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Abstract

We study the unique integrability of the center unstable subbundle of a codi-
mension one dominated splitting

1 Introduction

The problem of (unique) integrability of a one dimensional distribution (or vector field)
is an old problem that goes back to the 19th century. For a non-one dimensional distri-
bution the problem has been solved by Frobenius who gave a necessary and sufficient
condition for the integrability (see [AM] and [L]). Nevertheless this conditions is not
easy to check. When the distribution is related to a dynamical systems f : M → M
the integrability has been solved under some dynamic assumptions like hyperbolicity
by many authors and proofs along the 20th century (see for instance [HPS]). More
precisely, if TM = E ⊕ F is an invariant dominated decomposition under the tangent
map Df and F has a uniform expanding behavior it follows that F is uniquely inte-
grable (this is the so called strong stable manifold theorem for f−1.) The problem of
the integrability come out when the we consider the “central”distribution. In other
words no condition for the unique integrability is known when F has not (a priori) a
uniform hyperbolic behavior, and moreover, there exist examples where it fails to be
integrable.

In this paper we deal with the case that the distribution F is one-dimensional. By
Peano’s Theorem (see [KF]) it is integrable, but we shall be concerned with the unique
integrability (and, as it is well known, we can not expect the central distribution to be
smooth, even Lipchitz.)

Before state our result let us recall some definitions. Let f : M → M be a diffeomor-
phisms. An f -invariant set Λ is said to have dominated splitting if we can decompose
its tangent bundle in two invariant subbundles TΛM = E ⊕ F, such that:

‖Dfn
/E(x)‖‖Df−n

/F (fn(x))‖ ≤ Cλn, for all x ∈ Λ, n ≥ 0,

with C > 0 and 0 < λ < 1.
We say that the dominated splitting is a codimension one dominated splitting if the

dimension of F is one and we shall say that it is a contractive if E is a contractive
subbundle, i.e., there exists C > 0 and 0 < λ < 1 such that for any x and any n holds
that |Dfn

|Ex
| < Cλn.
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A periodic point p is semi-attractor or attractor provided that the set of points y
that verifies that dist(fn(p), fn(y)) → 0 contains an open set in M.

Maim Theorem: Let f : M → M be a Cr diffeomorphisms, r > 1, exhibiting a
codimension one dominated splitting TM = E ⊕ F over the whole manifold. Then F
is uniquely integrable provided one of the following conditions hold:

1. Ω(f) = M (where Ω(f) denote the non-wandering set of f).

2. The dominated splitting is contractive.

3. There are neither semi-attracting or attracting periodic points and f is Cr with
r > 2.

The paper is organized as follows: in section 2 we state a series of results prove
somewhere else. In section 3 we prove a codimension one Denjoy Property regarding the
existence of wandering intervals (a similar result has already been proved in dimension
two and with some adjustments the proof works in the codimension one case). In the
same section, we derive some consequences regarding the central unstable invariant
manifolds. In the last section we conclude the proof of the maim theorem.

2 Preliminaries

Let I1 = (−1, 1) and Iε = (−ε, ε), and denote by Emb1(I1,M) the set of C1-embedding
of I1 on M, and denote by Emb1(In−1

1 , M) the set of C1-embedding of In−1
1 on M,

where n is the dimension of M.
Recall by [HPS] that codimension one dominated splitting implies the next lemma:

Lemma 2.1. There exist two continuous functions ϕcs : Λ → Emb1(In−1
1 ,M) and ϕcu :

Λ → Emb1(I1, M) such that if define W cs
ε (x) = ϕcs(x)In−1

ε and W cu
ε (x) = ϕcu(x)Iε the

following properties holds:

1. TxW cs
ε (x) = E(x) and TxW cu

ε (x) = F (x),

2. for all 0 < ε1 < 1 there exist ε2 such that and

f(W cs
ε2 (x)) ⊂ W cs

ε1 (f(x)).

3. for all 0 < ε1 < 1 there exist ε2 such that and

f−1(W cu
ε2 (x)) ⊂ W cu

ε1 (f−1(x)).

In particular, there exists δ = δ(ε1) such that if y ∈ W cu
ε1 (x) and dist(f−j(y), f−j(x)) <

δ for 0 ≤ j ≤ n then f−j(y) ∈ W cu
ε1 (f−j(x)) for 0 ≤ j ≤ n.

Corolary 2.0.1. For any 0 < γ < 1, there exists ε = ε(γ) such that for x ∈ Λ holds
that

‖Dfn
/E(x)‖ ≤ γn, ∀n ≥ 0,

then follows that

W cs
ε (x) ⊂ W s

ε (x) = {y : dist(fn(x), fn(y)) < ε dist(fn(x), fn(y)) → 0}
i.e., the central stable manifold of size ε is in fact a stable manifold.
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Sometimes, one needs the central manifold to be of class C2. This is guaranteed, for
C2−diffeomorphisms, by the so called 2-domination: the splitting E⊕F is 2-dominated
if there exists 0 < σ < 1 such that

‖Dfn
/E(x)‖‖Df−1

/F (fn(x))‖2 ≤ Cσn, n ≥ 0.

Remark 2.0.1. It follows that if f is a C2 diffeomorphisms and Λ is a compact invari-
ant manifold exhibiting a codimension one dominated splitting which is also 2-dominated
then the map ϕcu in Lemma 2.1 is indeed a map ϕcu : Λ → Emb2(I1,M) (see [HPS]
for details).

The following result in [PS1] guarantee that a codimension one dominated splitting
is 2-dominated:

Lemma 2.2. Let f be a C2 diffeomorphisms and let Λ be a compact invariant manifold
exhibiting a codimension one dominated splitting. Then, there exists at most finitely
many periodic attractors (sinks) in Λ such that any compact invariant set Λ0 ⊂ Λ and
disjoint from these periodic attractors is 2-dominated.

We will need also the following beautiful result form Pliss:

Lemma 2.3. Pliss’s Lemma ([Pl]): Given a diffeomorphisms f and 0 < γ1 < γ2

there exist N = N(γ1, γ2, f) and c = c(γ1, γ2, f) > 0 with the following property: given
x ∈ M, a subspace S ⊂ TxM such that for some n ≥ N we have (denoting Si = Df i(S))

n∏

i=0

‖Df/Si
‖ ≤ γn

1

then there exist 0 ≤ n1 < n2 < .... < nl ≤ n such that

j∏

i=nr

‖Df/Si
‖ ≤ γj−nr

2 ; r = 1, ..., l; nr ≤ j ≤ n.

Moreover, l ≥ cn.

The next lemma is a classical one about the existences of admissible neighborhood
for sets having dominated splitting.

Lemma 2.4. Let Λ be a set with dominated splitting. Then there exists a neighborhood
V of Λ such that any compact invariant set in V has dominated splitting. This type of
neighborhood is called an admissible neighborhood of Λ.

3 Denjoy’s Property

A Cr-arc is a Cr embedding of the interval (−1, 1). We denote by `(I) the length of a
Cr-arc I.

Definition 3.1. Let f : M → M be a Cr diffeomorphisms and let Λ be a compact
invariant set having dominated splitting and let V be an admissible neighborhood (see
lemma 2.4). Let U be an open set containing Λ such that U ⊂ V. We say that a Cr-arc
I in M is a δ-E-arc provided the next two conditions holds:
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1. fn(I) ⊂ U, n ≥ 0 and `(fn(I)) ≤ δ for all n ≥ 0.

2. fn(I) is always transverse to the E-direction.

In other words, a δ-E-arc is an arc that does not growth in length in the future and
always remains transversal to the E subbundle.

Related to a δ-E-arc I we can obtain the following result. Before to state it, choose
λ2, λ3; λ < λ

1
2 < λ2 < λ3 < 1.

Lemma 3.1. There exists δ > 0 such that given a δ-E-arc I follows that there exists
a sequence of integers ni →∞ such that

‖Df j
/E(x)‖ < λj

2 for all j ≥ 0 x ∈ fni(I). (1)

Proof. First, we take ni such that

`(fni(I)) > `(f j(I)), ∀ j > ni.

To avoid notation, we note the arcs

Ini = fni(I).

Observe that this implies that for any ni > 0 there is some xi ∈ Ini such that
‖Dfk

/F (xi)
‖ ≤ 1 and since the iterates of Ini remain small (less than δ) it follows that

there is β small such that for any z ∈ fni(I) then

||Df j
/F (z)|| < (1 + β)k.

Using the domination property and β small, the thesis of the lemma holds (see page
987-988 of [PS1] for details).

Lemma 3.2. For any point x ∈ Ini there is an stable manifold W s
ε (x) of uniform size.

The proof follows from corollary 2.0.1. This implies that we can consider the box

W s
ε (Ini) = ∪x∈Ini

W s
ε (x).

Definition 3.2. We say that a δ-E-arc I is wandering if for any ni, nj satisfying (1)
follows that

W s
ε (Ini) ∩W s

ε (Inj ) = ∅.
The next theorem characterize the dynamic of a δ-E-arc. More precisely, charac-

terize the ω−limit of I (noted with ω(I)). The theorem is a more general version of
proposition 3.1 in [PS1] and theorem 4.1.3 in [PS2] where the results are stated for
surfaces diffeomorphisms. The proof has some similarities and here it is adapted to the
case of codimension one dominated splitting.

Theorem 3.1. Let f be a Cr diffeomorphisms, r ≥ 1, and let Λ be a compact invariant
set exhibiting a codimension one dominated splitting. There exists δ0 such that if I is
a Cr δ-E-interval with δ ≤ δ0, then one of the following properties holds:
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1. ω(I) ⊂ C where C is a periodic simple closed curve normally attracting and fm
/C :

C → C (where m is the period of C) has irrational rotation number.

2. There exists a normally attracting periodic arc J such that I ⊂ W s(J) and fk

restricted to J (k being the period of J) is the identity map on J.

3. ω(I) ⊂ Per(f/V ) where Per(f/V ) is the set of the periodic points of f in V .
Moreover, one of the periodic points is either a semi-attracting periodic point or
a attracting one.

4. Neither of the above and I is wandering.

Proof. To conclude the proof it is enough to show that if there exist ni < nj verifying
(1) such that

W s
ε (Ini) ∩W s

ε (fnj−ni(Ini)) 6= ∅. (2)

then either (1), (2) or (3) of theorem 3.1 hold.
Let m = nj − ni. If `(fkm(Ini)) → 0 as k → ∞, then ω(Ini) consist of a periodic

orbit. Indeed, if `(fkm(Ini)) → 0, then `(fk(Ini)) → 0 as k →∞. Let p be an accumu-
lation point of fk(Ini), that is, fkj (Ini) → p for some kj → ∞, and so, fkj+m(Ini) →
fm(p). But by the property we are assuming, i.e., W s

ε (Ini) ∩W s
ε (fnj−ni(Ini)) 6= ∅, we

have fkj+m(Ini) → p, implying that p is a periodic point. Thus, for any x ∈ Ini we
have that ω(x) consists only of periodic orbits, and so ω(x) is single periodic orbit p.
Since `(fk(Ini)) → 0 we conclude that ω(Ini) is the orbit of the periodic point p. By
the way we choose Ini , we have fni(I) ⊂ Ini and so ω(I) consists of a periodic orbit,
as the thesis of the theorem requires.

On the other hand, if `(fkm(Ini)) does not goes to zero, we take a sequence kj such
that fkjm(Ini) → L for some arc L (which is at least C1, and have F as its tangent
direction). Now f (kj+1)m(Ini) → L′ and fm(L) = L′. Moreover, L ∪ L′ is an interval
(with F as its tangent direction). Let

J = ∪n≥0f
nm(L).

We claim that there are only two possibilities: either J is an arc or a simple closed
curve. To prove this, notice that fnm(L) is a δ-E-interval for any n ≥ 0. In particular,
for any x ∈ J there exists ε(x) such that W cs

ε(x)(x) is stable manifold for x, and so

W (J) =
⋃

x∈J

W cs
ε(x)(x)

is a neighborhood of J. Ω(f) = M We only have to show that, given x ∈ J, there
exists a neighborhood U(x) such that U(x) ∩ J is an arc. This implies that J is a
simple closed curve or an interval. Thus, take x ∈ J, in particular x ∈ fn1m(L). Take
U an open interval, x ∈ U ⊂ fn1m(L) and let U(x) be a neighborhood of x such that
U(x) ⊂ W (J) and such U(x) ∩ L1 ⊂ U where L1 is any interval containing fn1m(L),
transverse to the E-direction and |L1| ≤ 2δ0 (this is always possible if δ0 is small). Now
let y ∈ J ∩ U(x). We have to prove that y ∈ U. There is n2 such that y ∈ fn2m(L).
Since

fn1m(L) = lim
j

fkjm+n1m(Ini)

5



fn2m(L) = lim
j

fkjm+n2m(Ini)

and both have nonempty intersection with U(x), we conclude that for some j follows
that fkjm+n1m(Ini) and fkjm+n2m(Ini) are linked by a local stable manifold. Hence
fn1m(L)∪fn2m(L) is an arc L1 transverse to the E-direction with `(L1) ≤ 2δ0. Therefore
y ∈ U(x)∩L1 ⊂ U as we wish, completing the proof that J is an arc or a simple closed
curve.

In case J is an arc, since fm(J) ⊂ J, it follows that for any x ∈ I, ω(x) is a ω-
limit point of a point in J , hence either (2) or (3) holds, completing the proof in this
case. On the other hand, if J is a simple closed curve, which is of class C1 because
is normally hyperbolic (attractive), then we have two possibilities. If fm

/J : J → J has
rational rotation number, then we can see that ω(Ini) consist of a union of periodic
points, and the same happens to I. If fm

/J : J → J has an irrational rotation number,
then it is semiconjugated to an irrational rotation. Since we are assuming that there is
not wandering interval, it follows that it is conjugated. Denoting C = J , we have that
ω(I) is as in the first property of the thesis of the theorem.

Corollary 3.1. Let f be a Cr diffeomorphisms, r ≥ 1, and let us assume that Ω(f) = M
and there is a codimension one dominated splitting in the whole manifold. Then, there
is not δ-E-interval provided δ small.

Proof. From the fact that Ω(f) = M follows that there is not wandering δ-E-intervals.
From theorem 3.1 it follows that the ω−limit of a δ-E-interval it is either a periodic
simple closed curve normally attracting, a semi-attracting periodic point or there exists
a normally attracting periodic arc. In any case, it is contradicted that Ω(f) = M .

Theorem 3.2. Let f be a Cr diffeomorphisms, r ≥ 2, and let Λ be a compact invariant
set exhibiting a codimension one dominated splitting. There exists δ0 such that if I is
a Cr δ-E-interval with δ ≤ δ0, then either (1), (2) or (3) of theorem 3.1 hold.

Proof. To prove the previous theorem, first we need a proposition that allows to com-
pare the two dimensional volume of W s

ε (J) with the one dimensional length of a δ-E-
interval J that verifies that

‖Df j
/E(x)‖ < λj

2 for all j ≥ 0 x ∈ J. (3)

Proposition 3.1. Let f be a C1+β diffeomorphisms, β > 0, and let Λ be a compact
invariant set exhibiting a codimension one dominated splitting. There exists δ0 and
K > 0 such that if J is a Cr δ-E-interval with δ ≤ δ0 such that its ω−limit is not a
periodic sink and verifies (3) then

Kvol(W s
ε (J)) ≥ `(J).

The proof of the proposition is postponed and we finish now proving theorem 3.2.
In what follows we take the maximal sequences of positive integers {ni} such that
for each ni it is verified (1). Without loss of generality, we can assume that for each
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ni the arc Ini is the maximal δ-E-interval that contains fni(I). Let us assume that
W s

ε (Inr) ∩W s
ε (Inj ) = ∅ for every r, j, otherwise, arguing as in theorem 3.1 the proof is

concluded.
Let λ2 be such that λ < λ2 < λ1 < 1. Consider N = N(λ2, λ1) from Pliss lemma

2.3. It follows (assuming for simplicity that ni+1 − ni ≥ N = 1) that the following
holds:

‖Df
ni+1−j
|Ex

‖ > λj
2 for any x ∈ f j(Ini) and 0 6 j < ni+1 − ni. (4)

This implies that the derivative along the F direction behave as an expanding direction
for iterates between ni and ni+1. In fact, (4) implies that given 0 6 j < ni+1− ni then

‖Df
−(ni+1−j)
|Fx

‖ < (
λ

λ2
)j

for any x ∈ Ini+1 . In particular

`(I−(ni+1−j)) < (
λ

λ2
)j`(Ini+1). (5)

Using proposition 3.1 we have that
∞∑

i>0

`(Ini) < ∞

and this together with (5) imply
∞∑

n>0

`(In) < ∞

and arguing as Schwartz’s proof of the Denjoy Theorem for some ni large we may
find an arc Jni containing properly each Ini such that Jni is a δ−interval, which is a
contradiction with the maximality of Ini for every ni.

Now we proceed to give the proof of proposition 3.1
Proof of proposition 3.1: Let us consider the box W s

ε (J). To prove the proposition , it
is enough to show that there is a constant C such that given two center unstable arcs
J1, J2 in W s

ε (J) transversal to the E-direction and whose endpoints are in ∂cu(W s
ε (J))

(where ∂cu(W s
ε (J)) = W s

ε (x1)∪W s
ε (x2) and {x1, x2} are the boundary points of J) the

following holds:
1
C
≤ `(J1)

`(J2)
≤ C.

To prove that, let us consider the holonomy Π induces by the stable foliation restricted
to the box W s

ε (J); i.e.: let Π : J1 → J2 defined as Π(x) = W s
ε (x) ∩ J2. Related to it,

we state the next lemma.

Lemma 3.3. Let f be a C1+β diffeomorphisms, β > 0, and let Λ be a compact invariant
set exhibiting a codimension one dominated splitting. There exists δ0 > 0 and C > 0
such that if J is a Cr δ-E-interval with δ ≤ δ0 that verifies (3), it follows that the stable
holonomy restricted to W s

ε (J) is C1 and

1
C
≤ ‖Π′‖ ≤ C.
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Proof of lemma 3.3: To avoid notation, let us denote B = W s
ε (J). Let us take J1, J2 be

the center unstable arcs that bound B. In other words J1 ∪ J2 = ∪x∈J∂W s
ε (x) where

∂W s
ε (x) are the boundaries of W s

ε (x). For any positive integer k, let us take the set

Bk = fk(W s
ε (J))

and let us consider a C1 (not necessarily invariant) foliation that contains the center
stable leaves of the extremal points of Jk

1 = fk(J1) and Jk
2 = fk(J2). Let us called this

foliation F̂cs
k .

Lemma 3.4. There exists a positive constant C1 such that for k sufficiently large,
follows that there exists a C1 foliation F̂cs

k containing the center stable leaves of the
extremal points of Jk = fk(J) such that

1
C1

≤ ‖Π̂′k‖ ≤ C1

where Π̂k is the holonomy induced by F̂cs
k from Jk

1 to Jk
2 .

Before to prove the previous lemma Let us continue with the proof lemma 3.3. Let
Fcs

k be the foliation in B which is the pull-back foliation F̂cs in Bk and let us define

Πk = f−k ◦ Π̂k ◦ fk
/J1

.

in other words Πk is the projection along Fcs
k between J1 and J2. We want to prove

that Πk converge to Π in the C1−topology. It is immediate that the convergence holds
in the C0−topology, so to conclude, we have to show that there exists C1 such that

1
C1

≤ ‖Π′k‖ ≤ C1

where Πk is the projection along Fcs
k between J1 and J2. Notice that J1 = fk(Jk

1 ) and
J2 = fk(Jk

2 ) are also two arcs in B(y) transversal to the E-direction with endpoints in
∂cu(B(y)). For a point x ∈ f j(Jk

i ), i = 1, 2 set F̃ (x) = Txf j(Jk
i ), 0 ≤ j ≤ k.

By the equality
Πk ◦ f−k

/J1
= f−k ◦ Π̂k

we conclude, for z ∈ J1, that

‖Π′k(f−k(z))‖.‖Df−k
/F̃ (z)

‖ = ‖Df−k
/F̃ (Π(z))

‖.‖Π̂′(z)‖

Hence

‖Π′k(f−k(z))‖ =
‖Df−k

/F̃ (Π(z))
‖

‖Df−k
/F̃ (z)

‖ .‖Π̂′(z)‖

Thus, to finish the proof of the lemma it suffices to find M such that

1
M

≤
‖Df−k

/F̃ (Π(z))
‖

‖Df−k
/F̃ (z)

‖ ≤ M
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which is the same, setting x = f−k(z), as

1
M

≤
‖Dfk

/F̃ (x)
‖

‖Dfk
/F̃ (Πk(x))

‖ ≤ M.

Observe that for any pair of point z1, z2 belonging to the same central leaf of Fcs
k , form

(3) follows that
dist(f j(z1), f j(z2)) 6 λj

2dist(z1, z2)

for j ≤ k and so, given some constant α, there is a constant A such that

Σk
i=0`(f

j(Fcs
k (x)))α < A.

With the same arguments as in [Sh] pages 45-46, it is possible to prove that there exist
τ > 0 and α > 0 such that

∣∣∣‖Df/F̃ (fj(w1))‖ − ‖Df/F̃ (fj(w2))‖
∣∣∣ ≤ ηjD + dist(f j(w1), f j(w2))α

for some constant 0 < η < 1 and D whenever F̃ lies in the central unstable cone and
dist(f j(w1), f j(w2)) ≤ τ, 0 ≤ j ≤ k. (This is, roughly speaking, a consequence of the
fact that the distribution F is α-holder and any other direction converges exponentially
fast to F.)

Therefore, if the diameter of B(δs,δu)(p) is less than τ, it follows that

‖Dfn
/F̃ (x)

‖
‖Dfn

/F̃ (Πk(x))
‖ ≤ exp


 D

1− η
+

j=k∑

j=0

dist(f j(x), f j(Πk(x)))α


 .

Since x and Πk(x) belongs to Fcs
k (x), we conclude that

k∑

j=0

dist(f j(x), f j(Πk(x)))α ≤
n∑

j=0

`(f j(Fcs
k (x)))α ≤ A.

Thus
‖Dfk

/F̃ (x)
‖

‖Dfk
/F̃ (Πk(x))

‖ ≤ exp(
D

1− η
+ A).

Finally, taking M = exp( D
1−η + A), we have that C1 = C.M is finished the proof of

lemma

Proof of lemma 3.4: To prove that, we have to show that the quotient

`(Jk
2 )

`(Jk
1 )

(6)

is close to one. In this direction, first we establish the next assertion.
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Asserts 3.0.1. Let x ∈ Λ such that does not belong to the basin of attraction of a
periodic sink. Then, for any γ > 0 there exists n0 such that if n > n0 then

|Dfn
/F (x)| > (1− γ)n.

In fact, if it is not the case, given γ > 0 it follows from lemma 2.3 that there are
two increasing sequences {mk} and {lk} such that

|Dfn
/F (fmk (x))| < (1− γ)n, ∀ 0 < n < lk. (7)

Without loss of generality, we can assume that fmk → z for some z ∈ Λ and it is
concluded that

|Dfn
/F (z)| < (1− γ)n, ∀ 0 < n. (8)

From the domination follows that

||Dzf
n|| < (1− γ)n, ∀ 0 < n (9)

and therefore there is ε = ε(γ) such that

Bε(z) ⊂ W s
ε (z).

Since fmk(x) ∈ Bε(z) for mk large, it follows that Bε(z) is contained in the basin of at-
traction of a periodic sink and therefore ω(x) is a periodic sink, which is a contradiction
and so the claim follows.

Coming back to prove that (6) is close to one, observe that from the fact that
f ∈ C1+β follows that the center stable foliation is Holder (see [HPS]) and therefore it
follows that there exists α > 0 such that

`(Jk
1 )− dk`(Jk

1 )α < `(Jk
2 ) < `(Jk

1 ) + dk`(Jk
1 )α

where
dk = max

x∈Jk
1

dist(x,W cs
ε (x) ∩ Jk

2 ).

Since
dk < λk

2

it follows that

1− λk
2`(J

k
1 )α−1 <

`(Jk
2 )

`(Jk
1 )

< 1 + λk
2`(J

k
1 )α−1.

On the other hand, from claim 3.0.1 it follows that

`(Jk
1 ) > (1− γ)k`(J1)

and so
λk

2`(J
k
1 )α−1 < [λ2(1− γ)α−1]k`(J1)α−1

which is small provided that k is large and γ is close enough to 0 to guarantee that
λ2(1− γ)α−1 is smaller than one. Therefore the lemma holds.
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3.1 Denjoy’s property and Lyapunov stability.

As we have mentioned, the problem of unique integrability under the hypothesis of
codimension one dominated splitting, is related to the problem of characterization of
the limit set of a dynamic. We want to mention here, that this characterization is
useful to understand the Lyapunov stable systems (system for which the states will
remain bounded for all time, see [Ly]). We say that x is Lyapunov stable (in the future)
if given ε > 0 there exists δ > 0 such that fn(Bδ(x)) ⊂ Bε(fn(x)) for any positive
integer n. Under the assumption of codimension one dominated splitting it is possible
to characterize the Lyapunov stable points:

Theorem 3.3. Let f : M → M be a C1-diffeomorphisms of a finite dimensional
compact Riemannian manifold M and let Λ be a set having codimension one dominated
splitting. Then there exists a neighborhood V of Λ such that if fn(x) ∈ V for any
positive integer n and x is Lyapunov stable, one of the following holds:

1. ω(x) is a periodic orbit,

2. ω(x) is a periodic curve normally attractive supporting and irrational rotation.

3. Neither of the above and x is a wandering point.

Furthermore, if f is C2, the third option can not happen.

Proof. The proof is almost straightforward from theorem 3.1. Notice that if x is Lya-
punov stable, then there is a δ-E-arc inside Bδ(x). The conclusion now follows.

4 Proof of maim theorem

We say that F is locally uniquely integrable at x provided there exist a unique (open)
arc J(x) containing x such that TyJ(x) = F (y) for any y ∈ J(x) and if for any (open)
integral curve C contains x we have that C ∩ J(x) is open in J(x).

To prove the maim theorem,it is enough to prove that F is locally uniquely inte-
grable at any x in M. In each of the next subsection, it is proved the main theorem
under each assumed hypothesis.

4.1 Assumption: Ω(f) = M

We shall prove F is uniquely integrable at any point x ∈ M provided Ω(f) = M. The
proof is based upon next lemma.

Lemma 4.1. Let f : M → M be a Cr diffeomorphisms, r ≥ 1 such that M has a
codimension one dominated splitting TM = E⊕F. Let us assume that there exists ε1 > 0
and that given x ∈ M there exists ε2 = ε2(x) such that f−n(W cu

ε2 (x)) ⊂ W cu
ε1 (f−n(x)),

and `(f−n(W cu
ε2 (x))) → 0. Then F is locally uniquely integrable at x.

Proof. It follows immediately from the fact that in this case the center unstable mani-
fold is dynamically defined.
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To conclude the proof of the maim theorem in the present case we use lemma 4.1.
Arguing by contradiction, assume that there exist ε1 such that for any ε2 we have that
there exists n > 0 such that f−n(W cu

ε2 (x)) is not contained in W cu
ε1 (f−n(x)). Recall that

there exists of δ (δ < ε1) such that if y ∈ W cu
ε1 (x) and dist(f−j(x), f−j(y)) ≤ δ for

0 ≤ j ≤ n, then f−j(y) ∈ W cu
ε (f−j(x)) for 0 ≤ j ≤ n.

Therefore there exist a sequence εn → 0 and mn →∞ such that, for 0 ≤ j ≤ mn,

`(f−j(W cu
εn

(x))) ≤ δ

and
`(f−mn(W cu

εn
(x))) = δ.

Letting In = f−mn(W cu
εn

(x)) we can assume (taking a subsequence if necessary) that
In → I and f−mn(xn) → z, z ∈ Ī (the closure of I). Now, we have that `(fn(I)) ≤ δ
for all positive n, and since I ⊂ W cu

ε (z), we conclude that I is a δ-E-interval. Which
is a contradiction regarding corollary 3.1.

4.2 Assumption: The dominated splitting is contractive

We shall say that I is an F -arc if for any x ∈ I then TxI = F. A simple Es-F -loop is a
loop that is the union of a Es arc and a F -arc.

Lemma 4.2. There is β > 0 such that there is no simple Es-F loop inside Bβ(x) for
any x ∈ M.

Proof. It is an immediate consequence of the transversality between Es and F.

Lemma 4.3. There exists ε0 such that for any ε ≤ ε0 there exists M = M(ε) such that
if I is an F -arc with `(I) ≤ ε then `(f−n(I)) ≤ M for any n ≥ 0.

Proof. Let ε0 ≤ β/2 and let ε ≤ ε0 and assume that the lemma is false. Then, for every
n there exists an F -arc In with `(In) ≤ ε such that for some integer mn ≥ 0 we have
`(f−mn(In)) ≥ n. It follows that we can find two points say xniand xnj in f−mn(In)
and different from the endpoints of f−mn(In) whose distance between them is less than
β/2. It follows that W s

β(xni)∩f−mn(In) 6= {xni} and hence we may form a simple Es-F
loop, say γ, with and Es arc inside W s

β(xni) and an F -arc inside f−mn(In). It follows
that fmn(γ) is a simple Es-F loop contained in Bβ(fmn(xni)), a contradiction.

Now assume that F is not locally uniquely integrable at some point x. Consider J1

and J2 two different F -arcs whose intersection is not open in J1. We may assume that
x is at the boundary (in J1) of this intersection, `(J1), `(J2) ≤ ε0. Let y ∈ J1\J2 and
such that W s

β(y) ∩ J2 = {z}. Let r = dist(y, z).

Asserts 4.2.1. For any K there exist n0 = n0(K) such that for any x ∈ M follows
that

Radius(f−n(W s
ε (x))) > K, ∀ n > n0,

where
Radius(B(x)) = min

z∈∂B
{distB(x)(x, z)}

and distB(x)(., .) is the distance induces by the Riemannian metric restricted to B(x).
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With this claim in mind, we define W s
K(z) as the connected component of W s(x)

that contains x and has radius equal to K.
Notice that for any K > 0 there exists n0 such that for any n ≥ n0 and any

w, v ∈ f−n(J1) we have that W s
K(w) ∩ W s

K(v) = ∅. Otherwise we can find an simple
Es-F loop such that under fn is a simple Es-F loop inside Bβ(x). Consider the cylinder
W s

K(f−n(J1)) = ∪w∈f−n(J1)W
s
K(w).

Observe that for any L there exist K = K(L) such that if I is an arc joining f−n(J1)
with the s-boundary of the cylinder then its length must be greater than L.

Let M = M(ε0) and choose L >> M and set K = K(L). Now, choose n large
enough so that if v ∈ W s

K(w) then dist(fn(v), fn(w)) < r/2. Since `(f−n(J2)) ≤ M
it follows that f−n(J2) does not intersects the s boundary of W s

K(f−n(J1)). It follows
that

f−n(J1) ⊂ W s
K(f−n(J1))

and so f−n(z) ∈ W s
K(f−n(y)). This implies that dist(y, z) < r/2, a contradiction.

4.3 Assumption: f is C2 and there is not attracting or semi-attracting
periodic points.

In this section we shall prove that F is uniquely integrable provided f is C2 and there
are no semi-attracting periodic points. First we shall prove a general result regarding
the dynamic of the central unstable manifolds.

Lemma 4.4. Let f : M → M be a Cr diffeomorphisms r ≥ 1 and let Λ be a compact
invariant set having a codimension one dominated splitting. Let either I be a periodic
arc such that fk restricted to I (k being the period of I) is the identity or I be a simple
closed periodic curve such that fk restricted to I (k being the period of I) is conjugated
to an irrational rotation. Then, F is uniquely integrable at any point x of I.

Proof. It is immediate from the fact that I is attracting normally hyperbolic arc.

Using that the center unstable manifold of a codimension one dominated splitting
are one dimensional and that they are locally invariant, it is easily concluded the next
remark:

Remark 4.3.1. Let us assume that there is a codimension one dominated splitting over
M for a Cr−diffeomorphisms (r > 1). There exists ε1 such that for any periodic point
p of f follows that given a connected component of W cu

ε1 (p)\{p} either it is contained in
the unstable manifold of p or the dynamic is the identity in this component or contains
a semi-attracting periodic point.

Lemma 4.5. Let f : M → M be a C2 diffeomorphisms and let us assume that M
exhibits a codimension one dominated splitting. Let us also assume that they are not
attracting or semi-attracting periodic points. Then, there exists ε1 > 0 such that for
any x ∈ Λ it follows that either

1. there exists γ = γ(ε1, x) such that f−n(W cu
γ (x)) ⊂ W cu

ε1 (f−n(x)),
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2. x belong to a normally attracting periodic simple closed curve with dynamic con-
jugated to an irrational rotation,

3. x belong to a normally attracting periodic simple arc with dynamic (up to the
period) equal to the identity on J .

Proof. Recall from corollary 2.1 the existence of δ (δ < ε) such that if y ∈ W cu
ε (x) and

dist(f−j(x), f−j(y)) ≤ δ for 0 ≤ j ≤ n, then f−j(y) ∈ W cu
ε (f−j(x)) for 0 ≤ j ≤ n.

Assume that the first item conclusion of the theorem is false. Then there exist a
sequence γn → 0, mn →∞ such that, for 0 ≤ j ≤ mn,

`(f−j(W cu
γn

(x))) ≤ ε1

for some ε1 (smaller than the one obtained in the previous remark and smaller than δ
given by theorem 3.1) and

`(f−mn(W cu
γn

(x))) = ε1.

Letting In = f−mn(W cu
γn

(xn)) we can assume (taking a subsequence if necessary) that
In → I and f−mn(x) → z, z ∈ Λ, z ∈ Ī (the closure of I).

Now, we have that `(fn(I)) ≤ ε1 for all positive n, and since I ⊂ W cu
ε (z), we

conclude that I is a C2 δ-E-interval. Now we apply Theorem 3.1. Since they are neither
attracting or semi-attracting periodic points, then either (1) or (2) of the referred
theorem happens for this arc I we conclude that x belong to a periodic invariant closed
curve and so the second or third item of the present lemma holds.

Remark 4.3.2. Let f : M → M be a Cr (r ≥ 1) diffeomorphisms and let us assume
that it has a codimension one dominated splitting over M . Let I be a normally attracting
periodic simple arc. If they are neither semi-attracting or attracting periodic points then
f to I is the identity map, where k is the period of I.

End of proof of main theorem: To finish the proof we have to prove that F is
uniquely integrable provided M has codimension one dominated splitting, f is C2 and
there are neither attracting nor semi-attracting periodic points. This is an immediate
consequence of lemma 4.5, lemma 4.4 and lemma 4.1.
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