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Abstract

We introduce the concept of hypomonotone point-to-set operators in Banach spaces,
with respect to a regularizing function. This notion coincides with the one given
by Rockafellar and Wets in Hilbertian spaces, when the regularizing function is the
square of the norm. We study the associated proximal mapping, which leads to a
a hybrid proximal-extragradient and proximal-projection methods for non-monotone
operators in reflexive Banach spaces. These methods allow for inexact solution of the
proximal subproblems with relative error criteria. We then consider the notion of local
hypomonotonicity and propose localized versions of the algorithms, which are locally
convergent.

Key words: hypomonotone operator, regularizing function, proximal point algorithm, hy-
brid proximal-extragradient algorithm.

1 Introduction

We deal in this paper with methods for finding zeroes of point-to-set operators in Banach
spaces, i.e., for solving the problem:

Find =z € B such that 0 € T(z),
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where T : B — P(B*) denotes an operator from a reflexive real Banach space B to parts of
its topological dual B*.

The proximal point algorithm, whose origins can be traced back to [13], attained its
celebrated formulation in the work of Rockafellar [16], and is a relevant tool for solving this
problem. In a Hilbert space H, the algorithm generates a sequence {z*} C H, starting from
some z° € H, through the iteration

2 = (I +3T)7 (="), (1)

where {~} is a sequence of positive real numbers bounded away from zero. It has been
proved in [16] that for a maximal monotone T, the sequence {z*} is weakly convergent to a
zero of T when 7' has zeroes, and is unbounded otherwise. Such weak convergence is global,
i.e. the result just announced holds in fact for any 2° € H.

The situation becomes considerably more complicated when T fails to be monotone. A
survey of results on convergence of the proximal algorithm without monotonicity up to 1997
can be found in [12]. A new approach to the subject was taken in [15], which deals with
a class of nonmonotone operators that, when restricted to a neighborhood of the solution
set, are not far from being monotone. More precisely, it is assumed that, for some p > 0,
the mapping 7! + pI (which is the inverse of the Yosida regularization of T'), is monotone
when restricted to a neighborhood of S x {0}, where S is a nonempty connected component
of the solution set S = 7~'(0). When this happens, T is said to be p-hypomonotone in such
neighborhood, and the main convergence result of [15] states that a “localized” version of
(1) generates a sequence that converges to a point in S provided z° is close enough to S
and inf v, > 2p. The approach in [15] was further developed in [11], where inexact versions
of the algorithm are presented, allowing for constant relative errors, in the line of the hybrid
proximal algorithms of [18, 19].

In the more general context of Banach spaces, an appropriate extension of (1) can be
achieved (see e.g. [6, 4]), by replacing the identity operator by the Gateaux derivative of a
strictly convex G-differentiable function f: B — R i.e.,

= ((WT + ) o f!| (aF). (2)

It has been proved in [4] that if T is maximal monotone and has zeroes then {z*} is bounded
and its weak accumulation points are zeros of 7', provided that f satisfies some technical
assumptions (see such assumptions in Section 2). Inexact versions of the algorithm, also
in the spirit of hybrid proximal methods, have been studied in [10], establishing global
convergence properties similar to those proved for the exact method. These results hold in
principle for maximal monotone operators.



When T fails to be monotone, and the space is non-hilbertian, the situation is more
complicated. This case, as far as the proximal method is concerned, has not been treated in
the literature.

We describe next the two works we know about which deal with hypomonotone operators
in Banach spaces. We mention first that in Hilbert spaces monotonicity of Tt + pI is
equivalent to

(x —y,u—v) > —pllz—yl, (3)

for all z, y € B and all u € T'(z),v € T(y). In [3], the authors define p-hypomonotonicity
of an operator 7" : B — P(B*) in a Banach space B by means of (3) (which is in fact
the definition given in [17] for operators in finite dimensional spaces), and proceed to study
those functions such that an e—localization of their subdifferential is hypomonotone, with
the definition above.

In [1], a more restrictive definition of hypomonotone operator is given. T is said to be
p-hyopomonotone if

(@ —y,u—v) > —p(lzll - llul)*, (4)

for all z, y € B and all u € T(z),v € T(y). This notion is then used for developing some
non-proximal methods for solving variational inequalities with so defined hypomonotone
operators.

The first objective of this work is the introduction of a notion of hypomonotonicity of an
operator in a Banach space more general than those given by (3) or (4). Namely, we will
define hypomonotonicity with respect to a regularizing function f : B — R. This notion
will coincide with the one given by (3) for f(z) = (1/2) ||#||*. The additional flexibility will
be quite welcome when dealing with proximal methods. The square of the norm, which is
a natural regularization function in a Hilbert space, enjoys no special property in a Banach
space. As discussed e.g. in [10], when B = ¢, or B = LP(f2), the computations required by the
proximal method become much easier when we take f(z) = ||z||} rather than f(z) = ||ac||]2J
In fact we will first introduce an appropriate Yosida regularization of 7" with parameter p
related to the regularization function f (see Section 3), and then T will be said to be p-
hypomonotone with respect to f when this Yosida regularization turns out to be monotone.

Application of the proximal algorithms, as given in [4], [10], to this Yosida regulariza-
tion, leads to proximal-like algorithm for hypomonotone operators, with both exact and
inexact versions (see Section 4). Our error criteria allow for constant relative errors, and its
convergence properties are similar to those which hold for monotone case.

The analysis above refers to operators which satisfy the hypomonotonicity property in the
whole space B. Such a behavior is not generic at all, but on the other hand most operators
are p-hypomonotone (for some adequate p) in a generic sense, i.e. excepting in some “small”
subset of their domains.



This fact leads us to study, in Section 5, the notion of local hypomonotonicy of T, meaning
hypomonotonicity of the restriction of the graph of T" to some subset. By so doing, we extend
the approach taken in [11] for Hilbert spaces. Finally, we propose localized versions of the
algorithm, which preserve the convergence properties in a neighborhood of S. x {0}, where S,
is a nonempty connected component of the solution set S = T~1(0), provided that the initial
iterate z° is close enough to S., and that T is locally hypomonotone in such a neighborhood.

2 Preliminaries

From now on, 7' : B — P(B*) denotes an operator from a reflexive real Banach space B
to parts of its topological dual B*. The duality pairing in B x B* is represented by (-, ),
meaning that for any pair (z,z*) € B x B*, (z,2*) = z*(x). Moreover, by reflexivity, we
identify B with its bidual B** through the canonical inclusion J : B — B**, defined at each
x € B by (J(z),v) = v(z), Vv € B*. The norm of B is denoted by || - || and the norm of B*,
by || - ||«- Convergence in the strong (respectively weak, weak™) topology of a sequence will

be indicated by = (respectively =, &) We remind that T is monotone if
(z—y,u—v) >0, (5)

for all z,y € B, all u € T(z) and all v € T(y). The domain of T is the set D(T) = {z €
B | T(z) # 0} and the graph of T is the set

G(T)={(z,z") e Bx B* | 2" € T(x)}.

A monotone operator 7' : B — P(B*) is maximal monotone if its graph is not properly
included in the graph of any other monotone operator. In this case G(T') is demiclosed (see
e.g. [14, page 105]), i.e.,

*

(0" e G(T); 2F 2z, vV*Sv (or 2F 3z, vV*D0v) = (z,0) € G(T). (6)

For regularization purposes, we will use a strictly convex and Gateaux differentiable
function f : B — R, with Gateaux derivative denoted by f’, and such that f. is continuous
at 0 and f1(0) = 0. We will denote the family of functions satisfying these properties as F
(or Fg, when it is necessary to identify the Banach space). We remind that the Fenchel (or
conver) conjugate of f is the function defined by f,(v) = sup, {{(z,v) — f(z)}, at any v € B*.

The Bregman distance associated to f, Dy : B x B =+ R, is given by

Dy(z,y) = f(z) = f(y) — (= =y, ['(v)), (7)



and the modulus of total convezity vy : B x Ry — R, is defined as
vi(z,t) = nf{Dy(y,z) [y € B; ||y — zf| = t}. (8)
The function f is said to be totally conver if
vi(z,t) >0 9)

for all z € B and all ¢ > 0. Total convexity first appeared (albeit under a different name), on
p. 25 of [5] and it ensures the existence of the Bregman projection over a nonempty closed
and convex set C' ([7]):

11/, (x) = argmin D (y, 7).
yeC

Uniqueness of the projection follows from strict convexity of f, which in turn follows from
total convexity, since the domain f is the whole space B. Our convergence results requires
some of the following assumptions on f:

H1: The level sets of Dy(z,-) are bounded for all z € B.
H2: inf,ccvy(x,t) > 0, for all bounded set C C B and allt € Ry .
H3: f'is uniformly continuous on bounded subsets of B.

H4: f'is onto.

Observe that if f € F is a function satisfying H4, then the inverse operator of its
subdifferential, (0f)~!, has full domain, hence it is locally bounded (in fact, it is single
valued). In particular f, which is strictly convex, is Legendre and f, is Legendre too (see
[2]), implying that f, is strictly convex. Moreover, f, belongs to Fg« (provided that f’ is
continuous at 0), (f)~!' = f!, f. satisfies H4, and

Dy(x,y) = Dy.(f'(y), f'(x)) (10)

for any x, y € B.

Since our analysis requires regularizing functions enjoying some or all properties H1-H4
above, it is important to establish that such functions are available in a large class of Banach
spaces. In fact, it has been proved in Proposition 2 of [10] that f(z) = 1/r||z||" belongs to
F and satisfies H1-H4, in any uniformly convex and uniformly smooth Banach space for all
r > 1. In such a case, f. =1/s|| - ||?, defined over B*, where 1/s+ 1/r = 1, belongs to Fp-
and satisfies H1-H4 too.



We will need also the following identities which hold for any z, y, w, z € B:

Dy(w,z) — Dy(w,y) = Dy(y,z) + (y — w, f'(z) — f'(v)), (11)

and
Dy(w,z) = Dy(w,y) = Dy (z,2) — Dy (2,y) +{w — 2, f'(y) — f'(2)), (12)

known as the three-point (see [8]) and four-point (see [19]) properties respectively.

3 f—hypomonotonicity

Consider an operator 7' : B — P(B*) and a regularizing function f : B — R, belonging to
F, with conjugate f,: B* — R and satisfying H4.

Definition 1. T is p-hypomonotone with respect to f, or (f, p)-hypomonotone, if
(x —y,u—v) > —p[Dy,(u,v) + Dy, (v,u)], V(z,u), (y,v) € G(T).

An (f, p)-hypomonotone operator is mazimal if its graph is not properly contained in the
graph any (f, p)-hypomonotone operator.

Definition 2 (Yosida regularization of T'). The Yosida reqularization of T, with respect
to a function f € F and a parameter p > 0, is the operator T, : B — P(B*) defined by

T,= [T +pf]". (13)
Lemma 1. If f belong to F, then it holds that
0€T)(z) <z €T '(0)
for any p > 0. Moreover,
i) T is (f, p)-hypomonotone if and only if T, is monotone,

i) T is mazimal (f, p)-hypomonotone if and only if T, is mazimal monotone.

Proof. Since f(0) = 0, we have that
0€T,(z) <=z €T, (0)=T"10)+pfi(0) =T"1(0).
Concerning monotonicity, observe that 7}, is monotone if and only if

(x—y,u—v)y>0, VeeT, '(u) and yeT, ' (v).
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Since T, (u) = T~ '(u) + pfl(u) and T, (v) = T~'(v) + pfi(v), monotonicity of T, is
equivalent to

((@—=pfi(u)) = (y = pfilv) + p (fi(u) = fi(v)) ,u —v) > 0

for all z € T;'(u),y € T, ' (v), which is in turn equivalent to

(@ = pfi(u)) = (y = pfi(v),u —v) > =p(fi(u) — fi(v),u—v)
for all z € T, (u), y € T, *(v). Note that
zeT, (u) <= i=z—pfi(u) e T (u),
and
yeT,' (v)<=j=y—pfilv) e T'(v).

Thus, monotonicity of T, can also be written as
(@ —g,u—v) = —p{fi(uv) — fi(v),u—v)
for all £ € T~!(u) and § € T~!(v), which, in turn is equivalent to
<§: - gau - U) Z _p[Df*(uav) +Df*(U,U,)]

for all uw € T'(z) and v € T(), which is just (f, p)-hypomonotonicity of 7. We have proved
().

Concerning maximality, i.e. item (ii), assume that 7" is maximal (f, p)-hypomonotone
and let M : B — P(B*) be a monotone operator satisfying T,(z) C M(x) for all x € D(T,)
(i.e., T, C M). Then,

[T+ pfil(y) € M7 (y)
forall y € D(T,') = D(T""). Thus, T"*(y) C [M! —Apfi](y) f01: ally € D(T!) and
T(z) C [M~' = pfl] " (z) for all z € D(T), ie., T C T, where T = [M~' —pf!]™" is
(f, p)-hypomonotone. In fact, 7, = M is monotone by hypothesis and item (i) ensures

(f, p)-hypomonotonicity of T. Since T is maximal (f, p) hypomonotone, T' = T. That is to

say, T™' = T, or equivalently T~" + pf. = M~', which in turn implies that 7, = M, as

required. The converse statement is proved with a similar argument. O

Observe now that for a given x € B and a parameter v > 0, the proximal subproblem
applied to T}, can be described as

0 €T, (y) + f'(y) - f(z) =y e VT, + [T (f'(x)).

Thus, it seems appropriate to define the resolvent as follows:
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Definition 3. Given an operator T : B — P(B*) and a parameter v > 0, the resolvent of
T with respect to a regularization function f is the operator Ry, : B — P(B) defined by

Rry =T+ f] of. (14)

The following step consists of finding the resolvent of the Yosida regularization of the
operator T', because T, enjoys all the properties required for convergence of the proximal
method.

Lemma 2. For any x € B and v > 0, the following statements are equivalent:
i) ¥y € Ry, ,(),
i) y € T, (v '[f'(=) = f'(W)]),
iii) u € Ty(y) and yu+ f/(y) — f(x) =
w) ueT(z), yut f'lz+pfi(w)] = f'(2) =0 and y = z + pf; (u).
Proof. By definition of the resolvent (14),

y € Ry, (r) = [(”yTp + fl)*l o fl] (x)
& fl(z) € VT, + f'1(y) = vT,(y) + f'(y)
& v (=) — f(y)] € T(y)
& yelT, (v 'Sf'(@) - fWw))-

Let u =~7[f'(z) — f'(y)]. Note that the inclusion above is the same as
y €T, (w),u=7""[f(2) = f(y)l © ueT,(y) and yu+ f'(y) - f(z) =0.

Apply now the definition (13) of T}, and get

yeT Hu)+ pfl(u), yu+ f'(y)— f'(z) =
y—pfi(u) € T H(u), yu+ f'(y) - f'(x =
ueTly—pfi(u)], yu+ f'(y) = f'(z) =

Taking z = y — pf!(u), the last inclusion and equation above can be written as

u€T(z), yut f'lz+ pfi(w)] - f(z) =0 and y = 2+ pf; (u) .



The result of Lemma 2 allows us to define a proximal-like method for f-hypomonotone
operators. Let {7} be a sequence of real numbers satisfying v, > v > 0.

Exact Proximal-Extragradient Method:
1. Given z*, find (2*,v¥) € B x B* satisfying
FET(E)  and gt 4 f (4 pfl00) - FaF) 0. (15)

2. Define z**! by
M =28+ pfl(W"). (16)

Proposition 1. Let T be a mazimal (f, p)-hypomonotone operator, where p > 0 and f
belongs to F and satisfies Hj. Consider a sequence of regularization parameters {vi} such
that v, > v > 0. Then

i) The exact prozimal-extragradient method given by (15) and (16) is well defined,

ii) if T has zeros and f also satisfies H1-HS, then the generated sequence {x*} is bounded
and all its weak accumulation points are zeroes of T,

iii) if either T has a unique zero or f' is sequentially weak-to-weak* continuous, then the
whole sequence converges weakly to a zero of T.

Proof. Observe that, in view of Lemma 2, 2F*!, belongs to Rr,,, (¢*). Thus, {z*} is the
sequence generated by the proximal point method given by (2) applied to the operator T,.
By Lemma 1, 7, is maximal monotone, by (f, p)-hypomonotonicity of T', and has zeroes if
and only if 7" does. The results then follow from the convergence properties of the proximal
point method for finding zeroes of maximal monotone operators in Banach spaces (see e.g.
Theorem 2 in [10]). O

4 Inexact versions of the method

In this section we provide versions of the method that allow for approximate solutions of the
equation (15). We start with a hybrid proximal-extragradient algorithm. The error criteria
admit constant relative errors, like in [18], [19]. Let {7y} and {px} be sequences of real
numbers satisfying v, > v and px > p, for all £ > 0 and some v > 0,p > 0. The methods
also need an exogenous constant o € [0, 1) (the relative error constant).



4.1 Proximal-Extragradient Method
Algorithm 1

1. Given z*, find (2*,v*) € B x B* satisfying

FeT(E), ot + (7" + o fi(08) - f1(@*) = € (17)
and
Dy (& + prfL(0F), L [F/(a*) — w*]) < oDy (2% + pifi(vF), 2) . (18)
2. Define z**! by
A ) = ] (19)

It is easy to check that for o = 0, in which case both e* and the left hand side of (18)
vanish, we recover the exact method given by (15) and (16). The method is inexact because
2F+ py. f1(v*) needs not to be equal to f/ [f'(z*) — k"] (indeed, €* is the error in the solution
of the proximal equation); it is enough to request that the Bregman distance between these
two points does not exceed a o-fraction of the Bregman distance between 2% + pj f!(v¥)
and the previous iterate z*. In (19), the direction v*, belonging to T'(z¥), is used to move
away from f’(z*), in an extragradient fashion (adapted to the geometry of Banach spaces
through the use of the auxiliary function f), and z**! is obtained by solving the equation
f'(@) = f'(a*) = yo*.

We proceed now to the convergence analysis of this algorithm.

Proposition 2. Assume that T is a mazimal (f, p)-hypomonotone operator and that f € F
satisfies Hj. Then

i) the algorithm described by (17)-(19) is well defined, i.e., the requested 2*, v¥ and z**+!
always exist,

ii) for any T € T~'(0) it holds that
Dy(E,7) — Dy, ) = (0~ DDy + pef (0F), ) +
+ (p— pe)vk [D1.(0,0%) + Dy, (v*,0)] (20)
for all k > 0.

Proof. Note that the exact solution of the hypomonotone subproblem (i.e. the solution of
(17) corresponding to e* = 0), exists, because it is the solution of (15), which has solutions
by Proposition 1, in view of the maximal (f, p)-hypomonotonicity of 7. Note also that
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when ef = 0 the left-hand side of (18) vanishes, so that the exact solution satisfies the
error criterion, establishing (i). For (ii), let Z € T~1(0), y* = 2*¥ + pi f.(v¥), and apply the
four-point equality (12) to get

Dy(5,a") — Dy(s,2) = Dy (4,25 = Dy (4, 2%) + (2 — o, £/(a¥) — F/a+))
Dy (y*,a**") = Dy (y*,2*) + (@ = 2" — pufL(v%), m®)
(0 =)Dy (%, 2%) + (@ — 25,0%) — (L (0"), o)
(o = 1)Dy (y*,2*) + wp [Dr.(0,v%) + Dy, (v%,0)] — wpr{fi(v*), v")
= (0 —=1)Dy (v*,2") + (0 — pr) vk [Dy. (0,0*) + Dy, (v%,0)]
where the first inequality follows from the definition of z*¥*!, in (19) and (18), and the second

inequality is the (f, p)-hypomonotonicity property of T for the pairs (Z,0) and (z*,v*), both
of which belong to the graph of T O

IANIA

Our main convergence result for the inexact proximal-extragradient method follows.

Theorem 1. Assume that T is a mazimal (f, p)-hypomonotone operator where f € F sat-
isfies H1-HJ. Take a constant o € [0,1), and exogenous sequences {vy}, {pr}, satisfying
Yo > v for some v > 0, and p > pp > p for some p. Let {x*} be the sequence generated
defined by (17)-(19). If T has zeros then {z*} is bounded and all its weak accumulation
points are zeroes of T.

Proof. Let & be any zero of T. Define y* = 2% + p, f/(v¥). Since o € [0,1), 74 > 0 and
pr > p, Proposition 2 gives

Df(i‘,ﬂ?k_H) — Df(i‘,l‘k) <0.

Then, {D;(Z,z*)} is a nonnegative and nonincreasing sequence, hence convergent, and {z*}
is bounded, because {z*} C {z | D;(Z,z) < D;(z,z°)}, which is bounded by assumption
H1 on f. Moreover,

n

>~ ((ox = P [D1.(0,0%) + Dy, (v%,0)] + (1 = 0)Dy(y¥,2%)) = Dy(z,2°) — Dy(z, 2" ).
k=0
It follows that > 3> ((px — p) [Dy. (0,0F) + Dy, (v, 0)] < 400 and Y32 (1 — 0) Dy (y¥, z¥) <
+00. In particular, limy_,o, D (y*, 2*) = 0. Thus, y* —2* — 0, because f is uniformly con-
vex on bounded sets by H2. In view of (18)-(19), we also have Dy (y*, 2¥*!) < oD, (y*, 2*).
Thus, limy o Df(y*,2%1) = 0 and y* — 2% — 0, so that ¥ — ¥+ 5 0. Equation
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(19) also gives 1v* = f'(z%) — f'(z**!). Since f’ is uniformly continuous on bounded sets
by H3, we obtain v,v* = 0, which in turn implies v¥ -+ 0, because v, > v > 0 for all k.
Taking into account that y* = 2% + p. f/(v*), f! is continuous at zero and p; < p, it follows
that y* — 2¥ -2 0. Then, the bounded sequences {z¥}, {z*} and {*} have the same weak
accumulation points. Observe now that v* € T(2¥) is equivalent to

FET(0F) & 2 4 pfi(0") € [T + pf] (") & vF € [T+ pf) " (2 + pf1(o"))
In view of (13), this is also equivalent to
vt € T,(2" + pfi(v*)) = Tp(y" + (0 — pi) fL(v°)) = T,(3"),

where §* = y* + (p — px) f-(v¥). Tt follows that §* —y* — 0, so that the bounded sequences
{z*} and {*} also share the same weak accumulation points. Let 2*° be a weak accumulation
point of {z*}. By demiclosedness of the graph of the maximal monotone operator T}, (see(6)),
we get 0 € T,(x*°), which implies 0 € T(z*°), in view of Lemma 1. O

4.2 Proximal-Projection Method

In the following algorithm, the extragradient step (19) is replaced by a Bregman projection
onto a hyperplane separating the current iterate from the set of zeroes of 7. As in the case of
proximal-extragradient method, e is the error in the solution of the proximal equation, and
o is the maximal relative error admitted. The approximate solution z*, together with the
vector v¥ € T(z¥), allow us to construct the hyperplane Hj with the announced separating
property, and the next iterate is the Bregman projection of the current one onto Hy. The
algorithm requires a constant o € [0,1) (relative error constant), and exogenous sequences
{7} and {px} satisfying v > v and p > pr > p, for all £ > 0 and some p, v > 0. It is
formally defined as:

Algorithm 2

1. Given z*, find (2*,v*) € B x B* satisfying

v* € T (%), Yev® + 1 (2 + prfl(0F)) = f(z*) = €F (21)
and
(P + g fL(0F) — 2,8y < oDy (2 + pufl (08, 5%). (22)
2. Define z**! as
o = Hék (z*) = arg min Dy(z,z"), (23)
r€Hy

where

Hy={z € B| (z— 2"+ pfi(v")] ,v*) < 0}. (24)

12



We proceed now to the convergence analysis of this algorithm.

Proposition 3. Assume that T is a mazimal (f, p)-hypomonotone operator, where f € F
satisfies Hj and is totally conver (see (8), (9)). Consider o € [0,1), and {px}, {7} as in
the statement of the method. Then

i) the algorithm described in (21)-(23) is well defined:

a) for any k the prozimal-like subproblem (21) has a solution satisfying (22),

b) Hy # 0, and therefore the Bregman projection onto Hy, (23) exists,

¢) T71(0) C Hy,

d) if o # 2 + pp fL(vF) then o* belongs to H, where

Hf ={z e B|{z— [+ pfi(v")] ;") > 0},
i) for any k >0,
Dy(a+1,a%) = Dy (1,24 4 puf1(0H) 2 (1= 0)Dy (2 + pufl(08), o) +

+ (" =2t ), (25)
i) if £ € T~'(0) then

a) the sequence {D;(x,z*)} is nonincreasing and convergent,

b) 0% Dy(a**t, 2F) is convergent.

Proof. The proof of item (i-a) is similar to the proof of Proposition 2. For proving (i-b),
observe that 2% + p, f!(v*) belongs to Hy. For proving (i-c), take Z € T~1(0). Then
(@ — [+ o fi(0M)] 0" = (@ = 2508 = pe(fL(0°),0")
< p[Dy.(0,v) + Dy (v%,0)] — pe(fi(v*), v")
= (p_pk) I:Df*(07vk)+Df*(/UkiO):| S O’
where the first inequality follows from the (f, p)-hypomonotonicity of 7" and the second one
from the fact that py > p.

Item (i-d) is a consequence of the error criterion given in (22): defining y* = 2+ py. f (v*),
we get, in view of (21),

(e = [2% + pefL(Wh)] V%) = (2F =4, f1(@®) — (7)) + €F)
= [D(a*,y") + Dy (y*,2")] — (% — 2*, eF)
> [Dy(z*,y*) + Dy (y*, 2")] — o Ds(y", 2*)
— (1-o)Dy(* 2% + Dy(at, o)



Hence (z* — [2% + ppfi(v")] ,v*) > 0, unless y* = z*.
For proving (ii), apply the three point equality (11) and get

Df($k+1,$k) _ Df(xk+1,yk) — Df(yk,xk) + <yk _ Z’k+1, f’(iEk) _ f/(yk))
= Df(yk7 xk) + <yk - xk—Ha ’Yklvk> - <yk - l‘k_Ha ek>
= Df(yk7 xk) - <yk - xka ek> - <xk - xk—i—la ek>

> (1— ) Dy, a*) + (@) — o¥, cb).

Finally, in order to prove (iii), take Z € T71(0). Note that T € Hj by (i-c), and so,
since z¥*! is a solution of the optimization problem given in (23), it satisfies the first order
optimality conditions, namely

(@ — 7, f'(a*) — f'(a"*)) > 0. (26)
Using now (26) and the three point equality, we get
Df(7,2%) — Dy(z,2") = Dy(a", 2%) + (" — 7, f/(2F) — F/(a*)) > Dp(a*t, 2F).

Thus, {D;(Z,2*)} is nonincreasing and bounded, hence convergent. Moreover,
> Dy(a*a¥) <N [Dy(&,2*) — Dy(x,24)] = Dy(7,2°) — Dy(z, 2™H),
k=0 k=0

which ensures convergence of >, ; Dy(zFt1, zF). O

The following theorem contains our main result concerning the proximal-projection al-
gorithm.

Theorem 2. Assume that T is a mazimal (f, p)-hypomonotone operator, where f belongs
to F and satisfies H1-Hj. Consider {y},{pr} and o as in the statement of the method. Let
{z*} be the sequence generated by (21)-(23). Then

i) f T has zeros then {z*} is bounded,
i) if additionally e* -5 0, then all weak accumulation points of {x*} are zeroes of T.

Proof. Let T be a zero of T. Define y* = 2* + py f!(v*). From Proposition 3(iii), we get that
{2*} is bounded, establishing (i). We also get that z*+! — 2¥ -5 0. Moreover, Proposition
3(ii) ensures that

Df(xk+1,.7:k) _ Df (le—l,yk) > (1 _ J)Df (yk,.’lik) + <$k+1 _ xk, ek>. (27)
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Take now limits with & — oo in (27). Since o belongs to [0,1) and {e*} is bounded, by
the assumption of item (ii), we have limy_,o, Dy (zF*',4*) = 0 and limy_,o Dy (y*, 2%) = 0.
Hence, y* — 2% — 0, because f satisfies H2. Observe now that (22) implies

" 4+ f1(yF) — f(2%) = eF. (28)

Since f’ is uniformly continuous on bounded sets by H3, and v, > v > 0 for all k, we
obtain from (28) v*¥ -+ 0, as a consequence of the assumption that e¥ -+ 0. Thus, {z*}
is a bounded sequence with the same weak accumulation points as {y*}, and we also have
vk € T(2F), v* =5 0 and y* — 2¥ = ppf'(v*) == 0. The remainder of the proof uses the
final argument in the proof of Theorem 1. 0

We mention a remarkable weakness of this convergence result, in comparison with the
similar result for the inexact proximal-extragradient method, i.e., Theorem 1. In this case,
we need to include among the assumptions the convergence to 0 of the error term e*. Such
assumption was not needed in Theorem 1, where in fact such convergence to 0 was a conse-
quence of the result itself. We have been unable to get a similar result in this case, and the
question whether such assumption is indeed essential is left as an open problem for future
research.

5 Local f-hypomonotonicity

Up to this point, our results apply to operators which are (f, p)-hypomonotone in the whole
space. The class of such operators is of course much larger than the class of monotone
operators, but in some respect it is not large enough.

We observe that the set of zeroes of an (f, p)-hypomonotone operator, with f € F, is
closed and convex, and hence also weakly closed, because according to Lemma 1, it coincides
with the set of zeroes of a maximal monotone operator, namely 7, and it is well known
that the set of zeroes of a maximal monotone operator enjoys such properties. In fact,
this result indicates that (f, p)-hypomonotonicity is not generic: in the one dimensional
case, for instance, only functions whose set of zeroes is either empty or an interval can be
(f, p)-hypomonotone. On the other hand, most well behaved operators are locally (f, p)-
hypomonotone near a zero of T' (see, e.g. in [11] the discussion of this genericity for the case
of Hilbert spaces). We will consider thus operators which are (f, p)-hypomonotone only in a
certain subset W of B x B*, in the following sense.

Recall that a set-valued operator T : B — P(B*) can be identified with its graph. By so
doing, the (f, p)-hypomonotonicity of 7" becomes a property of the graph of T, as a subset
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of B x B*. In fact, we can say that an arbitrary subset Z of B x B* is (f, p)-hypomonotone
when
<$ —Yyu-— U) 2 _p[Df* (u: U) + Df* (U: u)]’ V(ZU, U’)a (ya U) € Z

Definition 4. Given p > 0, a regularizing function f € F and a subset W of B x B*, an
operator T : B — P(B*) is said to be

i) (f, p)-hypomonotone in W if and only if T "W is (f, p)-hypomonotone.

i1) mazimal (f, p) hypomonotone in W if and only if T is (f, p)-hypomonotone in W, and
additionally T NW = T' N W, whenever T" C B x B* is (f, p)-hypomonotone and
TnWwWcT' nWw.

For the sake of simplicity, we will take W of the form W =U xV, withU C B, V C B*.
In order to obtain any convergence results, we need to assume that U contains some zero of
T. Furthermore, for convenience, we will assume that U is closed and convex. In such a case,
it happens that 771(0) N U is also closed and convex, and that the Bregman I1/ projection
onto this set is well defined, when f is totally convex.

In fact, we need some additional assumptions on the set W where the local (f, p)-hypo-
monotonicity holds. The reason is the following: in order to get any meaningful result, we
need that whenever an iterate belongs to W the next one also does. This will be a conse-
quence of the fact that the Bregman distance from the iterates to any zero of 7" decreases (see
Propositions 2(ii) and 3(ii)), but then we will need that W contains a whole neighborhood
of (T7'NU) x {0} C B x B*. In other words, U will have to contain an open set around a
closed and convex subset of the set of zeroes of 7. These assumptions on W = U x V will
appear as hypotheses (i) and (ii) in Lemma 3 below.

Finally, we will need also two additional technical assumptions on f, or more precisely on
its conjugate f,: the first one requires that if z,y € B* are close to each other with respect
to Dy,, then z — y must be close to 0 in the same sense. Formally, we have:

H5: There exists a nondecreasing function ¢ : R, — R, such that, for all § > 0 and all
x,y € B* it holds that
Dy.(8(x — 4),0) < 6(6)Dy. ().

The second one, which relates f, with its derivative f!, is the following:

H6: There exists a nondecreasing function ¢ : Ry, — R such that, if f.(z) < ()) then
[f:(@)]] < A

We mention that H6 holds for f(z) = (1/7)||z||" (r > 1) in any uniformly smooth and
uniformly convex Banach space, with ¢ (t) = [(r — 1)/r]t", which is increasing.

In connection with H5, we consider now the spaces B = LP(§2) or B = {,, with 1 < p < 2,
where the standard regularizing function is given by f(x) = (1/p) [|z|[;. In this case we have
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B* = L9(Q) or B* = 4, and f.(y) = (1/q)|lyll§, with 1/p+ 1/¢ = 1. In this setting,
it has been proved in [9] that the modulus of total convexity of f,, as in (8), satisfies
vi (y,t) > (2'79/q) 1 for all y € B*. It follows also from the definition of Bregman distance
that if f/(0) = 0 then Dy, (y,0) = f.(y) for all y € B*. Thus

91-4 . 25 .
Dy (z,y) > vu(y:llz—yl) > Tllx—yll(,:TfS “o(z =yl

= 2% Dy (6(z — y),0),

i.e., H5 holds with ¢ () = 2¢971¢9, which is increasing.

We present next a localization lemma, which says that if 7" is locally ( f, p)-hypomonotone
on a set W = U x V satisfying some regularity properties, and if x € U is close enough to
a zero of T’ belonging to U, then, the vectors u,y, z associated to the resolvent Ry, ,(z) as
in Lemma 2(iv) will be such that u belongs to V' and y, z belong to U. The assumption on
V' is that it contains a level set of Dy, (-,0). Regarding U, the requirement that it contains
an open set around its intersection with 7-1(0), will be expressed in the following way: it
contains all points of the form a+ b, where the distance from a to UNT~!(0) does not exceed
some value 8 > 0 and the norm of b does not exceed some n > 0.

It is convenient to introduce some notation for the sublevel sets of Df*(-, 0). For a > 0,
define

Ly.(a) ={y€ B | f.(v) = Dp.(0,0) < a}.

Lemma 3. Let T be mazimal (f,0)-hypomonotone in a subset U x V of B x B*, where
f € F satisfies H{, H5 and H6. Assume that T has a nonempty set of zeroes S, and that U
and V satisfy the following two conditions:

i) SNU is nonempty and U is closed and convez,
ii) there erist o, 5,n € Ry such that
Li(a) CV, (29)
{a+be B | Diy(SNU,a) <p,|b|| <n} CU. (30)
Fix some § > 0 and some p > 6, and take € satisfying

o w(n/u)}
(1/6)” ¢(1/0) |~

with ¢ as in H5 and ¢ as in H6. If x € B is such that D;(SNU,xz) < ¢, then there exist
yeU, zeU and u € V, such that

¢ < min {B, 3 (31)
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a) u€T(z), ou+ fllz+0f,(u)] - f(z) =0, y=2+0f(u),
b) D;(SNU,y) <e.

Proof. One comment is in order before starting with the formal proof: there is not much
difficulty in finding vectors u, y, z satisfying (a): they will be the vectors associated to the
resolvent Rr, 5(z). The main difficulty is to establish that they remain in W (or, more
precisely, that v € V and y,z € U). It is at this point that we need H5, H6 and the
definition of €.
Take x € B such that D;(SNU,z) < e. Since T is maximal (f, §)-hypomonotone in
U x V, Ty is also maximal monotone in U x V. Identifying 7Ty with its graph, we get that
Ty N (U x V) is a monotone subset of B x B*. Thus, there exists some maximal monotone
subset of B x B*, say Ty, which contains Ty N (U x V). Since T, is maximal monotone, its
resolvent Ry, 5 is well defined. Take y € Ry, 5(x). In view of Lemma 2, there exists u € B*
such that u € Ty(y) and
du+ f'(y) — f(z) =0. (32)

Take any Z € SN U and apply the three point equality (11) to get

Dy(z,z) — D§(Z,y) = Dyly,z)+(y—2,f'(z) = f'(y))
= Df(y,x)—i-(S(u,y—i") sz(yal‘)7 (33)

where the inequality follows from monotonicity of Ty and the fact that Z is a zero of T, and
hence of Ty. In view of (33),

inf Dy(z,2) > inf [Dy(%,y)+ Ds(y,2)] > Dyly,2) + _inf DyE,y).  (34)

TESNU TESNU TESNU

Since D¢(SNU,z) < ¢, we conclude that D;(SNU,y) < ¢, establishing (b). Using now
assumption (i) and the definition of ¢, we obtain that y € U.
Next, invoking (34) and (10), we get

€ 2 Dy(y,z) = Dy.(f'(2), ['(y))-
In view of (32), u = 6~1(f'(z) — f'(y)). Since f satisfies H4 and H5, we have
fu(u) = Dy, (u,0) = Dy, (6 (f'(2) = f'(y)),0) < 6(1/6)e < a, (35)

using (31) in the inequality. It follows from (29) that u belongs to V. Hence, (y,u) belongs to
TyN(U X V). Since Ty coincides with Ty in U xV, it follows that u € Ty(y). Now we use Lemma
2(iv), and obtain that there exists z € B such that u € T(2), du+ f'[z+0fL(u)]— f'(z) =0
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and y = z + 0f/(u). Observe that z =y — 0f/(u), withy € {x € B| Dy(SNU,z) < e}.
Since ¢ < B by (31), we get that y € {a € B | Dy(SNU,a) < f}. Let now b = —0f](u).
Then,

1ol = 611 f:(u)ll - (36)

folw) < (%) <y (g) <v (7). (37)

using (35) in the first inequality, (31) in the second one, and the facts that v is nondecreasing
and that § < p in the third one. It follows from (37) and H6 that ||f/(u)|| < n/f, and
therefore, by (36), ||b]] < 1. We have written z as y+b with y € {a € B | Dy(SNU,a) < 5}
and [|b]| < n. We conclude from (30) that z belongs to U, completing the proof. O

Note that

Our local convergence result for our Algorithms 1 and 2 applied to locally (f, p)-hypomo-
notone operators is contained in the following theorem.

Theorem 3. Let T be mazimal (f, p)-hypomonotone in U x V C B x B*, where f € F
satisfies H1-H6, and U, V satisfy conditions (i) and (ii) of Lemma 3. Assume that the set S
of zeroes of T is nonempty. Take an exogenous constant o € [0,1) and exogenous sequences
{%}, {pr} such that v, > v >0, p> px > p > 0 for some v, p. Define € as

— in a  ¥(n/p)
¢ = {B’qﬁ(l/v)’aﬁ(l/v)}' (38)

If D;(SNU,2°% <,

a) for all k there exist zF € U, v* € V, e¥ € B* and ¢! € U satisfying (17)-(18) and
(19) in the case of Algorithm 1, and (21)-(22) and (23), in the case of Algorithm 2,
such that Dy(SNU, z*) <e.

(b) Any sequence {x*} constructed as in item (a) is bounded and any weak accumulation
point of {z*} belongs to SNU (provided that e* — 0 in the case Algorithm 2).

Proof. a) We proceed by induction. By inductive hypothesis, D;(S N U, z*) < e. We intend
to apply Lemma 3 with z = 2%, § = 7, # = p, and u = p. We proceed to check that
the hypotheses of this lemma are satisfied. First, note that if 7" is (f, p)-hypomonotone
and p > p, then T is also (f, p)-hypomonotone. Since p; > p for all £, and T is (f, p)-
hypomonotone by hypothesis, we obtain that T is (f, px)-hypomonotone for all k£, and hence
by choosing € = p; we remain within the assumptions of the lemma. Additionally, it suffices
to check that ¢, defined as in (38), satisfies (31) with § = -, and p = p, for which it is
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enough to verify that ¢(1/7) < ¢(1/7), and that 1(n/p) < ¥(n/pr). These inequalities
hold because v > 7, pr < p and ¢, are nondecreasing by H5, H6 respectively. Thus, we
invoke the Lemma 3 with these values of z, §, #, p and conclude that there exist y,z € U
and u € T(z) NV satisfying the required equations (e.g. with e* = 0). Take vF = u, 2* = 2,
and consider 2! defined from v*, 2* as in (19) for Algorithm 1, and (23) for Algorithm
2. It remains to establish that in both cases D;(S N U,z**!) < e. Take z € SNU. For
the case of Algorithm 1, since both (Z,0) and (z*,v*) belong to G(T) N (U x V), and T is

(f, p)-hypomonotone in U x V', we get that
Df(ii‘,.fk_H) — Df(.f‘,l‘k) <0. (39)

following exactly the steps in the proof of Proposition 2 which lead to (20). In the case of

Algorithm 2, we also have that (Z,0) and (2*,v*) belong to G(T) N (U x V), where T is

(f, p)-hypomonotone, and we also obtain (39). In both cases, we get from (39)
Dy(SNU,z") = inf D;(z,2*"") < inf Dy(z,2%) = D;(SNU,z*) <e.

zesSnU zesSnU

establishing the result.

b) By (a), the sequence {(z*,v*)} remainsin W = U x V. Since T is (f, p)-hypomonotone
in this set, thus results of Theorem 1 for Algorithm 1 and Theorem 2 for Algorithm 2 hold
also locally, and so all weak accumulation points of {z*} belong to S. Note also that, in
view of (a), the whole sequence {z*} is contained in U, which is closed and convex, and
therefore weakly closed. Thus all weak accumulation points of {z*} belong to U, completing
the proof. O
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