‖v‖Cs . (8.1.5)

Proof. In this proof we use K1,K2, . . . to denote constants that depend
only on ‖g‖Cs . Consider the remainder term

F = f ◦ (g + v)− f ◦ g − f ′ ◦ g · v ,

as well as its derivative F ′ = A + B, where

A=
(
f ′ ◦ (g + v)− f ′ ◦ g − f ′′ ◦ g · v) · g′

B =
(
f ′ ◦ (g + v)− f ′ ◦ g

) · v′ .

We want to show that
∥∥F ′∥∥

Cs ≤ K1‖f‖Cr‖v‖1+θ
Cs

The proof will be by induction on the integral part of s. Note however that the
mean value theorem already gives us ‖F‖C0 ≤ K2‖f ′′‖C0‖v‖2

C0 independently
of s.
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First we deal with the base of induction, namely when 1 ≤ s < 2, say
s = 1 + α. By Lemma 8.5, we have

‖A‖Cα ≤ K3‖f ′‖C1+α+θ (‖v‖C1)1+θ .

The same Lemma 8.5 yields

‖B‖Cα ≤ K4‖f ′‖C1+α+θ (‖v‖C1+α)2 .

This establishes the base of induction.
Now suppose that our lemma holds for s > 1. We will prove from this

that it holds for s + 1. To do this, it suffices to show that
∥∥F ′∥∥

Cs ≤ K5‖f‖Cr‖v‖1+θ
Cs+1 . (8.1.6)

The proof is more of the same. By the induction hypothesis applied to f ′, we
have

‖A‖Cs ≤ K6‖f ′‖Cr−1 (‖v‖Cs)1+θ . (8.1.7)

The same fact also gives

‖B‖Cs ≤ K7‖f ′‖Cr−1 (‖v‖C1+s)2 . (8.1.8)

Putting (8.1.7) and (8.1.8) together we get (8.1.6), and so the induction is
complete.

Proposition 8.7. Let 2 ≤ s + 1 < r be real numbers. The composition
operator Θ : Cr(I) × Cs(I, I) → Cs(I) given by Θ(f, g) = f ◦ g is C1+θ and
its derivative is given by DΘ(f, g)(u, v) = u ◦ g + f ′ ◦ g · v. In particular, there
exists K = K (‖f‖Cr , ‖g‖Cs) > 0 such that, for all ‖u‖Cr ≤ 1 and ‖v‖Cs ≤ 1
with g + v ∈ Cs(I, I), we have

‖Θ(f +u, g+v)−Θ(f, g)−DΘ(f, g)(u, v)‖Cs ≤ K(‖u‖Cr +‖v‖Cs)1+θ , (8.1.9)

where θ = min{1− {s}, r − s− 1}.

Proof. In this proof, we denote by K1,K2, . . . positive constants depending
only on ‖g‖Cs . Let us take u ∈ Cr(I) and v ∈ Cs(I) such that ‖u‖Cr ≤ 1 and
‖v‖Cs ≤ 1, respectively. We have

F =Θ(f + u, g + v)−Θ(f, g)− u ◦ g − f ′ ◦ g · v
= f ◦ (g + v)− f ◦ g − f ′ ◦ g · v + u ◦ (g + v)− u ◦ g .

Using Proposition 8.6, we see that
∥∥f ◦ (g + v)− f ◦ g − f ′ ◦ g · v∥∥

Cs ≤ K1‖f‖Cr(‖v‖Cs)1+θ .

The same Proposition 8.6 with u replacing f yields

‖u ◦ (g + v)− u ◦ g‖Cs ≤‖u′ ◦ g · v‖Cs + K2‖u‖Cr(‖v‖Cs)1+θ

≤K3‖u‖Cr‖v‖Cs .
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Therefore we get

‖F‖Cs ≤ K1‖f‖Cr(‖v‖Cs)1+θ + K3‖u‖Cr‖v‖Cs ,

which proves that Θ is C1 and that (8.1.9) is satisfied. Now, we have that

DΘ(f + φ, g + ψ)(u, v)−DΘ(f, g)(u, v) = A + B + C

where

A =u ◦ (g + ψ)− u ◦ g

B =
(
f ′ ◦ (g + ψ)− f ′ ◦ g

) · v
C =φ′ ◦ (g + ψ) · v .

By Proposition 8.4, we obtain that

‖A‖Cs ≤K4‖u‖Cr−1‖ψ‖θ
Cs

‖B‖Cs ≤K5‖f‖Cr‖ψ‖θ
Cs · ‖v‖Cs .

Letting k be the integer part of s and ϕ = g + ψ, and using Faa-di-Bruno’s
Formula, we have

(
φ′ ◦ ϕ

)(k) =
k∑

j=1

φ(j+1) ◦ ϕ · Pk,j(ϕ′, ϕ′′, . . . , ϕ(k−j)) ,

each Pk,j being a (universal, homogeneous) polynomial of degree j in k − j

variables. Hence, using Lemma 8.3, we get that ‖C‖Cs = K6‖∆f‖Cr‖v‖Cs .
Thus, Θ is a C1+θ operator.

Corollary 8.8. Let r, s > 0 be real numbers with r − 1 > s ≥ 1 and for
each positive integer m, let Qm : Cr(I, I) → Cs(I, I) be the operator given by
Qm(f) = fm.

(i) Let 0 ≤ t ≤ r and let U : Ct(I, I) → Cs(I, I) be a C1+θ operator
for some 0 < θ < 1. Then the operator Um : Cr(I, I) → Cs(I, I)
given by Um(f) = Qm◦U(f) is C1+θ′ for some 0 < θ′ = θ′(θ, r, s) <

1.

(ii) In particular, the operator Qm : Cr(I, I) → Cs(I, I) is C1+θ′′

for some 0 < θ′′ = θ′′(r, s) < 1 and there exists K = K (m, ‖f‖Cr) >

0 such that

‖Qm(f + u)−Qm(f)−DQm(f)u‖Cs ≤ K‖u‖1+θ′′

Cr . (8.1.10)

Proof. First note that Um+1(f) = Θ(f, Um(f)). The operator U1 arises
as the composition of the operator Cr(I, I) → Cr(I, I) × Cs(I, I) given by
f 7→ (f, U(f)), which is C1+θ because U is C1+θ (and Cr(I, I) embeds in Ct),
with the composition operator Θ : Cr(I, I) × Cs(I, I) → Cs(I, I), which is
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C1+θ′′ for some 0 < θ′′ = θ′′(r, s) < 1 by Proposition 8.7. The desired result
for part (i) then follows by induction. Part (ii) is a corollary of part (i), and
by a computation (8.1.10) follows from (8.1.9).

Proposition 8.9. Let r, s, t be real numbers with 2 ≤ s+1 < r and t ≥ 0.
Let U : Ct(I, I) → Cs(I, I) be a C1 operator. Then for each φ ∈ Cr(I) and
each ψ ∈ Ct(I, I) there exists a function σψ : R+ → R+ with σψ(h)/h → 0
as h → 0, varying continuously with ψ, such that for all v ∈ Ct(I) with
ψ + v ∈ Ct(I, I) we have

∥∥φ ◦ U(ψ + v)− φ ◦ U(ψ)− φ′ ◦ U(ψ) ·DU(ψ)v
∥∥

Cs ≤ σψ(‖v‖Ct) . (8.1.11)

Proof. As before, we denote by K1,K2, . . . positive constants that depend
only on ‖ψ‖Ct . We have that

φ ◦ U(ψ + v)− φ ◦ U(ψ)− φ′ ◦ U(ψ) ·DU(ψ)v = A + B

where

A =φ ◦ U(ψ + v)− φ ◦ U(ψ)− φ′ ◦ U(ψ) · (U(ψ + v)− U(ψ))

B =φ′ ◦ U(ψ) · (U(ψ + v)− U(ψ)−DU(ψ)v) .

Since U is C1, there exists a continuous function νψ : R+ → R+ with νψ(h)/h →
0 as h → 0, varying continuously with ψ, such that

‖U(ψ + v)− U(ψ)−DU(ψ)v‖Cs ≤ νψ(‖v‖Ct) .

Hence, applying Proposition 8.6 with f = φ and g = U(ψ) and v replaced by
U(ψ + v)− U(ψ), we get

‖A‖Cs ≤K2‖φ‖Cr (‖U(ψ + v)− U(ψ)‖Cs)1+θ

≤K3‖φ‖Cr

(
‖DU(ψ)‖1+θ‖v‖1+θ

Ct

)
,

and

‖B‖Cs ≤K4‖φ‖Crνψ(‖v‖Ct) ,

where K3 = K3 (‖U(ψ)‖Cs , ‖DU(ψ)‖, νψ) and K4 = K2 (‖U(ψ)‖Cs). There-
fore,

‖A + B‖Cs ≤ K3‖φ‖Cr‖v‖1+θ
Ct + K4‖φ‖Crνψ(‖v‖Ct) .

This completes the proof.

Corollary 8.10. Let r, s, t be real numbers with r − 1 > s > 1 and
0 ≤ t ≤ r, and let U : Ct(I, I) → Cs(I, I) be a C1 operator. For each positive
integer n the operator Vn : Cr(I, I) → Cs(I) given by Vn(f) = (fm)′ ◦ U(f) is
differentiable at every g ∈ Cr+1(I, I) ⊆ Cr(I, I), and as map from Cr+1(I, I)
into L(Cr(I), Cs(I)), the derivative operator g 7→ DVn(g) is continuous.
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Proof. First note that by the chain rule,

Vn(f) =
n−1∏

j=0

f ′ ◦
(
f (j) ◦ U(f)

)
=

n−1∏

j=0

f ′ ◦ Uj(f) .

This reduces the problem to the case n = 1. We claim that the linear operator

L(v) = v′ ◦ U(g) + g′′ ◦ U(g) ·DU(g)v

is the derivative of V1 at g ∈ Cr+1(I, I). Indeed, we have

V1(g + v)− V1(g)− L(v) = A + B ,

where

A = g′ ◦ U(g + v)− g′ ◦ U(g)− g′′ ◦ U(g) ·DU(g)v

B = v′ ◦ U(g + v)− v′ ◦ U(g) .

By Proposition 8.9 applied to φ = g′ and ψ = g, there exists K1 = K1(‖g‖Cr+1)
such that

‖A‖Cs ≤ K1σψ(‖v‖Cr) ,

where σψ : R+ → R+ is a continuous function varying continuously with ψ such
that σψ(h)/h → 0 as h → 0. On the other hand, by part (i) of Proposition 8.4
and since U is C1, we have

‖B‖Cs ≤K2‖v‖Cr‖U(g + v)− U(g)‖ε
Cs

≤K3 (‖v‖Cr)1+ε .

where 0 < ε = min{1 − {s}, r − s} < 1, K2 = K2(‖U(g)‖Cs) and K3 =
K3(‖U(g)‖Cs , ‖DU(g)‖, σψ(‖v‖Cr)). Combining these inequalities, we deduce
that V1 is differentiable at g and DV1(g) = L as claimed. It is clear from the
expression defining it that L varies continuously with g ∈ Cr+1(I, I).

8.2. Checking properties B2 and B3

We now proceed to verify that the operator T satisfies properties B2 and B3 of
robustness. They will follow respectively from lemmas 8.12 and 8.13. First it is
necessary to analyze the behavior of the linear scaling used in such operators.
Let us fix a positive integer p and for each f ∈ Cr(I, I) let Λf be the linear
map x 7→ λfx, where λf = fp(0).

Lemma 8.11. For r > 2, the maps Λ : Cr(I, I) → L(R,R) given by
Λ(f) = Λf and λ : Cr(I, I) → R given by λ(f) = λf are both C1+θ for some
0 < θ = θ(r, s) < 1. In particular, there is K = K(p, ‖f‖Cr) > 0 such that for
all v ∈ Cr(I) with ‖v‖Cr ≤ 1 and f + v ∈ Cr(I, I), we have

‖λ(f + v)− λ(f)−Dλ(f)v‖Cr ≤ K‖v‖1+θ
Cr , (8.2.1)

The above inequality also holds replacing λ by Λ.
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Proof. Choosing 1 < s < r − 1, we see that λ = E ◦ Qp where Qp :
Cr(I, I) → Cs(I, I) is the operator Qp(f) = fp, which is C1+θ for some 0 <

θ = θ(r, s) < 1, and E : Cs(I, I) → R is the evaluation map E(g) = g(0),
which is linear. Therefore, by Corollary 8.8, λ is C1+θ and (8.2.1) follows from
(8.1.10) and the linearity of E. The proof for Λ is entirely analogous.

We will also need to use the operators Un : Cr(I, I) → Cs(I) given by
Un(f) = fn ◦ Λf for all n ≥ 0.

Property B2 for the operator T is a consequence of the following lemma
(the first assertion in B2 is actually a consequence of Lemma 8.14 below).

Lemma 8.12. For 2 < s + 1 < r and for each n ≥ 0, the operator Un :
Cr(I, I) → Cs(I) is C1+θ for some 0 < θ = θ(r, s) < 1. In particular, Tm :
Or

m → Us is also a C1+θ operator.

Proof. This follows at once from Lemma 8.11 and Corollary 8.8 applied
to U = Λ.

The following lemma is all we need to verify property B3 for the operator
T . In this case g is a map in the limit set K of T , hence analytic, and v = ug

is a tangent vector to the unstable manifold of g, which is analytic as well.

Lemma 8.13. For 2 < s + 1 < r, the map Or
m → Us given by f 7→

DTm(f)v is differentiable at f = g ∈ K. Furthermore, for every m ≥ 1
there exist Cm > 1 and νm > 0 such that for each g ∈ K and f ∈ Or

m with
‖f − g‖Cr < νm and all v ∈ Ar with ‖v‖Cr = 1 we have

‖DTm(f)v −DTm(g)v‖Cs ≤ Cm‖f − g‖Cr . (8.2.2)

Proof. Let E : Cs(I, I) → R be the evaluation map E(g) = g(0), which is
linear. Recall that the derivative of Tm is given by the expression

DTm(f)v =
1
λf

p−1∑

j=0

(f j)′ ◦ Up−j(f) · v ◦ Up−j−1(f) (8.2.3)

+
1
λf

[id · (Tmf)′ − Tmf ]
p−1∑

j=0

E
(
(f j)′ ◦ Up−j(f)

) · E (v ◦ Up−j−1(f)) ,

where λf = E ◦ fp and id : R → R is the identity map. Each term of the
first summation in (8.2.3) is differentiable at f = g. To see this apply Lemma
8.12 and Corollary 8.10 to each of the operators f 7→ (f j)′ ◦Up−j(f) as well as
Proposition 8.6 to each of the operators f 7→ v ◦ Up−j(f). On the other hand,
each term of the second summation in (8.2.3) equals the corresponding term
in the first summation post-composed with the evaluation map E (which is
linear), and is therefore differentiable at f = g. The analysis of the expression
in square brackets in (8.2.3) is similar. By Lemma 8.11 and Corollary 8.10, the
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operator f 7→ Tm(f)′ = (fp)′ ◦ Λf is differentiable at f = g, and the operator
f 7→ Tm(f) = λf · fp ◦ Λf is also differentiable at f = g by Lemma 8.11
and Corollary 8.8. From this fact and compactness of K the inequality (8.2.2)
follows.

8.3. Checking property B4

The fifth property is verified in Lemma 8.16 below. First we will need to prove
the following two lemmas about the operators Ui : Ct+1+ε(I, I) → Ct(I) with
t ≥ 1. Recall that Ui(f) = f i ◦ Λf .

Lemma 8.14. For every f ∈ Ct+1+ε(I, I) and all v ∈ Ct(I) with small
norm and such that f + v ∈ Ct(I, I), we have

‖Ui(f + v)− Ui(f)‖Ct ≤ K‖v‖Ct

for all 0 ≤ i ≤ p where K = K (p, ‖f‖Ct+1+ε).

Proof. Note that

Ui+1(f + v)− Ui+1(f) = f ◦ Ui(f + v)− f ◦ Ui(f) + v ◦ Ui(f + v)

By Proposition 8.6, there is K1 = K1 (p, ‖f‖Ct+1+ε) such that

‖Ui+1(f + v)− Ui+1(f)‖Ct ≤ K1‖Ui(f + v)− Ui(f)‖Ct + ‖v ◦ Ui(f + v)‖Ct .

The required estimate now follows by induction, because U0 is C1.

Lemma 8.15. For every f ∈ Ct+1+ε(I, I) and all v ∈ Ct+1+ε(I) with
small norm and such that f + v ∈ Ct+1+ε(I, I), we have

‖Ui(f + v)− Ui(f)−DUi(f)v‖Ct ≤ K‖v‖1+θ
Ct ,

for all 0 ≤ i ≤ p, for some 0 < θ = θ(t, ε) < 1 and K = K(p, ‖f‖Ct) > 0.

Proof. In this proof we denote by K1,K2, . . . the positive constants de-
pending only on m and ‖Ui(f)‖Ct+1+ε . Again we use induction; the case i = 0
follows from the differentiability of the scaling f → Λf and inequality (8.2.1).
We have

Ui+1(f + v)− Ui+1(f)−DUi+1(f)v = A + B + C

where

A = f ◦ Ui(f + v)− f ◦ Ui(f)− f ′ ◦ Ui(f) · (Ui(f + v)− Ui(f))

B = f ′ ◦ Ui(f) · (Ui(f + v)− Ui(f)−DUi(f)v)

C = v ◦ Ui(f + v)− v ◦ Ui(f) .

By Proposition 8.6, we have

‖A‖Ct ≤ K1‖Ui(f + v)− Ui(f)‖1+ε
Ct .
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Using Lemma 8.14, we get

‖A‖Ct−1 ≤ K2‖v‖1+ε
Ct .

On the other hand, since v is Ct+1+ε/2, we know again from Proposition 8.6
that

‖C‖Ct ≤ K3‖v‖Ct+1+ε/2‖Ui(f + v)− Ui(f)‖Ct ≤ K4‖v‖Cr+1+ε/2‖v‖Ct .

Since v has bounded Ct+1+ε norm, by an interpolation of norms, we have
‖v‖Ct+1+ε/2 ≤ K5‖v‖θ1

Ct for some θ1 > 0. Therefore, taking θ = min{ε, θ1} we
get

‖C‖Ct ≤ K6‖v‖1+θ
Ct .

This allows the induction as desired.

Property B4 for the operator T is a direct consequence of the following
lemma.

Lemma 8.16. For every f ∈ Os+1+ε and all v ∈ As+1+ε with small norm
such that f + v ∈ Os+1+ε, we have

‖T (f + v)− T (f)−DT (f)(v)‖Cs ≤ K‖v‖1+τ
Cs ,

for some 0 < τ = τ(s, ε) < 1 and K(p, ‖f‖Cs+1+ε) > 0.

Proof. In this proof we denote by K1,K2, . . . the positive constants de-
pending only on m and ‖Ui(f)‖Cs . Start observing that since T (f) = λ−1

f ·
Up(f), we have

T (f + v)− T (f)−DT (f)v = A + B + C

where

A =λ−1
f · (Up(f + v)− Up(f)−DUp(f)v)

B =
(
λ−1

f+v − λ−1
f −Dλ−1

f (v)
)
· Up(f + v)

C =Dλ−1
f (v) · (Up(f + v)− Up(f)) .

Applying Lemma 8.15 with t = s we get

‖A‖Cs = K1‖v‖1+θ1
Cs ,

for some 0 < θ1 = θ1(s, ε) < 1. By Lemma 8.11 there is 0 < θ2 = {s} < 1 such
that

‖B‖Cs ≤ K2‖v‖1+θ2
Cs .

By Lemma 8.14, we have ‖Up(f + v)− Up(f)‖Cs ≤ K3‖v‖Cs and so

‖C‖Cs ≤ K4‖v‖2
Cs .

Therefore, it is enough to take τ = min{θ1, θ2}.
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8.4. Checking properties B5 and B6

We now move on to the task of proving that the operator T = RN of Theorem
2.4 satisfies properties B5 and B6 in the definition of robustness. Unlike the
previous ones, the verification of these (last) two properties depends upon the
geometry of the post-critical sets of maps near in A to the limit set K of T .
The estimates performed here are the most delicate, and involve the results of
§5.2.

Recall that Tm is well-defined on an open set Om in the Banach space
A = AΩa

(see §3), which contains K. We shall denote the renormalization
intervals ∆0,mN , ∆1,mN , . . ., ∆p,mN simply by ∆i = ∆i,mN (this shortened
notation should cause no harm, because N is fixed since Theorem 2.4, and m

will be fixed in the particular estimates involving these intervals).
We can write the derivative of Tm in the following form

DTm(f)v = A(f)
p−1∑

j=0

Bj(f) · Cj(f) + A(f) ·D(f)
p−1∑

j=0

E ◦Bj(f) · E ◦ Cj(f)

where E is the evaluation map and

A(f)= (λf )−1 ,

Bj(f)=
(
f j

)′ ◦ Up−j(f) ,

Cj(f)= v ◦ Up−j−1(f) ,

D(f)= id · (fp)′ ◦ U0(f)− λf · Up(f) .

To carry out our estimates for Tm, we shall use the operators Ui : f 7→
f i ◦ Λf (i ≥ 0). Note that U0(f) = Λf , hence U0 is C1 in whichever space
Cr(I, I) we work in, because the scaling f 7→ Λf is C1 by Lemma 8.11.

First we need some estimates for Ui. It is clear that ‖Ui(f)‖C0 ≤ 1 always,
but more is true.

Lemma 8.17. There exists C > 0 with the following property. For every
m > 0, there exists an open neigbourhood Om ⊂ Om of K such that for all
f ∈ Om, we have

‖Bj(f)‖C0 ≤ C
|∆0|
|∆p−j | ,

for all 0 ≤ j ≤ p− 1. Furthermore, ‖Ui(f)′‖C0 ≤ C|∆i|, for all 0 ≤ i ≤ p.

Proof. Use bounded distortion and the real bounds (see §5.2).

Lemma 8.18. For all f ∈ Om and all v ∈ Ar with small norm, we have

‖Ui(f + v)− Ui(f)‖Cr ≤ K‖v‖Cr

for all 0 ≤ i ≤ p, where K = K(m) > 0.
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Proof. This lemma follows from Lemma 8.14.

Next, we show an essential result to prove that the renormalization oper-
ator satisfies properties B5 and B6. Here, we use again in a crucial way the
geometric properties of the postcritical set of f ∈ Om proved in §5.

Proposition 8.19. (i) For every t > 2 which is not an integer there exist
0 < µ < 1 and C > 0 with the following property. For every g ∈ K and for
every m > 0, there is an η > 0 such that for all f ∈ Om with ‖f − g‖A < η

and for all w ∈ At with ‖w‖Ct < η we have
∥∥∥∥∥∥
A(f)

p−1∑

j=0

Bj(f) (Cj(f + w)− Cj(f))

∥∥∥∥∥∥
Ct

≤ Cµm‖v‖Ct . (8.4.1)

(ii) For every µ > 1 close to one, there is s < 2 close to two and C > 0 with
the following property: for every g ∈ K and for every m, there is an η > 0
such that for all f ∈ Om with ‖f − g‖A < η and for all w ∈ At with ‖w‖Ct < η

we have that inequality (8.4.1) above is also satisfied.

Proof. Below, the positive constants c1, c2, . . . depend only on t (and the
real bounds), while the positive constants K0,K1,K2, . . . may depend also on
m.

Let k and 0 < α < 1 be respectively the integer and the fractional part of
t (when t = k + Lip take α = 1). We start observing that for each j we have

‖Bj(f) (Cj(f + w) − Cj(f))‖Ct ≤ ‖Bj(f)‖C0‖Cj(f + w)− Cj(f)‖Ct

+K0‖Bj(f)‖Ct‖Cj(f + w)− Cj(f)‖Ck . (8.4.2)

Note that in the right-hand side of (8.4.2) only the second term carries a
constant K0. By Lemma 8.17, there is c1 > 0 such that for every integer
m there is an open neighbourhood Om of K with the property that for each
f ∈ Om we have

‖Bj(f)‖C0 ≤ c1
|∆0|
|∆p−j | . (8.4.3)

In that neighborhood, we also have ‖Bj(f)‖Ct ≤ K1. By Proposition 8.4 and
Lemma 8.18, taking 0 < ε < 1 such that α− ε > 0, we obtain

‖Cj(f + w)− Cj(f)‖Ck ≤‖Cj(f + w)− Cj(f)‖Ct−ε

≤K2‖v‖Ct‖Up−j−1(f + w)− Up−j−1(f)‖ε
Ct

≤K3‖v‖Ct‖w‖ε
Ct . (8.4.4)
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On the other hand, putting together Proposition 8.4 with Lemma 8.17 and
with Lemma 8.18, we get

‖Cj(f + w)− Cj(f)‖Ct ≤ c2‖Up−j−1(f)′‖t
C0‖v‖Ct

+K4‖Up−j−1(f + w)− Up−j−1(f)‖α
Ct‖v‖Ct

≤ c3|∆p−j−1|t‖v‖Ct + K5‖w‖α
Ct‖v‖Ct . (8.4.5)

The first term on the last line of (8.4.5) looks a bit dangerous. What saves us
here is the geometric control on the post-critical set of f (hence on the intervals
∆i) that we have at our disposal since §5.2. Substituting (8.4.3), (8.4.4) and
(8.4.5) in (8.4.2) and adding up the terms with j = 0, . . . , p− 1 we arrive at

∥∥∥∥∥∥
A(f)

p−1∑

j=0

Bj(f) (Cj(f + w)− Cj(f))

∥∥∥∥∥∥
Ct

≤ c4





1
|∆0|

p−1∑

j=0

|∆0| · |∆p−j−1|t
|∆p−j | + K5‖w‖ε

Ct



 ‖v‖Ct ,

But as we have seen in §5.2 :

(i) By Proposition 5.5 and Remark 5.1, if t > 2 there exist 0 < γ < 1
and C > 0 with the following property. For every g ∈ K and
every m > 0, there exists an η > 0 such that for all f ∈ Om with
‖f − g‖A < η we have

p−1∑

j=0

|∆j |t
|∆j+1| ≤ CγmN , (8.4.6)

(ii) By Propostion 5.8 and Remark 5.1, for every γ > 1 close to one,
there exists t < 2 close to two and C > 0 with the following prop-
erty. For every g ∈ K and every m > 0, there exists η > 0 such
that for all f ∈ Om with ‖f − g‖A < η we have that the inequality
(8.4.6) above is also satisfied.

These last estimates end the proof of this proposition, provided we take µ = γN

and η < µm/ε.

We arrive at last to the main two results of this section.

Theorem 8.20. (i) If t > 2 is not an integer, there exist 0 < µ < 1 and
C > 0 with the following property. For every g ∈ K and for every m > 0, there
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is an η > 0 such that for all f ∈ Om with ‖f − g‖A < η and for all w ∈ At

with ‖w‖Ct < η we have

‖DTm(f + w)v −DTm(f)v‖Ct ≤ Cµm‖v‖Ct . (8.4.7)

(ii) For every µ > 1 close to one, there exist t < 2 close to 2 and C > 0 with
the following property. For every g ∈ K and every m > 0, there exists η > 0
such that for all f ∈ Om with ‖f − g‖A < η and all w ∈ At with ‖w‖Ct < η,
the inequality (8.4.7) above is also satisfied.

Part (ii) of this theorem with t = s implies property B5 and part (i) is
used later (for t = r) to prove property B6.

Proof. In this proof the positive constants K1,K2, . . . depend only on r and
Om and also on m. Let E : Ct(I, I) → R be the evaluation map E(f) = f(0),
which is linear, and let Un : Cs(I, I) → Cs(I) be as before. Let us write
DTm(f + w)v −DTm(f)(v) = E1 + E2 + E3 + E4 + E5 + E6 + E7, where

E1 =(A(f + w)−A(f))
p−1∑

j=0

Bj(f + w) · Cj(f + w)

E2 =A(f)
p−1∑

j=0

(Bj(f + w)−Bj(f)) · Cj(f + w)

E3 =A(f)
p−1∑

j=0

Bj(f) · (Cj(f + w)− Cj(f))

E4 =(A(f + w)−A(f)) ·D(f + w)
p−1∑

j=0

E ◦Bj(f + w) · E ◦ Cj(f + w)

E5 =A(f) · (D(f + w)−D(f))
p−1∑

j=0

E ◦Bj(f + w) · E ◦ Cj(f + w)

E6 =A(f) ·D(f)
p−1∑

j=0

(E ◦Bj(f + w)− (E ◦Bj(f)) · E ◦ Cj(f + w)

E7 =A(f) ·D(f)
p−1∑

j=0

E ◦Bj(f) · (E ◦ Cj(f + w)− E ◦ Cj(f)) .

By Lemma 8.11, we get

|A(f + w)−A(f)| = ∣∣λf+w
−1 − λf

−1
∣∣
Ct ≤ K1‖w‖Ct . (8.4.8)

Hence,

‖E1‖Ct ≤ K2‖w‖Ct‖v‖Ct and ‖E4‖Ct ≤ K3‖w‖Ct‖v‖Ct .
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By Proposition 8.6 and Lemma 8.18, we obtain

‖Bj(f + w)−Bj(f)‖Ct ≤K4‖Up−j(f + w)− Up−j(f)‖Ct

≤K5‖w‖Ct . (8.4.9)

Since E is a bounded linear operator and from the last inequality, we obtain

‖E2‖Ct ≤ K6‖w‖Ct‖v‖Ct and ‖E6‖Ct ≤ K7‖w‖Ct‖v‖Ct .

Taking j = p in (8.4.9), we get

‖Bp(f + w)−Bp(f)‖Ct ≤ K8‖w‖Ct .

By Lemma 8.18 and by (8.4.8), we get

‖λf+w · Up(f + w)− λf · Up(f)‖Ct ≤ K9‖w‖Ct .

Combining the last two inequalities, we get ‖E5‖Ct ≤ K10‖w‖Ct‖v‖Ct .

Let k and 0 < α < 1 be the integer and the fractional part of t, and let
0 < ε < 1 be such that α − ε > 0. From inequality (8.4.4), and since E is a
bounded linear operator, we get

|E (Cj(f + w))− E (Cj(f)) | ≤ K11‖w‖ε
Ct‖v‖Ct .

Thus, ‖E7‖Ct ≤ K12‖w‖ε
Ct‖v‖Ct . The only thing left to do is to bound ‖E3‖Ct ,

and this follows at once from Proposition 8.19.

Theorem 8.21. If r > 2 is not an integer, there exist 0 < µ < 1 and
C > 0 with the following property. For every g ∈ K and for every m > 0, there
is an η > 0 such that for all f ∈ Om with ‖f − g‖A < η and for all v ∈ Ar with
‖v‖Cr < η we have

‖Tm(f + v)− Tm(f)−DTm(f)v‖Cr ≤ Cµm‖v‖Cr . (8.4.10)

This theorem together with Theorem 8.20 (i) for t = r imply that the
renormalization operator satisfies property B6.

Proof. In this proof the constants θ, θ1, θ2, . . . are greater than zero and
smaller than one and just depend upon r. The positive constants c, c1, c2, . . .

depend only on r and Om, and the positive constants K, K1,K2, . . . depend
also on m. Start observing that since Tm(f) = λ−1

f · Up(f), we have Tm(f +
v)− Tm(f)−DTm(f)v = A + B + C, where

A =λ−1
f · (Up(f + v)− Up(f)−DUp(f)v)

B =
(
λ−1

f+v − λ−1
f −Dλ−1

f (v)
)
· Up(f + v)

C =Dλ−1
f (v) · (Up(f + v)− Up(f)) .

By Lemma 8.11, we have that f → λ−1
f is C1 and that there is θ1 such that

‖B‖Cr ≤ K1‖v‖1+θ1
Cr . Since ‖Up(f + v) − Up(f)‖Cr ≤ K2‖v‖Cr , we have also
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‖C‖Cr ≤ K3‖v‖2
Cr . Hence inequality (8.4.10) will be established if we prove

the following claim.

Claim. If r > 2 there exist 0 < µ < 1 and c1 > 0 with the following property:
for every g ∈ K and for every m, there is an η > 0 such that for all f ∈ Om

with ‖f − g‖A < η and for all v ∈ Ar with ‖v‖Cr < η we have

‖Up(f + v)− Up(f)−DUp(f)v‖Cr ≤ c1µ
m|λf |‖v‖Cr . (8.4.11)

To prove this claim, we will proceed recursively. Let us write for i =
0, . . . , p,

Ri = Ui(f + v)− Ui(f)−DUi(f)v .

Note that Ri+1 = Ei + Fi + f ′ ◦ Ui(f) ·Ri, where

Ei = f ◦ Ui(f + v)− f ◦ Ui(f)− f ′ ◦ Ui(f) · (Ui(f + v)− Ui(f))

Fi = v ◦ Ui(f + v)− v ◦ Ui(f) .

Thus, working recursively from these expressions, we get

Rp = R0 ·Gp +
p−1∑

i=0

(Ei ·Gp−i−1 + Fi ·Gp−i−1) ,

where Gp−i−1 = (fp−i−1)′ ◦ Ui+1(f) and R0 = Λf+v − Λf − DΛf (v). Since
f ∈ Om, by Proposition 8.6 and Lemma 8.18, we get

‖Ei‖Cr ≤ K4‖Ui(f + v)− Ui(f)‖1+θ2
Cr ≤ K5‖v‖1+θ2

Cr

for θ2 = 1 − {r}. Therefore,
∥∥∥∑p−1

i=0 Ei ·Gp−i−1

∥∥∥
Cr
≤ K6‖v‖1+θ2

Cr . By Lemma

8.11, there is θ3 such that ‖R0‖Cr ≤ K7‖v‖1+θ3
Cr . Hence, ‖R0 · Gp‖Cr ≤

K8‖v‖1+θ3
Cr . Finally, by Proposition 8.19, there exists θ4 > 0 such that

∥∥∥∥∥
p−1∑

i=0

Fi ·Gp−i−1

∥∥∥∥∥
Cr

≤ K9‖v‖1+θ4
Cr + c2µ

m|λf |‖v‖Cr .

This proves our original claim.

8.5. Proof of Theorem 8.1

All the pieces of the puzzle may now be put together. We want to check
robustness of T relative to the spaces A = A, B = Ar, C = As and D = A0.
By Theorem 5.1, the pair (Aγ ,A0) is ργ-compatible with (T,K) and ργ < λ

for γ sufficiently close to 2 and is 1-compatible for γ > 2. Hence property
B1 is satisfied because s > s0 with s0 < 2 close to 2 and r > s + 1 > 2.
Since r > s + 1, we know from Lemma 8.12 that T satisfies property B2.
It also satisfies property B3 by Lemma 8.13, and property B4 by Lemma
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8.16. Finally, T satisfies property B5 by Theorem 8.20, and property B6 by
Theorem 8.21. Therefore the renormalization operator T is indeed robust with
respect to (Ar,As,A0).

8.6. Proof of hyperbolic picture

Having established that the renormalization operator T is robust, we are now
ready to show that the hyperbolic picture holds true for T acting on each of
the spaces Ur and Vr.

8.6.1. Proof of Theorem 2.5

We divide the proof of Theorem 2.5 into two cases: (i) r is not an integer
(including the Lipschitz case r = k + Lip), and (ii) r = k is an integer.

Proof of case (i): Putting together Theorem 6.1 with Theorem 8.1 we
deduce all the assertions of Theorem 2.5 except the fact that the holonomies
are C1+β for some β > 0. This last fact follows if we combine Theorem 7.1
with Example 7.1.

Proof of case (ii): To prove this case, let us consider the Banach space
Ak−1+Lip. Note that the natural inclusion i : Ak → Ak−1+Lip is an isometric
embedding. Indeed, for all v ∈ Ak we have ‖v‖Ck = ‖v‖B, by the mean-value
theorem. Applying case (i) to Ak−1+Lip, we see that for every g ∈ K the
local stable set W s,k−1+Lip

ε (g) is a codimension one C1 Banach submanifold of
Ak−1+Lip. In fact, there exists a C1 function Φ : O0 → R, whereO0 ⊆ Ak−1+Lip

is an open set containing g, such that 0 ∈ R is a regular value for Φ, with

Φ−1(0) = O0 ∩W s,k−1+Lip
ε (g)

and such that DΦ(g)ug 6= 0. Let O1 = i−1(O0) ⊆ Ak. Then O1 is open and
Φ ◦ i : O1 → R is C1. Since ug ∈ Ak and D(Φ ◦ i)(g)ug = DΦ(g)ug 6= 0, it
follows that 0 ∈ R is a regular value for Φ ◦ i at g. Hence, by the implicit
function theorem,

O1 ∩W s,k
ε (g) = O1 ∩W s,k−1+Lip

ε (g) = O1 ∩ (Φ ◦ i)−1(0) ,

is a C1, codimension one Banach submanifold of Ak. Since by case (i) the
local stable manifolds in Ak−1+Lip form a continuous lamination, we deduce
that the same is true for the local stable manifolds in Ak, because i is an
isometric embedding. Finally, if F is a C2 ordered transversal (in the sense of
§7) to the stable lamination in Uk, then i ◦ F is a C2 ordered transversal to
the stable lamination in Ak−1+Lip, and therefore by case (i) its holonomy in
Uk−1+Lip is C1+θ for some θ > 0. But then it follows that the holonomy of the
transversal F in Uk is C1+θ also.
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8.6.2. Proof of Corollary 2.6

A similar argument to the one used in the proof of Theorem 2.5 can be used
here. The map i is replaced throughout by the inclusion j : Br → Ar, which is
a bounded linear operator (see §2.1). Hence the pre-images by j of the local
stable leaves in Ur are C1 manifolds and form a C0 lamination in Vr. Using
[24] (see Remark 9.1 below), we see that the leaves of such lamination contain
the local stable sets of each g ∈ K in Vr.

9. Global stable manifolds and one parameter families

In this section, we prove Theorem 2.7. The first part will follow from
Theorem 9.1 and the second part will follow from Theorem 9.2.

9.1. The global stable manifolds of renormalization

In this section we construct the global stable manifolds of the renormalization
operator T in Vr, for all r sufficiently large.

Let g be an element of the (bounded-type) invariant set K of T . Recall
that the global stable set W s,r(g) of g ∈ Vr is given by

W s,r(g) = {f ∈ Vr : ‖Tn(f)− Tn(g)‖Cr → 0 when n →∞} .

From Corollary 2.6, we know that the convergence is exponential, and the
exponential rate of convergence is independent of f and g, provided r ≥ 2 + α

with 0 < α < 1 close to one.

Theorem 9.1. For every r ≥ 3+α with α < 1 sufficiently close to 1, and
every g ∈ K, the global stable set W s,r(g) is an immersed, codimension one C1

Banach submanifold of Vr.

Remark 9.1. By [24], if the invariant set K of the renormalization op-
erator is of bounded type then for every r ≥ 3 and every g ∈ K we have that
W s,r(g) coincides with the set of all maps f ∈ Vr with the same combinatorial
type of g.

Proof. We already know that the local stable sets are C1 submanifolds.
The idea is to pull-back such manifold structure by T using the implicit func-
tion theorem. More precisely, by Corollary 2.6 there exist ε, β > 0 so small that
W s,r−1−β

ε (g) is a codimension one C1 Banach submanifold of Vr−1−β, for all
g ∈ K. We may assume that ε > 0 is so small that the vector ug is transversal
to the local stable set W s,r−1−β

ε (g) at each one of its points.
Now fix g ∈ K and let f ∈ W s,r(g). There exists N = N(f) > 0 so large

that
TN (f) ∈ W s,r

ε (TN (g)) ⊂ W s,r−1−β
ε (TN (g)) .
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Since v = uT N (g) is transversal at TN (f) to W s,r−1−β
ε (TN (g)), There exist a

small open set O0 ⊂ Vr−1−β containing TN (f) and a C1 function Φ : O0 → R
such that Φ−1(0) = W s,r−1−β

ε (TN (g)) ⊂ O0 for which 0 ∈ R is a regular
value and DΦ(TN (f))v 6= 0. The operator TN is C1 as a map from Vr into
Vr−1−β. Let O1 ⊂ Vr be an open set containing f such that TN (O1) ⊂ O0.
We want to show that 0 ∈ R is a regular value for Φ ◦ TN : O1 → R. Defining
Ft = TN (f)+ tv (for |t| small), we get a C1 family {Ft} of maps in Vr which is
transversal to W s,r−1−β

ε (TN (g)) at F0 = TN (f). Now, we have the following
claim.
Claim. There exists a C1 family {ft} with ft ∈ Vr such that for all small t we
have TN (ft) = Ft.

Let us assume this claim for a moment. Setting

w =
d

dt

∣∣∣∣
t=0

ft ,

we obtain that
D(Φ ◦ TN )(f)w = DΦ(F0)v 6= 0 .

Therefore, Φ ◦ TN is a C1 local submersion at f . By the implicit function
theorem (Φ ◦ TN )−1(0) is a codimension one, C1 Banach submanifold of O1

(or Vr). Furthermore, if h ∈ (Φ ◦ TN )−1(0) then TN (h) ∈ W s,r−1−β
ε (TN (g)),

and so h belongs to the global stable set W s,r−1−β(g). Using [24] (see Remark
9.1), we deduce that h belongs in fact to W s,r(g). This proves that W s,r(g) is
an immersed C1 manifold as asserted.

It remains to prove the claim. We first note that Ft = ht ◦ F0 where each
ht ∈ Cr(I, I) is a Cr diffeomorphism of I = [−1, 1]. Since TN (f) = F0, there
exist p > 0 and closed, pairwise disjoint intervals 0 ∈ ∆0, ∆1, . . . , ∆p−1 ⊆ I

with f(∆i) ⊆ ∆i+1 for 0 ≤ i < p− 1 and f(∆p−1) ⊆ ∆0, such that

F0 = TN (f) = Λ−1
f ◦ fp ◦ Λf ,

where Λf : I → ∆0 is the map x 7→ fp(0)x. Let ht : ∆0 → ∆0 be the Cr

diffeomorphism given by ht = Λf ◦ ht ◦ Λ−1
f . Consider a Cr extension of ht to

a diffeomorphism Ht : I → I with the property that Ht|∆i is the identity for
all i 6= 0. Then let ft ∈ Vr be the map ft = Ht ◦ f . Note that f i

t (0) = f i(0)
for all 0 ≤ i ≤ p, that ft is N -times renormalizable (under T ) and that

TN (ft)= Λ−1
f ◦ fp

t ◦ Λf

=Λ−1
f ◦ (Ht ◦ f) |∆p−1 ◦ (Ht ◦ f) |∆p−2 ◦ . . . ◦ (Ht ◦ f) |∆0 ◦ Λf

=Λ−1
f ◦ ht ◦ fp ◦ Λf

=Λ−1
f ◦ Λf ◦ ht ◦

(
Λ−1

f ◦ fp ◦ Λf

)

=ht ◦ F0

=Ft ,
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which proves the claim.

9.2. One-parameter families

A one-parameter family of maps is a map ψ : [0, 1]× I → I (where I = [−1, 1]
is the phase space) such that ψt = ψ(t, ·) belongs to Vr for all t ∈ [0, 1]. If ψ is
a Ck map, then we say that ψ is a Ck family (of Cr unimodal maps). We often
identify the family ψ with the curve {ψt}0≤t≤1 of unimodal maps in Vr. We
shall denote by UFk the space of all Ck families with the Ck topology (UFk

is a subset of Ck([0, 1]× I)).
We say that two families are C1+ equivalent if there exist a diffeomorphism

from one into the other which sends each infinitely renormalizable map (with
a fixed bounded combinatorial type) to a map with the same combinatorics.
We are now in a position to state the result we have in mind.

Theorem 9.2. Let r ≥ 3 + α with α > 0 close to 1, and let 2 ≤ k ≤ r.
There exists an open and dense subset O ⊆ UFk of one-parameter Ck families
of Cr unimodal maps having the following properties:

(i) Every family ψ ∈ O intersects the global stable lamination Ls of
renormalization transversally.

(ii) For every ψ ∈ O, there exist 0 = t0 < t1 < . . . < tn = 1 such
that for each i = 0, 1, . . . , n − 1 the sub-arc {ψt : ti ≤ t ≤ ti+1}
is C1+β diffeomorphic, via a holonomy-preserving diffeomorphism,
to a corresponding sub-arc in the quadratic family. Here β > 0 is
given by Corollary 2.6.

The proof will require a few lemmas. The first Lemma says that every Ck

family can be approximated (in the Ck sense) by a real analytic family.

Lemma 9.3. If ψ ∈ UFk, then for each ε > 0 there exists a real analytic
family f ∈ UFω such that ‖ψ − f‖Ck([0,1]×I) < ε.

Proof. Write each ψt ∈ Vr as ht ◦ q, where q(x) = x2 and ht is a diffeo-
morphism, and consider the Ck map h : [0, 1]× I → I given by h(t, x) = ht(x),
a Ck family of Cr diffeomorphisms. To approximate h by a real analytic
family of diffeomorphisms, consider the convolution of h with the heat kernel
k(t, x, ε) = e−(t2+x2)/4ε for ε > 0 sufficiently small (see [1]).

Given this “denseness” result, the idea will be to show that arbitrarily close
to an f as in Lemma 9.3 we can find a Ck family which is also transversal to the
global stable lamination Ls of renormalization, by some kind of perturbation
argument, to eliminate possible tangencies between {ft} and Ls.
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We will reduce our problem to the following general result about lamina-
tions with complex analytic leaves, whose elegant proof is due to Douady.

Lemma 9.4. Let L ⊆ C2 be a C0 lamination whose leaves are complex
one-manifolds, and let F : D → C be a holomorphic function whose graph is
tangent of finite order at (0, F (0)) to a leaf L0 ∈ L. Then the tangency is
isolated: there exists a neighborhood of (0, F (0)) in C2 on which every other
intersection of the graph of F with the leaves of L is a transversal intersection.

Proof. Using a suitable chart, we may assume that the leaf L0 is the
horizontal plane w = 0 in C2, and that the other leaves of L in that chart are
the graphs of holomorphic functions ϕµ : D→ C (with ϕµ(0) = µ ∈ D, where
D ⊆ C is some open disk around zero, and ϕ0 ≡ 0).

Since L is a C0 lamination, ϕµ converges to 0 uniformly in D as µ tends
to 0. Hence, for |µ| small enough, we have ϕµ(D) ⊂ D. Moreover, ϕµ(z) 6= 0
for all z ∈ D (leaves cannot intersect), so in fact ϕµ(D) ⊂ D∗.

Now, we have F (0) = F ′(0) = . . . = F (k−1)(0) = 0 6= F (k)(0), for some
k ≥ 2. Composing the chart with a bi-holomorphic map if necessary, we may
therefore assume that F (z) = zk.

Let us fix µ ∈ D \ {0} and suppose that z0 ∈ D is such that ϕµ(z0) =
F (z0). We assume that |z0| < 1/2 (taking |µ| small enough). To show that
this intersection between ϕµ and F is transversal, it suffices to show that
ϕ′µ(z0) 6= F ′(z0). But, by Schwarz’s Lemma, the derivative ϕ′µ(z0) measured
with respect to the Poincaré metrics of domain D and range D∗ must be less
than or equal to 1, that is to say

∥∥ϕ′µ(z0)
∥∥

P
=

∣∣ϕ′µ(z0)
∣∣
(
1− |z0|2

)

|ϕµ(z0)| log
(
|ϕµ(z0)|−1

) ≤ 1 .

Thus, we have ∣∣ϕ′µ(z0)
∣∣ ≤ 4

3
k|z0|k log

(
|z0|−1

)
.

On the other hand, ∣∣F ′(z0)
∣∣ = k|z0|k−1 .

This shows that
∣∣ϕ′µ(z0)

∣∣ / |F ′(z0)| converges to 0 as µ tends to 0, whence
ϕ′µ(z0) 6= F ′(z0) for all sufficiently small |µ|. Therefore (0, F (0)) is an isolated
tangency as claimed.

We may now state and prove the result on laminations with real analytic
leaves which is needed for the proof of Theorem 9.2.

Lemma 9.5. Let F ⊆ [a, b] × R be a C0 foliation whose leaves are the
graphs of real analytic functions ϕµ : [a, b] → R with, say, ϕµ(a) = µ ∈ [0, 1].
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Let L ⊆ F be a sub-lamination which is transversally totally disconnected (i.e.
K0 = {µ ∈ [0, 1] : gr(ϕµ) ⊆ L} is a totally disconnected set). If F : [a, b] → R
is a real analytic function, then

(i) gr(F ) is tangent to F at only finitely many points;

(ii) for all ε > 0 and all k ≥ 0, there exists a real analytic G :
[a, b] → R such that ‖F − G‖Ck < ε and all tangencies of gr(G)
with F belong to F \ L; in particular, gr(G) is transversal to L.

Proof. (i) Complexifying F (i.e. the leaves ϕµ) as well as F , we put
ourselves in the situation of Lemma 9.4. All tangencies are therefore isolated,
and since [a, b] is compact, there are only finitely many such, say at xi ∈ [a, b],
i = 1, 2, . . . , n.
(ii) Let di be the order of tangency of F with F at (xi, F (xi)). Then for every
real analytic G sufficiently close to F in the Ck topology with k large (k ≥∑n

i=1 di will do), the number n(G) of tangencies of gr(G) with F – not counting
multiplicies – is bounded by

∑n
i=1 di. Hence we can find G0 : [a, b] → R real

analytic with ‖F −G0‖Ck < ε/2 such that n(G0) is maximal. All tangencies of
G0 with F must be first-order tangencies (di = 1). Indeed, if, say, d1 > 1, then
adding a suitable polynomial with small Ck norm to G0, vanishing of very high
order at x2, x3, . . . , xn(G0), we could unfold the tangency at x1 to produce a
new real analytic G with n(G) > n(G0). Now we may consider Gt : [a, b] → R
given by Gt(x) = G0(x) + t for |t| < ε/2. Since first-order tangencies are
persistent, each tangency (xi, G0(xi)) of G0 with F generates a continuous,
non-constant path (xi(t), Gt(xi(t))) ∈ gr(ϕµi(t)) of (first-order) tangencies of
Gt with F . Each function t 7→ µi(t), i = 1, 2, . . . , n(G0), is continuous and
non-constant. Since K0 is totally disconnected, there exists t (with |t| < ε/2)
such that µi(t) ∈ [0, 1] \ K0 for all i. Therefore, all tangencies of Gt with F
fall in F \ L, whence Gt is transversal to L.

Proof of Theorem 9.2. Both properties (i) and (ii) are easily seen to be open,
hence we concentrate in proving that they are dense. Let ε > 0.

Take any family ψ ∈ UFk. By Lemma 9.3, there exists a real analytic
family f ∈ UFω whose Ck distance from ψ is less than ε/2. The corresponding
curve {ft} in Vr may fail to be transversal to the global stable lamination Ls, so
let us show how to perturb it locally to get a transversal family. Let t0 ∈ [0, 1]
be such that ft0 ∈ Ls (and {ft} is tangent to Ls at ft0). Since ft0 is infinitely
renormalizable and real analytic, there exists N > 0 such that RN (ft0) ∈ AΩa

(where a > 0 is the constant in Theorem 2.4). Let J ⊆ [0, 1] be an interval
containing t0 such that RN (ft) is well-defined and belongs to AΩa

for all t ∈ J .
We restrict our attention to the sub-family {ft}t∈J from now on.
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First we embed {ft}t∈J in a two-parameter family in the following way.
Note that each ft belongs to AΩα

for some (fixed) α > 0. As a map from (an
open subset of) AΩα

into AΩa
, RN is a real analytic operator.

Claim. There exist analytic vectors v ∈ AΩα
and w ∈ AΩa

with the property
that DRN (ft0)v = w and w is transversal to Ls

a = Ls ∩ AΩa
at RN (ft0) ∈ Ls

a.

To see this, take any w0 ∈ AΩa
transversal to the (co-dimension one) lamination

Ls
a at RN (ft0). The same construction used in the proof of Theorem 9.1 yields

a C∞ vector v0 at ft0 such that DRN (ft0)v0 = w0. Now approximate v0 by an
analytic vector v ∈ AΩα

(in the Cm sense for m ≥ r). Then w = DRN (f0)v
will still be transversal to Ls

a. Shrinking J if necessary, we may in fact assume
that DRN (ft)v is transversal to Ls

a for all t ∈ J . Hence, let us consider the
two-parameter family of maps ft,s ∈ AΩα

given by ft,s = ft + sv with t ∈ J

and |s| ≤ δ with δ small. We have

W = {ft,s : t ∈ J, s ∈ [−δ, δ]} ∼= J × [−δ, δ] ⊆ R2 ,

and RN |W : W → AΩa
is an injective, real analytic map. Recall now that in

AΩa
we have a C0 foliation F with real analytic leaves (coming from hybrid

classes, cf. §3) and that Ls
a ⊆ F is the sub-lamination corresponding to the

stable leaves of renormalization, which is transversally totally disconnected.
Taking FW = R−N (F) ⊆ W and Ls

W = R−N (Ls
a) ⊆ W and noting that

DRN (ft,s)v = w is transversal to Ls
a for all t ∈ J , s ∈ [−δ, δ] (making δ smaller

if necessary) we deduce that FW is a C0 foliation (in W ) by real analytic
curves, and Ls

W ⊆ FW is a sub-lamination. Therefore we can apply Lemma
9.5 to this situation (with F = FW and L = Ls

W ), obtaining a new analytic
curve {gt}t∈J with ‖ft − gt‖Ck < ε/2, transversal to Ls

W in W , and such that
{RN (gt)} is transversal to Ls

a at RN (gt0). Since by Corollary 2.6 the holonomy
of Ls

a is C1+β for some β > 0 (and the quadratic family is transversal to Ls
a)

we deduce that {gt} satisfies properties (a) and (b) of the statement. This
completes the proof.
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10. A short list of symbols

For the reader’s convenience, we present below a short list of symbols used
in this paper.

p Period of renormalization

λf Scaling factor λf = fp(0)

Λf Linear scaling Λf : x → fp(0) · x
R Renormalization operator RNf = Λ−1

f ◦ fp ◦ Λf

K Bounded type limit set of R

pk Number of renormalization intervals at level k

∆j,k(f) Renormalization intervals at level k (0 ≤ j ≤ pk − 1)

If Post-critical set of f

AV Real Banach space of continuous maps V → C,

holomorphic in V, symmetric about real axis

T = RN : O→ AΩa
Real analytic operator for which

K ⊂ O is a hyperbolic basic set

ug(t) Parametrization of local unstable manifold W u
ε (g)

ug Unit vector tangent to W u
ε (g) at g

δg Unique real number such that DT (g)ug = δguT (g)

δ
(n)
g The product δgδT (g) . . . δT n−1(g)

Lf = DT (f) Derivative of T at f

Vr Cr unimodal maps with quadratic critical point at 0

Ar Tangent space to unimodal maps contained in Vr
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