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Abstract. We study a zero-flux type initial-boundary value problem for scalar conservation

laws with a genuinely nonlinear flux. We suggest a notion of entropy solution for this problem

and prove its well-posedness. The asymptotic behavior of entropy solutions is also discussed.

1. Introduction

In recent years significant advances have been made in the analysis of initial-boundary value
problems for multi-dimensional scalar conservation laws of the type

∂tu+ ∇x · f(u) = 0, (x, t) ∈ QT := Ω × (0, T ), (1.1)

where Ω ⊂ R
N is a bounded spatial domain, T > 0, and the flux vector f is a smooth function of

the unknown u. Moreover, (1.1) is supplemented with an initial condition

u(x, 0) = u0(x), x ∈ Ω. (1.2)

It is well known that solutions of nonlinear conservation laws may become discontinuous as time
evolves, even for smooth initial data, such that (1.1) has to be understood in the distributional
sense. This in turn requires an entropy condition to select the physically relevant discontinuous
solution, called the entropy solution.

A well-studied boundary condition for (1.1), (1.2) is the Dirichlet boundary condition

u(x, t) = φ(x) for (x, t) ∈ ∂Ω × (0, T ), e.g. φ ∈ L∞(∂Ω). (1.3)

However, the boundary datum (1.3) may not always provide the most natural setting for conser-
vation laws on bounded domains. For example, assume that u is the local density of a continuous
phase that assumes values from a finite interval [0, umax] only, and is associated with a kinematic
flow velocity v(u). Then a bounded domain Ω typically corresponds to a closed container with
impermeable rigid walls that induce the zero-flux boundary condition (uv(u)) ·n = 0 on ∂Ω, where
n is the outer normal vector to the boundary ∂Ω of Ω. This suggests the alternative zero-flux
boundary condition

f(u) · n = 0 on ∂Ω × (0, T ). (1.4)

Published applications of scalar conservation laws that explicitly use zero-flux boundary con-
ditions include, for example, the sedimentation of suspensions in closed vessels [2, 3, 4] and the
dispersal of a single species of animals in a finite territory [18]. However, the boundary condition
(1.4) is physically reasonable also in other applications, for example when (1.1) appears as the
vanishing viscosity limit of a multi-dimensional model of turbulence [5] or of a simple model of
two-phase flow in porous media [21].

To put the paper in the proper perspective, let us first recall some previous treatments of the
Dirichlet problem (1.1), (1.2), (1.3). One major difficulty associated with this problem is due to
the well-known propagation of solution values of (1.1) along characteristics, which may intersect
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∂Ω from the interior of Ω, such that (1.3) does not hold in a pointwise sense for all times. The
well-posedness of (1.1), (1.2), (1.3) in this situation has been recovered by the use of (for example,
set-valued) entropy boundary conditions. The first existence and uniqueness analysis for BV
solutions of (1.1), (1.2), (1.3) is due to Bardos et al. [1]. The BV property, which is established
in [1] by deriving uniform BV estimates for the solutions of a regularized (uniformly parabolic)
problem, ensures the existence of boundary traces, which is crucial for the uniqueness result. It
was only later that Otto [15, 19, 20] was able to study the same problem in the less restrictive L∞

setting, for which boundary traces do not exist in general, a fact that complicates significantly the
notion of solution and the proofs. See also Chen and Frid [7, 8, 9] for formulations of boundary
conditions in terms of divergence-measure fields. Finally, we mention that the recent results in the
L∞ setting were extended to strongly degenerate parabolic equations by Carrillo [6], Mascia et
al. [16], and Michel and Vovelle [17], while the BV approach of [1] had been transferred to this type
of equations much earlier [23]. Recently Vasseur [22] showed that L∞ entropy solutions to (1.1)
always have traces at the boundaries of QT . This result holds for genuinely nonlinear fluxes f(u)
(in the sense of [14]), on domains QT whose boundaries satisfy a mild regularity assumption, and
is independent of the initial and boundary conditions. Consequently, the L∞ case for genuinely
nonlinear fluxes can be treated as in Bardos et al. [1], i.e., the more complicated notion of entropy
solution used by Otto can be avoided.

Karlsen, Lie and Risebro [11] showed that a front tracking method [10] converges to a weak
solution of (1.1), (1.2), (1.4) if this problem is studied in one spatial dimension. This weak
solution is unique in the class of functions that can be constructed as the L1 limit of front tracking
approximations. Moreover, they present numerical results for the case of two spatial dimensions.
However, for none of these cases they present a notion of entropy solution for which existence and
uniqueness is proved.

In this paper, we suggest a notion of L∞ entropy solutions to the zero-flux problem (1.1), (1.2),
(1.4) and prove its well-posedness (existence and uniqueness) in arbitrary space dimensions. Our
notion of entropy solution involves a certain boundary term in the entropy integral inequality.
In fact, we can show that this entropy formulation implies that the zero-flux boundary condition
is satisfied in an almost everywhere sense. The new results are valid if the flux vector satisfies
the genuine nonlinearity condition of [14]. This condition is imposed to ensure the existence of
boundary traces via the result of Vasseur [22]. Vasseur’s result is used herein as a main tool
for establishing the equivalence of two alternative definitions of entropy solutions. One of them
(Definition 3) consists of the above-mentioned entropy integral inequality that incorporates the
boundary term, while the other (Definition 4) states the entropy inequality in the interior of the
domain and the initial and boundary conditions as separate ingredients. We mention that the
fluxes used in [11] satisfy the genuine nonlinearity condition used of [14].

Let us remark that it is unclear whether the BV approach may be applied at all to the zero-flux
problem. In particular, the estimating techniques of Bardos et al. [1] cannot be applied here. The
difficulty is that the regularized zero-flux boundary condition does not permit control over the
tangential derivatives (with respect to ∂Ω) of the solution. Thus, boundary traces of solutions
to (1.1), (1.2), (1.4) seem hard to obtain via BV estimates, and this has motivated the approach
taken in the present paper.

The remainder of this paper is organized as follows. In Section 2 we state some technical
assumptions, introduce the concepts of domains with Lipschitz deformable boundaries and traces,
and recall Vasseur’s result from [22]. In Section 3 we present two alternative definitions of entropy
solutions to (1.1), (1.2), (1.4), and prove their equivalence by using Vasseur’s result. In particular,
it turns out that these entropy solutions are characterized by pointwise satisfaction of the boundary
condition (1.4), in contrast to what is known for the Dirichlet problem. In Sections 4 and 5 we
prove the existence and uniqueness of entropy solutions, respectively. Finally, in Section 6 we study
the asymptotic behavior (for t→ ∞) of the entropy solutions under some additional assumptions
on Ω and f(u).
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2. Assumptions and preliminaries

We ask that the flux vector f(u) depends smoothly on u for u ∈ [0, umax], for some fixed
umax > 0. To ensure an L∞ bound on the solutions, we assume that

f(0) = 0, f(umax) = 0. (2.1)

To ensure the existence of boundary traces, we assume that the flux f(u) is genuinely nonlinear
in the following sense [14]:

∀(τ, ζ) ∈ R × R
N , τ2 + |ζ|2 = 1 : L

({

u ∈ [0, umax] | τ + ζ · f ′(u) = 0
})

= 0, (2.2)

where L denotes the one-dimensional Lebesgue measure. This condition is satisfied if (see [9])

L
(

{u ∈ [0, umax] | ζ · f ′′(u) = 0}
)

= 0 for all ζ ∈ R
N with |ζ| = 1.

We adopt the usual entropy criterion, namely we consider only those weak solutions u that
satisfy the inequality

∂tη(u) + ∇x · q(u) 6 0 on QT in the sense of distributions,

for every entropy pair (η,q) consisting of a convex entropy function η = η(u) and a corresponding
entropy flux defined by q′(u) = f ′(u)η′(u). It is sufficient to consider the Kružkov entropy functions
|u− k| along with the associated entropy fluxes sgn(u− k)(f(u) − f(k)), k ∈ R.

To state Vasseur’s result [22], we introduce the concept of sets with Lipschitz deformable bound-
aries [7]. To this end, consider an open subset Ω ⊂ R

N with a boundary ∂Ω.

Definition 1. We say that ∂Ω is a deformable Lipschitz boundary provided that the following
hold:

(a) For all x ∈ ∂Ω there exists a number r > 0 and a Lipschitz map h : R
N−1 → R such that,

after rotating and relabeling coordinates if necessary,

Ω ∩Q(x, r) =
{

y ∈ R
N : h(y1, . . . , yN−1) < yN

}

∩Q(x, r),

where Q(x, r) := {y ∈ R
N : |xi − yi| ≤ r, i = 1, . . . , N}. We denote by h̃ the map

(y1, . . . , yN−1) =: ỹ 7→ (ỹ, h(ỹ)).
(b) There exists a mapping Ψ : ∂Ω × [0, 1] → Ω such that Ψ is a homeomorphism that bi-

Lipschitz over its image with Ψ(ω, 0) = ω for all ω ∈ ∂Ω. The map Ψ is called a Lipschitz
deformation of the boundary ∂Ω. We denote Ψs(ω) = Ψ(ω, s) and ∂Ωs = Ψs(∂Ω). We
also denote by Ωs the bounded open set whose boundary is ∂Ωs.

Moreover, the Lipschitz deformation is said to be regular if

lim
s→0+

∇Ψs ◦ h̃ = ∇h̃ in L1
loc(B), (2.3)

where B denotes the greatest open set such that h̃(B) ⊂ ∂Ω.

Obviously, if Ω ⊂ R
N is an open set with a deformable Lipschitz boundary, then QT = Ω×(0, T )

is also an open set with deformable Lipschitz boundary in R
N+1.

Our concept of trace is stated in the following definition.

Definition 2. Let Q ⊂ R
N+1 have a regular deformable Lipschitz boundary. We say that a given

function u ∈ L∞(Q) possesses a strong trace uτ at ∂Q if uτ ∈ L∞(∂Q) has the property that for
every regular (with respect to ∂Q) Lipschitz deformation ψ and every compact set K ⊂ ∂Q,

ess lim
s→0

∫

K

∣

∣u
(

ψ(s,x)
)

− uτ (x)
∣

∣dHN (x) = 0, (2.4)

where HN is the N -dimensional Hausdorff measure.

The following result is proved in [22].
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Theorem 1. Let Q ⊂ R
N+1 have a regular deformable Lipschitz boundary, and assume that f(u)

satisfies the genuine nonlinearity condition (2.2). Then for every function u ∈ L∞ satisfying the
conservation law ∂tu+∇x · f(u) = 0 in Q and the entropy inequality ∂tη(u) +∇x · q(u) 6 0 in Q
for every entropy pair (η,q), the trace uτ ∈ L∞(∂Q) exists. In particular, (G(u))τ = G(uτ ) for
every smooth function G.

3. Definition of entropy solutions

From now on in this paper, it is always understood that Ω ⊂ R
N in (1.1) is a bounded open

set with a deformable Lipschitz boundary. Moreover, for each T > 0, we shall use the notation

QT := Ω × (0, T ), ΠT = R
N × [0, T ).

We denote by C∞
0 (QT ) (resp., C∞

0 (ΠT )) the set of all infinitely smooth functions on QT (resp.,
ΠT ), with compact support.

Definition 3. A function u ∈ L∞(QT ) is called an entropy solution of the initial-boundary value
problem (1.1), (1.2), (1.4) if the following entropy inequality holds:

∀k ∈ R, ∀ϕ ∈ C∞
0 (ΠT ) with ϕ > 0 :

∫ T

0

∫

Ω

{

|u− k|∂tϕ+ sgn(u− k)
(

f(u) − f(k)
)

· ∇ϕ
}

dx dt

+

∫

Ω

∣

∣u0(x) − k
∣

∣ϕ(x, 0) dx

+

∫ T

0

∫

∂Ω

sgn(uτ − k)f(k) · nϕ(x, t) dHN−1 dt > 0.

(3.1)

The following definition presents an alternative solution concept.

Definition 4. A function u ∈ L∞(QT ) is called an entropy solution of the initial-boundary value
problem (1.1), (1.2), (1.4) if the following conditions are satisfied:

(1) The following entropy inequality is satisfied:

∀k ∈ R, ∀ϕ ∈ C∞
0 (QT ), ϕ > 0 :

∫ T

0

∫

Ω

{

|u− k|∂tϕ+ sgn(u− k)
(

f(u) − f(k)
)

· ∇ϕ
}

dx dt > 0.
(3.2)

(2) The initial condition is satisfied as a limit in the following L1 sense:

ess lim
t→0+

∫

Ω

∣

∣u(x, t) − u0(x)
∣

∣ dx = 0. (3.3)

(3) The boundary condition (1.4) is satisfied in the following pointwise sense:

f
(

uτ (x, t)
)

· n = 0 a.e. on ∂Ω × (0, T ), (3.4)

where uτ is the trace of u, which exists thanks to Theorem 1.

Before we show that both definitions are equivalent, as is stated in Lemma 1 below, let us men-
tion that Definition 4 will be used for the existence proof, while both Definition 3 and Definition 4
will be used for proving uniqueness.

Lemma 1. A function u ∈ L∞(QT ) is an entropy solution in the sense of Definition 3 if and
only if it is an entropy solution in the sense of Definition 4.

Proof. We first prove that Definition 3 implies Definition 4. It is obvious that (3.1) implies (3.2).
To show that (3.3) is satisfied, we choose in (3.1) the test function ϕ(x, t) = ζ(t)ξ(x), where
ζ ∈ C∞

c (−∞, δ), δ > 0, ξ ∈ C∞
0 (Ω), ζ > 0, ξ > 0, which implies

∀k ∈ R :

∫ δ

0

ζ ′(t)

∫

Ω

|u− k|ξ(x) dx dt+

∫

Ω

∣

∣u0(x) − k
∣

∣ξ(x) dx + C

∫ δ

0

ζ(t) dt > 0.
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Choosing ζ(t) = χ(−δ,δ)(t) (after mollifying and passing to the limit), we get for δ → 0

∀k ∈ R : − ess lim
t→0+

∫

Ω

|u− k|ξ(x) dx +

∫

Ω

∣

∣u0(x) − k
∣

∣ξ(x) dx > 0. (3.5)

The limit on the left-hand side exists due to Theorem 1. The initial condition (3.3) follows by
taking k < 0 and k > umax in (3.5). Inequality (3.1) implies

∀ϕ ∈ C∞
0 (QT ) :

∫ T

0

∫

Ω

{

u∂tϕ+ f(u) · ∇ϕ
}

dx dt = 0. (3.6)

Indeed, it suffices to take k = umax and k = 0 in (3.1), where we recall (2.1). Now we use in (3.6)
the test function ϕ(x, t) = Φ(t)ξ(x)(1 − µh(x)), where Φ ∈ C∞

0 (0, T ), ξ ∈ C∞
0

(

Ω
)

, and {µh}h>0

is a sequence of functions in C2(Ω) ∩ C
(

Ω
)

such that

lim
h→0

µh = 1 pointwise in Ω, 0 6 µh 6 1, µh = 0 on ∂Ω. (3.7)

Taking the limit h→ 0 in the equation
∫ T

0

∫

Ω

{

uΦ′(t)ξ(x)
(

1 − µh(x)
)

+ Φ(t)
(

1 − µh(x)
)

f(u) · ∇ξ(x)

− Φ(t)ξ(x)f(u) · ∇µh

}

dx dt = 0,

and using that the function ξ(x) may be chosen arbitrarily, we obtain (3.4).
As for the converse, let

χh(t) :=



















t/h for 0 ≤ t ≤ h,

1 for h < t ≤ T − h,

(T − t)/h for T − h < t < T ,

0 for t /∈ (0, T ).

Also, for s ∈ [0, 1] let the function ζs ∈ Lip(RN ) be defined by

ζs(x) :=











1 for x ∈ Ωs,

r/s for x ∈ ∂Ωr, 0 ≤ r ≤ s,

0 for x /∈ Ω,

where ∂Ωs is the image of ∂Ω under the Lipschitz deformation Ψ(ω, s) with ∂Ω0 = ∂Ω, and Ωs is
the bounded open set whose boundary is ∂Ωs. For notational convenience, we also introduce the
function F(u, k) := sgn(u− k)(f(u) − f(k)).

Now let us define the function ϕ(x, t) = χh(t)ζs(x)ϕ̃(x, t), where ϕ̃ ∈ C∞(ΠT ). An approxima-
tion argument reveals that we may use ϕ as a test function for (3.2). Then we obtain

∀k ∈ R :

∫ T

0

∫

Ω

{

|u− k|∂tϕ̃+ F(u, k) · ∇ϕ̃
}

dx dt

−

∫ T

0

∫

Ω

{

|u− k|∂tϕ̃+ F(u, k) · ∇ϕ̃
}(

1 − χh(t)ζs(x)
)

dx dt

+

∫ T

0

∫

Ω

|u− k|ζs(x)(χh)′(t)ϕ̃ dx dt+

∫ T

0

∫

Ω

χh(t)ϕ̃F(u, k) · ∇ζs(x) dx dt > 0.

(3.8)

Letting h→ 0 and using (3.3), we get

∀k ∈ R :

∫ T

0

∫

Ω

{

|u− k|∂tϕ̃+ F(u, k) · ∇ϕ̃
}

dx dt

−

∫ T

0

∫

Ω

{

|u− k|∂tϕ̃+ F(u, k) · ∇ϕ̃
}(

1 − ζs(x)
)

dx dt

+

∫

Ω

∣

∣u0(x) − k
∣

∣ϕ̃(x, 0)ζs(x) dx dt
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+

∫ T

0

∫

Ω

ϕ̃F(u, k) · ∇ζs(x) dx dt > 0.

Finally, sending s→ 0, using (3.4) and replacing ϕ̃ by the symbol ϕ again, we get

∀k ∈ R : ∀ϕ ∈ C∞(RN+1), ϕ > 0 :
∫ T

0

∫

Ω

{

|u− k|∂tϕ+ F(u, k) · ∇ϕ
}

dx dt

+

∫

Ω

∣

∣u0(x) − k
∣

∣ϕ(x, 0) dx

+

∫ T

0

∫

∂Ω

sgn(u− k)f(k) · nϕ(x, t) dHN−1 dt > 0,

which is exactly (3.1). �

4. Existence of entropy solutions

To show the existence of an entropy solution (in the sense of the previous section), we consider
as in [2] the following regularized parabolic problem for each ε > 0:

∂tu
ε + ∇x · f(uε) = ε∆uε, (x, t) ∈ QT , (4.1a)

uε(x, 0) = uε
0(x), x ∈ Ω, (4.1b)

(

f(uε) − ε∇xu
ε
)

· n = 0 on ∂Ω, (4.1c)

where uε
0 is a sequence of smooth functions that converges to u0 in Lp(Ω) for 1 ≤ p <∞ assuming

values in [ε, umax − ε], for ε > 0 sufficiently small. The existence and uniqueness of a classical
solution to (4.1) follows from standard arguments, see e.g. [13, Ch. V]. In particular, for each fixed
ε > 0, the solution of (4.1) may be obtained as the limit when δ → 0 of a sequence of solutions to

∂tu+ ∇x · f(u) = ε∆u+ δh(u), (x, t) ∈ QT , (4.2a)

u(x, 0) = uε
0(x), x ∈ Ω, (4.2b)

(

f(u) − ε∇xu
)

· n = δ(u− ub(x, t)) on ∂Ω, (4.2c)

where h(u) is a smooth function satisfying h(0) > 0, h(umax) < 0, and ub(x, t) is a smooth function
assuming values in [δ, umax − δ], for sufficiently small δ > 0.

Lemma 2. Suppose (2.1) holds. Then u0(x) ∈ [0, umax] for a.e. x ∈ Ω implies uε(x, t) ∈ [0, umax]
for every (x, t) ∈ QT .

Proof. It suffices to prove the same assertion for the solution of (4.2). We will prove the latter by
contradiction. So, assume the assertion does not hold. Hence, since uε

0(x) ∈ [ε, umax − ε], there
exists a t0 ∈ (0, T ) such that

t0 = sup{t ∈ [0, T ] : u(x, τ) ∈ [0, umax] for all x ∈ Ω and τ ∈ [0, t]}.

Therefore, there is a x0 ∈ Ω̄ such that u(x, t0) ∈ {0, umax}. Assuming x0 ∈ Ω leads to a contra-
diction by using (4.2a). On the other hand, assuming x0 ∈ ∂Ω leads to a contradiction by using
(4.2c) and the resulting sign of ∂nu. This concludes the proof.

�

Theorem 2. Suppose u0(x) ∈ [0, umax] for a.e. x ∈ Ω and that conditions (2.1), (2.2) hold. Then
there exists an entropy solution u of the zero-flux initial-boundary value problem (1.1), (1.2), (1.4),
which moreover satisfies u(x, t) ∈ [0, umax] for a.e. (x, t) ∈ QT .

Proof. We use Definition 4. By the compactness result of Lions, Perthame and Tadmor [14],
we may extract a subsequence of solutions of (4.1) which converges in L1

loc(QT ) to a function
u(x, t) which assumes values in [0, umax] due to Lemma 2. The verification of (3.2) is completely
standard. In particular, we have that (u, f(u)), (|u− k|, sgn(u− k)(f(u)− f(k))) ∈ DM∞(QT ) for
all k ∈ R, (see [7, 8]). Now, to prove (3.3) and (3.4), we argue as follows. We multiply (4.1a) by
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ϕ ∈ C∞
0 (ΠT ), integrate over QT , use integration by parts, use (4.1b) and (4.1c), and make ε→ 0,

to obtain
∫

QT

{

uϕt + f(u) · ∇xϕ
}

dx dt+

∫

Ω

u0(x)ϕ(x, 0) dx = 0. (4.3)

Now, (4.3) tells us about the normal trace (u, f(u)) · ν of the DM-field (u, f(u)) that

(u, f(u)) · ν
∣

∣

Ω×{0}
= u0(x), (u, f(u)) · ν

∣

∣

∂Ω×(0,T )
= 0.

Hence, Vasseur’s Theorem 1 directly implies (3.3) and (3.4), and the proof is finished.
�

5. Uniqueness of entropy solutions

Theorem 3. Suppose u0, v0 ∈ L∞(Ω) and that conditions (2.1), (2.2) hold. Let u and v be entropy
solutions of (1.1), (1.2), (1.4) with initial conditions u|t=0 = u0 and v|t=0 = v0, respectively. Then
for any t > 0

∫

Ω

∣

∣u(x, t) − v(x, t)
∣

∣ dx 6

∫

Ω

∣

∣u0(x) − v0(x)
∣

∣ dx. (5.1)

In particular, there exists at most one entropy solution to the zero-flux initial-boundary value
problem (1.1), (1.2), (1.4).

Proof. We consider two entropy solutions u = u(x, t) and v = v(y, s). Then the standard “dou-
bling of the variables” argument [12] yields that for all nonnegative functions ϕ = ϕ(x, t,y, s) in
C∞(QT × QT ) having the property that ϕ(·, ·,y, s), ϕ(x, t, ·, ·) ∈ C∞

c (QT ) for each (y, s) ∈ QT

and (x, t) ∈ QT , respectively, the following inequality holds:
∫∫∫∫

QT ×QT

{

|u− v|(∂tϕ+ ∂sϕ) + F(u, v) · (∇xϕ+ ∇yϕ)
}

ds dy dt dx > 0. (5.2)

We pick θ ∈ C∞
c (0, T ), θ > 0, and choose in (5.2)

ϕ(x, t,y, s) := µδ(x)µη(y)ρl,m(x, t,y, s)θ(t), δ, η > 0, l,m ∈ N,

where µδ, µη are sequences of the type used in the proof of Lemma 1, see in particular (3.7), and

ρl,m(x, t,y, s) := ρl(t− s)ρm(x − y),

with {ρl}l∈N and {ρm}m∈N being sequences of symmetric mollifiers in R and R
N , respectively.

Setting ∂t+s := ∂t + ∂s, ∇x+y := ∇x + ∇y, we obtain from (5.2)
∫∫∫∫

QT ×QT

|u− v|µδµηρl,mθ
′ ds dy dt dx

+

∫∫∫∫

QT ×QT

F(u, v)
(

∇xµδ

)

µηρl,mθ ds dy dt dx

+

∫∫∫∫

QT ×QT

F(u, v)µδ

(

∇yµη

)

ρl,mθ ds dy dt dx

=: Iδ,η,l,m
1 + Iδ,η,l,m

2 + Iδ,η,l,m
3 > 0.

(5.3)

It is clear that

Iδ,η,l,m
1

δ,η→0
−→

∫∫∫∫

QT ×QT

|u− v|ρl,mθ
′ ds dy dt dx =: I0,0,l,m

1 . (5.4)
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By first taking the limits δ, η → 0 and then taking into account that f(uτ ) · n = 0 a.e. on
∂Ω × (0, T ), we obtain

Iδ,η,l,m
2

δ,η→0
−→

∫ T

0

∫

∂Ω

∫∫

QT

F
(

uτ , v(y, s)
)

· n ρl,mθ ds dy dH
N−1 dt

= −

∫ T

0

∫

∂Ω

∫∫

QT

sgn
(

uτ − v(y, s)
)

f
(

v(y, s)
)

· n ρl,mθ ds dy dH
N−1 dt

=: I0,0,l,m
2 .

(5.5)

In the same way, using and f(vτ ) · n = 0 a.e. on ∂Ω × (0, T ), we obtain

Iδ,η,l,m
3

δ,η→0
−→ = −

∫∫

QT

∫ T

0

∫

∂Ω

sgn
(

u(x, t) − vτ
)

f
(

u(x, t)
)

· n ρl,mθ dH
N−1 ds dt dx

=: I0,0,l,m
3 .

(5.6)

Now setting ϕ(x, t) = ρl,m(x, t,y, s)θ(t) in (3.1) (with y and s considered as parameters), we
get

−

∫ T

0

∫

∂Ω

sgn(uτ − k)f(k) · n ρl,mθ dH
N−1 dt

6

∫∫

QT

|u− k|ρl,mθ
′ dt dx

+

∫∫

QT

{

|u− k|∂tρl,mθ + F(u, k) · ∇xρl,mθ
}

dt dx, ∀k ∈ R.

Setting k = v(y, s) and integrating the result over (y, s) ∈ QT , we obtain

I0,0,l,m
2 6

∫∫∫∫

QT ×QT

{

|u− v|ρl,mθ
′ ds dy dt dx

+

∫∫∫∫

QT ×QT

{

|u− v|∂tρl,mθ + F(u, v)∇xρl,mθ
}

ds dy dt dx.

(5.7)

In a similar way, using the test function ϕ(y, s) = ρl,m(x, t,y, s)θ(t) in the analogue of (3.1) for
the entropy solution v = v(y, s) (with x and t considered as parameters) and taking into account
that θ is a function of t only, we get

I0,0,l,m
3 = −

∫∫

QT

∫ T

0

∫

∂Ω

sgn
(

vτ − u(x, t)
)

f
(

u(x, t)
)

· nρl,mθ dH
N−1 dt dx

6 I l,m
4 +

∫∫∫∫

QT ×QT

{

|u− v|∂sρl,mθ + F(u, v) · ∇yρl,mθ
}

ds dy dt dx,
(5.8)

where

I l,m
4 :=

∫∫

QT

∫

Ω

{

∣

∣v0(y) − u(x, t)
∣

∣ρl(t)

−
∣

∣v(y, T ) − u(x, t)
∣

∣ρl(t− T )
}

ρm(x − y, t)θ(t) dy dt dx.

Combining (5.7) and (5.8) and using that (∂t + ∂s)ρl,m = 0 and (∇x + ∇y)ρl,m = 0, we get

I0,0,l,m
2 + I0,0,l,m

3 6 I0,0,l,m
1 + I l,m

4 .

Thus, for δ, η → 0 we obtain from (5.3) the inequality

2I0,0,l,m
1 + I l,m

4 > 0. (5.9)

Next, we pass to the limits l,m→ ∞. Since θ(0) = θ(T ) = 0, we obtain

I l,m
4

l→∞
−→

∫∫

Ω×Ω

{

∣

∣v0(y) − u0(x)
∣

∣θ(0) −
∣

∣v(y, T ) − u(y, T )
∣

∣θ(T )
}

ρm(x − y) dy dx = 0.
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Collecting the limits, we obtain the following inequality from (5.9):
∫∫

QT

|u− v|θ′ dt dx > 0, ∀θ ∈ C∞
c (0, T ). (5.10)

Inequality (5.1) follows now from (5.10) in a standard way. �

6. Asymptotic behavior of entropy solutions

In this section, we suppose that the following additional assumptions are satisfied.

(A1) There exists a direction, given by an unity vector e ∈ R
N , such that the hyperplanes

Πν = {x ∈ R
N : e · x = ν} cut out Ω in open sets with Lipschitz deformable boundaries,

Ω = Ω1(ν)∪ · · · ∪ΩJν (ν) for νmin < ν < νmax, and do not intersect Ω for ν /∈ [νmin, νmax].
(A2) f(u) · e > 0, for 0 < u < umax, and f(umin) · e = f(umax) · e = 0.

Without loss of generality, we assume that e is the unitary vector in the direction of the x1-axis.
Also, for simplicity, we assume umax = 1.

Before we continue, let us point out that all results obtained in the previous sections hold with
T = ∞, in which case we use the notation Q for Ω × (0,∞).

Theorem 4. Assume that (A1) and (A2) hold and let u(x, t) be the entropy solution of (1.1),
(1.2), (1.4) on Q. Then, for any g ∈ Cper([0, 1]) and h > 0, we have

lim
t→∞

∫ t+h

t

∫

Ω

g
(

u(x, s)
)

dx ds = h|Ω| g(0). (6.1)

Here, Cper([0, 1]) denotes the space of the continuous periodic functions in [0, 1], and |Ω| denotes
the measure of Ω.

Proof. Let Ω(ν) be the union of the sets Ωj(ν) which lay on the left-hand (negative) side of Πν .
Integrating (1.1) on Ω(ν) × (0, t), using the Gauss-Green formula [7], and (1.4), we arrive at

∫

Ω(ν)

u(x, t) dx −

∫

Ω(ν)

u0(x) dx +

∫ t

0

∫

Πν∩Ω

f1
(

u(x, s)
)

dHN−1 ds = 0. (6.2)

Integrating (6.2) with respect to ν from νmin to νmax, recalling (A2) we obtain

0 <

∫ ∞

0

∫

Ω

f1
(

u(x, s)
)

dx ds ≤ C

for some positive constant C. In particular, we have

lim
t→∞

∫ t+h

t

∫

Ω

f1
(

u(x, s)
)

dx ds = 0. (6.3)

Again recalling (A2), we immediately obtain from (6.3) that the probability measures defined by

〈µt, g〉 :=
1

h|Ω|

∫ t+h

t

∫

Ω

g
(

u(x, s)
)

dx ds, g ∈ Cper([0, 1]), (6.4)

satisfy µt → δ0 in the weak-? topology of Cper([0, 1])
∗, and so (6.1) follows. �
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