LYAPUNOV EXPONENTS OF TEICHMULLER FLOWS

MARCELO VIANA

ABSTRACT. We study the dynamical properties of Teichmiiller flows and renor-
malization operators in the moduli space of Abelian differentials, and use the
conclusions to analyze the quantitative behavior of geodesics on typical transla-
tion surfaces. Three main results are reviewed: existence of asymptotic cycles,
the asymptotic flag theorem, and simplicity of the Lyapunov spectrum. We
give complete proofs of the first two and an outline for the last one.
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0. INTRODUCTION

A detailed introduction to the study of interval exchange maps, translation sur-
faces, renormalization operators, and Teichmiiller flows, starting from the basic
notions and including complete proofs, was given in [21]. Here we start from where
that article left, to review three main results:

0.1. Asymptotic cycles. Let a be an Abelian differential, that is, a non-zero
holomorphic complex 1-form on some compact Riemann surface M. We denote by
g > 1 the genus of the surface. Let v be any vertical geodesic in M. We denote
by v(p,l) the vertical segment of length [ > 0 starting from any point p € v in the
upward direction. If the geodesic «y hits a singularity then, by convention, we extend
it along the next separatrix in the clockwise orientation. Let [y(p,l)] € H1(M,R)
represent the homology class of the closed curve obtained when one connects p
to the other endpoint p’ of v(p,1) by some curve segment with uniformly bounded
length. See Figure 1. The particular choice of the connecting segment is not relevant
here: different choices give rise to homology classes whose difference is uniformly
bounded, and this does not affect any of our statements.

FIGURE 1.

The first result is that these homology classes have a well defined asymptotic di-
rection in homology space, if the vertical flow is uniquely ergodic. This assumption
is very general: by Kerckhoff, Masur, Smillie [12] the vertical geodesic flow of e«
is uniquely ergodic for every Abelian differential o and almost every 8 € S*.

Theorem A. Let a be an Abelian differential such that its vertical geodesic flow
is uniquely ergodic. Then there exists ¢y = c¢1(a) in Hi(M,R) such that

1
i[fy(p, )] = ¢1 whenl — oo, uniformly inp € M.

This fact was first observed by Zorich [25]. A proof is presented in Section 3.
The notion of asymptotic cycle had been introduced earlier by Schwartzmann [17].

0.2. Asymptotic flag. The second result gives a much more detailed description
of the asymptotic behavior of long geodesic segments, also for almost all Abelian
differentials. Indeed, we are going to see that the component of [y(p,!)] orthogonal
to the line Ly = Re; is asymptotic to some ¢o € Hy (M, R) and its norm

dist([y(p, 1)}, L1) S 1%
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(meaning vy is the infimum of all v such that the left hand side is less than ¥
for every large [) for some constant v < 1. See Figure 2, where we represent
possible values of this orthogonal component for different values of the length.
More generally, for any j = 2,...,g, the component of [y(p,l)] orthogonal to the
subspace Lj 1 = Re; @ --- ® Rej ¢ is asymptotic to some ¢; € Hy (M, R) and its
norm
dist([v(p, 1), Lj—1) S 1

for some constant v; < v;_i. Finally, the component of [y(p,!)] orthogonal to
Ly =Re; & --- ® Rey is uniformly bounded in norm. Let us state these facts more
precisely.

® o ° o
® e : o - .';’
° .. :o : .. Co
e o o o (o ®
..’ ’:,,:/.. o P
o 71+
FIGURE 2.
Let Ag(ma,...,my) denote the stratum of Abelian differentials on a surface of
genus g having exactly k zeroes, with multiplicities my, ..., m,. The connected

components of these strata have been catalogued by Kontsevich, Zorich [14]: each
stratum has at most 3 connected components.

Theorem B. For any connected component C of Ag(ma,...,my) there exist num-
bers 1 > vy > -+ > v, > 0 and for almost every Abelian differential o € C there
exist subspaces Ly C Ly C --- C Ly of the homology Hy(M,R) such that dim L; =i
fori=1,2,...,9 and
(1) for alli < g, the deviation of [y(p,1)] from L; has amplitude 17+ :
1 i L;
lim sup ogdist([v(p, )], L:)
[—o0 logl
(2) the deviation dist([y(p,1)],Ly) is bounded, by some constant that depends
only on a and the choice of the norm.

=viy1 uniformlyinpe M

This remarkable statement was discovered by Zorich in the early nineties, from
computer calculations of [y(p,l)] for various translation surfaces. An explanation
was provided by Zorich and Kontsevich, in terms of the Lyapunov spectrum of the
Teichmiiller flow in the connected component C, restricted to the (invariant) hyper-
surface of Abelian differentials with unit area. Indeed, C admits a natural volume
measure which is finite, invariant, and ergodic under the Teichmiiller flow. Thus,
we may use the Oseledets theorem (Section 2) to conclude that the Teichmiiller
flow has a well-defined Lyapunov spectrum with respect to this measure. It is not
difficult to show (Section 6) that this spectrum has the form

2214+ 2214y, 21=---=121—-py;>2---21=-1n,>02>
“1+v>-->2-14+y,>2-1=---=-1>2-1-y; >--- > 11— > -2,
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where the so-called trivial exponents £1 have multiplicity k — 1. It was observed by
Veech [19, 20] that the Teichmiiller flow is non-uniformly hyperbolic, which amounts
to saying that vo < 1 (Sections 5 and 6). Zorich and Kontsevich [13, 22, 24, 25]
conjectured that all the inequalities in the previous formula are strict, and proved
that Theorem B would follow from this conjecture (Sections 7 and 8).

0.3. Lyapunov exponents. In this direction, Forni [6] proved that one always has
vg > 0. This result implies the Zorich-Kontsevich conjecture in genus 2 and has
also been used to obtain other properties of geodesic flows on translation surfaces,
such as the weak mixing theorem of Avila, Forni [1]. The full statement of the
Zorich-Kontsevich conjecture was proved by Avila, Viana [3]:

Theorem C. For each connected component C of any stratum Ag(ma, ..., my) the
non-trivial Lyapunov exponents of the Teichmiiller flow are all distinct:

2>14w > >14p,>1—-y;>--->1—1n >
>—14+wr>--->-1+y; >-1-vy;>--->-1—-1vy > -2

The connection between the Teichmiiller flow on the connected component C and
the geodesic flow of typical Abelian differentials a € C is made through another
object, the Zorich linear cocycle, that we recall and analyze in Sections 4 and 5.
We make the connection precise in Sections 6 through 8, where we also use it to
prove Theorem B from Theorem C. In the rest of the chapter we describe the key
ingredients in the proof of Theorem C. There are two main parts.

The first part corresponds to Theorem 9.2 (Sections 9 and 10), where we give
general sufficient conditions for the Lyapunov spectrum of a locally constant cocycle
to be simple. A simplicity criterium for Lyapunov spectra of independent random
matrices was first given by Guivarc’h, Raugi [10], and their condition was improved
by Gol’dsheid, Margulis [9]. Theorem 9.2 is due to Bonatti, Viana [5] and Avila,
Viana [3, Appendix]. In fact, [5] contains a version that applies to non-locally
constant cocycles, and this has been improved by Avila, Viana [2]. The second
part corresponds to Theorem 11.1 (Sections 11 and 12), where we check that those
sufficient conditions are fulfilled by the Zorich cocycles. This theorem is due to
Avila, Viana [3].

Acknowledgements I am thankful to Artur Avila and Giovanni Forni for many
useful remarks and, most specially, to the anonymous referee, for a thorough revi-
sion of the first version that greatly helped improve the text.

1. PRELIMINARIES

Here we recall a number of notions and facts in the theory of interval exchange
maps and translation surfaces, which also allows us to introduce several notations
to be used in the rest of the text. Much more information can be found in [21].

1.1. Interval exchange maps. A bijective transformation f : I — I on an in-
terval I C R is called an interval exchange map if there exists a finite partition
{I, : @ € A} of I such that the restriction of f to each I, is a translation. We
always take intervals to be closed on the left and open on the right. The left end-
point of an interval J is denoted 0J. For definiteness, we take OI to coincide with
the origin. Let d denote the number of symbols in the alphabet A.

Thus, an interval exchange transformation is characterized by two sets of data:



6 MARCELO VIANA

e A pair m = (m,m) of bijections m; : A = {1,...,d}, where 7y determines
the ordering of the subintervals I, and 7; determines the ordering of their
images f(I,), relative to the usual order in I. Sometimes we write

0 0 0
& a) -« 1.
(1) ™= ( Oé ai ag ) where o = 7. (j).

e A vector A = (A\y)aca Where )\, is the length of the subinterval I,.
To each (m, \) one associates the translation vector w = (wq)aeca defined by

(2) w=Qr ()\) )

where Q, : R* — R4 is the linear operator whose matrix (Q4.5)a e relative to
the canonical basis {e, : a € A} of R4 is given by

+1 if mo(a) < mo(B) and mi (@) > w1 (B)
(3) Qa,ﬂ = -1 if 71'0(04) > 71'0(,3) and 7]'1((1) < Ty (ﬂ)
0 in all other cases.

Then the interval exchange map is given by f(z) = z + w, for every z € I, and
a € A. We always assume the pair 7 to be irreducible, meaning that

(4) {9,...,a8} #{al,...,a3} forany1<k<d

(otherwise I may be decomposed into f-invariant subintervals restricted to which
f is again an interval exchange map). Let II 4 denote the set of irreducible pairs 7
on the alphabet A.

1.1.1. Induction and renormalization. The idea of induction is to associate to each
interval exchange transformation f its return map to some chosen subinterval. This
is again an interval exchange transformation. The Rauzy-Veech induction operator
is designed in such a way that the return map has exactly the same alphabet A. Tt
is defined as follows.

Let a(e) = af for e = 0,1. In other words, I, (q) is the rightmost partition subin-
terval and f(Iy(1)) is the rightmost subinterval image. Assume these subintervals
have different lengths. We say that (m,\) has type 0 (or top type) if I, (o) is longer
that f(I,q)), otherwise we say it has type 1 (or bottom type). In either case, we
call winner the longest of the two subintervals, as well as the corresponding symbol
a(0) or a(1), and we call loser the shortest of the two subintervals, as well as the
corresponding symbol.

The Rauzy-Veech induction R(f) is the first return map to the interval I’ C T
obtained when one removes the loser subinterval from I. It corresponds to data
(n',\') = R(m, \) as follows. Let & € {0,1} be the type of (r, A) and k = 77%_((€))
be the position occupied by the winner in the opposite row of 7. Then

7T1_5(Oé) if 7T1_5(Ot) S k
el =m and m__(a) =<¢ m_(a)+1 ifk<m_c(a)<d
k+1 it 11 .(a) = d

In other words, the e-row of 7 is left unchanged and, as for the (1 —&)-row,
the first k£ symbols are also not affected, whereas the remaining ones are
rotated cyclically to the right.

e A, = ), for all a # a(e) and )\;(5) = Aa(e) — Aa(1—e)- In other words,
all subinterval lengths remaining unchanged, except that the length of the
loser is deducted from the length of the winner.
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This correspondence A — A may be rewritten as
(5) A=07(X)

where © = O ) : R* — R is the linear operator whose matrix (04,5)a,5c4 With
respect to the canonical basis {e, : @ € A} of RA is

(6)

and ©* = O} , denotes the adjoint linear operator. Moreover, the translation
vector of R(f) is

(7 w' = 0(w).

0. .= 1 if either @ = S or (o, 8) = (loser,winner)
8 =1 0 in all other cases

In this way, we may view the Rauzy-Veech induction operator Rasa map from
a full measure subset of II 4 x ]Rﬁ back to II4 x Rﬁ: the domain is the subset of
(m, A) for which the two rightmost subintervals have different lengths.

The Rauzy- Veech renormalization R(f) : I — I is defined as ho R(f)oh~! where
h is the linear map that rescales the subinterval I’ to the length of I. Since the
renormalization operator commutes with any rescaling, we may consider it to act
on maps defined on the unit interval. In other words, we may view R as a map
from a full measure subset of I 4 x A4 back to II4 x A4, where

(8) Aa={AeRL: D Aa=1}
acA

is the unit simplex in R{': again, the domain is the subset of (m, A) for which the
rightmost subintervals have different lengths.

1.1.2. Keane condition and minimality. It is clear that if A is rationally independent
then R™(m, A) is defined for every integer n. However, rational independence is too
strong. We say that (m, A) satisfies the Keane condition if

9) f™(01,) # 01 for every m > 1 and any o, § € A with mo(8) # 1.

In other words, the orbits of the left endpoints 01, are pairwise disjoint, except
for the unavoidable fact that f(0I,) = 0 = 0Iz when mi(a) = 1 = mo(F). This
condition is optimal: the iterates R™(m, \) are defined for every integer n if and
only if (7, \) satisfies the Keane condition.

Another important property is that if (7, A) satisfies the Keane condition then
the map f is minimal, meaning that every orbit is dense in the interval I. In
particular, f has no periodic orbits. If X is rationally independent then (m,\)
satisfies the Keane condition for every m. Thus, almost every interval exchange
map is minimal. It was conjectured by Keane [11], and proved by Masur [15] and
Veech [18], that almost every interval exchange map is even uniquely ergodic: the
normalized Lebesgue measure is the unique invariant probability measure.

1.1.3. Symplectic structure. The linear map (2, is usually not surjective. We denote
(10) H, = Q. (R*).

Observe that Q, is anti-symmetric. Thus, H, is the orthogonal complement of
ker Q0 relative to the usual inner product in RA. Moreover,

RYXRA 5 R, (u,0) » —u-Qr(v)
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defines an alternate bilinear form on RA. This induces symplectic forms (non-
degenerate alternate bilinear forms)

(11) wh R ker Qp x R/ ker Q; = R w! ([u], [v]) = —u- Qr(v),
where [u] denotes the class represented by a vector u € R, and
(12) wWr  Hey x Hy 9 R, wr(Qr(u), 2 (v)) = —u - Qr(v)

(the minus sign in the definition is somewhat unusual in the literature, but it
becomes natural in the context of (35) below).

The fact that H, admits a symplectic form implies that its dimension is even:
we denote it is as 2g(7) and call g(7) the genus, because it coincides with the genus
of the suspension surface to be introduced in the next section. From the definitions
one obtains ([21, Lemma 10.2])

(13) OrA2:0% = Q.

This means that the conjugacy diagram

—1x

(14) R4/ ker 0, — > RA / ker Qs

Q‘"l lgﬂl
Or 2

H—Hu

commutes, and it also implies that the actions defined by ©r x on Hy and by O ,
on R/ ker 2, preserve the corresponding symplectic forms w, and wy.

1.1.4. Rauzy classes and strata. Associated to the Rauzy-Veech induction operator
we have the following binary relation in the set IT 4 of irreducible pairs © = (7o, 71)-
We say that 7' € 14 is a successor of = € I 4 if there exist A, \ € Rf' such that

R(w,A) = (x',A"). Each 7 has exactly two successors, corresponding to type 0
and type 1 induction, respectively. Dually, each 7' is a successor to exactly two
pairs . This relation may be represented as a directed graph, that one calls Rauzy
diagram: the vertices are the elements of IT 4 and there is an arrow from vertex 7 to
vertex 7' if and only if 7’ is a successor of w. The Rauzy classes are the connected
components of the Rauzy diagram.

The extended Rauzy diagram is obtained from the Rauzy diagram by adding
arrows between vertices 7 and n' whenever one is obtained from the other by
reversing the order of the symbols in both rows in (1). The extended Rauzy classes
are the connected components of the extended Rauzy diagram. One reason why this
notion is important is that the connected components of strata of the moduli space
of Abelian differentials are in 1-to-1 correspondence to certain extended Rauzy
classes, that one calls non-degenerate. We shall further comment on this in a while,

1.1.5. Invariant measures. It is clear from the definition that, for any Rauzy class
C c I 4, the domain C' x ]R{f is invariant under the induction operator R and the
domain C' x A 4 is invariant under the renormalization operator R. Masur [15] and
Veech [18] proved that there exists a measure v on C x A4 which is absolutely
continuous with respect to Lebesgue measure along the simplex A 4 and invariant
under R. For each Rauzy class, this measure is unique up to multiplication by a
constant, but it is usually infinite.
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The Zorich induction operator is an acceleration of the Rauzy-Veech induction
operator, defined on a full measure subset of C' x Rﬁ by

(15) 27 (m, ) = RPN (m,\)

where n(m, ) is the smallest positive integer for which the type of R™(m,)) is
different from the type of (7, A). We also define the Zorich renormalization operator

(16) Z"(m,X) = RN (7, ).

It was observed by Zorich [23] that, for any Rauzy class C, the accelerated renor-
malization operator Z admits a unique invariant probability measure y on C x A 4.
Moreover, u is ergodic. This measure plays an important part in what follows.

1.2. Translation surfaces. By translation surface we mean a compact Riemann
surface M endowed with an Abelian differential, that is, a holomorphic complex
1-form which is not identically zero. Near any point where the Abelian differential
a does not vanish, one can always find adapted local coordinates ¢ that trivialize
the 1-form:

(17) ¢ = dC

The family of such adapted coordinates is a translation atlas: all coordinate changes
are translations in the complex plane. Thus, we may use it to transport the usual
metric of C to a flat metric on M, defined on the complement of the zeros of a.
Similarly, the translation atlas transports the constant vector fields (1,0) and (0, 1)
on the plane to unit parallel vector fields on the complement of the zeros of «, that
we call horizontal vector field and vertical vector field, respectively.

We refer to the zeros 2y, . .., 2, of the Abelian differential as singularities. Indeed,
they correspond to conical singularities of the flat metric: the conical angle at
each z; is equal to 2m(m; + 1), where m; denotes the multiplicity of the zero.
The horizontal and vertical vector fields extend continuously to each z; but these
extensions are (m; + 1)—valued. The multiplicities of the zeros are related to the
genus g = g(M) of the surface through

(18) > mi=2g-2.
i=1

In particular, the genus g must be positive, and the number s of singularities is
zero if and only if the genus is equal to 1.

For any g > 1, we denote by A, the moduli space of all Abelian differentials on
a compact Riemann surface of genus g. It is naturally stratified as

Ay = JAg(ma, ..., my),

where Ay(my,...,m,) is the moduli space of Abelian differentials having exactly
k singularities, with multiplicities myq, ..., m, and the union is over all choices of
k and the m; compatible with (18). All these moduli spaces are complex orbifolds
whose dimensions can be computed explicitly from g and k.
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1.2.1. Suspension of an interval exchange. Every interval exchange map may be
realized as the Poincaré return map to a convenient cross-section of the vertical
flow in some translation surface. One way to construct such a surface is as a planar
polygon with pairs of sides identified by translation, as we now explain.

Let T;F denote the cone of vectors 7 = (75)sec.4 such that

(19) > 7%>0 and Y 7,<0 foralll <k<d.
mo(9)<k m1(9)<k

For each \ € ]Rﬁ and 7 € T consider the polygon in the plane bounded by the
line segments connecting

* Y <k(Pam)  to o s<r(As,7s): denote it (g where 8 = my ! (k)
and

* Y o)<k Ae:Ts)  to Do (5<k(As, Ts): denote it (s where 3 = a7 (k)
for 1 < k < d. See Figure 3. Identifying the sides (3 and Cé by translation, for every

FIGURE 3.

B € A, we obtain a translation surface M = M(w,\,7): the conformal structure
is inherited from the planar polygon and the Abelian differential corresponds to
the canonical 1-form dz on the plane. The interval I = [0, 5. 4 As) embeds as a
horizontal cross-section to the vertical flow in M, and the corresponding Poincaré
return map is just the original interval exchange map f.

1.2.2. Zippered rectangles. Let us mention a useful alternative way to describe the
suspension of an interval exchange transformation. Let 7 € T, be as before and

(20) h=—Q(7).
In other words,

hs = Z Ts — Z 75 for every 8 € A.
70 (0) <mo(B) w1 (6)<m1(B)
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The definition (19) implies that hg > 0 for every § € A. For each § € A, consider
the rectangles of width \g and height hg defined by (see Figure 4)

o (8)<mo(B) 7r0(5)<7r0(ﬂ)

Rlly = Z )‘57 X [ hﬁ’
m(0)<m(B) @ m (5)<ﬂ'1 (ﬁ)
and consider also the vertical segments

Sg = Z /\5 X 0, Z 7’5
§)<mo

mo(8)<mo()

Sé - Z A& X Z 75, 0
m1(8)<m1(B) | 71(6) <m1(B)

We may think of these vertical segments S§ as “zipping” adjacent rectangles to-
gether up to a certain height, which is determined by the vector 7. Notice that

Se©) = Saq) = {Z )\5} X lO, ZT&]

feA deEA

and it is above or below the horizontal axis depending on wether > seA Tp 1s positive
or negative. The two possibilities are illustrated in Figure 4.

R,
o Ry
C
RY
7777777 R, RY, RY,
RO, 1§
SZ(E) ge
2a(e)
,,,,,,, RY
S RL
RID RID ,,,,,,,, ) A
Ry
o T
Rl ?
C
FIGURE 4.

The suspension surface M = M (mw, A, 7, h) is the quotient of the union

U U R5us;

BeAe=0,1
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by the following identifications. First of all, we identify each R} to Rj through the
translation

(z,2) = (x+wg,z — hg).
Note that this is just the same map we used before to identify the sides (g and Cé
of the polygon in the previous construction. Secondly, let

g = Z )\5 X hﬁ, Z 75| 5 ﬂ = a(l)

mo(d)<mo(B) mo(9)<mo(B)

if the sum of all 75 is positive, and let

S = Yoo x| > mw—hs|, B=0a(0)

mo(d)<mo(B) m1(8)<m1(B)

if the sum of all 75 is negative. In both cases, we identify S with the vertical
segment 53(0) = Séu) by translation. Compare Figure 4. This ends the zippered
rectangles construction of the suspension surface.

Notice that in either representation, polygon or zippered rectangles, the area of
the suspension surface is given by

(21) area (M) =A-h=—-X-Qg(7).

1.2.3. Representation of translation surfaces. Conversely, most translation surfaces
may be represented as zippered rectangles (or as polygons with identifications): it
suffices that the vertical and horizontal vector fields have no saddle-connections,
that is, no trajectories going from one singularity to another. This property is
indeed typical among translation surfaces: given any Abelian differential o then
€2 o has no saddle-connections for all but countably many values of § € R/Z.

\\*\0'1
So% 50 I 84

FIGURE 5.

Such a representation may be obtained as follows (Veech [19]). Pick any outgoing
horizontal separatrix og of (that is, any of the trajectories of the horizontal flow
starting at) a singularity sg. The assumption that there are no horizontal saddle-
connections ensures that oo contains no other singularities. Let sj be a point of
intersection between o and any vertical separatrix o; of a singularity s; (possibly,
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s1 = Sg). Denote by I C oy the segment bounded by so and sj and consider the
finite subsets & and &', consisting of the following points:

(i) so and s{ belong to both 9 and &'
(ii) for each vertical separatrix incoming to every singularity, its last point of
intersection with I is in 9
(iii) for each vertical separatrix outgoing from every singularity, its first point
of intersection with I is in o'
(iv) the next point sy of intersection between o1 and I (beyond sg) is in 0 if o1
is an incoming separatrix, and it is in @' if o1 is an outgoing separatrix.
Figure 5 describes one example where 7 is incoming. The assumption that there
are no vertical saddle-connections is crucial for this definition: it implies that the
vertical foliation is minimal and, in particular, the vertical separatrices do intersect
I. Notice that 9 (respectively, 8') contains one point for each incoming (respectively,
outgoing) vertical separatrix, plus two additional points that are introduced in steps
(i) and (iv) of the definition. In other words, both @ and @' have d + 1 elements,
where (recall (18) above)

K
(22) d=1+) (mi+1)=29-1+&,

i=1
and so each of these sets defines a partition of I into d subintervals. The Poincaré
return map of the vertical flow is smooth on each connected component I, of
I'\ 0 and the image is some connected component I/, of I\ §'. Moreover, the
vertical trajectories connecting I, to I, fill-in a rectangle R, in M. This defines
the zippered rectangle structure M (m, A, 7, h) on the surface.

Different choices of the singularity so, the separatrix o9, and the endpoint s{ give
rise to different zippered rectangles representations of the surface. However, the ex-
tended Rauzy class of the pair 7 is independent of all the choices. Then, by conti-
nuity, it is constant on each connected component of any stratum A, (mq,...,my).
Thus, we have a well defined map

(23) {connected components of strata} — {extended Rauzy classes}.

This map is injective, because the combinatorial data 7 alone determines the genus
g, the number k and multiplicities m; of the singularities, and a couple more invari-
ants (hyperellipticity and spin parity), that characterize the connected components
of strata completely (Kontsevich-Zorich [14]). Moreover, the image of this map
coincides with the subset of non-degenerate extended Rauzy classes. An extended
Rauzy class is non-degenerate if the multiplicities m; determined by any pair 7 in it
are strictly positive. This means that no removable singularities (i.e. with conical
angle 27) are introduced by the representation of the translation surface in terms
of data (m, \, 7).

1.2.4. Induction and renormalization revisited. The Rauzy-Veech induction opera-
tor has an extension to the level of the suspension surface of an interval exchange
map f, that corresponds to replacing the horizontal cross-section I by a smaller one
I', so that the Poincaré return map of the vertical flow to the new cross-section is
just R( f). Thus, the translation surface remains the same, but its representation in
terms of the parameters 7, A, 7, and h, does change. In the polygon representation
of the suspension surface this change is described by the invertible Rauzy-Veech
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induction operator R(m,\,7) = (7', N, ') given by (x', ') = R(r, \) and
(24) T =0 (7).

In the zippered rectangles representation we also need the transformation rule for
the height vector h:

(25) h' = Oxa(h).
The invertible Rauzy- Veech renormalization operator R is defined by
R(m, A7) = (7', et N, e~ tr)
where (7', N,7') = R(m, A\, 7) and t = —log) 5c4A5- In other words, ¢ is de-

termined by R(m,\) = (7',et\). We also define invertible Zorich induction and
renormalization operators

(26) Z(m ) =RM™N(x, \) and  Z(m,A) = R™™N(x, \),

where, as before, n(m, A) is the smallest positive integer for which the type of R(m, A)
is different from the type of (m, A).

These operators 7@, R, Z , Z may be viewed as natural extensions (inverse limits)
of the induction and renormalization operators R, R, Z , Z that were introduced
in the previous section. In particular, there exists a unique Z-invariant probability
measure that projects down to the Z-invariant probability measure p (Section 1.1)
under (m, \,7) — (m, \).

1.2.5. Poincaré duality. The vector spaces H, and RA/kerQ, and the symplectic
forms w, and w! may be interpreted in terms of the homology and cohomology of
the suspension surface M. To explain this, let us consider the zippered rectangles
representation. For each symbol § € A, let [vg] € H1(M,R) be the homology
class represented by a vertical segment crossing from bottom to top the rectangle
Rg = Ré, with its endpoints joined by a horizontal segment inside I.

The {[vg] : B € A} generate the homology and so the map ® : R* — H; (M, R)
defined by ®(7) = 35, 4 78[vs] is surjective. Moreover, it induces an isomorphism
from R4/ ker Q2 to the homology group:

(27) RA —2 > H{(M,R) .

IR

quotientl
RA/ ker Q,

Similarly, the map ¥ : H'(M,R) — R* defined by ¥([¢]) = ( S, ¢)5 , sends the
€
cohomology space H!(M,R) isomorphically onto H,:
(28) HY(M,R) —~— RA
~ T inclusion

H;

Identifying R4/ kerQ, with H;(M,R) through (27), we may think of ©~'* as
acting on the homology space H;(M,R). Analogously, identifying H'(M,R) with



LYAPUNOV EXPONENTS OF TEICHMULLER FLOWS 15

H, through (28), we may think of © as acting on the cohomology space H!(M,R).
Then the diagram (14) becomes

(29) Hy (M, R) 2" H, (M, R)

”l lp
HY(M,R) —2> H'(M,R),

where the isomorphism P is the Poincaré duality [c] — [¢.], that we recall next.
The homology and cohomology spaces are dual to each other through

(30) H(M,R) x HOMR) = R, ([}, [4]) = [d]- [¢] = / b

(the integral is independent of the choices of representatives of [¢] and [¢]). More-
over, H'(M,R) comes with the intersection form

(31)  HY(M,R) x H'(M,R) - R, ([¢1],[¢2])H[¢>1]/\[¢2]=/M¢1 A @2

The Poincaré duality theorem (see Chapters 18 and 24 of Fulton [7]) states that
(31) is a perfect pairing: for every linear map L : H'(M,R) — R there exists a
unique [¢1] € H'(M,R) such that L([¢]) = [¢] A [¢L] for every [¢] € H(M,R). On
the other hand, (30) associates to any [c] € Hy(M,R) the linear map L([¢]) = [, ¢.
Then there exists a unique cohomology class [¢.] = [¢1] such that

(32) / b= L($) = 6] Alde] = /M oA for all [§] € HY(M,R).

We say [c] € Hi(M,R) and [¢.] € H(M,R) are Poincaré dual to each other.
The intersection form in homology is defined by
(33)  Hi(M,R) x Hy(M,R) = R, ([e1],[e2]) = [ea] Alez] = [he,] A [e]-

It has the following geometric interpretation. Consider [¢1] and [¢o] in Hy (M, Z).
Choose representatives ¢; and ¢y that intersect transversely. Let ¢; € {+1,—1} be
the intersection sign at each intersection point p;: the sign is positive if the tangent
vectors to ¢; and ¢y form a positive basis, relative to the orientation of M, and it
is negative otherwise. Then

(34) [e1] A fea] = ij .

This intersection form in homology corresponds to the symplectic form w] under
the identification between RA /ker Q, and the homology H; (M, R) defined by (27).
Indeed, applying (34) to appropriate representatives, we find that
—1 if m(B) < mo(d) and m1(B) > m1(0)
[v] A [us] = ¢ +1 if mo(B) > mo(d) and 71 (B) < w1(d)
0  in all other cases,

that is to say,
(35) [vs] A [vs] = —Qp5 = —es - Qn(es) = wi([es], [es])

for every 8,6 € A. Analogously, the intersection form in cohomology corresponds
to the symplectic form w,, under the identification between H, and the cohomology
H(M,R) defined by (28).
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2. OSELEDETS THEOREM

Now we recall some basic facts and terminology relative to linear cocycles and
the multiplicative ergodic theorem of Oseledets [16].

2.1. Cocycles over maps. Let y be a probability measure on some space M and
f M — M be a measurable transformation that preserves y. Let 7 : £ — M be a
finite-dimensional vector bundle endowed with a Riemannian norm || - ||. A linear
cocycle (or vector bundle morphism) over f is a map F' : £ — & such that

noF =fonx

and the action A(z) : & — Ef(;) of F on each fiber is a linear isomorphism. It is
often possible to assume that the vector bundle is trivial, meaning that £ = M xR?,
restricting to some full py-measure subset of M if necessary. Then A(-) takes values
in the linear group GL(d, R) of invertible d x d matrices. Notice that, in general,
the action of the nth iterate is given by A™(z) = A(f""(z))--- A(f(z)) - A(z), for
every n > 1. Given any y > 0, we denote logt y = max{logy, 0}.

Theorem 2.1. Assume the function log"’ |A(z)|| is p-integrable. Then, for u-
almost every © € M, there exists k = k(x), numbers Ai(z) > --- > Ap(z), and a
filtration &, = FX > --- > F¥ > {0} = F* of the fiber, such that

(1) k(f(x)) = k(x) and X;(f(z)) = \i(z) and A(x) - Fi = F;(m) and

1 , )
(2) lim —log||A™(z)v|| = \i(x) for allv e E:\ Fit! and alli=1,... k.
n—+oco N
The Lyapunov exponents \; and the subspaces F? depend in a measurable (but

usually not continuous) fashion on the base point. The statement of the theorem,
including the values of k(x), the A;(z), and the F*(x), is not affected if one replaces

|| -]| by any other Riemann norm ||| - ||| equivalent to it in the sense that there exists
some p-integrable function ¢(-) such that
(36) e @ o]l < l[olll < @ |lo]| for all v € T, M.

When the measure p is ergodic, the values of k(z) and of each of the A;(z) are
constant on a full measure subset, and so are the dimensions of the subspaces
Fi. We call dim F! — dim Fi*! the multiplicity of the corresponding Lyapunov
exponent \;(z). The Lyapunov spectrum of F is the set of all Lyapunov exponents,
each counted with multiplicity. The Lyapunov spectrum is simple if all Lyapunov
exponents have multiplicity 1.

2.2. The invertible case. If the transformation f is invertible then so is the
cocycle F. Applying Theorem 2.1 also to the inverse F~! and combining the
invariant filtrations of the two cocycles, one gets a stronger conclusion than in the
general non-invertible case:

Theorem 2.2. Let f : M — M be invertible and both functions log ||A(z)|| and
logt ||A=(z)|| be p-integrable. Then, for u-almost every point x € M, there exists
k = k(z), numbers A\ (z) > -+ > M\(z), and a decomposition £, = EL & --- ® EF
of the fiber, such that

(1) A(z) - Ei = E}(z) and F} = @f:iEi and

1 .
(2) llff - log || A" (z)v|| = Ai(z) for all non-zero v € E. and
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. 1 i i _ —
(3) "Hriloo - logé(Efn(z),Efn(z)) =0forali,j=1,...,k.

Note that the multiplicity of each Lyapunov exponent \; coincides with the
dimension dim E! = dim F! — dim Fi*! of the associated Oseledets subspace E.
From the conclusion of the theorem one easily gets that

H 1 n —_ [
(37) ngrjrtloo - log | det A™(z)| = Z Ai(z) dim E..

In most cases we deal with, the determinant is constant equal to 1. Then the sum
of all Lyapunov exponents, counted with multiplicity, is identically zero.

Remark 2.3. The natural extension of a (non-invertible) map f : M — M is defined
on the space M of sequences (zy)n<o With f(z,) = zn41 for n <0, by

feM =M, (..,%n...,%0) = (o ZTn,- .., To, f(Z0)).

Let P : M — M be the canonical projection assigning to each sequence (n)n<o
the term zo. It is clear that f is invertible and P o f = f o P. Every f-invariant
probability p lifts to a unique f invariant probability i such that P.fi = p. Every
cocycle F : & — &£ over f extends to a cocycle F & 5 & over f, as follows:
& = Ep(z) and A(#) = A(P(%)), where A(#) denotes the action of F' on the
fiber &;. Clearly, [log* Al di = [log™ ||A|| du and, assuming the integrals are
finite, the two cocycles F' and F have the same Lyapunov spectrum and the same
Oseledets filtration. Moreover, [log* |[A~!||dji = [log* ||A~!||dp and when the
integrals are finite we may apply Theorem 2.2 to the cocycle E.

Remark 2.4. Any sum F! = @f:iEg of Oseledets subspaces corresponding to the
smallest Lyapunov exponents depends only on the forward iterates of the cocycle.
Analogously, any sum of Oseledets subspaces corresponding to the largest Lyapunov
exponents depends only on the backward iterates.

2.3. Symplectic cocycles. Suppose there exists some symplectic form, that is,
some non-degenerate alternate 2-form w, on each fiber &,, which is preserved by
the linear cocycle F:

Wiy (A(z)u, A(2)v) = we(u,v) for all z € M and u,v € &,.

Assume the symplectic form is integrable, in the sense that there exists a u-
integrable function x — ¢(x) such that

|we (u, v)| < e“@|ul|||v]| for all z € M and u,v € &,.

Remark 2.5. We are going to use the following easy observation. Let u be an
invariant ergodic probability for a transformation f : M — M, and let ¢ : M — R
be a p-integrable function. Then

1
lim —¢(f™(x)) =0 wp-almost everywhere.

n—oo N

This follows from the Birkhoff ergodic theorem applied to ¢¥(z) = ¢(f(z)) — ().
Note that the argument remains valid under the weaker hypothesis that the function
1 be integrable.
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Proposition 2.6. If F preserves an integrable symplectic form then its Lyapunov
spectrum is symmetric: if X is a Lyapunov exponent at some point x then so is — A,
with the same multiplicity.

This statement can be justified as follows. Consider any ¢ and j such that
Ai(z) + Xj(z) #0. For all v! € E! and v/ € EJ,

|wa (v, 07)] = |wpn o) (A™(@)0", A" (2)0)] < e DA™ (@)o]|[| A" ()7

for all n € Z. Since ¢(z) is integrable the first factor has no exponential growth:
by Remark 2.5,

lim 1c( f™(z)) =0 almost everywhere.

n—+oo N
The assumption implies that ||A™(x)v¢||||A™(x)v?|| goes to zero exponentially fast,
either when n — 400 or when n — —o0. So, the right hand of the previous
inequality goes to zero either when n — +o00 or when n — —oo. Therefore, in
either case, the left hand side must vanish. This proves that

Xi(@) +X2i(@) #0 = w,(v',v7) =0 for all v' € E% and v/ € EZ.

Since the symplectic form is non-degenerate, it follows that for every i there exists
J such that X;(z) + Aj(z) = 0. We are left to check that the multiplicities of such
symmetric exponents coincide. We may suppose A;(z) # 0, of course. Let s be
the dimension of E!. Using a Gram-Schmidt argument, one constructs a basis

vi,...,vi of Ei and a family of vectors v],...,v in EJ such that
P 1 ifp=gq
2 J —_
(38) wa(vp, vg) = { 0 otherwise.
Notice that w,(v),v}) = 0 = wy(v,v]) for all p and g, since Xi(z) = =)j(z) is
non-zero. The relations (38) imply that the v{,...,v! are linearly independent,

and so dim EJ > dim E¢. The converse inequality is proved in the same way.

2.4. Adjoint linear cocycle. Let 7* : £* — M be another vector bundle which
is dual to w : £ — M, in the sense that there exists a nondegenerate bilinear form

Erx&xd (u,v)~u-veR, foreachze M.

The annihilator of a subspace E* C & is the subspace E C &, of all v € &, such
that u - v = 0 for all u € E*. We also say that E* is the annihilator of E. Notice
that dim E + dim E* = dim &, = dim &*. The norm || - || may be transported from
& to £* through the duality:

(39) |ul]| = sup{|u-v| : v € & with |jv]| =1} foru e E].

For x € M, the adjoint of A(x) is the linear map A*(z) : Ef () — €5 defined by
(40) A*(@)u-v=u-A(z)v forevery u € &,y and v € &,.

The inverses A~ (z) : £; = £}, define a linear cocycle F~* : £* — £* over f.

Proposition 2.7. The Lyapunov spectra of F and F~'* are symmetric to one
another at each point.
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Indeed, the definitions (39) and (40) imply ||A*(z)|| = ||A(z)]|| and, analogously,
|[A=*(2)|| = [|A~!(z)|| for any z € M. Thus, F~!* satisfies the integrability
condition in Theorem 2.2 if and only if F' does. Let &, = GszlE% be the Oseledets
decomposition of F' at each point z. For each i = 1,...,d define

(41) E = annihilator of E} @ --- @ E- '@ EX' @ --- @ EF.

k

The decomposition £; = ®¥_, EJ* is invariant under F~'*. Moreover, given any

u € E¥* and any n > 1,

A7 (@)ull = max | A" (@)u o] = max u- A~ (@)o].

Fix any ¢ > 0. Begin by considering v € E%, ). Then A™"(z)v € Ej, and so
ju- A= @)o] > el A (@)l > ¢ uf O +m

for every n sufficiently large, where ¢ = ¢(E%, E*) > 0. Consequently,

1
(42) Jim —log|| A" (@)ul] > ~(Ni(a) + ).
Next, observe that a general unit vector v € ¢ (,) may be written
k . . .
v= Zvﬂ with v? € E;n(z).
j=1

Using part 3 of Theorem 2.2, we see that every ||v?|| < €™ if n is sufficiently large.
Therefore, given any u € EY*,

Ju- AT @)o] = |u- A7 (@)0] < Jlul] e” D7 o] < luf| e~ el

for every unit vector v € En(y), and so
1
(43) lim —log [[A™" (2)ull < —(Ai(2) - 2e).

Since ¢ > 0 is arbitrary, the relations (42) and (43) show that the Lyapunov
exponent of F~!* along Ei* is precisely —\;(z), for every i = 1,... k. Thus,
& = EB;?:lEg* must be the Oseledets decomposition of F~!* at x. Observe, in
addition, that dim E&* = dim E! for alli = 1,..., k.

2.5. Cocycles over flows. We call linear cocycle over a flow ft: M — M, te R
a flow extension Ft : £ — £, t € R such that 7 o F! = f! o7 and the action
Al(z) : € — Epi(yy of F' on every fiber is a linear isomorphism. Notice that
Atts(x) = A%(fi(x)) - Al(z) for all t,s € R.

Theorem 2.8. Assume log™ ||At(z)|| is p-integrable for all t € R. Then, for u-
almost every © € M, there exists k = k(z) < d, numbers A1 (z) > --- > \g(z), and
a decomposition £, = ES ® EL @ --- @ EF of the fiber, such that

(1) A'(z) - B} = E}.(,, and EY is tangent to the flow lines
1 .
(2) t_l}rin n log||A%(z)|| = Ai(x) for all non-zero v € EX
o0

.1 ; j .
(3) t_l}inoo 7 logé(E}t(m),E;t(w)) =0forali,j=1,...,k.
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As a consequence, the relation (37) also extends to the continuous time case, as
do the observations made in the previous sections for discrete time cocycles.

An important special case is the derivative cocycle Dft : TM — TM over a
smooth flow f*: M — M. We call Lyapunov exponents and Oseledets subspaces
of the flow the corresponding objects for this cocycle D ft, t € R.

2.6. Induced cocycle. The following construction will be useful later. Let f :
M — M be a transformation, not necessarily invertible, y be an invariant prob-
ability measure, and D be some positive measure subset of M. Let p(z) > 1 be
the first return time to D, defined for almost every z € D. Given any cocycle
F = (f,A) over f, there exists a corresponding cocycle G = (g, B) over the first
return map g(z) = f#(*)(z), defined by B(z)v = A (z)v.

Proposition 2.9. (1) The normalized restriction up of the measure pu to the
domain D is invariant under the first return map g.
(2) log™ || BE!|| are integrable for pp if log™ ||AY|| are integrable for .
(3) For p-almost every x € D, the Lyapunov exponents of G at x are obtained
multiplying the Lyapunov exponents of F' at x by some constant c¢(z) > 1.

Proof. First, we treat the case when the transformation f is invertible. For each
j > 1, let D; be the subset of points € D such that p(xz) = j. The {D; : j > 1}
are a partition of a full measure subset of D, and so are the {f/(D;) : j > 1}.
Notice also that g | D; = f7 | D; for all j > 1. For any measurable set E C D and
any j > 1,

u(g (EN f1(Dy))) = u(f(En f/(D;))) = n(END;),

because p is invariant under f. It follows that

plo Zu (6 ' ENFD Zu (END;) = w(E).
j=1
This implies that pp is invariant under g, as clalmed in part (1). Next, from the
definition B(x) = A”(®) () we conclude that

oo j—1

/ log™ ||B|| dyx = 2 / log* [ 47| dp < S 3 / log* |4 o £l| dp.

7j=1 1i=0

Since p is invariant under f and the domains f#(D,) are pairwise disjoint for all
0<i<j—1,it follows that

oo j—1
/ log* 1Bl du< 33 / [y o Il < / log™ [| Al du.

j=1 =0

The corresponding bound for the norm of the inverse is obtained in the same way.
This implies part (2) of the proposition. To prove part (3), define

Notice that p is integrable relative to up:

/Dpdu Zm Z u(fi(D;) < 1.
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Thus, by the ergodic theorem, ¢(x) is well defined at pp-almost every z. It is clear
from the definition that ¢(z) > 1. Now, given any vector v € &, \ {0} and a generic
point z € D,

o1 . B o1 .
Jim = log [|B*(z)v]| = ¢(2) lim —log [|A™(z)v]|

(we are assuming log™ ||A|| is p-integrable and so Theorem 2.1 ensures that both
limits exist). This proves part (3) of the proposition, when f is invertible.

Finally, we extend the proposition to the non-invertible case. Let f be the
natural extension of f and i be the lift of  (Remark 2.3). Denote D = P~1(D).
It is clear that the f—orbit of a point & € D returns to D at some time n if and only
if the f-orbit of 2 = P(&) returns to D at time n. Thus, the first return map of f
to the domain D is

§(a) = fP9(&), == P(a),

and so it satisfies P o § = go P. It is also clear that the normalized restriction fip
of fi to the domain D satisfies P.jip = pup. By the invertible case, fip is invariant
under g§. It follows that pp is invariant under g:

up(g " (E)) = pip(P g (E)) = pip(§~"P*(E)) = pip(P~*(E)) = up(E),

for every measurable set E C D. This settles part (1). Now let F' = (f, A) be the
natural extension of the cocycle F' (Remark 2.3) and G be the cocycle it induces
over g:

G(#,v) = (9(2), B(@)v), B(a) = A (@).
By definition, A() = A(z), and so B(2) = B(z). Consequently,

/ log™ || Al du = / log™ |4l di and / log" || Bll dyup = / log | Bl| djip.

By the invertible case, log" ||B|| is fip-integrable if log™ ||A|| is j-integrable. It
follows that log™ || B|| is up-integrable if log™ || A|| is p-integrable. The same argu-
ment applies to the inverses. This settles part (2) of the proposition. Part (3) also
extends easily to the non-invertible case: as observed in Remark 2.3, the Lyapunov
exponents of F at & coincide with the Lyapunov exponents of F' at z. For the same
reasons, the Lyapunov exponents of G at # coincide with the Lyapunov exponents
of G at x. By the invertible case, the exponents of G at # are obtained multiplying
the exponents of Fati by some positive factor. Consequently, the exponents of G
at x are obtained multiplying the exponents of F' at x by that same factor. This
concludes the proof of the proposition. |

3. ASYMPTOTIC CYCLES

Here we prove Theorem A. There are two main steps. First, we reduce the
statement to the special case when the geodesic segments are taken with their
endpoints in a given cross-section to the vertical flow. Then, we choose a convenient
cross-section and use unique ergodicity of the Poincaré return map to prove the
claim in that special case.
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3.1. Proof of Theorem A. Let o be some cross-section to the vertical flow. The
corresponding Poincaré map f is an interval exchange transformation and our as-
sumptions imply that it is uniquely ergodic. Given xz € o and k > 1, denote by
~(z, k) the vertical geodesic segment starting at z, in the upward direction, and
ending at f*(z). Then let [y(z, k)] be the homology class of the closed curve ob-
tained joining the endpoints of v(x, k) by a line segment inside the cross-section.
Let H(x) be the length of v(x,1). Clearly, H(-) is positive and continuous on each
partition subinterval I,. Moreover, it has a continuous positive extension to the
closure of I,: this is because the endpoints arise from the singularities of «, which
are of saddle type. Hence, the function H(-) is bounded from zero and infinity on
its domain o. Let H(z, k) denote the length of v(x, k), for every k > 1. Since f is
uniquely ergodic,

1 1«
(44) E =7 Z ) converges uniformly to / H,
7=0

where the integral is with respect to the unique invariant probability of f. The
factor fd H is precisely the area of the translation surface, as we shall see.

L v(p,1)
PO,

FIGURE 6.

Lemma 3.1. We have
.1 o1
Jim (@) = fim Th.0) [ #
and either limit is uniform if and only if the other one is.

Proof. Given p € M and [ > 0, let us consider the smallest segment ~(z, k) that
contains y(p,1). That is, x is the last intersection of v with the cross-section prior
to p, and f*(x) is the first intersection following the other endpoint p’ of v(p,1).
See Figure 6. Then

(45) llv(p, )] = [v(=, B)]| < o for every (p,1).

Indeed, the difference is represented by some curve whose length is uniformly
bounded, namely the one obtained concatenating the vertical segment from p to z,
the horizontal segment from z to f¥(z), the vertical segment from f*(z) to p’, and
the curve segment connecting p' to p. Then,

1 1 1 ok
Jim =[y(p, )] = lim —[y(z, k)] = lim —[y(z, k)] lim .
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Since H(-) is bounded from zero and infinity, k£ goes to infinity when, and only
when, [ goes to infinity. Note also that 0 < H(z,k) — I < 2max, H(z). In view of
(44), this implies that

(46) lim = fim = /H -
1o 1 koo Hk ) \J,
and the convergence is uniform. It follows that
! BRI |
(47) fim ;b)) = ([ #)  Jim (k)
I—o00 [ pu k—oo k
and either limit is uniform if and only if the other one is. O
C
B A
A :
5 D
E [ ! A
A th
A
ilval ilve]l ilvcl lvp] °
o= I x {0} I
FIGURE 7.

Thus, to prove the proposition we only have to show that the limit on the left
hand side of Lemma, 3.2 exists and is uniform, for some choice of the cross-section.
Let us fix some representation of the translation surface in the form of zippered
rectangles, corresponding to data (m,\,7,h). As the cross-section, we choose the
horizontal base segment ¢ = I x {0}. See Figure 7. For each symbol 3 € A, let
[vg] € H1(M,R) be the homology class represented by a vertical segment crossing
from bottom to top the rectangle labeled by S, with its endpoints joined by a
horizontal segment inside o.

Lemma 3.2.

o1 . .
klgrolo E['y(:zr, k) = /;4)\5[05] uniformly in x € o.

Proof. For any x € o and k > 1 and for each 8 € A, define

ns(e,k) = #{0<j < k: fI(z) € Is}.
Equivalently, ng(z, k) is the number of times y(z, k) crosses the rectangle labeled
by B. Therefore
[’Y(ma k)] = Z ’75(97; k)[Uﬁ]
BEA

By unique ergodicity, the average k 'n(z, k) converges uniformly to the measure
Ag of the interval Iz as k — oo. It follows that

%[’y(az, k)] — Z Aglvg] uniformly as k — oo,
BeA
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as claimed. O

In view of Lemma 3.1, this gives that the asymptotic cycle is

-1
(48) ¢ = (/ H) > Aslvgl,

7 BeA
and the proof of Theorem A is complete. Note that fa H=) BeA Aghg is precisely

the area of the translation surface M, as defined in (21).

3.2. Poincaré duality. We are going to check that, up to a factor, the asymptotic
cycle ¢; is the Poincaré dual of the cohomology class of the real part of the Abelian
differential o. Poincaré duality and related notions were recalled in Section 1.2.

Lemma 3.3. The multiple (fa H) c1 of the asymptotic cycle is the Poincaré dual
of the closed 1-form Ra.

Proof. From (35) we get that [vg] A [vs] = —€Qp,s for every 5,5 € A. Then, using
(48) we get that, for any d € A,

(/,H) a1 A [vs] = ;)\5[@5] Avs] = —;QB’J)\B = w;

where w = Q,()) is the translation vector of f, defined by (2). On the other hand,

R(a) = —ws,
[vs]
because [vs] is represented by the concatenation of a vertical line segment, on which
the real part $(«) vanishes identically, and a horizontal line segment of length ws,
with orientation opposite to the one of the translation vector. Now it suffices to
note that, by (32) and (33), the Poincaré dual [¢.] of ([ H)c, is characterized
precisely by

(/ H) c Avs] = — [¢pc] for every d € A.
o [vs]
This shows that [¢.] = [Ra], as claimed. The proof of the lemma is complete. O

4. RAUZY-VEECH-ZORICH COCYCLES

Let C be the extended Rauzy class associated to a given connected component
of stratum C. Consider (m,A) € C x R{' and let € € {0,1} be its type. Consider
also the linear isomorphism © = O, ) defined in (6): all the entries ©, 3 of the
matrix of © are zero, except for those on the diagonal and the one where « is the
loser and § is the winner of (m, A).

We also defined the Rauzy-Veech induction R(f) of the interval exchange trans-
formation f defined by (m, A) to be another interval exchange transformation, cor-
responding to a certain partition (I},)ac4 of the interval

I'= I\f(-[a(l)) ife=0 and I' = I\Ia(O) ife=1.
In either case, R(f)(x) = f7*)(z) where r = r, j is the first return time to I’ under

f, given by r(z) = 2 on the (loser) interval I’ , | and r(z) = 1 on all the other
a(l—e)

I',. By construction, f(I(’x(l_s)) C Iy()- Thus,
(49) Oap=#{0<i<r(Il): fi(I,) Cc Ig} foralla,B € A.
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4.1. For interval exchange maps. The Rauzy-Veech cocycle associated to the

extended Rauzy class C' is the linear cocycle over the Rauzy-Veech renormalization
R:C xAyq = C x Ay defined by

(50)  FRp:C xAgxRY 5O x A xRA, (m,\,0) = (R(m, ), O ,(v)).
Note that Fg(m,A,v) = (R"(m,A), O} ,(v)) for all n > 1, where
O" =07, =01 n-1-0p xOry and (7%, )) = R'(m,)).

In Proposition 4.3 below we obtain an important interpretation of this linear
cocycle. For each n > 1, let I be the domain of definition of B™(f) and (I ™) aeA
the corresponding partition into subintervals. The proposition asserts that each
entry ©F 5 of the matriz of O™ counts the number of visits of Iy to the interval Ig
during the induction time. Before giving the precise statement, we need to collect
a few basic facts. Notice that

, L R™(f)(x) if Penan (2) = 1
BR™Y ) (z) = R[R" x) = { . . ) ’
(@) = RIEDI@ = frpyo hrs) @) i rgnse (@) = 2
Consequently, R*(f)(z) = 7@ (z) where the nth Rauzy-Veech induction time
r™ =r2  is defined by

n if rn An (Z’) =1
rto=r, and r*tl(z) = { T””\(x) . 1 ™
= T 2 @) 4B E) e @) =2,

We shall write r™(I7) = r}} ,(I3) to mean r"(z) =]} | () for any z € I}.

Remark 4.1. If (m, \) satisfies the Keane condition then min{r"(z) : z € I"} goes
to infinity as n — oo. Indeed, recall that r™(z) is the (first) return time of z to the
interval I"™. By [21, Corollary 5.2], the interval I™ approaches the origin as n — oo.
By [21, Lemma 4.4], the origin is not a periodic point of f. Thus, the return times
must go to infinity, as claimed.

Lemma 4.2. The function r7 , is constant on Iy for any n > 1 and a € A.
Moreover, given any 0 < j < r"(I?) there exists 8 € A such that fi(I7) C Ip.

Proof. The case n = 1 is clear from the definition of the Rauzy-Veech induction.
The proof proceeds by induction. Suppose first that « is not the loser of (7™, A™).
Then I"+! C IT (they coincide unless « is the winner) and r"*1(z) = r"(z) for
every z € I"T!. So, both claims in the lemma follow immediately from the induction
hypothesis.

I =1t I oIt 1
I | | 1 | I 1 | |

T | | T |
Rr(f)(1 R ()(13)

FIGURE 8.

Now take a to be the loser of (7™, A"). Let w € A be the winner. Suppose first
that (7, A") has type 0. Then I"*! = I" and R"™(f)(I?*!) C I", as shown on the
left hand side of Figure 8. Hence,

"t (z) = (I7) +r"(I7) for all z € I7H,
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which proves the first claim. Moreover, f(I"*!) = fi(I?) for 0 < j < r™(I?) and
FIRM(f)IFY) C fi(IT) for 0 < j < r™(I"). Hence, the second claim in the
lemma follows directly from the induction hypothesis as well. Now suppose that
(7™, A" has type 1. Then I"+! C I and R™(f)(I™*') = I", as shown on the right
hand side of Figure 8. Hence,

r"t(z) = r(I7) +r"(I") for all z € I™F,
which proves the first claim. Moreover, f7(I?*+1) C fi(I?) for 0 < j < r*(I7) and

FRM(f)IHLY) € fI(I7) for 0 < j < r™(I™). Tn view of the induction hypothesis,
this proves the second claim in the lemma. O

In what follows we write ) , (I}) to mean the value of 77 , at any point of I.
Lemma 4.2 will be used in the proof of the next proposition, through the following
immediate consequence: for any 0 < j < r,’:’A(Ig), any J C I, and any € A, we
have

(51) fi(J) C Iz if and only if fI(I7) C I5.
Proposition 4.3. For every o, € A and everyn > 1,
o =#0<j <rpa(I3): F1(I13) C Ig}.

Proof. The case n = 1 is precisely (49). The proof proceeds by induction. Let
l,w € A be, respectively, the loser and the winner of (7™, A\"). We have
on ifa#l
®n+1 — On An)a n :{ a,B .

o8 %4( An)ay @7 0510, ifa=1L
Suppose first that o # [. Then I?*T! C I and r* ! (I7+!) = r*(I7). Using (51) we
get that f7(I7') C I if and only if f7(I7) C I, for any 0 < j < r™(I7). These
observations show that

#{0 < <rm IS fIUSTY) C I} = #{0 < j <r(I3) : 1) C I}

By the induction hypothesis, the expression on the right hand side is equal to

6p = @Z}l and so the statement follows in this case.

Now we treat the case @ = [. Suppose first that (7”,A") has type 0. Then
It =17 and R™(f)(I7*!) C I" (left hand side of Figure 8). Hence,

P IR = e (Ig) + " (1)
Using (51) we find that f7(R™(f)(I**")) C Iz if and only if f#(I) C I, for any
0 < j <r™(I%). Thus, the number of 0 < j < r™+1(I7+1) such that f/(I7+!) C I3
is equal to
#{0 <j <r™(I3) : fI(I5) C I} + #{0 < j < r™(I}) : f1(I}) C Ig}.

By the induction hypothesis, this sum is equal to G)Zﬁ +0er , = @Z}l. This

w?B -
settles the type 0 case. Now suppose (7™, A") has type 1. Then I"™! C I and

R™(f)(I™t1) = I™ (right hand side of Figure 8). Hence,
P I = eI + r™MI).

Using (51) once more, we find that f/(I"*!) C I if and only if f/(I7) C I, for
0 < j < r™(I?). Moreover, fi(R™(f)(I?*')) C I if and only if f/(I?) C I, for
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0 < j <r™(I7). Thus, the number of 0 < j < r™*1(I7+1) such that f/(I7+) C I
is equal to

#{0 <j <r™(Iy) : fP(Iy) C I} +#{0 < j <r™(I3) : f1(I3) C I}
This sum is equal to O, 5+ OF 5 = @Zj;l and so the proof is complete. |
From Proposition 4.3 we also get an alternative proof of [21, Corollary 5.3]:

Corollary 4.4. Suppose the interval exchange transformation f defined by (m, \)
is minimal. Then there is N > 1 such that @évﬁ >1 forall a, B € A.

Proof. We use the following equivalent formulation of minimality: given any com-
pact set K C I and any open set A C I, there exists N; > 1 such that for any
z € K we have f/(z) € A for some 0 < j < N;. Fix K to be the closure of the
domain I' of R(f). Then there exists No > 1 such that for any z € K and any
B € A we have fi(z) € Ig for some 0 < j < N>. By Remark 4.1, we may fix N > 1
such that r¥(z) > N, for all z € IV. Since IV C K, we get that for every a, 3 € A
and every z € I there exists 0 < j < r™V(z) such that f/(z) € Iz. Using (51) we
conclude that f7(IY) C I5 for any such j. In view of Proposition 4.3, this means
that O 5 > 1 for every o, 8 € A. O

4.2. For translation surfaces. The invertible Rauzy-Veech cocycle associated to
an extended Rauzy class C' is the linear cocycle over the invertible Rauzy-Veech
renormalization R : H — H defined by

(52) FR tH X RA = H x RAJ (71—7 AJ T, 'l)) = (R(ﬂ—a AJ T)’ ('-)TI',A(’U))'
Recall H = H(C) is the set of all (m,\,7) such that 7 € C, A € Ay, and 7 € T}.

c

B AR

N oo

' i fF@) b

¢ o
A (] ! ' ' '
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E L e

' = = :a
ffe) =
FIGURE 9.

Proposition 4.3 may be reinterpreted in terms of the suspension of the interval
exchange map f defined by (m, A), as follows. Take the suspension surface M to be
represented in the form of zippered rectangles, corresponding to data (w, A, 7, h).
Let us recall some notation from Section 3. For each z in the basis horizontal
segment o and for each k¥ > 1, let [y(z, k)] € Hi(M,R) be the homology class
represented by the vertical geodesic segment from z to f*(x), with the endpoints
joined by the horizontal segment they determine inside o. See Figure 9. Moreover,
for each 8 € A, let [ug] be the homology class represented by a vertical segment
crossing from bottom to top the rectangle labeled by 3, with its endpoints joined
by a horizontal segment.
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Corollary 4.5. Foranyn >1, a € A, and x € I7,

[(@,r™(I3)] = Y O slvs)-

BEA

Proof. Proposition 4.3 means that the vertical geodesic segment «(z,r"(z)) in-
tersects each horizontal segment Iz x {0} C o exactly OF ;5 times. Equivalently,
v(z,r™(z)) crosses OF ;5 times the rectangle labeled by each 8 € A. The claim
follows immediately. d

4.3. Zorich cocycles. Recall that n(w,A) > 1 is the smallest integer for which the
type of R"(m, \) is different from the type of (m,\). Let Z(mw,\) = R™™N (7, ))
be the Zorich renormalization and Z(w,\,7) = R™™ (7, \,7) be its invertible
counterpart, as introduced in Section 1.1 and 1.2. Now we let

(53) =Ty =0"TY

and introduce the Zorich cocycle Fz(m,\,v) = (Z(m,A), Tz A(v)) and the invertible
Zorich cocycle Fz(m,\,7,v) = (Z(m,\,7),Tra(v)), for v € RA.  According to
[21, Section 30], there exists a unique ergodic Z-invariant probability measure u
absolutely continuous with respect Lebesgue measure along A 4. Moreover, Z is
equivalent to the natural extension of Z, up to zero measure sets. Hence, F’z may
be seen as the natural extension of Fz, in the sense of Remark 2.3, and so the two
cocycles have the same Lyapunov spectrum. We are going to see, in Proposition 4.7,
that this Lyapunov spectrum is indeed well defined. Before that, let us translate to
this setting of Zorich cocycles the properties of Rauzy-Veech cocycles we have just
obtained.
By definition, the Zorich induction Z(f)(z) = R™™ (f)(z) = f*(®) (), where

@) = 2nale ) =13V (@)
More generally, Z™(f)(z) = R"" (™2 (f)(z) = f=" @) (z) for all m > 1, where
m—1
(54) Z n(Z(m, ) and 2™(z) = 20\(z) = r:’";\(”’)‘) (x).
7j=0

Denote by J™ = Iy "(mA) o € A the partition subintervals corresponding to the
interval exchange map Z™(f) = R™" (™M (f).
We shall write 2™ (J5') = 27"\ (J') to mean 2™ (z) = 2], (z) for any z € J'.

Corollary 4.6. For every a,f € A and every m > 1,
(1) T35 = #{0 < j < 2\ (J3) « f7(J3) C Ip} and
(2) (@, 20\ (I8 )] = YXgeaTa slvs] and
(3) z;f/\( ) = E,BeA Fag

Proof. Parts 1 and 2 follow directly from Proposition 4.3 and Corollary 4.5, respec-
tively, simply by restricting the conclusions to appropriate subsequences. Part 3 is
obtained summing the equality in part 1 over all 5 € A. a

Now we check that the Zorich cocycles satisfy the integrability condition in the
Oseledets Theorem 2.2. For convenience, in what follows we take the norm of a
vector or a matrix to be given by the largest absolute value of the coefficients.
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Proposition 4.7. The functions (m,\) — log™ ||Fff1/\ | are integrable relative to the
invariant probability measure p of the Zorich renormalization Z.

Proof. Notice that detT'; x = 1 for all (m,A) € C' x A4. So, in view of our choice
of the norm, ||Tx | = ||I‘;’1/\|| > 1 for all (m,A). Thus, we only have to prove that
(m,A) = log ||T'x, Al is integrable. We use

Lemma 4.8. Let w = a(e) be the winner of (m,)\) and s = ;" (w) be its position
in the other line of the pair w. For any integer L > 1,

max To> L & Aage) > L POPYE
*pe m1—e(B)>s

I I l 1
a(e) m—e(B) > s

FIiGURE 10.

Proof. During the n(m, \) iterates that define I'; x the winner does not change.
Consequently, for all the matrices © gi(r ), 0 <4 < n(m, A) involved, we have

0. 1= 1 if either a = 8 or a = loser and 8 = w
@8 =1 0 in all other cases.

It follows, by induction on the iterate, that
1 ifa=p

(55) Fap=4 0 ifa£B#w
number of times « is the loser if a # 8 = w.

The losers during those iterates are 7, . (d), ..., m; . (s + 1), in cyclic order. See
Figure 10. Therefore,

g;ig Lop Z Ag < )‘a(s) < fxn;?u}f Lop Z Ag,
Wl—s(ﬁ)>s 7"1—5(6)>5
and the difference between the maximum and the minimum is at most 1. As a
direct consequence, we get that for any integer L > 1,
ar%%}itra’ﬁ >L & /\a(s) >L Z )\5,
m1—e(B)>s
just as we claimed. The proof of Lemma 4.8 is complete. O
Let us proceed with the proof of Proposition 4.7. Let N denote the set of integer

vectors n = (Ng)aeca such that ny, > 0 for all @ € A, and the n, are not all zero.
For each n € N, define

A(n) ={A €A :27" < \od < 27" for every a € A},
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except that for n, = 0 the second inequality is omitted. By [21, equation (111)],
there exists a constant K > 0 such that

1
(i) x Aw) = [ di < K2 manans
A gg A-h?

Lemma 4.8 implies that, for any integer L > 1,
||le| >L = /\a(s) > L)\a(l,g) = )\a(l,s) < L1
Taking L = 2*d, with k > 0, we find that

IFzll > 28 = Xa_gd<27F = e [J A®m).

max nq >k

For each k > 0 there are at most (k + 1)? vectors n € N with maxan, = k. So,
the previous observations yield

WA > 25a) <3 S wAm) < 3O KA+ 1)1 < Kk + 1)
=k

=k max n,=l

for some constant K'. This inequality implies that ||[Fz||’ is u-integrable for all
0 < 1. In particular, log || Fz|| is p-integrable. O

This proposition ensures that Zorich cocycles have well defined Lyapunov expo-
nents which, since the measure p is ergodic, are constant on a full y-measure set.
Next, we analyze the corresponding Lyapunov spectra.

5. LYAPUNOV SPECTRA OF ZORICH COCYCLES

5.1. Symmetry. First, we prove that these Lyapunov spectra have a symmetric
structure:

Proposition 5.1. The Lyapunov spectrum of the Zorich cocycle Fz corresponding
to any connected component of a stratum Ag(mq,...,my) has the form

b >260>---20,>20=---=0>—-0;>---> 6> -6
where 0 occurs with multiplicity k — 1.

Proof. The proof has three main steps, corresponding to Lemmas 5.2 to 5.4. First,
we exhibit a 2g-dimensional subbundle H which is invariant under Fz. Next, we
prove that the Lyapunov exponents corresponding to Oseledets subspaces transverse
to H are all zero. Then, we check that the restriction of Fz to the invariant
subbundle preserves a symplectic form, and so its Lyapunov spectrum is symmetric
around zero. Let us detail each of these steps.

Let H = {(m,A\) x H,} be the subbundle of C' x A4 x R* whose fiber over each
(m,X) € C x A4 is the subspace H, = Q,(RA) defined by (10). Since Q) is anti-
symmetric, H, is the orthogonal complement of ker Q2. By [21, Proposition 16.1]
and [21, Lemma 16.3], we have dimker Q, = k — 1 and dim H, = 2g, where & is
the number of singularities and g is the genus.

Lemma 5.2. H, is invariant under the linear cocycles Fr and F.
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Proof. Let (7', \') = R(m, ). The relation (13) implies ©~1* (ker Q) = ker Q.. In
other words, the subbundle whose fiber over each (m,\) € C x A is the subspace
ker Q2; is invariant under the adjoint cocycle

Fg™ :(m A\ v) = (7', N, 07 (v)).
Since H, is the orthogonal complement of the kernel, it follows that the subbundle

H is invariant under the Rauzy-Veech cocycle Fg. Consequently, H is invariant
under the Zorich cocycle Fz(m,\,v) = Fg(”’k) (7, A\, v) as well. O

Let us denote (7™, A") = R™(m, \), for generic (m,A) € C x A4 and n > 1.

Lemma 5.3. There exists Cy > 0 such that the component of every @ﬁ)\(v) or-
thogonal to Hy» is bounded by Cyl|v|| for any (7, A,v) and any n > 1.

Proof. Let o be the permutation of {0,1,...,d} defined by
p1i(1) -1 if j=0

(56) o(j)=49 d if j =p~'(d)
p ' (p(j) +1) =1 otherwise.

According to [21, Section 16], to each orbit O of ¢ not containing 0 one may as-
sociate a vector A(0) € R4 such that these A(Q) form a basis of kerQ,. The
dynamics of © '* on the invariant subbundle {(m, \) x ker 0} is trivial: the im-
age of every A\(O) coincides with some element A(O') of the basis of ker Q.. It
follows that for every n > 1 there exists a bijection O — O™ between the set of
orbits of o not containing 0 and the set of orbits of ¢™ not containing 0, such that
O~ "(A(0)) = A(O") for all O. Then,

A(O™) - O™ (v) = O™(A(O™)) - v =A(0) -v for every v € ker Q, and every O.

This implies that the component of ©™(v) in the direction of ker Q.= is bounded in
norm by Cp||v||, for some constant Cj that depends only on the choice of the norm
(Co =1 if the bases {A(O)} are orthonormal). O

Recall that Fz and the invertible Zorich cocycle Fz have the same Lyapunov

spectrum. Let E. , _be any Oseledets subspace of Fz transverse to H. Given any
non-zero v € EX , and n > 1, denote v, = T2 , (v). Write v, = v}l + v, where v}
is the projection to H and vX is the projection to the orthogonal complement of

H. According to Lemma 5.3, |[vX|| < Col|v|| for all n. Moreover, given any € > 0,
loX|| > e=="||vF|| for all large n,

because the angles between the iterates of E. , and the subbundle H decay at most
sub-exponentially (part 3 of Theorem 2.2). This implies

el < [Jvall < e*"|jv]|  for all large n.

Thus, the Lyapunov exponent corresponding to Efr’ 4 is smaller than 2¢ in absolute
value. Since ¢ is arbitrary, the exponent must vanish, as we claimed.

The expression (12) defines a symplectic form w on the invariant subbundle H,
and we have seen that every O y : Hy — Hy is symplectic relative to the forms
wx and w,r. In other words,

Lemma 5.4. The symplectic form w is invariant under both Fr and F.

By Proposition 2.6, this implies that the Lyapunov spectrum of Fz restricted to
H is symmetric around zero. This ends the proof of Proposition 5.1. |
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5.2. Extremal Lyapunov exponents. The final step in Proposition 5.5 is to
show that the extremal exponents have multiplicity 1:

Proposition 5.5. The largest Lyapunov exponent 81 and the smallest Lyapunov
exponent —601 of every Zorich cocycle Fz are simple, and the same is true for the
adjoint cocycle F, I

A much stronger fact will be obtained later, in Theorem 7.1: all Lyapunov
exponents +£6; are distinct and non-zero.

Proof. By Proposition 5.1 the spectra of Fz and F, 1* are symmetric with respect
to the origin. By Proposition 2.7 they are symmetric to one another. Thus, it
suffices to prove that the smallest exponent of the adjoint cocycle F, * is simple.
This is done as follows.

By Corollary 4.4, for almost every (m, A) we may find N > 1 such that @fj g=>1
for all o, 3 € A. Then the same is true for every ©F, k > N and, in particular,
I";ﬂ >1forall a,8 € Aand k > N. Let (m,\) and N be fixed. In view of the
Markov structure of the Zorich renormalization described in [21, Section 8], A is
contained in some subsimplex D of A4 such that ZV | {z} x D is the projective
map defined by I'~V* and maps the domain bijectively to {7} x A~ ;_.. Since
the coefficients of T™V* are all positive, D is relatively compact in A 4. See Figure 11.

Aa Aa
' F—N*
D
A7rN,176
FIGURE 11.

By Poincaré recurrence, for p-almost every (mw, ) € {r} x D there exists a first
return time p(w,A) > N to the domain {7} x D under the map Z. Note that
u({r} x D) > 0, since u is positive on open sets. The normalized restriction pp
of the measure p to the domain {w} x D is invariant and ergodic under this return
map 3 }

Z:{n}xD = {r}x D, Z(m ) = Z°™N(x,\).
The adjoint Zorich cocycle induces a linear cocycle Fy over Z, given by
Fr(m,\v) = (Z(r,0),Txp(v)), T =Tnn=05"Y%

Corollary 5.6. The functions log™ ||T=!|| are up-integrable, and the smallest Lya-
punov exponent of the adjoint Zorich cocycle F, I for w is simple if and only if the
smallest Lyapunov exponent of Fy is simple at pp-almost every point.

Proof. Proposition 4.7 implies that log™t ||[T+V|| are p-integrable. So, the first state-
ment in the corollary follows immediately from part (2) of Proposition 2.9, applied
to F = F;N*. Moreover, part (3) of Proposition 2.9 gives that the Lyapunov ex-
ponents of F; at a generic point z are the products of the Lyapunov exponents of
F,N* by some constant c(z), that is, they coincide with the products by Ne(z) of
the Lyapunov exponents of F, 1* The last statement in the corollary is a direct
consequence. O
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_ Thus, to prove Proposition 5.5 it suffices to show that the smallest exponent of
Fy is simple. Let C = {v € R : v/|v| € D} be the cone associated to D. The
definition of T implies that

Bl oA A —N)* A A

FARY) = T (R = TS (MU (RY) € TS (R <
for every (m,\). Thus, the cocycle Fz admits a backward invariant cone which
is relatively compact, in the sense that its intersection with the simplex A4 is
relatively compact inside the simplex. So, at this point the proposition is a direct
consequence of the following Perron-Fribenius type result:

Lemma 5.7. Let F : M x R - M x R?, F(z,v) = (f(z), A(z)v) be a linear
cocycle over a transformation f : M — M, such that log™t ||A*!|| are integrable
with respect to some f-invariant probability v. Assume there exists some relatively
compact cone C C R} such that A(z)"*(R}) C C for all z € M. Then the smallest
exponent of F with respect to v has multiplicity 1 at almost v-every point.

Proof. There are two main parts. First, we identify the invariant line bundle as-
sociated to the smallest Lyapunov exponent A(z). Then, we prove that any vector
outside this invariant subbundle grows, under positive iteration, at exponential rate
strictly larger than A(x).

Since C is relatively compact, it has finite diameter relative to the projective
metric on the cone R? (see Birkhoff [4] for the definition and properties of projective
metrics). Consequently, every A(z)~! : RL — C is a contraction with respect to the
projective metric, with uniform contraction rate (depending only on C). It follows
that the width of A™(z)~'(R{) is bounded by C1e~9", for some C; >0 and a > 0
that depend only on C. In particular, the intersection of all these cones reduces to
a half-line at every x € M:

(57) (] A™(=z) ™ (RY) = Ry &(x)
n=1

for some vector £(x) € C which we may choose with norm 1. It is clear from
(57) that the line bundle R{(z) is invariant under the cocycle F. Let A(z) be
the corresponding Lyapunov exponent. We claim that any vector v which is not
in RE(x) grows, under positive iteration, at exponential rate larger or equal than
A(z) 4+ a. This implies that all the other Lyapunov exponents are at least A(z) + a,
which proves the lemma. Thus, we are left to proving this claim.

Let v be any unit vector outside R¢(x). It follows from the definition (57) that
some iterate of v is outside the cone Rf'. Thus, it is no restriction to assume right
from the start that v ¢ ]Rﬁ. Since £(y) € C for every y € M, the coefficients of any
&(y) are uniformly bounded from zero. Hence, there exists ¢; > 0, depending only
on this bound, such that

A™(z)v A™(z)¢(x) A™(z)v

— n A
@l TAn@e@ ~ TAne ~ o €07 (@) € B for everyn 2 1

Then, by the considerations in the previous paragraph, the angle between £(x) and
£(z) i A"(z)v A" (z)€(z)
= A" (z C
[l A (z)v]| A ()& ()| (@) <IIA"(:E)UII ' IIA"(w)E(iL’)II)

is bounded by Cie9". Since v ¢ R{! and ¢(z) € C, the angle between £(z) and v
is bounded below by some constant ¢, > 0 that depends only on the cone C. Thus,

+c
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the previous property implies that

4 @E@] .,
An(oy] <™

where the constant C> depends only on ¢;, ¢z, and C1, and so is determined by the
cone C. This implies that

[A™(@)ol| > C5 '™ ||A™ (2)€(w) || > c(z)eM ) tem,
for every n > 1 and v ¢ Ry £(z), as claimed. O
At this point the proof of Proposition 5.5 is complete. a

5.3. Extremal Oseledets subspaces. Recall that Fz and the invertible Zorich
cocycle Fz have the same Lyapunov spectrum. Besides, the same is true for the
adjoint cocycle F5 1*as a consequence of Propositions 2.7 and 5.1. For either of
these invertible cocycles, we are going to give an explicit description of the Oseledets
subspaces associated to the extremal Lyapunov exponents 46, .
Let us start with the cocycle Fz. For each © = (m,A,7) € H, consider the
following subspaces of RA:
e E? = line spanned by w = Q,(A) and E¥ = line spanned by h = —Q(7)
o EY = wy-symplectic orthogonal to EY @ EJ, that is,

E¢ ={veR":w,(v,w) =0 for all w € E* ® E}.

EY is not symplectic orthogonal to E2: indeed, w,(Qr(A), (7)) = =X - Q(7)
is strictly positive, since both A and h = —Q.(7) have only positive coordinates.
Thus, E¢ has codimension 2 and RA = E¥ @ E¢ @ E2.

Lemma 5.8. The splitting E* @ E° ® E® is invariant under the invertible Zorich
cocycle Fz. Moreover, E* corresponds to the largest Lyapunov exponent 61, E°
corresponds to the smallest Lyapunov exponent —61, and E° corresponds to the
remaining Lyapunov exponents.

Proof. Let (n',X,7') = R(m, A\, 7). The relations (5) and (13) and (24) imply that
0(2:(N\) =2 (07*(N) = Qu(N) and O(Q, (7)) = Qu (7).

This proves that E* and E* are invariant under the invertible Rauzy-Veech cocycle
Fgr. Then the symplectic orthogonal E° is also invariant since, by (13), the cocycle
Fr preserves the symplectic form w,. It follows that all three subbundles are
invariant under the Zorich cocycle F'z as well.

Since h = —Qx(7) lies in the positive cone, and the matrices of Fz have non-
negative coefficients, E* must be contained in the Oseledets subspace corresponding
to the largest Lyapunov exponent. As this exponent is simple (Proposition 5.5),
it follows that E* coincides with that Oseledets subspace. This implies that E*
corresponds to the smallest Lyapunov exponent, since it is an invariant direction
which is not contained in the symplectic orthogonal to E* (recall the arguments
following Proposition 2.6). Then the complementary invariant subbundle E° must
coincide with the sum of the Oseledets subspaces corresponding to the remaining
Lyapunov exponents. O

Now we deal with the cocycle F;'*. For each z = (m,,7) € H, define

e E7* = line spanned by A and E}* = line spanned by 7
e E¢* = w!-symplectic orthogonal to EX* & E=5*.
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E¥* is not symplectic orthogonal to E2* since wl(A,7) = —A - Qg (7) is strictly
positive. Thus, ES* has codimension 2 and R* = E¥* @ E* @ E2*.

Lemma 5.9. The splitting E** @ E* & E** s invariant under the adjoint cocycle
Fgl*. The subspace E“* corresponds to the largest Lyapunov exponent 61, the sub-
space E** corresponds to the smallest Lyapunov exponent —61, and E* corresponds
to the remaining Lyapunov exponents.

Proof. The relations (5) and (13) and (24) imply that E** and E®* are invariant
under Fz'*. From [21, Lemma 10.2] and (53) we get that

(58) Qe T~ (v) = T, (v) for every n € Z and v € RA.
Since the set of combinatorial data 7™ is finite, the norms of the Q,» are uniformly

bounded. Thus, taking v = 7 and n > 0 in (58), and using Lemma 5.8,

1 1
i — - > in — n =
lim = log [~ (r)]| > Tim~log [T ()] = 61,

n—

and so the Lyapunov exponent of the cocycle Fz * along the invariant direction
E¥* = Rr is equal to ;. Analogously, taking v = A and n < 0 in (58), and then
using Lemma 5.8 once more,
1 n 1
.1 s < lim 1 n - o
im = log [P ()] < lim_—log T2 (V)| =~y

and so the Lyapunov exponent of the cocycle F * along the invariant direction
EZ* = RX is equal to —6,. It follows that E°* is also invariant under F; * and
coincides with the sum of the remaining Oseledets subspaces. |

6. ZORICH COCYCLES AND TEICHMULLER FLOWS

In this section we relate the Lyapunov spectrum of the Teichmiiller flow, on each
connected component of stratum, to the Lyapunov spectrum of the corresponding
Zorich cocycle:

Proposition 6.1. The Lyapunov spectrum of the Teichmiiller flow on any con-
nected component C of a stratum Ag(ma,...,my) has the form

{f1+y:i=1,...,g}U{l,...,1}U{=1,...,—1}
where £1 appear with multiplicity k — 1, and v; = 6;/61 fori=1,....9.

Proof. Let us begin by recalling the construction in [21, Section 20]. The pre-
stratum S = S(C) associated to a Rauzy class C' is the quotient of the space

H={(m\7):m€CAER}, T TS}

by the equivalence relation generated by

(59) (m, "X, €77 T) ~ R(m, A, 7) = (1,07 ('R X), 071 (e 'R ),
where the Rauzy renormalization time tg = tg(m, \) is characterized by
(60) |0~ (e * )] = |A].

By definition, the Teichmiiller flow Tt, t € Ron S is the projection under the
quotient map of the flow defined on H by

(61) (T, A7) = (m, et A, e 7).
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The image S C S of the subset % = {(m,\,7) € H : |A| = 1} under the quotient
map is a cross section for the Teichmiiller flow: the return time coincides with the
Rauzy renormalization time and the Poincaré return map is identified with the
Rauzy-Veech renormalization R : H — H. From (59) and (61) we see that the
derivative of the time-tp map of the Teichmiiller low has the form

( et~

(62) DTtR(’/Ta)‘JT) = 0 e—tR(_)—l*

) :RA x RA = RA x RA.

We also consider a smaller cross-section S, C S which is the image under the
quotient map of Z, = {(m,\,7) € Zo U Z; : |A] = 1}. Recall Z. C H is the set
of all (m,A,7) such that (w,)\) has type € and 7 has type ¢, for ¢ = 0,1. The
corresponding Poincaré map coincides with the first return map of R to the cross-
section, which is the Zorich renormalization Z, and the first return time is the
Zorich renormalization time

n(m,A\)—1
(63) tz =tz(mA\) = Y ta((7,N),
7=0
which is also characterized by (recall (53) and (60))
(64) T (e M) = Al

Using (53) and (63), one immediately gets an analogue of (62) for the derivative of
the time-tz map of the Teichmiiller flow:
etz —1* 0

(65) DTtZ (7T5)\3T) = ( 0 etz 1*

);RAxRAaRAxRA.

These matrices P(m,\,7) = DTt (w,\,7) define a linear cocycle over the Zorich
renormalization Z, that we denote by Fp. The nth iterate is described by

etz 0 )

(66) p (777)‘77—) = D’T’tz (777)‘77—) = ( 0 e—yzl]_"—n*

where
n—1
th =t3(m,\) = > _ tz(Z7(x,\)).
7=0
We are going to relate the Lyapunov spectra of the Teichmiiller flow and the Zorich

cocycle through the Lyapunov spectrum of this cocycle Fp. For this we need

Lemma 6.2. For u-almost every (m, A),

1
lim —t%(m, A) = 6;.

n—oo N

Proof. From the definition (64),

—1x% A *
(67)  0<ty(m ) = —log[TZ (V)] = log —A < log (d[|T% )
TN

(take the norm of a matrix to be given by the largest absolute value of the coeffi-
cients). Then, since ||y ;|| = ||T'z,xl|, Proposition 4.7 immediately implies that the
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function (mw,A) — tz(m, A) is p-integrable. Thus, we may use the ergodic theorem
to conclude that

n—1

1 1 .
lim —t%(w,A) = lim — E tz(Z7(m, )
j=0

n—oco N n—0oo N
exists, at almost every point. Moreover, analogously to (67),

Al .
ey S log (T 1) = log (dIT7 4]
|F7r,)\ (’\)l ( A ) ( A )

for every n > 1. Consequently, applying Theorem 2.1 to the Zorich cocycle Fz,

tz(m A) = —1log [T X" (V)| = log

N o1 no_
(68) nlggo EtZ(ﬂ-v A) < 7}1_{20 o log [T All = 61 -

Next, fix some compact subset K of the simplex A4 and some positive constant
¢ = ¢(K) such that every vector v € K satisfies v, > ¢ for every a € A. By
ergodicity of the Zorich renormalization ([21, Theorem 8.2]), there exist n; — oo
for which A% /|A"| € K and so Ao’ > c¢|A\"%| for all @ € A and all j > 1. For these
iterates,

ty (m,A) =log ———— > log (c|[T2%]]) = log (c||T7,]])-
T (NI ’ ’

In view of the previous observations, this implies that

7 1 n H 1 n
(69) Jim EtZ(ﬂ-a A) 2 lim - log [T All = 61 -
The relations (68) and (69) prove the claim of the lemma. O

From (66) we immediately see that if E, is an Oseledets subspace for F, e
corresponding to a Lyapunov exponent 8, then E, x {0} and {0} x E,, are Oseledets
subspaces for Fp, corresponding to exponents

R S
0 +n11_>n;o EtZ(W’)\) and 6 — T}eréo EtZ(W’A)’

respectively. Therefore, using Lemma 6.2,

Lyap spec(Fp) = (Lyap spec(Fz"*) + 6:) U (Lyap spec(Fz"*) — 61)
(for any ergodic Z-invariant probability). From Propositions 2.7 and 5.1 we get
that Lyap spec(F3z'*) = Lyap spec(Fz). Thus,
Lyap spec(Fp) = (Lyap spec(Fz) + 61) U (Lyap spec(Fz) — 1) .

= {iﬁliﬁi 1= 1,...,g}U{:|:01,...,:l:01}

where the exponents +£6; appear with multiplicity k — 1. The definition (66) also
gives that if E, is an Oseledets subspace for the derivative D7? of the flow, cor-

responding to Lyapunov exponent 6, then it is also an Oseledets subspace for Fp,
corresponding to the exponent

(70)

N
Hnlgréo Etz(ﬁ,/\).
Using Lemma 6.2 once more, we conclude that

(71) Lyap spec(Fp) = 6, Lyap spec(T).
The statement of the proposition follows by combining (70) and (71). O
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Notice that 1 —v; = 0 = —1 4+ v; and, in view of Proposition 5.5, these are the
only vanishing Lyapunov exponents for the Teichmiiller flow. The corresponding
Oseledets subspace may be described explicitly:

Corollary 6.3. The wvanishing Lyapunov exponents of the Teichmiiller flow are
associated to the invariant 2-dimensional subbundle

E%® = (R)\,0) @ (0,Rr) C R x RA, 2= (m,\,7).
The dynamics on this subbundle is trivial: up to an appropriate choice of bases,

DTt | E® =id for every z € S and t € R. The intersection of E®° with the tangent
space to the hypersurfaces of constant area coincides with the flow direction.

Proof. From the proof of Proposition 6.1 we see that the Lyapunov exponents
1—v =0and —14+wv; =0 arise from (E2*,0) and (0, E¥*), where E* and E}* are
the Oseledets subbundles of F'7 1* associated, respectively, to the smallest Lyapunov
exponent —6; and the largest Lyapunov exponent 6;. By Lemma 5.8, E5* = R\
and E¥* = Rr. This proves the first claim in the lemma.

To prove the second one, consider the basis {(),0),(0,7)} of the plane E%,
defined for each z = (7, A, 7) € S. From (62) we get that

DT**(z)(A,0) = (X,0) and DT'*(z)(0,7) = (0,7),

where (7', X, 7') = R(m,\,7) = T®(w, A\, 7). This means that DT ®(z) = id for
every x© € S, relative to these bases. Then, since R is the first return map to the
cross-section S, there exists a unique extension of the basis of E% to every z in the
pre-stratum S, relative to which DT*(z) = id in all cases.

From the definition (21) of the area we immediately see that the tangent space
to the hypersurfaces of constant area at each point z = (m, A, 7) is the hyperplane
of all (\,7) € RA x R* such that

A Qe (r) +X-Q,(7) =0.
So, its intersection with E% is the space of all (a), br), a,b € R such that
aX - Q (1) +X-Q(br) =0, thatis a+b=0.

In other words, the intersection is the line R(A, —7). It is clear from the form of
the Teichmiiller flow, that the tangent vector field is (w,A,7) — (A,—7). This
completes the proof. O

7. ASYMPTOTIC FLAG THEOREM: PRELIMINARIES

We call restricted (respectively, invertible restricted) Zorich cocycle the restric-
tion of F (respectively, Fiz) to the invariant subbundle H = {(m, \) X H.}. Recall
Lemma 5.2. For simplicity, we also denote these restrictions by Fz and Fz. Ac-
cording to (29), we may consider them to act on the trivial fiber bundles

CxAqx H(M,R) and Z, x H'(M,R),
respectively, with their adjoints F;'* and F;'* acting on

C x A x Hi(M,R) and Z.x H,(M,R),
respectively. Consider on H, and RA/kerQ, the Riemann metrics induced by
the canonical metric in R4. Then endow H; (M, R) and H' (M, R) with the metrics

transported through the identifications in (27) and (28). In view of Proposition 6.1,
Theorem C may be restated as
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Theorem 7.1. The Lyapunov spectrum of every restricted Zorich cocycle is simple:
01>60>-->0,>—-0,>--->—0,>—0;.

An outline of the proof of this theorem will be given later in Sections 9 through 12.
Here and in the next section we are going to prove Theorem B from Theorem 7.1.
For this, we need to recall some terminology.

Let 0 = I x {0} be the basis horizontal segment in a representation of the
surface M as zippered rectangles. We have seen in Section 3 that to each v(p,)
we may associate a vertical segment y(z,k) with endpoints in o, such that the
difference [y(p,1)] — [y(x, k)] is uniformly bounded in the homology. Moreover, k
and [ are comparable, up to product by the area of the surface. Recall the relations
(45) and (46). Up to identifying H;(M,R) ~ R*/kerQ, through (27), part 2 of
Corollary 4.6 may be written as

(72) Dz, 2™@)] = Y [vslTas = Y [vs]T5% = T (val)
BeA BeA

for every z € J™. The annihilator of a subspace L C Hi(M,R) is the subspace
L+ of all ¢ € H'(M,R) such that c-¢ = [ ¢ vanishes for every ¢ € L. Recall (30).
Then, for any ¢ € Hy(M,R) and any subspace L C Hy(M,R),

dist(c, L) = max{|c - ¢| : ¢ € L*,||g]| = 1}.
Let us choose the exponents v; and the subspaces L; in Theorem B as follows:

e U, = 0,‘/01 and
e L; C Hi(M,R) is the sum of the Oseledets subspaces corresponding to the

Lyapunov exponents 01, ...,0; of the linear cocycle F7 v
In view of (41), this means that the annihilator of L; is the sum of the Oseledets
subspaces associated to the Lyapunov exponents 8;41,...,0y,—0,,...,—61 of the

linear cocycle F'z. Then, Theorem B is an immediate consequence of

Theorem 7.2. For every 1 <i < g and any ¢ € L;- \ L},

 log|h@ k)¢
73 hm sup—m—mm@™@™
(73) mSUp o

i+1’
=vip1 uniformly in x € 0.

Moreover, |[fy(m, k)] - ¢>| is uniformly bounded, for every ¢ € L;—.

The proof of Theorem 7.2 occupies both this and the next section. All the
arguments in the two sections are for g-almost every (, A). In particular, we assume
from the start that the associated interval exchange transformation is uniquely
ergodic.

7.1. Preparatory results. Recall that we represent by {e, : @ € A} the canonical
basis of RA. For each a € A and m > 1,

T, X ea Z Fmﬁeﬁ
BeEA

is the a-line vector of the matrix of I‘;”, A

Proposition 7.3. For every a € A,

1
lim — log [T} (ea)|| = 61

m—o0 M
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Proof. The conclusion is independent of the choice of the norm: during the proof
we take it to be given by the largest absolute value of the coefficients. From Theo-
rem 2.1 we immediately get that, y-almost everywhere

(74) timsup - log [T (ea)| < Tim_— log [T7,] = 6.

m—0o0

So, we only have to prove the lower bound: for every § > 0 and a € A,
(75) lim inf — log |T'} (ea)l| 2 61 =4,

p-almost everywhere. To this end notice that, as a consequence of Corollary 4.4,
the entries IV 7,5 of the matrix of I’ 7 » are eventually positive, for y-almost every
(m,A). In partlcular w(V) =1 when I = oo, where

Vi={(mA): T}, s> 1forall @, € Aandall j >1}.

Fix e small enough so that (61 — ¢)(1 — 2¢) > 61 — 4, and then let [ > 1 be fixed
such that pu(V;) > 1 —e. By ergodicity,

lim —#{0<J<m Z(m, A) € Vi} = (W),

m—oo M

for p-almost all (w,A). Thus, on a full y-measure set we may find N = N(x, )
such that for every m > N we have
1 :

(76) —#0<j<m:Z)(mA) €Vi} 2 p(Vi) —e 21~ 2¢
and also, recalling (74),

1
(77) log||F M€ (01 —€,601 +¢).
Let n > 2N + 1. Taking m =n — [ in (76), we get that there exists j(n) such that
(n—=10)(1-2) <jn) <(n-1)and
(78) 77 (7, ) € V.
In particular, j(n) > 2N (1 — 2¢) > N (assume ¢ < 1/4 from the start), and so we
may take m = j(n) in (77):
(79) log IS || > j(n) (61 = e).

From (78) and n — j(n) > | we see that the entries of I‘ZJ_(ZL()T(LZF » are all positive.

Therefore, for any a € A,

Iz Ceall = TR (gl eal) Il > TR = TR -

Using (79) we conclude that
log IT77x(ea)ll = j(n) (61 — &) > (n = 1)(1 = 2¢)(61 — &),
and so

11m1nf 10g||F vea)|| > (1 —2e)(61 —e) > 61— 0

for every a € A. Thls completes the proof of (75) which, together with (74), implies
the proposition. O

Proposition 7.4. For any a € A, there exist 0 < I; < --- < lg such that
{Fw “(ea) 18 =1,...,d} is a basis of R*.
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Proof. By [21, Theorem 28.1] and [21, Remark 19.3], for almost every (m, A) the
intersection of all ®l*(Rﬁ), I > 0 coincides with the half-line spanned by A. Since
this intersection is decreasing and, by the definition (53), the I'* are a subsequence
of the ©!, we also have that the intersection of all I‘l*(Rﬁ), I > 0 coincides with
R, A. This implies that T'*(e,) converges to the direction of A in the projective
space, as | — oo. Let E C R* be the subspace generated by the T'*(ey), I > 0.
Since E is a closed subset, the previous observation implies that A € E. Suppose
the conclusion of the proposition is false, that is, the subspace E has positive
codimension. Then the subspace spanned by the (integer) vectors I'*(ey), I > 0
inside @Q* also has positive codimension. Let ¢ € Q* be a non-zero vector in
the orthogonal complement to this subspace. Then every vector in E is rationally
dependent:

Z Gove =0 for every v € E.

acA
This is a contradiction, because A is rationally independent (for almost every \).
This contradiction proves that the T'**(ey), I > 0 span the whole RA. Thus, we
may choose [; < --- < lg as in the statement. O

7.2. Special subsequence. The proof of Theorem 7.2 is long and combinatorially
subtle. In order to motivate the strategy and help the reader keep track of what is
going on, we begin by stating and proving a special case where k runs only over the
subsequence of Zorich induction times 2™ (x): the arguments are much more direct
in this setting, while having the same flavor as the actual proof. This special case is
not really used in the sequel, so the reader may also choose to proceed immediately
to the next section.

We represent by J™ the domain of the mth Zorich induction Z™(f), for any
m > 1, and by {J7: a € A} the corresponding partition into subintervals. Corre-
sponding to the case m = 0, we let J =T and J, = I, for any a € A.

Proposition 7.5. For every 1 <i < g and ¢ € L \ L, ,,
L log e, 2m@)] -6
im sup
m—roo log z™(x)
This is an immediate consequence of Lemmas 7.6 through 7.8 below.

=Vip1 uniformly inxz € J™.

Lemma 7.6.

1
lim —logz™(x) =61 wuniformly inxz e J™.
m—o0 M

Proof. By Corollary 4.6, 2™(z) = ZBEA Iy g for every a € A and z € J7'. Conse-
quently,
: m* < M < m*
mig ([0 (ea)]| < 2™ (z) < dmax [T (ca)

for every z € J™ (take the norm of a vector to be given by the largest absolute
value of its coefficients). Proposition 7.3 asserts that m ! log ||[T"™* (e, )|| converges
to 6, for every a € A. Using this fact on the left hand side and on the right hand
side of the previous formula we get that m~! log 2™(x) converges uniformly to 6,
as claimed. |

Lemma 7.7. For every 1 <i < g and ¢ € H*(M,R) \ L}, ,,

1
lim sup - log |[Y(z,2™(z))] - ¢| > Oiy1  uniformly in x € J™.

m—0o0
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Proof. By (72), we have [y(z,2™(x)] = I'"™*([v,]) for every x € J7. Take l; <

... < lq as in Proposition 7.4, such that T's*(e,), s = 1,...,d generate R*. Since
the Zorich cocycles are locally constant, we may find a simplex D C A4 such that
all (m,\') € {r} x D share the same I''=* for s = 1,...,d. By Poincaré recurrence,

there exist infinitely many iterates 0 < k; < ks < - -- such that Z*i (7, \) € {w}xD.
Since

M (oa)), s=1,....d

generate Hi(M,R), there exists ¢; = ¢1(a) > 0 and for each k; we may find I,
s = s(j) such that

D% (g) - T ([wa])| > ealIT* (9]
This relation may be rewritten as
[y(2, 2™ (2))] - ¢ = [T7*([va]) - ¢| = |T'**([va]) - T* (9)| > ea[IT* ()],

where m; = k; + l;. The condition ¢ ¢ L3;, means that ¢ is outside the sum of

the Oseledets subspaces associated to the exponents 6;42,...,04,—0,,...,—01 of
the cocycle Fiz. So, for any € > 0 we may find ¢ = c2(e) > 0 such that
IT*(p)]| > coel®+=||g|| for all k > 0.

Combining the last inequalities we obtain |[y(z, 2™ (z))] - ¢| > cel®+1=)*i  where
¢ = c1¢2||4|| depends only on a, €, and ¢. It is clear that m;/k; — 1 as j — oo, since
l; takes only finitely many values. So this last inequality implies the conclusion of
the lemma. |

Lemma 7.8. For every 1 <i< g and ¢ € L},

1
lim sup p- log |[fy(:c,zm(:c))] . ¢| <041 uniformly inx € J™.

m—0o0

Proof. From the relation (72) we get that, for any = € J™,

a

[v(z, 2™ (@)] - ¢ = T™*([va]) - & = [va] - T™(9)-

The condition ¢ € L means ¢ belongs to the sum of the Oseledets subspaces
associated to the exponents 6;41, ..., 84, —0,, ..., —61 of the cocycle Fz. Hence,
given any € > 0, there exists c3 = c3(m, A, €) > 0 such that

IT™()|| < csel®+1+5™| ||| for all m > 1.
Combining these observations we find that
(80) y(z, 2™ (2))] - ¢| < Ce+1 7™ ||g|| for all m > 1,

where C' is the product of ¢3 by an upper bound for the norm of every [v,]. This
proves the lemma. a

Remark 7.9. The arguments in Lemma 7.8 remain valid for ¢ = g¢: in the place of
(80), one obtains

[y (z, 2™ (2))] - ¢| < Cel o)™ ||g|| for all m > 1.

Since —6, < 0, this implies that |[y(z, 2™ (z))] - #| converges to zero as m — 0o,
uniformly in z € J™.



LYAPUNOV EXPONENTS OF TEICHMULLER FLOWS 43

8. ASYMPTOTIC FLAG THEOREM: PROOF

In this section we prove the full statement of Theorem 7.2. For the reader’s
convenience, we split the arguments into three main steps, that are presented in
Sections 8.1, 8.2, 8.3.

8.1. Preparation. Given z € 0 and k > 1, let m = m(z, k) be the largest integer
such that the orbit segment f?(z), 0 < j < k hits the interval J™ at least twice.
That is,

(81) m=m(z,k) =max{l>0: #{0<j<k: fi(z) € J'} >2}.

Note that if z € J” then m(z, 2" (x)) = n, because 2" (z) is the first return time to
J™. Thus, the next result is an extension of Lemma 7.6:

Lemma 8.1.

log k

im ——— =601 auniformly inx € o.
k—oco m(z, k) ! formly

Proof. Let z; = f7(z), where j > 0 is the first time z hits J™. By the definition of
m, the orbit of z; returns to J™ before time k— j. So, using part 3 of Corollary 4.6,

82 E>k—i>2™(z)>min S T™, > min [[T™(e,)]| .
(82) >k—j>z (wg)_ggg% 2 min [T (eq)|

By the definition of m, the orbit segment f7(z), 0 < j < k intersects J™! at most
once. Suppose for a while that, in fact, there is no intersection. Since we take the
interval exchange f to be minimal, there are iterates —r < 0 < k < s such that
f"(z) and f*(x) belong to J™*+1. Take r and s smallest and denote z_, = f " (x).
Then, using once more part 3 of Corollary 4.6,
E<r+s=z"tz_,) < max Z ot < dglez—,mic||1"(m+1)*(ea)|| .
BEA

In general, if the orbit segment f7(x), 0 < j < k does intersect J™!, we may
apply the previous argument to the subsegments before and after the intersection.
In this way we find that

< m+1 < (m+1)* .
(83) k< 2max Tt < 2dmax||T (ea)l
BeA
This relation also ensures that m goes to infinity, uniformly in x, when k goes to
infinity. Now let € > 0. By Proposition 7.3 there is n. > 0 such that
1
- log [[T™*(eq)|| € (61 —£,61 +¢) forallm > n. and o € A.

Assume £k is large enough to ensure m > n.. Then (82) and (83) yield
m(0; —¢) <logk < log(2d) + (m + 1)(6; + ¢).

Dividing by m and passing to the limit as k& — oo, we obtain

log k log k

0 —e< liminfi < lim sup 8% <6 +e.
k—oco M k— 00 m

Since € > 0 is arbitrary, this proves the claim in the lemma. O

To complete the proof of Theorem 7.2 we only need the following three proposi-
tions (compare Lemmas 7.7 and 7.8 and Remark 7.9).
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Proposition 8.2. For every ¢ € H'(M,R) \ L, ,,

1
li —1 k)] - é| > 6; ; ly i .
1Ir6nj£p @ k) og |['y(m, )] ¢| > 60;v1  uniformly inx € o

Proposition 8.3. For every ¢ € L,

1
li L | | <6 ; ; .
1Ir€ri>sip @R og |[7(w,k)] ¢| <biy1 uniformly inx € o

Proposition 8.4. There exists C > 0 such that |[7(x,k)] -¢| < C||¢|| for any
reo,anyk>1, and any ¢ € L.

The proofs are given in the next two subsections. Before that, we need to
introduce some terminology. Given any z € ¢ and k > 1, define

s(x, k;m,\) = Z sp(z, k;m, Neg
BEA

where {es : 3 € A} is the canonical basis of R* and each sg(z, k; 7, A) is the number
of visits of = to the subinterval Ig before time k:

sp(@,k;m,N) = #{0 < j <k: f/(2) € Ig}.
Observe that, whenever « € JZ*, part 1 of Corollary 4.6 gives
sp(z, 2™ (2);m,A) = #{0 < j < 2™(2) : f(2) € Jp} =T 5(ea),
for all g € A. Equivalently,
(84) s(z, 2™(x);m, A) = T (eq)-

Observe, in addition, that s(z,k;7,\) € R4 corresponds to the homology class
[v(z, k)] under the identification (27). In what follows, v € H, is the vector corre-
sponding to ¢ € H'(M,R) under the identification (28). Then,

(85) [v(2, k)] - ¢ = s(z, ks, ) - 0.

8.2. Lower bound. For the proof of Proposition 8.2 we need the following auxil-
iary result:

Lemma 8.5. Let o € A be the first symbol on the top line of w. Then there exists

r > 1 and a sequence (n;); — 0o such that

1 —— ) . .
liminf —log [Ty (eq) - v| > 641 and  J™1" C J% for all j > 1.
; :

Jj—oo N

Proof. The condition ¢ ¢ L3}, means that ¢ (thus, v) is outside the sum of the
Oseledets subspaces associated to the Lyapunov exponents 6;41, ..., 84, =04, ...,
—6, of the cocycle Fz. So, for any € > 0, there exists ¢ = co(m, A\,€) > 0 such that

(36) 1T @)l > coe®+X|[o]| for every I > 1.
By Proposition 7.4, there exist Iy < --- < lg such that
(87) Fi:”';\(ea), s=1,...,d is a basis of R*.

It follows from the definition of the induction operator, recalled in Section 1.1, that
the first symbol on the top line of 7™ is always «, for all n > 1. Thus, the left
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endpoint of J? coincides with J" = 0 for every n. By [21, Corollary 5.2], the
diameter of J" goes to zero as n — co. Then, there exists r > 1 such that

ls+r ls —
(88) J g J foreverys=1,...,d.

By continuity, (88) remains valid for any (7, ) in a small neighborhood U of (mr, A).
Reducing U if necessary, we may suppose that

(89) Fi:ii\(ea) = Fi::’;\(ea), for every (7i,A\) e U and s =1,...,d.

By Poincaré recurrence, there exist infinitely many iteratest; < --- <t; <--- such
that

Z% (m,\) € U.
In view of (87), there exists ¢; > 0 and for each j there exists some s = s(j) such
that

" t; t;
T35 (ea) - T ()| > e|T7 ()] -
Take n; =t; + ;. In view of (89), the previous inequality leads to
i* s* tj s* tj tj
|F:,x(ea) vl = |Fle(7r,)\) (ea) 'Fn,x(v)| = |Fir,A(eC¥) -Fw’}\(v)| > Cl||r7r,>\(v)|| .
Combined with (86), this gives that
|F:f;(ea) 0| > coer e+ ||y for every j > 1.
Clearly, |n; — t;] < max{l, : s = 1,...,d} for all j > 1, and so t;/n; converges to
1 as j — 00. So, the previous inequality implies that there exists ca = ca(g) such
that
|F:f:(ea) 0| > epel®i+17 || for every j > 1.
This proves the first claim in the lemma. To prove the second one, observe that
J"=[0,]A")) and J? =[0,A") foralln>1,
where (7, A") = Z"(rr, ). Keep in mind that Z"(m,A) = (7", A") for all n, where
A" = A"/|A"|. Denote (™!, A™t) = Z!(x™, A"), for every n > 1 and [ > 0. Then
5\n+l
A
The relation (88), applied to the points Z% (7, ) € U, means that
|Aoletr) < Xols for all j > 1.
Multiplying both sides by |A%| we obtain that
|th+ls+’l‘| < th"l‘ls

~

n,l

for every n > 1 and [ > 0.

and this implies that J%*7 C Jo°, for all j > 1. ]

Proof of Proposition 8.2. Given r > 1 and (n;); as in Lemma 8.5, let us define
pj = pj(x) to be the first time the orbit of z hits the interval J" ", that is,

p; =min{n >0: f*(z) € J%"}.
It is clear from the definition (81) that m(z,p;) < n; +r, and so

1
lim sup ~ log |s(x, pj; T, A) - v] > limsup — log |s(x, pj; 7, A) - v

jooo mM(Z,Dj) oo M

1
= limsup — log |s(z, pj; m, A) - v].
joo M
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If the limit on the right hand side is greater or equal than 6;,; then the same is
true for the limit on the left hand side which, in view of (85), implies that the
conclusion of the proposition holds. So, we may assume that the limit is strictly
less than #;,1: there exist a > 0 and ¢3 > 0 such that

(90) |s(z, pj;m, A) - v| < cge®@i+1=) ||y for all j > 1.
Then let g; = ¢;(x) be the first time the orbit of z returns to J" after time p;:
pj =min{n >p; : f"(z) € J¥ }.
In other words, ¢; = p; + 2™ (x;), where x; = fPi(z). Clearly,
s(@,qj;m,A) = 8(x,pj;m, A) + 8(x5, 2™ (25); T, A).

By construction, z; € J%*" C J,?. Thus, using (84), this relation may be rewrit-
ten as

s(x,q5;m,A) = s(x,pj;m, A) + T05 (ea)-
It follows, using (86) and (90), that
|s(z,qj;m,A) -v] > |I‘Zf*(ea) -v| — |s(z,pj;m, A) - v]
> coe e o] — cge™ O~ o]
Taking e < a, this implies that there exists ¢4 = c4(m, \,€) > 0 such that
|s(z,qj;m,A) -v] > cqe™i O =2 |||

for all j > 1. In view of (85), this implies that
1 1
lim sup — log |[7(z', k) - ¢| = lim sup — log |s(a:, ks, A) -’U| >0iv1 —¢,
k—oo MM k—oco MM
uniformly. Proposition 8.2 follows, since € > 0 is arbitrary. a

8.3. Upper bound. The strategy to prove Proposition 8.3 is to stratify the orbit
segment fJ(zx), 0 < j < k according to increasing renormalization depth, relating
each stratification level to some subsegment that starts and ends at returns to a
domain J'. Let us explain this in more detail, with the help of Figure 12.

FIGURE 12.

Recall J' denotes the domain of the Zorich induction Z(f) of the transformation
f- Given z € ¢ and k > 1, define

nt =nT(z,k;m,A) =min{j > 0: fi(z) € J'} and

(91) n~ =n"(z,k;m,\) =min{j > 0: fF7I(z) € J'}.
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In other words, nT is the first time and k — 5~ is the last time the orbit segment
hits the interval J!. Denote z; = f7 (). Then, time k — 5t — 5~ is a return of
the point z; to the interval J' under the map f, and so

(92) FET (2y) = Z(f) ()
for some k; > 1. It is clear that
s(z, k;m ) = s(x1, k—nt —n7;7,A)
+s(@,mtsmA) + s(F577 (@), ).

Compare Figure 12. The first term on the right hand side will be estimated through
the following recurrence relation:

(93)

Lemma 8.6. For everyx € o and k > 1,
S(mla k — 77+ —n ;7 /\) = F;kr,)\ (S(mla kl; 71'1, ’\1))
where (7', \) = Z(n,)\) and the number k; > 1 is defined by (92).

Proof. Denote g = Z(f). By (92), we have f*=1"=7" (z;) = gk1(z;). Clearly,
k1

sp(@n,k—nt —n7imN) = 3 sa(g (@1), 2 (g (21));m, V),
1=0

for every g € A. By part 1 of Corollary 4.6,
559" (1), 21 (9" (1));m, A) = #{0 < j < 2" (¢*(z1)) : (9’ (1)) € Is} =Tap
whenever gi(z;) € JL. Replacing in the previous relation,
sp(@n,k—nt —n7imA) =Y #{0< i <ki:gi(m) € I3} Tap.
acA

= Z Lo p8a(x1, kr;mt, AL).
a€A

This means that s(z1,k —nt —n7;m,A) = T* (s(z1, ki; 71, A1), as claimed. O

The sum of the last two terms in (93) will be bounded using the next lemma.
Recall we take the norm of a vector to be given by the largest absolute value of its
coeflicients.

Lemma 8.7. For everyz € 0, k>1, andl > 1,
lls(@,nt5mA) + s(F477 (@), 075w, M| < 2Tl

Proof. Take r > 0 minimum such that Z = f~"(z) € J'. This is well defined, since
the interval exchange f is minimal. Then r 4+ n¥ is the first return time of Z to J*,
that is, r + n* = 2(Z). Clearly, sg(z,n;m,A) < s5(F,2(Z);m, \) for every 3 € A.
From part 1 of Corollary 4.6 we get that

55(Z,2(2);m,\) =#{0<j < 2(z): f1(Z) € Is} < meajtcl‘a,g
a
for every 5 € A. Therefore,
+; < ||s(z, z2(Z); 7, V|| < Lo =T
%5, )| < 1@, 2(@)sm M| < 1, Tas =T

Analogously, ||s(f*~"" (z),n7; 7, A)|| < ||IT||. The lemma follows. a
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Replacing Lemmas 8.6 and 8.7 in (93), we obtain that
(94) s(z, k;m,A) =T 5 - s(x, ki, A + r(z, ks, A)

with ||r(z, k;m, N)|| < 2||Tx ||, for every z € o and k > 1.
Applying this relation to the orbit segment Z(f)!(x1), 0 < i < ki, we obtain

s(xy, kit A = T - 8(m2, ko ™02 4+ r(zy, kry ety A,
where (72, A%) = Z%(m, A) and ||r(21, k1; 7', A')| < 2[|Tp1 x1]]. Thus,
s(z, k;m,A) =T7 5 - [Ffrl’/\l - s(zo, ko; 2, A%) + r(wl,kl;wl,)\l)] +r(z, k;m, A)
=T - s(@2, ks w2, %) + Ty - (@, ks ', A1) + v, ks, A).

Write (77, M) = Z7(m, A) for j > 0. Repeating this procedure m times, we obtain
(compare Figure 13)

.

LT T 1

J? o ______

1 17+ '_ ‘ 7]7

JUoo .
. n+ \ \ -

0 k
FIGURE 13.

Lemma 8.8. For everyx € 0 and k> 1,
m—1
s(@,k;m, ) =T - 8(@m, b 7™, A™) + Y T2 -r(ay, ksl , X)
§=0

with ||8(@m, kn; 7™ X™)|| < 2||Trmpn |l and |[lr(z;, ks 77, M) < 2/Ts pill - for
every 0 <j<m-—1.

Proof. All that is left to prove is the bound on the norm of s$(z,, km; 7™, A™). Let
[ = Tymam and let Ty 5, @, 8 € A be its coefficients. Denote g = Z™(f). The
definition of m implies that the orbit segment g/(z,,), 0 < j < k,,, intersects J™+!
at most once. Suppose first that there is no intersection. Since g is minimal, there
exist —r < 0 < k;,, < s such that both z_, = ¢7"(z,,) and z; = ¢°(x,,) are in
J™+1, Take r and s minimum. Then r + s coincides with the first Zorich inducing
time zzm xm(z_,) of the point z_, for the transformation g. So, using part 1 of
Corollary 4.6,

38(Tmy ;™™ A™) < sg(z_p,r + 57", A™) < meajl(f‘a,ﬁ
[e3

for every g € A. It follows that
l18(@m, km; 7™, A™) | = 2% 55 (@m, ki 7™, X™) < max Ta g = [IL]|
If g%(z), 0 < j < k, does intersect J™+1, we may apply the same argument as

before to the subsegments before and after the intersection. Then, adding the two
bounds, we find that ||s(zm, km; 7™, A™)|| < 2||T|, as claimed. O
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Proof of Proposition 8.3. The condition ¢ € L} means that ¢ (thus, v) belongs to
the sum of the Oseledets subspaces associated to the exponents 0;y1, ..., 84, —6,,
..., —b1 of the cocycle Fz. Hence, given any ¢ > 0, there exists cg = co(m, A, €)
such that

95 T ()| < coet?+119)i||v]|  for every j > 0.
Ty

By Proposition 4.7, the function ¢(7,\) = log IT; sl is p-integrable. So, we may
apply Remark 2.5 to conclude that, for any € > 0 there is ¢; = ¢1 (7, A, &) such that

(96) (a2, ky3 7, V)| < 20IT0s ]l < 16 for every j > 0.

Using Lemma 8.8, we find that

3

S(Z‘,k‘;’ﬁ,/\) U= S(mmakm;"rma/\m) . F;-n,)\(v) + T(xjakj;wj7)‘j) . FZ.—,)\(’U)'
J

Il
<

and so, using also (95) and (96),

m m
(97) |s(@, ks, A) -0 <) coeP T ||| ere = coe [[v]] Y et
j=0 j=0

Assuming € > 0 is small enough, the exponent ;11 + 2¢ is positive, and so the sum
is bounded by a multiple of the last term. Thus, there exists ¢a = ca(m, A,€) such
that

(98) |s(z, k;m, A) - v| < cpellirrF2eim

for every x € o and k > 1. In view of (85), this implies that

1
lim sup 1 log |['y(x,k) -q§| = limsup — log |s(w,k;7r,)\) -v| < Oiy1 + 2,
m k—oo MM

k— oo

uniformly. As e > 0 is arbitrary, the conclusion of Proposition 8.3 follows. |

Proof of Proposition 8.4. This is similar to the proof of Proposition 8.3. The con-
dition ¢ € L;- means that ¢ (thus, v) belongs to the sum of the Oseledets subspaces
associated to the exponents —,, ..., —6; of the cocycle Fz. Fix 0 < 2a < §,.
Then there exists c3 = c3(m, A) > 0 such that

(99) ||Fzr’/\(fu)|| < cze 2%||y|| for every j > 0.
Just as in (96), there is also ¢4 = c4(m, A) > 0 such that
(100) Ir(zj, kj; 77, M) < 2||Trs i || < cae®  for every j > 0.
Then, analogously to (97),
m .
(101) |s(x,k‘;7r,/\) -v| < czeq]|v|| Ze*‘”
=0

and this is bounded by cs||v|| for some constant ¢; = ¢5(w,\) > 0. This proves
Proposition 8.4. O
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9. SIMPLICITY CRITERIUM

In these last four sections we outline the proof of Theorem 7.1. Here we state
an abstract sufficient condition for the Lyapunov spectra of a certain class of linear
cocycles to be simple. The main steps in the proof are presented in the next section.
Then, we explain how this criterium may be used to obtain the theorem.

We consider cocycles F : £ x RE — ¥ x R, F(z,v) = (f(z), A(z)v) over a
transformation f : ¥ — ¥ together with an invariant ergodic probability measure
1, satisfying the following conditions:

(c1) f:¥ — ¥ is the shift map on ¥ = 7%, where the alphabet 7 is either finite

or countable

(c2) p has bounded distortion, meaning that it is positive on cylinders and there

exists C = C(u) > 0 such that

l < p([lm,,l,I :io.ai1.7---7iﬂ:]) <C
C ~ p([tmy-- i1 p([fo, i1, - in]) —
for every 4,,,-..,%0,---,4, and m < n with m <0 and n > —1.
(c3) A: X — GL(d,R) is locally constant: A(...,i_y,40,%1,-..) = A(ig)-
By cylinder we mean any set [im,...,i—1 : fg,.-.,in] Of sequences z € ¥ such
that «; = i; for all j =m,...,—1,0,1,...,n (the colon locates the zeroth term; it
is omitted when either m = 0 or n = —1). We also denote

st =720 W (2) ={y € T:yn =z, for all n > 0}

2T =72n<% W (2) ={y € T:y, =z, for all n < 0}
Condition (c¢3) above may be relaxed: the theory we are presenting extends to
certain continuous cocycles not necessarily locally constant. See [2, 5].

Our simplicity criterium is formulated in terms of the monoid associated to
the cocycle. In this context, a monoid is just a subset of GL(d,R) closed under
multiplication and containing the identity. The associated monoid B = B(F) is the
smallest monoid that contains all A(i), i € Z. Let Gr(¢,R?) be the Grassmannian
manifold of ¢-dimensional subspaces of R?, for any 1 < £ < d.

FIGURE 14.

We need the notion of eccentricity of a linear isomorphism B : R? — R?, which
is defined as follows. Let o7 > -+ > 03 be the eigenvalues of the operator B*B, in
non-increasing order. The eigenvalues are indeed real and positive: if B*B(v) = Av
then B(v) - B(v) = A(v - v). Geometrically, their positive square roots o1 > --- >
o4 > 0 measure the semi-axes of the ellipsoid {B(v) : ||v]| = 1}. The eccentricity of
B is

Ece(B) = 1r§ne12d Ecc(¢, B),
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where Ecc(¢, B) = o¢/0¢41 is called the £-eccentricity. See Figure 14. That is, B
has large eccentricity if the ratios of any two semi-axes are far from 1.

Definition 9.1. We say that the cocycle F' (and the associated monoid B) is
e pinching if it contains elements with arbitrarily large eccentricity Ecc(B)
o twisting if for any E € Gr(£,R?) and any finite family Gy,...,Gy of ele-
ments of Gr(d — ¢, R?) there exists B € B such that B(E) N G; = {0} for
allj=1,...,N.

It is evident from the definition that any monoid that contains a pinching sub-
monoid is also pinching, and analogously for twisting.

Theorem 9.2. Assume f, u, F satisfy conditions (c1), (c2), (c3) above. If F is
pinching and twisting then its Lyapunov spectrum relative to (f, ) is simple.

Remark 9.3. Pinching and twisting are often easy to establish. For instance, sup-
pose a (general) monoid B contains some element B; whose eigenvalues all have
distinct norms. Then B is pinching, since the powers B have arbitrarily large ec-
centricity as n — 00. Suppose, in addition, that the monoid contains some element
B; satistying B2(V)NW = {0} for any pair of subspaces V and W which are sums
of eigenspaces of By and have complementary dimensions. Then B is twisting. In-
deed, given any E, G, ..., Gy, as in the definition, we have that B*(E) is close to
some sum V of £ eigenspaces of By, and every By "(G;) is close to some sum W; of
d — 0 eigenspaces of By, as long as n is large enough. It follows that

By(BY'(E)) N By "(Gi) = {0}, thatis, Bi'B:B{'(E)NG;={0}.
A converse to these observations is given in [3, Lemma A.5].

Example 9.4. Suppose there are symbols ¢ and b in the alphabet 7 such that

A@:(é}) mdA@:(i?).

Then the associated monoid is pinching and twisting. Indeed,

B:A@M@z(?i)

is hyperbolic and so its powers have arbitrarily large eccentricity. This proves
pinching. To prove twisting, consider E and G1,...,Gn € Gr(1,R?). Fix k large
enough so that no A(t) *(G;) coincides with any of the eigenspaces E* and E* of
B. Then B"(E) N A(t) *(G;) = {0}, that is, A(t)*B"(E) N G; = {0} for all i and
any sufficiently large n. See Figure 15: the dotted lines express the fact that A(%)
and A(b) act by sheer along the horizontal axis and the vertical axis, respectively.

In Section 10 we outline the proof of Theorem 9.2. The strategy is inspired by
the following observations. Suppose a cocycle does have £ € {1,...,d—1} Lyapunov
exponents, counted with multiplicity, which are strictly larger than all the other
ones. Then the sum £t (x) of the corresponding Oseledets subspaces defines an
invariant section of ¥ x Gr(¢, R?) which is an “attractor” for the action of F on the
Grassmannian bundle: one may find £¥(z) as a limit for A”(f~"(x)), n > 1 acting
on the Grassmannian Gr(£, R?), as illustrated in Figure 16. Observe also that ¢+ (x)
is constant on local unstable sets W (x) because, as observed in Remark 2.4, it is
determined by the backward iterates of the cocycle alone and, clearly, the sequence

of backward iterates is constant on local unstable sets.
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The first main step in the proof of Theorem 9.2 is to show that such an invariant
section does exist under the assumptions of the theorem. This is stated in Propo-
sition 10.1 and then we explain how the theorem can be deduced from it. The way
we actually construct the invariant section to prove the proposition is as the limit
of the iterates under A"(f "(z)), n > 1 of certain measures in Gr(£,R?). These
measures are obtained projecting invariant measures of the cocycle of a special
class, that we call u-states. The statement is given in Proposition 10.6 and then we
explain how Proposition 10.1 may be obtained from it.

The role of u-states is to provide some dynamically meaningful relation between
fibers of the Grassmannian bundle ¥ x Gr(£,R?) at different points, especially
points in the same local unstable set. Indeed, these are probability measures on the
Grassmannian bundle whose conditional probabilities on the fibers of points in the
same local unstable set are all equivalent. For instance, a measure on ¥ x Gr(¢, R?)
whose conditional probabilities are Dirac masses, that is, a measure of the form

m(X x V) = [ b (V) duta),

is a u-state if and only if the function £ : ¥ — Gr(¢, R?) is constant on local unstable
sets. These observations are important for the proof of Proposition 10.6, that we
briefly sketch in the last part of Section 10.
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10. PROOF OF THE SIMPLICITY CRITERIUM

In this section we outline the proof of Theorem 9.2. The presentation is in
successive layers, so as to allow the reader to choose an appropriate level of detail.
The complete arguments can be found in [2, Appendix] and [3].

10.1. Invariant section. First, we explain how Theorem 9.2 can be obtained from
the following proposition (see Figure 17):

Proposition 10.1. Fiz £ € {1,...,d — 1}. Assume F is pinching and twisting.
Then there is a measurable section £+ : ¥ — Gr(¢,R?) such that

(1) &% is constant on local unstable sets and F-invariant, that is, it satisfies
A(z)eT (z) = €T (f(z)) at p-almost every point

(2) the L-eccentricity Ecc(€, A™(f~"(z))) — oo and the image ET(z,n) of the
£-subspace most expanded under A™(f~™(x)) converges to £T(z) asn — oo

(3) for anyV € Gr(d—¢,R?), the subspace % (x) is transverse to V' at p-almost
every point.

R ‘b B+ z,m)

FIGURE 17.

We want to show that £t is precisely the sum of the Oseledets subspaces cor-
responding to the £ (strictly) largest Lyapunov exponents. There are three main
steps. First, we find a candidate £~ to being the sum of the remaining Oseledets
subspaces. Next, we check that ¢+ and £~ are transverse to each other at almost
every point. Finally, we prove that the Lyapunov exponents of the cocycle along
&t are indeed strictly larger than the exponents along £~. Let us detail each of
these steps a bit more.

To begin with, observe that Proposition 10.1 may be applied to the inverse
cocycle F~1, since conditions (c1), (c2), (c3) are invariant under time reversal, and
we also have

Lemma 10.2. A monoid B is pinching and twisting if and only if the inverse
B! ={B~!: B € B} is pinching and twisting.

Considering the action of F~! on the Grassmannian Gr(d— ¢, R) of complemen-
tary dimension, we find an invariant section £~ : ¥ — Gr(d — £, R?) satisfying the
analogues of properties (1), (2), (3) in the proposition. In particular, £~ is constant
on local stable sets of f. Next, we need to show that £t and £~ are transverse to
each other:

Lemma 10.3. £t (z) @ £ (z) = R? for p-almost every x € 3.

This is easy to see, with the help of Figure 18. Indeed, suppose the claim fails on
aset Z C ¥ with u(Z) > 0. Using the bounded distortion property (c2), one can
see that there exist points € ¥ such that Z~ x ¥ has positive y-measure, where
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FIGURE 18.

Z- =W¢ (x)NZ. Define V =& (z). Then& (y) =V forally € WS (z) and £T s

not transverse to V on Z~ x ¥T. This contradicts the last part of Proposition 10.1.
The third and last step in deducing Theorem 9.2 from Proposition 10.1 is

Lemma 10.4. The Lyapunov exponents of F | £ are strictly larger than the
Lyapunov exponents of F' | ™.

E+

FIGURE 19.

This lemma is deduced along the following lines. See also Figure 19. Let us
consider a cone field Ct around the invariant section ¢t. Fix some compact subset
K with positive measure and some large number N > 1, such that

e ET(z,n) C C*t(z) for every z € K and n > N. This is possible because
part 2 of Proposition 10.1 asserts that E+(z,n) is close to £ (z) when n is
large.

o A"(z)C*(x) C Ct(f™(z)) for any z € K and n > N such that f*(z) € K.
This is possible because the iterates of the cone Ct (x) approach the image
E*(f™(x),n) of the most expanded subspace as n goes to infinity.

Reducing K is necessary, we may also assume that no point of K returns to it in less
than N iterates. Then the previous property means that the cone field is invariant
under the cocycle F induced by F over the first return map. This implies (by a
variation of the argument in Lemma 5.7) that there is a gap between the first £
Lyapunov exponents of F' and the remaining ones. Consequently, by Corollary 5.6,
the same is true for the original cocycle F'.

This finishes our outline of the proof of Theorem 10.1 from the invariant section
Proposition 10.1. In what follows we comment on the proof of the proposition.

10.2. Invariant u-states. We are going to explain how Proposition 10.1 can be
obtained from a statement about iterations of certain probability measures on the
Grassmannian given in Proposition 10.6.
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A probability m on ¥ x Gr(£, R?) is a u-state if it projects down to u and there
is C' > 0 such that
m([is,...,'i,]_ :io,...,ip] X X) m([’is,...,i,1 :j07---7jq] X X)
u([io, - - -+ ip]) 1o, - - - Jql)
for every is,...,i0,---,ip,J0;---,Jq and X C Gr(¢,R?). Notice that, since y has
bounded distortion, this is the same as saying there is C' > 0 such that
m([z’s,...,i_l I’L.(),...,Z.p] X X) < C,m([z's,...,i_l :j(),...,jq] X X)
M([is,...,i,1:io,...,ip]) - /L([is,...,i,1Zjo,...,jq])
In other words, up to a uniform factor, the m-measures of any two “parallelepipeds”
[isy..-r0—1  %g,...,0p] x X along the same [is,...,i_1] C £~ are comparable to
the p-measures of their “bases” [iy,...,5_1 : ig,...,4p]. See Figure 20.

<C

[20,- -, ip] [Jos- -+ Jq]
FIGURE 20.

Yet another equivalent formulation is that m is a u-state if it admits a disinte-
gration

m = / my du(z), m, a probability on Gr(£, R?),
>

where m, is equivalent to m, whenever z € W _(y), with derivative uniformly
bounded by C.

It is easy to see that u-states always exist: for instance, m = p x v for any
probability v in the Grassmannian. Even more,

Lemma 10.5. There exist u-states on ¥ x Gr(¢, R?) which are invariant under the
action of the cocycle on Gr(£,R?).

The arguments are quite standard. The iterates of any u-state under the cocycle
are also u-states, with uniform distortion constant C. It follows that the iterates
form a relatively compact set, for the weak topology in the space of probability
measures in ¥ x Gr(£,R?), and every measure in the closure is still a u-state.
Hence, any Cesaro weak limit of the iterates is an invariant u-state.

One calls hyperplane section of Gr(¢,R?) associated to any G € Gr(d — £, R?)
the subset of all E € Gr(¢,R?) such that ENG # {0}.

Proposition 10.6. Let m be an invariant u-state in ¥ x Gr(£,R?) and v be its
projection to Gr(¢,R?). Then
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(1) the support of v is not contained in any hyperplane section of the Grass-
mannian

(2) for u-almost every x € M, the push-forwards v™(x) of v under A™(f~"(z))
converge to a Dirac measure at some point £+ (z) € Gr(¢,R?).

¢t (z)

FIGURE 21.

See Figure 21. To deduce Proposition 10.1 from Proposition 10.6 it suffices to
use the following linear algebra statement:

Lemma 10.7. Let L, : R?* = R? be a sequence of linear isomorphisms and p
be a probability measure on Gr(£,R?) which is not supported in any hyperplane
section of Gr(¢,R?). If the push-forwards (Ly).p converge to a Dirac measure &¢
then the eccentricity Ecc({, L,,) — oo and the images E*(L,,) of the most ezpanded
£-subspace converge to &.

10.3. Convergence to a Dirac mass. Finally, we comment on the proof of Propo-
sition 10.6. Part 1 of the proposition corresponds to

Lemma 10.8. If F is twisting then the projection v of any invariant u-state m is
not supported inside any hyperplane section of Gr(£, R%).

Proof. We claim that B(suppv) C supp v for every B € B. The lemma is an easy
consequence. Indeed, consider any subspace F' € supp v and suppose the support
was contained in an hyperplane section S, associated to some G' € Gr(d — ¢, R?).
Then B(E) € S or, equivalently, B(E) N G # {0} for all B € B, which would
contradict the twisting assumption. Therefore, we only have to prove the claim.
Moreover, it suffices to consider the case when B = A(jy) for some jo € Z. Let jo
be fixed and ¢ € Gr(¢,R?) be any point in suppv. By definition, m(X x V) > 0
for any neighborhood V of . Equivalently, there exists some ig € Z such that
m([ig] x V) > 0. Since m is a u-state, the measure of any [ig] x V is positive
if and only if the measure of [jo] x V is positive. Hence, m([jo] x V) > 0 for any
neighborhood V of ¢. Since F([jo] x V) C ¥ x B(V) and m is F-invariant, it follows
that m(2 x B(V)) is also positive, for any neighborhood V' of £&. This implies that
B(¢) is also in the support of v, as we wanted to prove. a

Now let us discuss part 2 of Proposition 10.6. There are three main steps. The
first, and most delicate, is to show that some subsequence converges to a Dirac
measure:
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Lemma 10.9. For almost every x there exist n; — 0o such that v™ (z) converges
to a Dirac measure.

Let us give some heuristic explanation of the construction of such a subsequence.
See also Figure 22. By hypothesis, there exist elements

BY = A(ip—1) -+ A(i1) A(io)

of the associated monoid B with arbitrarily strong eccentricity. By ergodicity, for
p-almost every z € X there exist m; — oo such that f~™i(z) € [ig,...,ip1], and
0]
Ami(f7™mi(z)) = C;BY

for some C; € GL(d,R). We want to argue that C;B] has strong eccentricity,
because B} does, and so, using that v is not supported in a hyperplane section, the
measure

AT (f7™M () = (C;BY) v
is strongly concentrated near the image of the most expanded ¢-subspace. In order
to justify this kind of assertion, one would need to ensure that, somehow, the
strongly pinching behavior of BY is not destroyed by C;. The following observation,
by Furstenberg [8], that the space of projective maps on the Grassmannian has a
natural compactification, gives some hope this might be possible.

We call projective map on Gr(¢,R¢) any transformation induced on the Grass-
mannian by a linear isomorphism of R¢. More generally, we call quasi-projective
map of Gr(¢, R?) induced by a linear map L : R* — R?, the transformation Ly that
assigns to every E € Gr(¢,R?) with ENker L = 0 its image L(E) € Gr(¢,R%). This
is defined on the complement of the kernel of the quasi-projective map, defined by

ker Ly = {E € Gr(¢,R?) : Enker L # {0}}.

We assume L is not identically zero. Then, clearly, ker L4 is contained in some
hyperplane section of the Grassmannian. We may always consider ||L|| = 1, since
multiplying L by any constant does not change the definition. Thus, the space
of quasi-projective maps inherits a compact topology from the unit ball of linear
operators in R?.

FIGURE 22.

Therefore, the family of all C; one obtains in the previous construction is con-
tained in some compact set of quasi-projective maps. Of course, this does not yet
mean that the effect of the C; on eccentricity is bounded (which would ensure the
strongly pinching behavior of the factor B} prevails). The problem is that the im-
age Ej of the ¢-dimensional subspace most expanded by BY may be contained in
the kernel of any accumulation point Cx of the sequence C; in the space of quasi-
projective maps: in that case the maps C; are strongly distorting near ker Cx and
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so they might indeed cancel out the eccentricity of BY. To make the previous ar-
guments work one needs to avoid this situation, that is, one needs to ensure that
Cx may always be chosen so that its kernel does not contain Ez‘f . More precisely,
one can argue as follows. See Figure 22.

Let BY and Cy be fixed, as before. Consider another arbitrarily eccentric element

B = A(jg-1)--- A(j1)A(jo) € B

and let Ej be the image of its most expanded /-dimensional subspace. By the
twisting condition, there exists some

Bo = A(ks) -+ A(kr)

that maps E(j outside the kernel of CxBY. Moreover, by ergodicity, there exist
some sequence n; = mj, + ¢ + s — oo such that

fﬁnl(w) € [jO;---7jq—1;k17---;ks;i07---;ip—1]

and so A™(f~™(x)) = C;BYByB{. By construction, E} is outside the kernel of
C%E = C4BYB,. Thus, the previous arguments now make sense.

Now we move on with the arguments. Let m(™)(z) denote the projection to the
Grassmannian of the normalized restriction of m to the cylinder [i_,,...,i_1] that
contains x. The second step in the proof of part 2 of Proposition 10.6 is

Lemma 10.10. The sequence m'™ (x) converges almost surely to some probability
m(z) on Gr(€,R?), and m(-) is almost everywhere constant on local unstable sets.

The first claim follows from a simple martingale argument. From the construc-
tion we easily see that {m(z)} is a disintegration of m relative to the partition of
¥ x Gr(£,R?) into the sets W _(z) x Gr(¢,R?), and that gives the second claim.

The final step in the proof of Proposition 10.6 is the following lemma, which is

a consequence of the definition of u-state:

Lemma 10.11. There ezists C = C(m) > 0 such that

1 < v (z)
C ~— m((z)
From Lemmas 10.10 and 10.11 we get that, given any = € ¥ and any accumula-
tion point v(z) of the sequence v™(z),
1
1 v .
C ~ m(x) —
In particular, any two accumulation points are equivalent. Now, by Lemma 10.9,
some accumulation point is a Dirac measure d¢(,), at almost every point. Clearly,
this implies the accumulation point is unique, and the sequence v™(x) does con-
verge to a Dirac measure, as we claimed. This finishes our sketch of the proofs of
Proposition 10.6 and, thus, Theorem 9.2.

<C for all x.

11. ZORICH COCYCLES ARE PINCHING AND TWISTING

Now, to deduce Theorem 7.1 we only have to check that Theorem 9.2 may
be applied to the restricted Zorich cocycles. Let us begin by verifying that the
hypotheses (cl), (c2), (c3).
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It was observed in [21, Section 8] that Z has a Markov map: there exists a finite
partition {A; . : 7 € C and € = 0,1} and a countable refinement

A = €A et = =" = £}

mE,MN
such that Z maps every {7} x A} _, bijectively onto {7™} x Azn 1. This is not
quite a full shift, but it is easy to extend the criterium to this slightly more general
version of condition (cl).

The map Z admits an invariant probability g which is ergodic and equivalent to
volume dA. See [21, Section 30]. This measure p has bounded distortion, and so
condition (c2) is met. Finally, the cocycle Fz is constant on each atom Ay _, of
the Markov partition, because

Fﬂ_’/\ — (,.)n(;\TiA)

depends only on 7 and the types of all RI(m,\) with 0 < j < n(m, ). In other
words, I'; x depends only on 7 and ¢’ for 1 < j < n(w, A), and so it is constant on
every Ay _ .. This gives condition (c3).

Thus, now we only have to check that
Theorem 11.1. FEvery restricted Zorich cocycle is twisting and pinching.

The proof of this theorem will be outlined in the next section. The strategy is
to argue by induction on the complexity of the stratum, that is, on the genus g
and the number & of singularities. Indeed, we look for orbits of 7 that spend a
long time close to the boundary of each stratum and, hence, pick up the behavior
of the flow on “simpler” strata. Figure 23 illustrates this idea: think of the upper
hemisphere as a stratum, whose boundary is a simpler stratum, represented by the
equator (the actual geometry of strata near the boundary is much more complex
than the figure suggests, and is still poorly understood).

FIGURE 23.

Before we explain in more detail how this strategy is implemented to give the
inductive step of the proof of Theorem 11.1, let us note that the initial step of the
induction, corresponding to the torus case g =1, k = 0, d = 2 is easy. Indeed, in
this case there is only one permutation pair

(%)

The top case of the renormalization corresponds to A4 < Ap, and the bottom case
corresponds to Ap < A4. In every case, the cocycle is given by

11 1 0
@top:(o 1) and (")bot:(l 1)

Then, arguing as in Example 9.4, we get that F' is pinching and twisting.
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12. RELATING TO SIMPLER STRATA

Here we outline the inductive step in the proof of Theorem 11.1. Fix any per-
mutation pair 7 € C and denote by B, the submonoid of B corresponding to orbit
segments (7, \°), ..., (7%, \¥) such that 7° = 7 = 7*. It suffices to prove that the
action of B, on the space H is pinching and twisting.

The proof is by induction on the complexity of the stratum, that is, the genus
and the number of singularities. Recall that Abelian differentials in simpler strata,
contained in the boundary of A, (my,...,m,), may be obtained by collapsing two
or more singularities of some Abelian differential in Ag(m4,...,m,) together, as
illustrated in Figure 24. The multiplicity of the new singularity is the sum of the
multiplicities of the original ones.

B RV
N @T

mi1 =1 mo =1

FIGURE 24.

This strategy is more easily implemented at the level of interval exchange trans-
formations. In that setting, approaching the boundary corresponds to making some
coefficient A, very small. Then it remains small for a long time under iteration by
the renormalization operator.

12.1. Simple reductions and simple extensions. We consider two operations
on the combinatorics, that we call simple reduction and simple extension. Simple
reduction ™ — 7' corresponds to removing one letter from both top and bottom
lines of the permutation pair. Simple extension 7' — 7 corresponds to inserting
one letter at appropriate positions of both top and bottom lines. See the formula:

o al ... az-_l C a/z-+1 ... .- .. ... ... ... ad
mw=
by ce- e o e bjisg ¢ bjgr - bg
7TI: al .. a’i*l ai+1 ... ... ... ... ad
by e e e eee bilg by - by

The two operations are not exactly inverse to each other, because there are some
restrictions on the insertion locations in the simple extension: the inserted letter
can not be last in either line and can not be first in both rows simultaneously.

Lemma 12.1. Given any 7 there exists @ such that w is a simple extension of 7'.
Moreover, either g(n) = g(n') or g(w) = g(x') + 1.
We also take advantage of the symplectic structure preserved by the Zorich
cocycles. A subspace V of a symplectic space (H,w) is called isotropic if
w(vi,v2) =0 for any vy,ve € V.

Let Iso(¢,H) C Gr(¢, H) denote the submanifold of isotropic subspaces with di-
mension £. The symplectic reduction of H by some v € P(H) is the quotient H?
by the direction of v of the symplectic orthogonal of v. Note dim H* = dim H — 2.
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The stabilizer of v is the submonoid BY of elements of B that preserve v. The
induced action of the cocycle on the symplectic reduction is the natural action of
the stabilizer B on H".

Lemma 12.2. In the context of Lemma 12.1,
(1) If g(m) = g(n') then there is a symplectic isomorphism H, — H, that
conjugates the action of By on Hy to the action of some submonoid of B,
on H.
(2) If g(m) = g(n') + 1, there is some symplectic reduction HY of H, and some
symplectic isomorphism H, — HY that conjugates the action of B, on
H,: to the action induced by some submonoid of B, on H?.

The proof of Theorem 11.1 may be split into proving two propositions that we
state in the sequel. Towards establishing the twisting property, we prove

Proposition 12.3. The action of B, onIso(¢, H;) is minimal: any closed invariant
set is either empty or the whole ambient space.

It follows, in particular, that B, twists isotropic subspaces of H,: given any
E € Iso(¢, H,) and any finite family G, ..., Gy of elements of Gr(d — ¢, R?), there
exists B € B such that B(E) N G; = {0} for all j = 1,...,N. This is a direct
consequence of the proposition, and the observation that hyperplane sections

{W:WnaG; #0}

have empty interior in Iso(¢, Hy).
To compensate for this weaker twisting statement, we prove a stronger form of
pinching:

Proposition 12.4. The action of B, on H is strongly pinching: given any C > 0
there exist B € B, for which

log o

logo, >C and ———
8% 10g0'j+1

>C foralll1 <j<yg.

Clearly, for symplectic actions in dimension d = 2, twisting is equivalent to
isotropic twisting and it is also equivalent to minimality. Moreover, pinching is the
same as strong pinching. In any dimension,

Lemma 12.5. Let a monoid B act symplectically on a symplectic space (H,w). If B
twists isotropic subspaces and is strongly pinching then it is twisting and pinching.

This shows that Theorem 11.1 does follow from Propositions 12.3 and 12.4.

12.2. Proof of minimality. Here we outline the proof of Proposition 12.3. Given
any 7, take 7' such that 7 is a simple extension of 7'. In the first case of Lemma 12.2
we immediately get, by induction, that the action of B, on Iso(¢, H,) is minimal. In
the second case, the starting point of the proof of Proposition 12.3 is the observation
that the action B, on P(H) is minimal: any closed invariant set is either empty or
the whole projective space. Then the proof of the proposition proceeds by induction
on the dimension, using the following lemma:

Lemma 12.6. If the action of B on P(H) is minimal and there is v € P(H) such
that the induced action of BY on Iso(f — 1, HY) is minimal, then the action of B on
Iso(¢, H) is minimal.
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The proof of the lemma goes as follows. Consider the fibration

I(H)= |J A{E}xP(E)-PH), (BN~
E€lso(¢,H)

The fiber over each A € P(H) is precisely Iso(¢ — 1, H*). There is a natural action
of B on Z(H), and we are going to see that this action is minimal. Indeed, let
C C Z(H) be a closed invariant set and C denote its intersection with the fiber
of each A € P(H). The hypothesis implies that C) is either empty or the whole
Iso(¢ —1, H?). In the first case, let A be the set of A\ € P(H) for which C) is empty.
In the second case, let A be the set of A € P(H) for which C), is the whole fiber of .
In either case, A is a closed, non-empty, invariant subset of P(H), and so it must be
the whole projective space. This proves that C' = () in the first case and C = Z(I)
in the second case. Thus, the action of B on Z(H) is minimal, as we claimed. Using
the natural projection Z(H) — Iso(¢,H), (E,A) — E one immediately deduces
that the action of B on the isotropic manifold is minimal.

12.3. Proof of strong pinching. Finally, we outline the proof of Proposition 12.4.
We denote by 6:(B) > --- > 6,(B) the non-negative Lyapunov exponents (i.e.
logarithms of the norms of the eigenvalues) of a symplectic isomorphism B. We use
the following criterium for strong pinching:

Lemma 12.7. Let B be a monoid acting symplectically on H, dim H = 2g. Assume
for every C > 0 there ezists some B € B such that

(1) 1 is an eigenvalue of B with 1-dimensional eigenspace
(2) ,_1(B)>0
(3) 6;(B) > C;41(B) for every 1< j < g—2.

Then B is strongly pinching.

Notice that the eigenvalue 1 must have even algebraic multiplicity, because B is
symplectic. The second condition ensures the multiplicity is at most two. Thus, B
contains an unipotent block

11
(61)

In terms of the singular values of the powers B™, this implies that
0,(B")~n and o;(B")~e"i® forj=1,...,9—1

and so B is indeed strongly pinching.

Another useful observation is that the property of being (or not) strongly pinch-
ing is not affected if one replaces the permutation pair 7 by any other one 7 in the
same Rauzy class. That is because one can find monoid elements v; and 72 such
that

Br = v1Bzv2
and then it is not difficult to deduce that the action of B, on H; is strongly pinching
if and only if the action of B; on Hj is strongly pinching.

The next step is to reduce the general statement to the case when the Rauzy class
is minimal, meaning that the number of symbols d = 2¢g. In general, d =29+ —1
where k is the number of singularities. Thus, in terms of the Teichmiiller flow, this
corresponds to reducing the problem to the minimal stratum A, (2g —2) of Abelian
differentials having a unique singularity. It is implemented through the following
refinement of Lemma 12.1:
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Lemma 12.8. Let C' be a non-minimal Rauzy class, that is, such that d > 2g.
Then there exists m € C and there exists ' such that 7 is a simple extension of 7'

and g(m) = g(m').

Then, by Lemma 12.2, the action of B, on H, is conjugate to the action of
By on H;:, and so the former is strongly pinching if the latter is. Iterating this
procedure, one must eventually reach a permutation pair in a minimal component.

The minimal case is more delicate, because we need to relate the minimal stratum
of A, with some stratum of a different moduli space Ay . The crucial ingredient is

Lemma 12.9. Any minimal Rauzy class contains some permutation pair

(A oy - Al z
™=\ z a} .- aé_l A
such that the following reduction is irreducible:
0 ... 0
v=(a T a )
s Qg1

Moreover, g(n') = g(w) — 1 and the Rauzy class of ©' is also minimal.

This is a consequence of Lemma 20 in Kontsevich, Zorich [14], which expresses
at the combinatorial level the surgery procedure they called “bubbling a handle”
(or, more precisely, its inverse).

The final step in the proof of the proposition is to use the inductive assumption
that the action of B on H, is strongly pinching to construct a parabolic element
B € B, in the way described in Lemma, 12.7.
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