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Abstract. The period doubling renormalization operator was in-
troduced by M. Feigenbaum and by P. Coullet and C. Tresser in
the nineteen-seventieth to study the asymptotic small scale geom-
etry of the attractor of one-dimensional systems which are at the
transition from simple to chaotic dynamics. This geometry turns
out to not depend on the choice of the map under rather mild
smoothness conditions. The existence of a unique renormalization
fixed point which is also hyperbolic among generic smooth enough
maps plays a crucial role in the corresponding renormalization the-
ory. The uniqueness and hyperbolicity of the renormalization fixed
point were first shown in the holomorphic context, eventually by
means that generalize to other renormalization operators. It was
then proved that also in the space of C2+α unimodal maps, for α

close to one, the period doubling renormalization fixed point is hy-
perbolic. Smoothness influences crucially the small scale geometry
for various types of topological dynamics, as has been known for
some time e.g., in Hamiltonian dynamics and for circle maps. In
this paper we study what happens when one approaches from be-
low the minimal smoothness thresholds for the uniqueness and for
the hyperbolicity of the period doubling renormalization generic
fixed point. Indeed, our main results states that in the space of
C

2 unimodal maps the analytic fixed point is not hyperbolic and
that the same remains true when adding enough smoothness to
get a priori bounds. In this smoother class, called C2+|·| the fail-
ure of hyperbolicity is tamer than in C2. What is important is
that the lack of hyperbolicity is among maps at the boundary of
chaos, which is corresponds to the small scale geometry not being
map-independent. Things get much worse with just a small loss
of smoothness from C2 as then, even the uniqueness is lost and
other asymptotic behavior become possible. Indeed we show that
the period doubling renormalization operator acting on the space
of C1+Lip unimodal maps has infinite entropy.
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1. Introduction

The period doubling renormalization operator was introduced by M.
Feigenbaum [Fe], [Fe2] and by P. Coullet and C. Tresser [CT], [TC]
to study the asymptotic small scale geometry of the attractor of one-
dimensional systems which are at the transition from simple to chaotic
dynamics. In 1978, they reported certain rigidity properties of such sys-
tems, the small scale geometry of the invariant Cantor set of generic
smooth maps at the boundary of chaos being independent of the par-
ticular map being considered. Coullet and Tresser treated this phe-
nomenon as similar to universality that has been observed in critical
phenomena for long and explained since the early seventieth by Ken-
neth Wilson (see, e.g., [Ma]). In an attempt to explain universality at
the transition to chaos, both groups formulated the following conjec-
tures that are similar to what was conjectured in statistical mechanics.

Renormalization conjectures: In the proper class of maps, the period
doubling renormalization operator has a unique fixed point that is hy-
perbolic with a one-dimensional unstable manifold and a codimension
one stable manifold consisting of the systems at the transition to chaos.

These conjectures were extended to other types of dynamics on the
interval and on other manifolds but we will not be concerned here with
such generalizations. During the last 30 years many authors have con-
tributed to the development of a rigorous theory proving the renormal-
ization conjectures and explaining the phenomenology. The ultimate
goal may still be far since the universality class of smooth maps at
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the boundary of chaos contains many sorts of dynamical systems, in-
cluding useful differential models of natural phenomena and there even
are predictions about natural phenomena in [CT], which turned out
to be experimentally corroborated. A historical review of the math-
ematics that have been developed can be found in [FMP] so that we
recall here only a few milestones that will serve to better understand
the contribution to the overall picture brought by the present paper.

The type of differentiability of the systems under consideration has
a crucial influence on the actual small scale geometrical behavior (like
it is the case in the related problem of smooth conjugacy of circle dif-
feomorphisms to rotations: compare [He] to [KO] and [KS]). The first
result dealt with holomorphic systems and were first local [La], and
later global [Su], [McM], [Ly] (a progression similar to what had been
seen in the problem of smooth conjugacy to rotations: compare [Ar] to
[He] and [Yo]). With global methods came also means to consider other
renormalizations. Indeed, the hyperbolicity of the unique renormaliza-
tion fixed point has been shown in [La] for period doubling, and later in
[Ly] by means that generalize to other sorts of dynamics. Then it was
showed in [Da] that the renormalization fixed point is also hyperbolic
in the space of C2+α unimodal maps with α close to one (using [La]),
these results being later extended in [FMP] to more general types of
renormalization (using [Ly]). As far as existence of fixed points is con-
cerned, a satisfactory theory could be obtained some time ago, first for
period doubling only and then for maps with bounded combinatorics
after several subclasses of dynamics had been solved see [M] for the
most general results, assuming the lowest degree of smoothness and
references to the prior literature.

We are interested in exploring from below the limit of smoothness
that permits hyperbolicity of the fixed point of renormalization. Our
main result concern a new smoothness class, C2+|·|, which is bigger
than C2+α for any positive α ≤ 1, and is in fact wider than C2 in
ways that are rather technical as we shall describe later (this is the
bigger class where the usual method to get a priori bounds for the
geometry of the Cantor set work). We are interested here in the part
of hyperbolicity that consists in the attraction in the stable manifold
made of infinitely renomalizable maps. We show that in the space of
C2+|·| unimodal maps the analytic fixed point is not hyperbolic for the
action of the period doubling renormalization operator. We also show
that nevertheless, the renormalization converges to the analytic generic
fixed point (here generic means that the second derivative at the critical
point is not zero), proving it to be globally unique, a uniqueness that
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was formerly known in classes smaller than C2+|·| (hence assuming more
smoothness). The convergence might only be polynomial as a concrete
sign of non-hyperbolicity. The failure of hyperbolicity happens in a
more serious way in the space of C2 unimodal maps since there the
convergence can be arbitrarily slow. The uniqueness of the fixed point
in this case, remains an open question. The uniqueness was known
to be wrong in a serious way among C1+Lip unimodal maps since a
continuum of fixed points of renormalization could be produced [Tr].
Here we show that the period doubling renormalization operator acting
on the space of C1+Lip unimodal maps has infinite topological entropy.

For completeness we will begin with the definition before stating the
precise formulation of our results.

A unimodal map f : [0, 1] → [0, 1] is a C1 mapping with the following
properties.

• f(1) = 0,
• there is a unique point c ∈ (0, 1), the critical point, where
Df(c) = 0,

• f(c) = 1.

A map is a Cr unimodal maps if f is Cr. We will concentrate on
unimodal maps of the type C1+Lip, C2, and C2+|·|. This last type of
differentiability will be introduced in § 5.

The critical point c of a C2 unimodal map f is called non-flat if
D2f(c) 6= 0. A critical point c of a unimodal map f is a quadratic tip if
there exists a sequence of points xn → c and constant A > 0 such that

lim
n→∞

f(xn) − f(c)

(xn − c)2
= −A.

The set of Cr unimodal maps with a quadratic tip is denoted by U r.
We will consider different metrics on this set denoted by distk with
k = 0, 1, 2. They are the usual Ck−metrics.

A unimodal map f : [0, 1] → [0, 1] with quadratic tip c is renormal-
izable if

• c ∈ [f2(c), f4(c)] ≡ I1
0 ,

• f(I1
0 ) = [f3(c), f(c)] ≡ I1

1 ,
• I1

0 ∩ I1
1 = ∅.

The set of renormalizable Cr unimodal maps is denoted by U r
0 ⊂ U r.

Let f ∈ U r
0 be a renormalizable map. The renormalization of f is

defined by

Rf(x) = h−1 ◦ f2 ◦ h(x),
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where h : [0, 1] → I1
0 is the orientation reversing affine homeomorphism.

This map Rf is again a unimodal map. The nonlinear operator R :
U r

0 → U r defined by
R : f 7→ Rf

is called the renormalization operator. The set of infinitely renormal-
izable maps is denoted by

W r =
⋂

n≥1

R−n(U r
0 ).

There are many fundamental steps needed to reach the following result
by Davie, see [Da]. For a brief history see [FMP] and references therein.

Theorem 1.1. (Davie) Let α < 1 close enough to one. There exists
a unique renormalization fixed point fω∗ ∈ U2+α. It has the following
properties.

• fω∗ is analytic,
• fω∗ is a hyperbolic fixed point of R : U2+α

0 → U2+α,
• the codimension one stable manifold of fω∗ coincides with W 2+α.
• fω∗ has a one dimensional unstable manifold which consists of

analytic maps.

In our discussion we only deal with period doubling renormalization.
However, there are other renormalization schemes. The hyperbolicity
for the corresponding generalized renormalization operator has been
established in [FMP].

Our main results deal with R : U r
0 → U r where r ∈ {1+Lip, 2, 2+|·|}.

Theorem 1.2. Let dn > 0 be any sequence with dn → 0. There exists
an infinitely renormalizable C2 unimodal map f with quadratic tip such
that

dist0 (Rnf, fω∗ ) ≥ dn.

Corollary 1.3. The analytic unimodal map fω∗ is not a hyperbolic fixed
point of R : U2

0 → U2.

In § 5 we will introduce a type of differentiability of a unimodal map,
called C2+|·|, which is the minimal needed to be able to apply the clas-
sical proofs of a priori bounds for the invariant Cantor sets of infinitely
renormalizable maps, see for example [M2],[MMSS],[MS]. This type of
differentiability will allow us to represent any C2+|·| unimodal map as

f = φ ◦ q,

where q is a quadratic polynomial and φ has still enough differentia-
bility to control cross-ratio distortion. The precise description of this
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decomposition is given in Proposition 5.6. For completeness we include
the proof of the a priori bounds in § 7.

Theorem 1.4. If f is an infinitely renormalizable C2+|·| unimodal map
then

lim
n→∞

dist0 (Rnf, fω∗ ) = 0.

A similar construction as the one for C2 unimodal maps leads to

Theorem 1.5. Let dn > 0 be any sequence with
∑

n≥1 dn <∞. There

exists an infinitely renormalizable C2+|·| unimodal map f with a qua-
dratic tip such that

dist0 (Rnf, fω∗ ) ≥ dn.

The analytic unimodal map fω∗ is not a hyperbolic fixed point of R :

U
2+|·|
0 → U2+|·|.

The second set of theorems deals with renormalization of C1+Lip

unimodal maps with a quadratic tip.

Theorem 1.6. There exists an infinitely renormalizable C1+lip uni-
modal map f with a quadratic tip which is not C2 but

Rf = f.

The entropy of a system defined on a noncompact space is defined
to be the supremum of the topological entropy contained in compact
invariant subsets. As a consequence of Theorem 1.1 we get that renor-
malization on U2+α

0 has entropy zero.

Theorem 1.7. The renormalization operator acting on the space of
C1+Lip unimodal maps with quadratic tip has infinite entropy.

The last theorem illustrates a specific aspect of the chaotic behavior
of the renormalization operator on U1+Lip

0 .

Theorem 1.8. There exists an infinitely renormalizable C1+Lip uni-
modal map f with quadratic tip such that {cn}n≥0 is dense in a Cantor
set. Here cn is the critical point of Rnf .

Acknowledgement W.de Melo was partially supported by CNPq-
304912/2003-4 and FAPERJ E-26/152.189/2002.

2. Notation

Let I, J ⊂ R
n, with n ≥ 1. We will use the following notation.

• cl(I), int(J), ∂I, stands for resp. the closure, the interior, and
the boundary of I.
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• |I| stands for the Lebesgue measure of I.
• If n = 1 then [I, J ] is smallest interval which contains I and J .
• dist (x, y) is the Euclidean distance between x and y, and

dist (I, J) = inf
x∈I, y∈J

dist (x, y).

• If F is a map between two sets then image(F ) stand for the
image of F .

• Define Diffk+ ([0, 1]), k ≥ 1, is the set of orientation preserving
Ck−diffeomorphisms.

• |.|k, k ≥ 0, stands for the Ck norm of the functions under
consideration.

• distk, k ≥ 0, stands for the Ck distance in the function spaces
under consideration.

• There is a constant K > 0, held fixed throughout the paper,
which lets us write Q1 ≍ Q2 if and only if

1

K
≤
Q1

Q2

≤ K.

There are two rather independent discussions. One on C1+Lipmaps
and the other on C2 maps. There is a slight conflict in the notation
used for these two discussions. In particular, the notation In1 stands
for different intervals in the two parts, but the context will make the
meaning of the symbols unambiguous.

3. Renormalization of C1+Lip unimodal maps

3.1. Piece-wise affine infinitely renormalizable maps. Consider
the open triangle ∆ = {(x, y) : x, y > 0 and x + y < 1}. A point
(σ0, σ1) ∈ ∆ is called a scaling bi-factor. A scaling bi-factor induces a
pair of affine maps

σ̃0 : [0, 1] → [0, 1] ,

σ̃1 : [0, 1] → [0, 1] ,

defined by

σ̃0(t) = −σ0t+ σ0 = σ0(1 − t)

σ̃1(t) = σ1t+ 1 − σ1 = 1 − σ1(1 − t).

A function σ : N → ∆ is called a scaling data. For each n ∈ N we set
σ(n) = (σ0(n), σ1(n)), so that the point (σ0(n), σ1(n) ∈ ∆ induces a
pair of maps (σ̃0(n), σ̃1(n). For each n ∈ N we can now define the pair
of intervals:

In0 = σ̃0(1) ◦ σ̃0(2) ◦ · · · ◦ σ̃0(n)([0, 1]) ,
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In1 = σ̃0(1) ◦ σ̃0(2) ◦ · · · ◦ σ̃0(n− 1) ◦ σ̃1(n)([0, 1]) .

I10 I11

I20

I30 I31

I21

c

Figure 1

Scaling data with the property

dist (σ(n), ∂∆) ≥ ǫ > 0

is called ǫ−proper, and proper if it is ǫ−proper for some ǫ > 0. For
ǫ−proper scaling data we have

|Inj | ≤ (1 − ǫ)n

with n ≥ 1 and j = 0, 1. Given proper scaling data define

{c} = ∩n≥1I
n
0 .

The point c is called the critical point. It is shown in Fig 1. Let
qc : [0, 1] → [0, 1] with

qc(x) = 1 −

(

x− c

1 − c

)2

.

Given proper scaling data σ : N → ∆, we define a map

fσ : Dσ → [0, 1]

where Dσ = ∪n≥1I
n
1 and fσ|In

1
is the affine extension of qc|∂In

1
. The

graph of fσ is shown in Fig 2.
Define x0 = 0, x−1 = 1 and for n ≥ 1

xn = ∂In0 \ ∂In−1
0 ,

yn = ∂In1 \ ∂In−1
0 .

These points are illustrated in Fig 3.

Definition 1. A map fσ corresponding to proper scaling data
σ : N → ∆ is called infinitely renormalizable if for n ≥ 1

(i) [fσ(xn−1), 1] is the maximal domain containing 1 on which f2n−1
σ

is defined affinely.
(ii) f2n−1

σ ([fσ(xn−1) , 1]) = In0 .
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I1
0 I1

1

I2
0

I3
0

I2
1

qc

c

fσ

Figure 2

In0 In1

In−1
0

xn−1xn−1 xn+1 xn yn xn−2yn+1 ccc

Figure 3

Define W = {fσ : fσ is infinitely renormalizable}. Let f ∈ W be
given by the proper scaling data σ : N → ∆ and define

În0 = [qc(xn−1), 1] = [f(xn−1), 1].

Let

hσ, n : [0, 1] → [0, 1]

be defined by

hσ, n = σ0(1) ◦ σ0(2) ◦ · · · ◦ σ0(n).

Furthermore let

ĥσ, n : [0, 1] → În0
be the affine orientation preserving homeomorphism. Then define

Rnf : h−1
σ,n(Dσ) → [0, 1]
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by

Rnf = ĥ−1
σ, n ◦ fσ ◦ hσ, n.

0 1 0 1

In0 În0

hσ,n ĥσ,n

fσ

Rnf

Figure 4

It is shown in Fig 4. Let s : ∆N → ∆N be the shift

s(σ)(k) = σ(k + 1).

The construction implies

Lemma 3.1. Let σ : N → ∆ be proper scaling data such that fσ is
infinitely renormalizable. Then

Rnfσ = fsn(σ).

Let fσ be infinitely renormalizable, then for n ≥ 0 we have

f2n

σ : Dσ ∩ I
n
0 → In0

is well defined. Define the renormalization R : W → W by

Rfσ = h−1
σ, 1 ◦ f

2
σ ◦ hσ, 1.

The map f2n−1
σ : În0 → In0 is an affine homeomorphism whenever

fσ ∈ W . This implies immediately the following Lemma.

Lemma 3.2. Rnfσ : Dsn(σ) → [0, 1] and Rnfσ = Rnfσ.

Proposition 3.3. W = {fσ∗} and Rfσ∗ = fσ∗

Proof. Let σ : N → ∆ be proper scaling data such that fσ is infinitely
renormalizable. Let cn be the critical point of fsn(σ). Then

qcn(0) = 1 − σ1(n)(1)

qcn(1 − σ1(n)) = σ0(n)(2)

cn+1 =
σ0(n) − cn
σ0(n)

.(3)
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We also have the conditions

σ0(n), σ1(n) > 0(4)

σ0(n) + σ1(n) < 1(5)

0 < cn <
1

2
(6)

From conditions (1), (2) and (3) we get

σ0(n) =
2c2n − 6c3n + 5c4n − 2c5n

(cn − 1)6
≡ A0(cn)(7)

σ1(n) =
c2n

(cn − 1)2
≡ A1(cn)(8)

cn+1 =
c6n − 6c5n + 17c4n − 25c3n + 21c2n − 8cn + 1

2c4n − 5c3n + 6c2n − 2cn
≡ R(cn)(9)

A0(c)

c

A1(c)

c

A0(c) + A1(c)

c

C

Figure 5. The graphs of A0, A1 and A0 + A1

The conditions (4), (5) and (6) reduces to c ∈ (0, 1/2) and A0(c) +
A1(c) < 1. Which in particular gives the feasible domain as

C =

{

c ∈ (0, 1/2) : 0 ≤
c2(3 − 10c+ 11c2 − 6c3 + c4)

(c− 1)6
< 1

}

= [0, 0.35...]
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R

cc

C

C

c∗

Figure 6. R : C → R

The map R : C → R is expanding. Hence, only the fixed point
c∗ ∈ C and R(c∗) = c∗ corresponds to an infinitely renormalizable fσ∗ .
Namely, consider the scaling data σ∗ : N → ∆ with

σ∗(n) =
(

q2
c∗(0), 1 − qc∗(0)

)

, n ≥ 1.

Then s(σ∗) = σ∗ and Lemma 3.1 implies

Rfσ∗ = fσ∗ .

�

Remark 3.4. Let In0 = [xn−1, xn] be the interval corresponding to σ∗

then

fσ∗(xn−1) = qc∗(xn−1).

Hence fσ∗ has a quadratic tip.

Remark 3.5. The invariant Cantor set of the map fσ∗ is next in com-
plexity to the well known middle third Cantor set in the following sense:

- like in the middle third Cantor set, on each scale and everywhere
the same scaling ratios are used,

- but unlike in the middle third Cantor set, there are now two ratios
(a small one and a bigger one) at each scale .
This situation of rather extreme tameness of the scaling data is very dif-
ferent from the geometry of the Cantor attractor of the analytic renor-
malization fixed point in which there are no two places where the same
scaling ratios are used at all scales, and where the closure of the set of
ratios is itself a Cantor set [BMT].
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Lemma 3.6. Let f∗ = fσ∗ where σ∗ : N → ∆ is the scaling data with
σ∗(n)(σ∗

0, σ
∗
1). Then

(σ∗
0)

2 = σ∗
1.

Proof. Let În0 = f∗(I
n
0 ) = [f∗(xn−1), 1] and În+1

1 = f∗(I
n+1
1 ). Then

f2n−1
∗ : În0 → In0 is affine, monotone and onto. Further, by construction

f2n−1(În+1
0 ) = In+1

1 .

Hence,
|În+1

0 |

|În0 |
= σ∗

1.

So |In0 | = (σ∗
0)
n and |În0 | = (σ∗

1)
n. Now fσ∗ has a quadratic tip with

fσ∗(xn) = qc∗(xn).

Hence,

σ∗
1 =

|În+1
0 |

|În0 |
=

(

xn − c

xn−1 − c

)2

=

(

|In+1
0 |

|In0 |

)2

= (σ∗
0)

2 .

This completes the proof. �

3.2. C1+Lip extension. In this section we will extend the piece-wise
affine map f∗ to a C1+Lip unimodal map. Let S : [0, 1]2 → [0, 1]2 be
the scaling function defined by

S

(

x
y

)

=

(

−σ∗
0x+ σ∗

0

σ∗
1y + 1 − σ∗

1

)

≡

(

S1(x)
S2(y)

)

and let F be the graph of f∗ = fσ∗ , where fσ∗ : Dσ∗ → [0, 1],
Dσ∗ = ∪n≥1I

n
1 . Then the idea how to construct an extension g of f∗ is

contained in the following.

Lemma 3.7. F ∩ image(S) = S(F ).

Proof. Let ĥ = ĥσ∗,1 and h = hσ∗,1. Let (x, y) ∈ graph(f∗) ∩
image(S). Say x = S1(x

′) and y = S2(y
′) with S2(y

′) = f∗(S1(x
′)).

Since S1(x
′) = h(x′) and S2(y

′) = ĥ(y′), we can write y′ = ĥ−1 ◦ f∗ ◦
h(x′). By Lemma 3.1

y′ = R1f∗(x
′) = f∗(x

′)

this gives (x′, y′) ∈ graph(f∗), which in turn implies (x, y) ∈ S(graphf∗).
By reading the previous argument backward we prove S(graph f∗) ⊂
F ∩ image(S). �

Lemma 3.8. S(graph qc∗) ⊂ graph(qc∗).
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Proof. Let S(graph(qc∗)) be the graph of the function q. Since S is
linear and qc is quadratic we get that q is also a quadratic function.
Then both qc∗(c

∗) = 1 and q(c∗) = 1, because of S(c∗, 1) = (c∗, 1).
Furthermore, by construction

S(1, 0) = (0, qc∗(0)) = (0, q(0)).

Hence qc∗(0) = q(0). Differentiate twice S2(y) = q(S1(x)) and use
(σ∗

0)
2 = σ∗

1 from Lemma 3.6, which proves q
′′

(c∗) = q
′′

c∗(c
∗). Now we

conclude that the quadratic maps q and qc∗ are equal. �

Let F0 be the graph of f∗|I1
1
. Then by Lemma 3.7, F = ∪k≥0S

k(F0).

Let g be a C1+Lip extension of f∗ onDσ∗∪[x1, 1] andG0 = graph (g|[x1, 1]).
Then G = ∪k≥0S

k(G0) is the graph of an extension of f∗. We prove
that g is C1+lip and also has a quadratic tip. Let Bk = Sk([0, 1]2),
where

Bk = [xk−1, xk] × [x̂k−1, 1] for k = 1, 3, 5, . . .

Bk = [xk, xk−1] × [x̂k−1, 1] for k = 2, 4, . . .

where x̂k−1 = qc(xk−1) = 1 − (σ∗
1)
k. Let bn = (xn−1, x̂n−1) = Sn(1, 0).

Remark 3.9. Notice that the points bn lie on the graph of qc∗. This
follows from Lemma 3.8.

....

.

.

.

B0

B1

B2

B3
B4

b1b1

b2

b3
b4

G0

G1

x0 x1x2 x3

x̂0

x̂1

x̂2

Figure 7. extension of fσ∗

Lemma 3.10. G is the graph of a C1 extension of f∗.
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Proof. Note thatGk = Sk(G0) is the graph of a C1 function on [xk−1, xk+1]
for k is odd and on [xk+1, xk−1] for k is even. To prove the Lemma we
need to show continuous differentiability at the points bn, where these
graphs intersect. By construction G0 is C1 at b2. Namely, consider a
small interval (x1 − δ, x1 + δ). Then on the interval (x1 − δ, x1), the
slope is given by an affine piece of f∗ and on (x1, x1 + δ) the slope is
given by the chosen C1+Lip extension. Let Γ ⊂ G be the graph over
this interval (x1−δ, x1 +δ). Then locally around bn the graph G equals
Sn−1(Γ). Hence G is C1 on [0, 1] \ {c∗}. From Lemma 3.6, notice that
the vertical contraction of S is stronger than the horizontal contrac-
tion. This implies that the slope of Gn tends to zero. Indeed, G is the
graph of a C1 function on [0, 1]. �

Proposition 3.11. Let g be the function whose graph is G then g is
C1+lip with a quadratic tip.

Proof. Since f∗|Dσ
has a quadratic tip, the extension g has a quadratic

tip. Because g is C1 we only need to show that Gn is the graph of a
C1+Lip function

gn : [xn−1, xn+1] → [0, 1]

with an uniform Lipschitz bound. That is, for n ≥ 1

Lip(g′n+1) ≤ Lip(g′n).

Assume that gn is C1+Lip with Lipschitz constant Lipn for its derivative.
We prove that Lipn+1 ≤ Lipn, and in particular Lipn ≤ Lip0. For,
given (x, y) on the graph of gn there is (x′, y′) = S(x, y), on the graph
of gn+1. Therefore, we can write

gn+1(x
′) = σ∗

1 gn(x) + 1 − σ∗
1.

Since x = 1 −
x′

σ∗
0

, we have

gn+1(x
′) = σ∗

1 gn

(

1 −
x′

σ∗
0

)

+ 1 − σ∗
1.

Differentiate,

g
′

n+1(x
′) =

−σ∗
1

σ∗
0

g
′

n

(

1 −
x′

σ∗
0

)

.

Therefore,

∣

∣g
′

n+1(x
′
1) − g

′

n+1(x
′
2)

∣

∣ =
∣

∣

∣

−σ∗
1

σ∗
0

∣

∣

∣
·
∣

∣

∣
g

′

n

(

1 −
x′1
σ∗

0

)

− g
′

n

(

1 −
x′2
σ∗

0

)

∣

∣

∣

≤
σ∗

1

(σ∗
0)

2
Lip(g

′

n) |x
′
1 − x′2|
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From Lemma 3.6 we have
σ∗
1

(σ∗
0
)2

= 1. Hence

Lip(g
′

n+1) ≤ Lip(g
′

n) ≤ Lip(g
′

1).

which completes the proof. �

Remark 3.12. Notice that if fσ is infinitely renormalizable then every
extension g is renormalizable in the classical sense.

Theorem 3.13. There exists an infinitely renormalizable C1+lip uni-
modal map f with a quadratic tip which is not C2 but

Rf = f.

3.3. Entropy of renormalization. For all φ ∈ C1+Lip, φ : [x1, 1] →
[0, 1], which extends f∗ we constructed fφ ∈ C1+Lip in such a way that

(i) Rfφ = fφ
(ii) fφ has a quadratic tip.

Now choose two C1+Lip functions which extend f∗, say φ0 : [x1, 1] →
[0, 1] and φ1 : [x1, 1] → [0, 1]. For ω = (ωk)k≥1 ∈ {0, 1}N, define

Fn(ω) = Sn (graph φωn
)

and
F (ω) = ∪k≥1Fk(ω).

Then, by similar argument as above, F (ω) is the graph of C1+Lip with
a quadratic tip fω. Let

τ : {0, 1}N → {0, 1}N

be the shift map defined by

τ(ω)n = ωn+1.

Proposition 3.14. For all ω ∈ {0, 1}N

f2
ω : [0, x1] → [0, x1]

as a unimodal map. In particular fω is renormalizable and

Rfω = fτ(ω)

Proof. Note that fω : [0, x1] → I1
1 is unimodal and onto. Furthermore,

fω : I1
1 → [0, x1] is affine and onto. Hence fω is renormalizable. The

construction also gives
Rfω = fτ(ω).

�

Theorem 3.15. Renormalization acting on the space of C1+Lip uni-
modal maps has positive entropy.
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Proof. Note that ω → fω ∈ C1+Lip is injective. Hence the domain of R
contains a copy of the full 2-shift. �

Remark 3.16. We can also embedded a full k-shift in the domain of R
by choosing φ0, φ1, . . . , φk−1 and repeat the construction. The entropy
of R on C1+Lip is actually unbounded.

4. Chaotic scaling data

In this section we will use a variation on the construction of scaling
data as presented in § 3 to obtain the following

Theorem 4.1. There exists an infinitely renormalizable C1+Lip uni-
modal map g with quadratic tip such that {cn}n≥0 is dense in a Cantor
set. Here cn is the critical point of Rng.

The proof needs some preparation. For ǫ > 0 we will modify the
construction as described in § 3. This modification is illustrated in Fig
8. For c ∈ (0, 1

2
) let

σ1(c, ǫ) = 1 − qc(0),

σ0(c, ǫ) = ǫ q2
c (0),

where ǫ > 0 and close to 1. Also let

R(c, ǫ) =
σ0(c, ǫ) − c

σ0(c, ǫ)
= 1 −

c

q2
c (0)

·
1

ǫ
.

*

qc

c

σ0(c, ǫ) σ1(c, ǫ)

q2
c (0)

ǫ q2
c (0)

fσ

Figure 8
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In § 3 we observed that R(c, 1) has a unique fixed point c∗ ∈ (0, 1
2
)

with feasible σ0(c
∗, 1) and σ1(c

∗, 1). This fixed point is expanding.
Although we will not use this, a numerical computation gives

∂R

∂c
(c∗, 1) > 2.

Now choose ǫ0 > ǫ1 close to 1. Then R(·, ǫ0) will have an expanding
fixed point c∗0 and R(·, ǫ1) a fixed point c∗1. In particular, by choosing
ǫ0 > ǫ1 close enough to 1 we will get the following horseshoe as shown
in Fig 9. There exists an interval A0 = [c∗0, a0] and A1 = [a1, c

∗
1] such

that

R0 : A0 → [c∗0, c
∗
1] ⊃ A0

and

R1 : A1 → [c∗0, c
∗
1] ⊃ A1

are expanding diffeomorphisms (with derivative larger than 2). Here

R0(c) = R(c, ǫ0)

and

R1(c) = R(c, ǫ1).

R0R0

R1

c∗0

c∗1

A0 A1

Figure 9

Use the following coding for the invariant Cantor set of the horseshoe
map

c : {0, 1}N → [c∗0, c
∗
1]

with

c(τω) = R (c(ω), ǫω0
)
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where τ : {0, 1}N → {0, 1}N is the shift. Given ω ∈ {0, 1}N define the
following scaling data σ : N → ∆.

σ(n) = (σ0 (c(τnω), ǫωn
) , σ1 (c(τnω), ǫωn

)) .

Again, by taking ǫ0, ǫ1, close enough to 1, we can assume that σ(n) is

proper scaling data for any chosen ω ∈ {0, 1}N . As in § 3 we will define
a piece wise affine map

fω : Dω = ∪n≥1I
n
1 → [0, 1].

The precise definition needs some preparation. Use the notation as
illustrated in Fig 10. For n ≥ 0 let

In0 = [xn, xn−1]

where xn = ∂In0 \ ∂In−1
0 , n ≥ 1 and

In1 = [yn, xn−2]

where yn = ∂In1 \ ∂In−1
0 , n ≥ 1.

*

In0 În0

In+1
0 In+1

1

xn xn−1yn+1 x̂n−1 x̂nŷn+1c 1
qc

În+1
1 În+1

0

Figure 10

Let

În0 = qc([xn−1, 1]) = qc(I
n
0 ) = [x̂n−1, 1]

where x̂n−1 = qc(xn−1). Finally, let În+1
1 = [x̂n−1, ŷn+1] ⊂ În0 such that

|În+1
1 | = σ0(n) · |În0 |.

Now define fω : In+1
1 → În+1

1 to be the affine homeomorphism such
that

fω(xn−1) = qc(xn−1) = x̂n−1.

Lemma 4.2. There exists K > 0 such that

1

K
≤

|În0 |

|In0 |
2
≤ K.



20 V.V.M.S. CHANDRAMOULI, M. MARTENS, W. DE MELO, C.P. TRESSER.

Proof. Observe, c(n) = c(τnω) ∈ [c∗0, c
∗
1] which is a small interval

around c∗. This implies that for some K > 0

1

K
≤

|c− xn−1|

|In0 |
≤ K.

Then
|În0 |

|In0 |
2

=
|qc([c, xn−1])|

|In0 |
2

=
(c− xn−1)

2

(1 − c)2
·

1

(In0 )2

which implies the bound. �

Let Sn2 : [0, 1] → În0 be the affine orientation preserving homeo-
morphism and Sn1 : [0, 1] → In0 be the affine homeomorphism with
Sn1 (1) = xn−1. Define

Sn : [0, 1]2 → [0, 1]2

by

Sn
(

x
y

)

=

(

Sn1 (x)
Sn2 (y)

)

.

The image of Sn is Bn.

*

qc

cn
σ0(n) σ1(n)

Fn

Gn

Figure 11

Let Fn = (Sn)−1(graph fω). This is the graph of a function fn. We
will extend this function (and its graph) on the gap [σ0(n), 1− σ1(n)].
Notice, that σ0(n), 1 − σ1(n), Dfn(σ0(n)), and Dfn(1 − σ1(n)) vary
within a compact family. This allows us to choose from a compact
family of C1+Lip diffeomorphisms an extension

gn : [σ0(n), 1] → [0, fn(σ0(n))]
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of the map fn. The Lipschitz constant of Dgn is bounded by K0 > 0.
Let Gn be the graph of gn and

G = ∪n≥0 S
n(Gn).

Then G is the graph of a unimodal map

g : [0, 1] → [0, 1]

which extends fω. Notice, g is C1. It has a quadratic tip because fω
has a quadratic tip. Also notice that Sn(Gn) is the graph of a C1+Lip

diffeomorphism. The Lipschitz bound Ln of its derivative satisfies, for
a similar reason as in § 3,

Ln ≤
|În0 |

|(In0 )|2
·K0.

This is bounded by Lemma 4.2. Thus gω is a C1+Lip unimodal map
with quadratic tip. The construction implies that g is infinitely renor-
malizable and

graph (Rngω) ⊃ Fn.

One can prove Theorem 4.1 by choosing ω ∈ {0, 1}N such that the orbit
under the shift τ is dense in the invariant Cantor set of the horseshoe
map.

Remark 4.3. Let ω = {0, 0, . . . }, then we will get another renormal-
ization fixed point which is a modification of the one constructed in
§ 3.

5. C2+|·| unimodal maps

Let f : [0, 1] → [0, 1] be a C2 unimodal map with critical point
c ∈ (0, 1). Say, D2f(x) = E(1 + ε(x)), where

ε : [0, 1] → R

is continuous with ε(c) = 0 and E = D2f(c) 6= 0. Let

ε̄ : [0, 1] → R

be defined by

ε̄(x) =
1

x− c

∫ x

c

ε(t)dt.

Notice, ε̄ is continuous with ε̄(c) = 0. Furthermore, 1 + ε̄(x) 6= 0 for
all x ∈ [0, 1]. This is because of

Df(x) = E(x− c)(1 + ε̄(x))

which equals zero only when x = c. Let

δ : [0, 1] → R
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defined by
δ(x) = ε(x) − ε̄(x).

Notice that δ is continuous and δ(c) = 0. Finally, define

β : [0, 1] → R

by

β(x) =

∫ x

c

1

t− c
δ(t)dt.

Lemma 5.1. The function β is continuous and ε = δ + β.

Proof. The definition of δ gives ε̄ = ε − δ, which is differentiable on
[0, 1] \ {c}, and

ε(x) = ((x− c)(ε− δ)(x))
′

= ε(x) − δ(x) + (x− c)(ε− δ)
′

(x).

Hence,

δ(x) = (x− c)(ε− δ)
′

(x).

This implies

ε(x) = δ(x) +

∫ x

c

1

t− c
δ(t)dt = δ(x) + β(x).

�

Definition 2. Let f : [0, 1] → [0, 1] be unimodal map with critical point
c ∈ (0, 1). We say f is C2+|·| if and only if

β̂ : x 7−→

∫ x

c

1

|t− c|
|δ(t)|dt

is continuous.

Remark 5.2. Every C2+α Hölder unimodal map, α > 0, is C2+|·|.

Remark 5.3. The very weak condition of local monotonicity of D2f
is sufficient for f to be C2+|·|.

Remark 5.4. C2+|·| unimodal maps are dense in C2.

Remark 5.5. There exists C2 unimodal maps which are not C2+|·|.
See also remark 11.2.

The non-linearity ηφ : [0, 1] → R of a C1 diffeomorphism
φ : [0, 1] → [0, 1] is given by

ηφ(x) = D lnDφ(x),

wherever it is defined.
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Proposition 5.6. Let f be a C2+|·| unimodal map with critical point
c ∈ (0, 1). There exist diffeomorphisms

φ± : [0, 1] → [0, 1]

such that

f(x) =

{

φ+ (qc(x)) x ∈ [c, 1]
φ− (qc(x)) x ∈ [0, c]

with
ηφ± ∈ L1([0, 1]).

Proof. There exists a C1 diffeomorphism

φ+ : [0, 1] → [0, 1]

such that for x ∈ [c, 1]

f(x) = φ+ (qc(x)) .

We will analyze the nonlinearity of φ+. Observe,

Df(x) = −2
(x− c)

(1 − c)2
· Dφ+ (qc(x))

and

D2f(x) = 4
(x− c)2

(1 − c)4
· D2φ+ (qc(x)) − 2

1

(1 − c)2
·Dφ+ (qc(x))

= E (1 + ε(x)).(10)

As we have seen before, we also have

Df(x) = E (x− c) · (1 + ε̄(x)) .

This implies that

ηφ+
(qc(x)) =

−(1 − c)2

2
·
ε(x) − ε̄(x)

1 + ε̄(x)
·

1

(x− c)2
.(11)

Therefore, using the substitution u = qc(x),
∫ 1

0

|ηφ(u)| du =

∫ c

1

−2 |ηφ+
(qc(x)) |

x− c

(1 − c)2
dx(12)

=

∫ 1

c

|ε(x) − ε̄(x)|

1 + ε̄(x)

1

x− c
dx(13)

≤
1

min (1 + ε̄)

∫ 1

c

|δ(x)|

|x− c|
dx < ∞(14)

We proved ηφ+
∈ L1([0, 1]). Similarly one can prove the existence of a

C1 diffeomorphism
φ− : [0, 1] → [0, 1]
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such that for x ∈ [0, c]

f(x) = φ−(qc(x))

and

ηφ− ∈ L1([0, 1]).

�

6. Distortion of cross ratios

Definition 3. Let J ⊂ T ⊂ [0, 1] be open and bounded intervals such
that T \J consists of two components L and R. Define the cross ratios
of these intervals as

D(T, J) =
|J ||T |

|L||R|
.

If f is continuous and monotone on T then define the cross ratio dis-
tortion of f as

B(f, T, J) =
D(f(T ), f(J))

D(T, J)
.

If fn|T is monotone and continuous then

B(fn, T, J) =
n−1
∏

i=0

B
(

f, f i(T ), f i(J)
)

.

Definition 4. Let f : [0, 1] → [0, 1] be a unimodal map and T ⊂ [0, 1].
We say that

{

f i(T ) : 0 ≤ i ≤ n
}

has intersection multiplicity m ∈ N if and only if for every x ∈ [0, 1]

#
{

i ≤ n | x ∈ f i(T )
}

≤ m

and m is minimal with this property.

Theorem 6.1. Let f : [0, 1] → [0, 1] be a C2+|·| unimodal map with
critical point c ∈ (0, 1). Then there exists K > 0, such that the following
holds. If T is an interval such that fn|T is a diffeomorphism then for
any interval J ⊂ T with cl(J) ⊂ int(T ) we have,

B(fn, T, J) ≥ exp {−K ·m}

where m is the intersection multiplicity of {f i(T ) : 0 ≤ i ≤ n} .

Proof. Observe that qc expands cross-ratios. Then Proposition 5.6 im-
plies

B
(

f, f i(T ), f i(J)
)

>
Dφi(ji) ·Dφi(ti)

Dφi(li) ·Dφi(ri)
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where φi = φ+ or φ− depending whether f i(T ) ⊂ [c, 1] or [0, c] and

ji ∈ qc
(

f i(J)
)

,

ti ∈ qc
(

f i(T )
)

,

li ∈ qc
(

f i(L)
)

,

ri ∈ qc
(

f i(R)
)

.

Thus

ln B(fn, T, J) =
n−1
∑

i=0

ln B
(

f, f i(T ), f i(J)
)

≥

n−1
∑

i=0

(ln Dφi(ji) − ln Dφi(li)) + (ln Dφi(ti) − ln Dφi(ri)) ≥

−
n−1
∑

i=0

|ηφi
(ξ1
i )| |ji − li| + |ηφi

(ξ2
i )| |ti − ri| ≥

−2 m

(
∫

|ηφ+
| +

∫

|ηφ− |

)

= −K ·m.

Therefore
B(fn, T, J) ≥ exp {−K ·m}.

�

The previous Theorem allows us to apply the Koebe Lemma. See
[MS] for a proof.

Lemma 6.2. (Koebe Lemma) For each K1 > 0, 0 < τ < 1/4, there
exists K <∞ with the following property. Let g : T → g(T ) ⊂ [0, 1] be
a C1 diffeomorphism on some interval T . Assume that for any intervals
J∗ and T ∗ with J∗ ⊂ T ∗ ⊂ T one has

B(g, T ∗, J∗) ≥ K1 > 0.

For an interval M ⊂ T such that cl(M) ⊂ int(T ) and let L,R be the
components of T \M . If

|g(L)|

|g(M)|
≥ τ and

|g(R)|

|g(M)|
≥ τ

then
1

K
≤

|g
′

(x)|

|g′(y)|
≤ K, ∀x, y ∈M.

Remark 6.3. The conclusion of the Koebe-Lemma is summarized by
saying that g|M has bounded distortion.
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7. A priori bounds

Let f be an infinitely renormalizable C2+|·| map with quadratic tip at
c ∈ (0, 1). Let In0 = [f2n

(c), f2n+1

(c)] be the central interval whose first
return map corresponds to the nth-renormalization. Here, we study the
geometry of the cycle consisting of the intervals

Inj = f j(In0 ), j = 0, 1, . . . , 2n − 1.

Notice that

In+1
j , In+1

j+2n ⊂ Inj , j = 0, 1, . . . , 2n − 1.

Let Inl and Inr be the direct neighbors of Inj for 3 ≤ j ≤ 2n.

Lemma 7.1. For each 1 ≤ i < j, There exists an interval T which
contains Ini , such that f j−i : T → [Inl , I

n
r ] is monotone and onto.

Proof. Let T ⊂ [0, 1] be the maximal interval which contains Ini such
that f j−i|T is monotone. Such interval exists because of monotonicity
of f j−i|In

i
. The boundary points of T are a, b ∈ [0, 1]. Suppose f j−i(b)

is to the right of Inj . The maximality of T ensures the existence of k,

k < j− i such that fk(b) = c. Because i+k < j ≤ 2n, we have c /∈ Ini+k
and so fk+1(T ) ⊃ In1 . Moreover, f j−i−(k+1)|fk+1(T ) is monotone. Hence

f j−i−(k+1)|In
1

is monotone. So 1 + j − i − (k + 1) ≤ 2n. This implies
that f j−i(T ) contains In1+j−i−(k+1). In particular f j−i(T ) contains Inr .

Similarly we can prove f j−i(T ) contains Inl . �

Lemma 7.2. (Intersection multiplicity) Let f j−i : T → [Inl , I
n
r ] be

monotone and onto with T ⊃ Ini . Then for all x ∈ [0, 1]

#{k < j − i | fk(T ) ∋ x} ≤ 7.

Proof. Without loss of generality we may restrict ourselves to estimate
the intersection multiplicity at a point x ∈ U , where

U = [Inl , I
n
r ] = [ul, ur].

Let cl ∈ Inl such that f2n−l(cl) = c and

Cl = [ul, cl] ⊂ Inl .

Similarly, define

Cr = [cr, ur] ⊂ Inr .

Let Tk = fk(T ), k = 0, 1, ....j − i.
Claim: If i+ k /∈ {l, j, r} and Tk ∩ U 6= ∅ then

(i) Ini+k ∩ U = ∅
(ii) U ∩ Tk = Inl or Cl or Inr or Cr.
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Let T \ Ini = L∪R and then we may assume U ∩Tk = U ∩Lk where
Lk = fk(L). This holds because Ini+k ∩ U = ∅. Consider the situation
where

Inr ∩ Lk 6= ∅.

The other possibilities can be treated similarly. Notice that Inr cannot
be strictly contained in Lk. Otherwise there would be a third “neigh-
bor” of Inj in U. Let a = ∂L ∩ ∂T. Notice that

fk(a) ∈ ∂Lk ∩ I
n
r .

Furthermore,

f j−k(fk(a)) ∈ ∂U.

This means f j−k(fk(a)) is a point in the orbit of c. This holds because
all boundary points of the interval Inj are in the orbit of c. Hence,

fk(a) is a point in the orbit of c or fk(a) is a preimage of c. The first
possibility implies fk(a) ∈ ∂Inr . This implies

U ∩ Tk = U ∩ Lk = Inr .

The second possibility implies fk(a) = cr which means

U ∩ Tk = U ∩ Lk = Cr.

This finishes the proof of claim. This claim gives 7 as bound for the
intersection multiplicity. �

Proposition 7.3. For j < 2n, f2n−j : Inj → In0 has uniform bounded
distortion.

Proof. Step1 : Choose j0 < 2n, such that for all j ≤ 2n, we have
|Inj0 | ≤ |Inj |. By Lemma 7.1 there exists an interval neighborhood

Tn = L0
n ∪ In1 ∪ R0

n such that f j−1 : Tn → [Inl , I
n
r ] ⊃ Inj0 is monotone

and onto. Lemma 7.2 together with Theorem 6.1 allow us to apply the
Koebe Lemma 6.2. So, there exists τ0 > 0 such that

|L0
n|, |R

0
n| ≥ τ0 |I

n
1 |.

Let Un = In0 , Vn = f−1 (L0
n ∪ I

n
1 ∪R0

n) and let L1
n, R

1
n be the compo-

nents of Vn \ Un. From Proposition 5.6 we get τ1 > 0 such that

|L1
n|, |R

1
n| ≥ τ1 |Un|.

Step2 : SupposeWn = [Inln , I
n
rn

], where Inln , I
n
rn

are the direct neighbors of
Un. We claim that Vn ⊂Wn. Suppose it is not. Then, say Inrn ⊂ int(Vn)
implies that f(Inrn) ⊂ int(L1

n). So, f j0−1|f(In
rn

) is monotone, implies that

rn + j0 ≤ 2n and f j0(Inrn) ⊂ int([Inl , I
n
r ]). This contradiction concludes

that Vn ⊂Wn.
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Step3 : Let Ln, Rn be the components of Wn \ Un. Then

|Ln|, |Rn| ≥ τ1 |Un|.

Step4 : For all j < 2n, there exists an interval neighborhood Tj which
contains Inj such that f2n−j : Tj → Wn is monotone and onto. Now
Proposition 7.3 follows from the Lemma 7.2 together with Theorem 6.1
and the Koebe Lemma 6.2. �

Corollary 7.4. There exists a constant K such that
∣

∣Df2n

|In
0

∣

∣ ≤ K.

Proof. Let x ∈ In1 . Then from Proposition 7.3 we get K1 > 0 such that
for some x0 ∈ In1

|Df2n−1(x)| =
|In0 |

|In1 |
·

{

Df2n−1(x)

Df2n−1(x0)

}

≤
|In0 |

|In1 |
·K1.

Proposition 5.6 implies that there exists K2 > 0 such that for x ∈ In0

|Df(x)| ≤ K2 · |x− c|

and

|In1 | ≥
1

K2

· |In0 |
2.

Now for x ∈ In0

|Df2n

(x)| ≤ K2 · |x− c| ·
|In0 |

|In1 |
·K1

≤ K2 ·K1 ·
|In0 |

2

|In1 |
≤ K2

2 ·K1 = K

Therefore, we conclude that
∣

∣Df2n

|In
0

∣

∣ ≤ K. �

Definition 5. (A priori bounds) Let f be infinitely renormalizable. We
say f has a priori bounds if there exists τ > 0 such that for all n ≥ 1
and j ≤ 2n we have

τ <
|In+1
j |

|Inj |
,

|In+1
j+2n|

|Inj |
(15)

τ <
|Inj \

(

In+1
j ∪ In+1

j+2n

)

|

|Inj |
(16)

where, In+1
j , In+1

j+2n are the intervals of next generation contained in Inj .
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Proposition 7.5. Every infinitely renormalizable C2+|·| map has a pri-
ori bounds.

Proof. Step1. There exists τ1 > 0 such that
|In+1

0 |

|In0 |
> τ1.

Let In0 = [an, an−1] be the central interval, and so an = f2n

(c). A
similar argument as in the proof of Corollary 7.4 gives K1 > 0 such
that

|f2n

([an, c])| ≤

(

|an − c|

|In0 |

)2

· |In0 | ·K1.

Notice that

f2n

([an, c]) = In+1
2n .

Thus

|In+1
2n | ≤

|an − c|2

|In0 |
·K1.

Note

f2n

(In+1
2n ) = In+1

0 ⊃ [an, c].

Therefore, by Corollary 7.4

|an − c| ≤ |f2n

(In+1
2n )| ≤ K · |In+1

2n | ≤ K ·
|an − c|2

|In0 |
·K1.

This implies

|an − c| ≥
1

K
· |In0 |.

Which proves
|In+1

0 |

|In0 |
> τ1.

Step2. There exists τ2 > 0 such that
|In+1

2n |

|In0 |
≥ τ2.

From above we get

τ1|I
n
0 | ≤ |In+1

0 | = |f2n

(In+1
2n )| ≤ K · |In+1

2n |

This proves

|In+1
2n |

|In0 |
≥ τ2.

Step3. There exists τ3 > 0 such that the following holds.

|In+1
j |

|Inj |
,

|In+1
j+2n|

|Inj |
≥ τ3.

Because

f2n−j(In+1
j ) = In+1

0 , f2n−j(Inj ) = In0
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and from Proposition 7.3 we get a K > 0 such that

|In+1
j |

|Inj |
≥

1

K
·
|In+1

0 |

|In0 |
≥
τ1
K
.

Hence,
|In+1
j |

|Inj |
≥ τ3. Similarly we prove

|In+1
j+2n|

|Inj |
≥ τ3. Which completes

the proof of (15).
Step4. To complete the proof of the Proposition, it remains to show
that the gap between the intervals In+1

0 , In+1
2n and as well as In+1

j , In+1
j+2n

are not too small. Let

Gn = In0 \
(

In+1
0 ∪ In+1

2n

)

.

We claim that there exists τ4 > 0 such that

|Gn|

|In0 |
≥ τ4.

Let Hn be the image of Gn under f2n

. Then Hn = f2n

(Gn) ⊃ In+2
3·2n .

The claim follows by using Corollary 7.4 and the bounds we have so
far. Namely,

K · |Gn| ≥ |Hn| ≥ |In+2
3·2n | ≥ τ3 · |I

n+1
2n | ≥ τ3 · τ2 · |I

n
0 |.

This implies

|Gn| ≥ τ4 · |I
n
0 |.

Step5. Let Gn
j = Inj \

(

In+1
j ∪ In+1

j+2n

)

, then there exists τ5 > 0 such that

|Gn
j |

|Inj |
≥ τ5.

We have f2n−j(Gn
j ) = Gn and f2n−j(Inj ) = In0 . Since f2n−j has bounded

distortion, we immediately get a constant K > 0 such that

|Gn
j |

|Inj |
≥

1

K
·
|Gn|

|In0 |
≥
τ4
K
.

This implies

|Gn
j | ≥ τ5 · |I

n
j |.

This completes the proof of (16). �
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8. Approximation of f |In
j

by a quadratic map

Let φ : [0, 1] → [0, 1] be an orientation preserving C2 diffeomorphism
with non-linearity ηφ : [0, 1] → R. The norm we consider is

|φ| = |ηφ|0.

Let [a, b] ⊂ [0, 1] and f : [a, b] → f([a, b]) be a diffeomorphism. Let

1[a b] : [0, 1] → [a, b]

and

1f([a,b]) : [0, 1] → f([a, b])

be the affine homeomorphisms with 1[a,b](0) = a and 1f([a,b])(0) = f(a).
The rescaling f[a,b] : [0, 1] → [0, 1] is the diffeomorphism

f[a,b] =
(

1f([a,b])

)−1
◦ f ◦ 1[a,b].

We say that 0 ∈ [0, 1] corresponds to a ∈ [a, b].

Proposition 8.1. Let f be an infinitely renormalizable C2+|·| map with
critical point c ∈ (0, 1). For n ≥ 1 and 1 ≤ j < 2n we have

fIn
j

= φnj ◦ q
n
j

where

qnj = (qc)In
j

: [0, 1] → [0, 1]

such that 0 corresponds to f j(c) ∈ Inj and φnj : [0, 1] → [0, 1] a C2

diffeomorphism. Moreover

lim
n→∞

2n−1
∑

j=1

|φnj | = 0

Proof. If Inj ⊂ [c, 1] then use Proposition 5.6 and define

φnj = (φ+)qc(In
j ) : [0, 1] → [0, 1]

such that 0 ∈ [0, 1] corresponds to qc (f
j(c)) ∈ qc(I

n
j ). In case Inj ∈ [0, c]

then let

φnj = (φ−)qc(In
j ) : [0, 1] → [0, 1]

where again 0 ∈ [0, 1] corresponds to qc (f
j(c)) ∈ qc(I

n
j ). Let ηnj be the

non-linearity of φnj . Then the chain rule for non-linearities [M] gives

|ηnj (x)| = |qc(I
n
j )| · |ηφ±(1nj (x))|
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where 1nj : [0, 1] → qc(I
n
j ) is the affine homeomorphism such that

1nj (0) = qc(f
j(c)). Now use (11) to get

|ηnj |0 ≤ |qc(I
n
j )| ·

(1 − c)2

2
·

1

minx∈In
j

(1 + ǭ(x))
· sup
x∈In

j

|δ(x)|

(x− c)2

≤
1

minx∈[0,1] (1 + ǭ(x))
· |ζnj − c| · |Inj | · sup

x∈In
j

|δ(x)|

|x− c|2

where

|Dqc(ξ
n
j )| =

|qc(I
n
j )|

|Inj |

and ξnj ∈ Inj . The a priori bounds gives K1 > 0 such that

dist(c, Inj ) ≥
1

K1

· |Inj |.

This implies that for some K > 0

|ηnj | ≤ K · sup
x∈In

j

|δ(x)|

|x− c|
· |Inj |.

Therefore,

2n−1
∑

j=1

|φIn
j
| ≤ K ·

2n−1
∑

j=1

sup
x∈In

j

|δ(x)|

|x− c|
· |Inj |

= K · Zn

Let Λn = ∪2n−1
j=0 I

n
j . The a priori bounds imply that there exists τ > 0

such that

|Λn| ≤ (1 − τ) |Λn−1|.

In particular |Λ| = 0 where Λ ∩ Λn is the Cantor attractor. Now we
go back to our estimate and notice that Zn is a Riemann sum for

∫

Λn

|δ(x)|

|x− c|
dx.

Suppose that lim sup Zn = Z > 0. Let n ≥ 1 and m > n. Then we
can find a Riemann sum Σm,n for

∫

Λn

|δ(x)|

|x− c|
dx

by adding positive terms to Zm. Then
∫

Λn

|δ(x)|

|x− c|
dx = lim sup

m→∞
Σm,n ≥ lim sup

m→∞
Zm ≥ Z > 0.
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Hence,
∫

Λ

|δ(x)|

|x− c|
dx ≥ Z > 0.

This is impossible because |Λ| = 0. Thus we proved

2n−1
∑

j=1

|φIn
j
| −→ 0.

�

9. Approximation of Rnf by a polynomial map

The following Lemma is a variation on Sandwich Lemma from [M].

Lemma 9.1. (Sandwich) For every K > 0 there exists constant B > 0
such that the following holds. Let ψ1, ψ2 be the compositions of finitely
many φ, φj ∈ Diff2

+ ([0, 1]), 1 ≤ j ≤ n;

ψ1 = φn ◦ · · · ◦ φt ◦ . . . φ1

and

ψ2 = φn ◦ · · · ◦ φt+1 ◦ φ ◦ φt ◦ . . . φ1.

If
∑

j

|φj | + |φ| ≤ K

then

|ψ1 − ψ2|1 ≤ B |φ|.

Proof. Let x ∈ [0, 1]. For 1 ≤ j ≤ n let

xj = φj−1 ◦ · · · ◦ φ2 ◦ φ1(x)

and

Dj = (φj−1 ◦ · · · ◦ φ2 ◦ φ1)
′

(x).

Furthermore, for t+ 1 ≤ j ≤ n, let

x′j = φj−1 ◦ · · · ◦ φt+1(φ(xt+1))

and

D′
j = (φj−1 ◦ · · · ◦ φt+1)

′

(x′t+1) φ
′

(xt+1) Dt+1.

Now we estimate the difference of the derivatives of ψ1, ψ2. Namely,

Dψ2(x)

Dψ1(x)
= Dφ(xt+1) ·

∏

j≥t+1

Dφj(x
′
j)

Dφj(xj)
.
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In the following estimates we will repeatedly apply Lemma 10.3 from
[M] which says,

e−|ψ| ≤ |Dψ|0 ≤ e|ψ|.

This allows us to get an estimate on |Dψ1 − Dψ2|0 in terms of
Dψ2

Dψ1

.

Now

Dφj(x
′
j) = Dφj(xj) +D2φj(ζj) (x′j − xj).

Therefore,

Dφj(x
′
j)

Dφj(xj)
≤ 1 +

|D2φj|0
Dφj(xj)

· |x′j − xj|

= 1 +O(φj) · |x
′
j − xj|

To continue, we have to estimate |x′j − xj|. Apply Lemma 10.2 from
[M] to get

|x′j − xj| = O
(

|x′t+1 − xt+1|
)

= O(|φ|).

Because
∑

|φj | + |φ| ≤ K there exists K1 > 0 such that

Dψ2(x)

Dψ1(x)
≤ e|φ|

∏

j≥t+1

(1 +O(|φj | |φ|))

≤ e|φ| eK1·
P

|φj | |φ|

Hence,
Dψ2

Dψ1
≤ e|φ|(1+K1·K).

Similarly, we get a lower bound. So there exists K2 > 0 such that

e−K2·|φ| ≤
|Dψ2|

|Dψ1|
≤ eK2·|φ|.

Finally, there exists B > 0 such that

|Dψ2(x) −Dψ1(x)| ≤ B |φ|.

�

Let f be an infinitely renormalizable C2+|·| map.

Lemma 9.2. There exists K > 0 such that for all n ≥ 1 the following
holds

∑

1 ≤ j ≤2n−1

|qnj | ≤ K.
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Proof. The non-linearity norm of qnj , j = 1, . . . , 2n − 1, is

|qnj | =
|Inj |

dist (Inj , c)
.

Let

Qn =
2n−1
∑

j=1

|qnj |.

Observe, there exists τ > 0 such that for j = 1, 2, . . . , 2n − 1

|qn+1
j | + |qn+1

j+2n| ≤
|In+1
j | + |In+1

j+2n|

dist (Inj , c)

= |qnj |
|In+1
j | + |In+1

j+2n|

|Inj |

= |qnj |
|Inj −Gn

j |

|Inj |
≤ |qnj |(1 − τ).

Therefore
Qn+1 ≤ (1 − τ) Qn + |qn+1

2n |.

From the a priori bounds we get a constant K1 > 0 such that

|qn+1
2n | ≤

|In+1
2n |

|Gn
2n |

≤ K1.

Thus
Qn+1 ≤ (1 − τ)Qn +K1.

This implies the Lemma. �

Consider the map f : In0 → In1 . Rescaled affinely range and domain
to obtain the unimodal map

f̂n : [0, 1] → [0, 1].

Apply Proposition 5.6 to obtain the following representation of f̂n.
There exists cn ∈ (0, 1) and diffeomorphisms φn± : [0, 1] → [0, 1] such
that

f̂n(x) = φn+ ◦ qcn(x), x ∈ [cn, 1]

and
f̂n(x) = φn− ◦ qcn(x), x ∈ [0, cn].

Furthermore
|φn±| → 0

when n→ ∞. Let qn0 = qcn . Use Proposition 8.1 to obtain the following
representation for the nth renormalization of f .

Rnf = (φn2n−1 ◦ q
n
2n−1) ◦ · · · ◦ (φnj ◦ q

n
j ) ◦ · · · ◦ (φn1 ◦ qn1 ) ◦ φn± ◦ qn0 .
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Inspired by [AMM] we introduce the unimodal map

fn = qn2n−1 ◦ · · · ◦ q
n
j ◦ · · · ◦ q

n
1 ◦ qn0 .

Proposition 9.3. If f is an infinitely renormalizable C2+|·| map then

lim
n→∞

|Rnf − fn|1 = 0.

Proof. Define the diffeomorphisms

ψ±
j = qn2n−1 ◦ · · · ◦ q

n
j ◦ (φnj−1 ◦ q

n
j−1) ◦ · · · ◦ (φn1 ◦ qn1 ) ◦ φn±

with j = 0, 1, 2, . . . 2n. Notice,

Rnf(x) = ψ±
2n ◦ qn0 (x)

and
fn(x) = ψ±

0 ◦ qn0 (x).

where we use again the ± distinction for points x ∈ [0, cn] and x ∈
[cn, 1]. Apply the Sandwich Lemma 9.1 to get a constant B > 0 such
that

|ψ±
j+1 − ψ±

j |1 ≤ B · |φnj |

for j ≥ 1. Also notice

|ψ±
1 − ψ±

0 |1 ≤ B · |φn±| −→ 0.

Apply Proposition 8.1 to get

lim
n→∞

|ψ±
2n − ψ±

0 |1 ≤ lim
n→∞

B ·
∑

1 ≤ j ≤2n−1

|φnj | + |φn±| = 0

This implies
lim
n→∞

|Rnf − fn|1 = 0.

�

10. Convergence

Fix an infinitely renormalizable C2+|·| map f .

Lemma 10.1. For every N0 ≥ 1, there exists n1 ≥ 1 such that fn is
N0 times renormalizable whenever n ≥ n1.

Proof. The a priori bounds from Proposition 7.5 gives d > 0 such that
for n ≥ 1

|(Rnf)i(c) − (Rnf)j(c)| ≥ d

for all i, j ≤ 2N0+1 and i 6= j. Now by taking n large enough and using
Proposition 9.3 we find

|f in(c) − f jn(c)| ≥
1

2
d
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for i 6= j and i, j ≤ 2N0+1. The kneading sequence of fn coincides
with the kneading sequence of Rnf for at least 2N0+1 positions. We
proved that fn is N0 times renormalizable because Rnf is N0 times
renormalizable. �

The polynomial unimodal maps fn are in a compact family of qua-
dratic like maps. This follows from Lemma 9.2. The unimodal renor-
malization theory presented in [Ly] gives us the following.

Proposition 10.2. There exists N0 ≥ 1 and n0 ≥ 1 such that fn is N0

renormalizable and

dist1 (RN0fn, W
u) ≤

1

3
· dist1 (fn, W

u).

Here, W u is the unstable manifold of the renormalization fixed point
contained in the space of quadratic like maps. Notice, dist1 means C1

distance.

Lemma 10.3. There exists K > 0 such that for n ≥ 1

dist1 (Rnf, W u) ≤ K.

Proof. This follows from Lemma 9.2 and Proposition 9.3. �

Let fω∗ ∈W u be the analytic renormalization fixed point.

Theorem 10.4. If f is an infinitely renormalizable C2+|·| map. Then

lim
n→∞

dist0 (Rnf, fω∗ ) = 0.

Proof. For every K > 0, there exists A > 0 such that the following
holds. Let f, g be renormalizable unimodal maps with

|Df |0, |Dg|0 ≤ K

then

dist0(Rf, Rg) ≤ A · dist0(f, g).(17)

Let N0 ≥ 1 be as in Proposition 10.2. Now

dist0(R
n+N0f,W u) ≤ dist0

(

RN0(Rnf), RN0fn
)

+ dist0
(

RN0fn, W
u
)

≤ AN0 · dist0 (Rnf, fn) +
1

3
dist0 (fn, W

u)

Notice,

dist0(fn, W
u) ≤ dist0(fn, R

nf) + dist0(R
nf, W u).

Thus there exists K > 0,

dist0(R
n+N0f, W u) ≤

1

3
dist0(R

nf, W u) +K · dist0(R
nf, fn).
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Let
zn = dist0(R

n·N0f, W u)

and
δn = dist0(R

nf, fn).

Then

zn+1 ≤
1

3
zn +K · δn·N0

.

This implies

zn ≤
∑

j<n

K · δj·N0
· (

1

3
)n−j.

Now we use that δn → 0, see Proposition 9.3, to get zn → 0. So we
proved that Rn·N0f converges to W u. Use (17) and R(W u) ⊂ W u to get
that Rnf converges to W u in C0 sense. Notice that any limit of Rnf
is infinitely renormalizable. The only infinitely renormalizable map in
W u is the fixed point fω∗ . Thus

lim
n→∞

dist0 (Rnf, fω∗ ) = 0.

�

11. Slow convergence

Theorem 11.1. Let dn > 0 be any sequence with dn → 0. There exists
an infinitely renormalizable C2 map f with quadratic tip such that

dist0 (Rnf, fω∗ ) ≥ dn.

The proof needs some preparation. Use the representation

fω∗ = φ ◦ qc

where φ is an analytic diffeomorphism. The renormalization domains
are denoted by In0 with

c = ∩n≥1I
n
0 .

Each In0 contains two intervals of the (n+1)th generation. Namely In+1
0

and In+1
2n . Let

Gn = In0 \
(

In+1
0 ∪ In+1

2n

)

,

Ĝn = qc(Gn) ⊂ În0 = qc(I
n
0 )

and În+1
2n = qc(I

n+1
2n ). The invariant Cantor set of fω∗ is denoted by Λ.

Notice,

qc(Λ) ∩ În0 ⊂
(

În+1
0 ∪ În+1

2n

)

.

The gap Ĝn in În0 does not intersect with Λ. Choose a family of C2

diffeomorphisms
φt : [0, 1] → [0, 1]



CHAOTIC PERIOD DOUBLING 39

with

(i) Dφt(0) = Dφt(1) = 1.
(ii) D2φt(0) = D2φ(1) = 0.
(iii) For some C1 > 0

dist0 (φt, id) ≥ C1 · t.

(iv) For some C2 > 0

|ηφt
|0 ≤ C2 · t.

Let m = min Dφ and tn = 1
m C1 |Ĝ1|

dn. Now we will introduce a

perturbation φ̃ of φ. Let

1n : [0, 1] → Ĝn

be the affine orientation preserving homeomorphism. Define

ψ : [0, 1] → [0, 1]

as follows

ψ(x) =

{

x x /∈ ∪n≥0Ĝn

1n ◦ φtn ◦ 1−1
n (x) x ∈ Ĝn.

Let

f = φ ◦ ψ ◦ qc = φ̃ ◦ qc.

Then f is unimodal map with quadratic tip which is infinitely renor-
malizable and still has Λ as its invariant Cantor set. This follows from
the fact that the perturbation did not affect the critical orbit and it is
located in the complement of the Cantor set. In particular the invari-
ant Cantor set of Rnf is again Λ ⊂ I1

0 ∪ I1
1 and G1 is the gap of Rnf .

Notice, by using that fω∗ is the fixed point of renormalization that for
x ∈ G1

Rnf(x) = φ ◦ 11 ◦ φtn ◦ 1−1
1 ◦ qc(x)

Hence,

|Rnf − fω∗ |0 ≥ max
x∈Ĝ1

|Rnf(x) − fω∗ (x)|

≥ max
x∈Ĝ1

m · |
(

11 ◦ φtn ◦ 1−1
1

)

qc(x) − qc(x)|

≥ m · max
x∈Ĝ1

|
(

11 ◦ φtn ◦ 1−1
1

)

(x) − x|

= m · |Ĝ1| · |φtn − id|0

≥ m · |Ĝ1| · C1 · tn = dn.
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It remains to prove that f is C2. The map f is C2 on [0, 1]\{c} because

f = φ̃ ◦ qc with φ̃ = φ ◦ ψ. Where φ is analytic diffeomorphism and ψ
is by construction C2 on [0, 1). Notice that, from (10) we have,

D2f(x) = 4 ·
(x− c)2

(1 − c)4
·D2φ̃ (qc(x))(18)

− 2 ·
1

(1 − c)2
·Dφ̃ (qc(x)) .

We will analyze the above two terms separately. Observe

Dψ(x) =

{

1, x /∈ ∪n≥0Ĝn

|Dφtn (1−1
n (x)) |, x ∈ Ĝn.

This implies for x ∈ Gn

Dφ̃ (qc(x)) = Dφ (ψ ◦ qc) ·Dψ(qc(x))

= Dφ(1) ·
(

1 +O(În0 )
)

· (1 +O(tn))

For x /∈ ∪n≥1Gn we have

Dφ̃(qc(x)) = Dφ(qc(x))

This implies that the term

x 7−→ −2 ·
1

(1 − c)2
·Dφ̃(qc(x))

extends continuously to the whole domain. The first term in (18) needs

more care. Observe, for u ∈ Ĝn,

D2φ̃(u) = D2φ(ψ(u)) · (Dψ(u))2 +Dφ(ψ(u)) ·D2ψ(u)

= D2φ(1) ·
(

1 +O(În0 )
)

· (1 +O(tn)) +

Dφ(1) ·
(

1 +O(În0 )
)

· (1 +O(tn)) ·D
2ψ(u)

= D2φ(1) ·
(

1 +O(În0 )
)

· (1 +O(tn)) +

Dφ(1) ·
(

1 +O(În0 )
)

· (1 +O(tn)) ·
1

|Ĝn|
·O(tn).

This implies that

4
(x− c)2

(1 − c)4
·D2φ̃(qc(x)) =

{

O ((x− c)2) +O(tn), x ∈ Ĝn

O ((x− c)2) , x /∈ ∪n≥0Ĝn

In particular, the first term of D2f

x 7−→ 4
(x− c)2

(1 − c)4
·D2φ̃(qc(x))
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also extends to a continuous function on [0, 1]. Indeed, f is C2.

Remark 11.2. If the sequence dn is not summable (and in particular
not exponential decaying) then the example constructed above is not
C2+|·|. This follows from

∫

Ĝn

|ηφ̃(x)|dx ≍ tn.

Thus
∫

|ηφ̃| ≍
∑

dn = ∞.

Now, equation 12 implies that f is not C2+|·|. However, this construc-
tion show that in the space of C2+|·| unimodal maps there are examples
whose renormalizations converges only polynomially. The renormaliza-
tion fixed point is not hyperbolic in the space of C2+|·| unimodal maps.
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