MAXIMAL OIL RECOVERY BY
SIMULTANEOUS CONDENSATION OF ALKANE AND STEAM
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ABSTRACT. This paper deals with the application of steam to enhance the recovery [rom
petroleum reservoirs. We formulate a mathematical and numerical model that simulates co-
injection of volatile oil with steam into a porous rock in a one dimensional setting. We utilize
the mathematical theory of conservation laws to validate the numerical simulations. This
combined numerical and analytical approach reveals the detailed mechanism for thermal
displacement of oil mixtures discovered in laboratory experiments. We study the structure
of the solution and the recovery as a function of the boiling point of the volatile oil, which is
the most crucial parameter. The most striking result is that when the boiling point of the
volatile oil is such that it condenses and stays at the location where the steam condenses
also, the oil recovery is virtually complete.

1. INTRODUCTION

Steam drive is an economical way of producing oil and is used world wide for heavy oil.
An overview of the last forty years of steam drive recovery in California is given in reference
[18]. Steam drive is also considered an efficient method to clean polluted sites [3] [23], [35].
During the steam drive, however, a certain amount of oil is left behind in the steam swept
zone [6].

In the late seventies Dietz [6] proposed to add small amounts of volatile oil to the steam
to reduce the oil left behind. Similar ideas were put forward independently by Faroug-Ali
[1]. The volatile oil co-injected with the steam in almost infinitesimal amounts would ideally
condense at the same location where the steam condenses. The condensed volatile oil acts as
a solvent for the heavy oil. As such it pushes the oil away from the steam swept zone leaving
no oil behind (see Fig. 2.1). Experiments investigating the mechanism are described in
references [1], [6], [10], [31] and [37]. However, there was a discrepancy between the original
idea and the experimental observations. At least 5 weight % (volatile oil/water) was required
to reduce considerably the saturation of the oil left behind [6]. However, it is possible that
the requirement of this large percentage was caused by transient effects in the experiments.
One of the goals of this paper is to clarify this point. Willman in his pioneering experiment
in 1961 used a large percentage of initially present volatile oil [37]. His experiment led to
the belief that any volatile oil component, initially present in the oil, would lead to virtually
complete recovery from the steam swept zone. Therefore, the virtue of adding volatile oil
was criticized at the time. The second goal of the paper is to establish the difference between
steam drive recovery with co-injection of volatile oil and recovery of oil already containing
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2 BRUINING AND MARCHESIN

a fraction of volatile oil. It can be expected that an efficient condensed volatile oil region is
very short, shorter than the resolution of standard simulators.

Our approach [7], [8], [9], [11] is to simplify the model equations in such a way that the es-
sential elements are retained [25] yet avoiding the complexities of solving pressure equations
and non-linear compositional equations at every grid cell. As such the model is a straight-
forward extension of a 1-D model proposed by [32], but allowing for immiscible three-phase
flow in the steam zone [38], [40] (see also [22]). The simplification is accomplished by the
assumption that as to the thermodynamic behavior the steam drive runs at constant pres-
sure; any accumulation of fluids that would lead to a pressure increase causes an immediate
production of these fluids. Therefore without solving the pressure equation and solving the
transport equations locally we can reach resolutions that cannot be attained in standard
simulators.

These approximations allow us to find the time asymptotic solution analytically, using
the method of characteristics. Knowing the analytical solution has three advantages. Firstly,
this asymptotic solution is more relevant for the solution at the field scale. Secondly, it allows
us to validate the numerical solution. Thirdly, it allows the study of bifurcation phenomena,
i.e. change of structure of solutions under different injection conditions. The bifurcations
of this model in the absence of thermal effects are described in [15], [17], [20], [21]. (See also
the review in the appendix of [26]).

The model we used carries three important simplifications. Firstly, the diffusional mixings
between volatile oil and heavy oil in the liquid phase and between volatile oil vapor and
water vapor in the gaseous phase are disregarded. Secondly, we do not take into account the
mixing of phases by ignoring capillary efftects. This measn that the model is not valid for
extremely low injection rates. Finally, we do not specify a detailed model for the kinetics of
the condensation process [11]. These aspects determine the internal structure of the shocks,
which sometimes affect the structure of the whole Riemann solution, and are subjects for
future work [20].

Section 2 describes the physical model and the relevant thermodynamic relations. The
flow is described by balance equations in Section 3. The analysis of the self-similar waves viz.
rarefaction and shocks is done in section 4. An implicit finite difference method requiring
the solution of small matrices is described in Section 5. Section 6 summarizes earlier results
on the injection of steam displacing heavy oil. Our results concerning the solution structure
and the recovery in terms of the boiling point of volatile oil are discussed in Section 7. We
summarize our conclusions in Section 8. Appendix A describes physical quantities, symbols
and values.

2. PHYSICAL MODEL

2.1. Flow of fluids. The model is based on conventional models for steam drive [12], [28].
We consider the injection of steam and volatile oil into a linear horizontal porous rock cylinder
with constant porosity and absolute permeability (see Fig. 2.1). The tube is completely
thermally isolated. The injection temperature is determined by the three-phase equilibrium
condition for the given volatile oil/steam injection ratio. The cylinder is originally filled
with oil and water. The oil consists of dead oil with or without volatile oil. By dead oil we
mean oil with negligible vapor pressure. Three-phase flow occurs in the high temperature
zone, while oil and water flow occurs in the low temperature zone. The fluids are in local
thermodynamic equilibrium. Physical quantities are evaluated at a representative constant
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FiGurg 2.1. The porous rock cylinder. Steam and alkane are injected from
the left, fluids are produced at the right. In most cases, the hot gaseous zone
is sharply separated from the cold liquid zone by the steam condensation front
(SCF). Initially the rock is filled with an oil mixture (oil) and water. One of
three alkanes are used; dodecane has a tendency to stay upstream of the SCF,
iso-butane downstream of the SCF; heptane is in between.

pressure throughout the cylinder; this is a good approximation if the total pressure variation
is small relative to the total pressure. It is certainly valid in laboratory experiments. Thermal
expansion of liquids is disregarded. All fluids are considered incompressible. We assume
Darcy’s law for multiphase flow [5], [16]. The cylinder diameter is so small that capillary
forces equalize the saturation in the radial direction and temperature is homogeneous radially.
As the flow is horizontal we ignore gravity effects.

2.2. Thermodynamic fundaments. Our interest is confined to (1) three-phase flow, i.e.
flow of the aqueous (w), oleic (o) and gaseous (g) phases in the steam zone and (2) two-
phase flow, i.e. flow of the aqueous and oleic phases in the liquid zone. We use the following
convention: the first subscript (w,o0,¢g) refers to the phase, the second subscript (w,v,d)
refers to the component. The densities of the pure liquids, i.e., water, volatile oil and dead
oil are denoted as pw, py and pp. The densities of the pure vapors, i.e., water and volatile
oil are denoted by pyw, pgv-

We disregard any heat or volume contraction effects resulting from mixing. The concentra-
tion [kg/m?] of (dead) volatile oil in the oleic phase is denoted as (p,q) por- The concentration
of the volatile oil (water vapor) in the gaseous phase is py, (pgw) . For ideal fluids we obtain

Lov  Pod . Low 4 Poo g (2.1)
v PD Pgw  Pgv
The densities of the pure liquids py, pp [kg/m3] are considered to be independent of tem-
perature, and the densities of the pure vapor to obey the ideal gas law, i.e.,
My P My P
Pgw = “RT Pgv = RT
where My, My denote the molar weights of water and volatile oil respectively. T the tem-
perature and the gas constant is R = 8.31[J/mol/K]. P is not a variable in this problem,
but the fixed prevailing pressure value; here we use one atmosphere.
The pure water vapor pressure P, is determined by the Clausius-Clapeyron equation [27]

Py (T) = P,esp (‘MWj;W (Z") (% - T%)) | (2.3)

(2.2)
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where Ay (T}) [J/kg] is its evaporation heat at its normal boiling temperature T;* [K] at P,,
the atmospheric pressure. We also use Clausius-Clapeyron for the volatile oil vapor pressure.
In addition, we use Raoult’s law [27], which states that the vapor pressure of volatile oil is
equal to its pure vapor pressure times the mole fraction z,, of volatile oil in the oil phase.
Therefore we obtain

PT) = o Penp (VT (L L)), (2.4

where Ay (1}) is its evaporation heat at its normal boiling temperature 7;'. We assume that
the prevailing pressure P is the sum of the two vapor pressures. From Eqs. (2.3), (2.4) and
P=P,(T)+ P,(T), we find for the mole fraction in the liquid phase z,, (T')

o P—Poexp<w G‘#))
'TO’U (T) - ov = = - (25)
Lo | Lot poexp<%@f’> <%_%>>
b

From this we derive an expression for the volatile oil concentration in the oleic liquid phase

xovapVMV
‘rovaMV + (]- - xov) ,OVMD .

Note that in the vapor no dead oil component is present, whereas in the oleic liquid phase
volatile and dead oil are present. Equation (2.5) is used in Figure 6.1 left (1) (based on
heptance as volatile oil component) to find the lower branch I' extending from (yg,, 1) =
(0.0,373.15K) — (0.528,352.35) , where y,, denotes the mole fraction of volatile oil in the
vapor phase. In Figure 6.1(1) we assume that the prevailing pressure is atmospheric.

Figure 6.1(1) is a projection of the 3-D figure containing the temperature as the vertical
axis, the volatile oil fraction in the vapor phase y,, as the horizontal axis and the composition
of the oil ., as the axis perpendicular to the paper. The projection is on a surface for which
Top =constant, say the z,, = 1 plane. As a result Figure 6.1(1) contains four phase diagrams
ie., for z,, = 1, 0.6, 0.4, 0.2. Consider, as an example the phase diagram for z,, = 0.4
i.e. the behavior of a dead oil/volatile oil mixture with a liquid volatile oil mole fraction
of x,, = 0.4. This phase diagram consists of the curve x,, = 0.4 and the part of the curve
I" left of its intersection point. Below these curves the system is in the liquid phase, where
oil with z,, = 0.4 is in equilibrium with pure water. At the curve z,, = 0.4, i.e. to the
right of the intersection point of these curves, liquid oil with composition x,, = 0.4 is in
equilibrium with the vapor with a volatile oil fraction read from the horizontal axis. Left
from the intersection point pure liquid water is in equilibrium with vapor with a volatile oil
fraction read from the horizontal axis. At the intersection point liquid oil with composition
ZToy = 0.4 is in equilibrium with liquid water and vapor with a composition read from the
horizontal axis. Above these curves there is only vapor. As in all cases considered by us
we have liquid water, we only use the curve I' for the three-phase zone and below it for the
two-phase zone.

We use Eq. (2.5) to compute x,, (T') and substitute z,, (1) in Eq. (2.4) to find y,, (1) =
P, (T) /P, which is plotted on the horizontal axis. The temperature T,, (AZ), which is
352.35 for heptane, is the lower end of this curve and corresponds to a value for which
Top (Tyz) = 1, the azeotropic point of the pure volatile oil-water mixture. The procedure to
find the branches (z,, = 0.2,0.4,0.6, 1.0) emanating from this curve I is as follows. Choose

Pov = (26)



ALKANE EFFECT 5

a value for z,,. Apply Eq. (2.5) to obtain the plot of T" versus y,,. For x,, = 1 there is only
volatile oil, so the curve describes the conditions where there is water only as a vapor, volatile
oil vapor, and liquid volatile oil. For z,, < 1 there is also dead oil present but no liquid
water except at the intersection point with I'. Therefore these branches z,, = 0.2,0.4,0.6, 1.0
describe the two-phase (oleic-gas) situation. For z,, = 0.2 the system below part of the
branch I" and the branch z,, = 0.2 is in the liquid two-phase oil/water region. The same
holds for other values of z,,. We can use (2.5) to obtain expressions for the concentrations

Pou (1), poa (T') , pgw (T') and pg, (1) .

3. BALANCE EQUATIONS

The energy conservation equation in terms of enthalpy is given as [4]:

0
a (Hr + @Swpwhw + @5, (povhoV + podhoD) + 9059 (pgthW + pgvth) )

0
+ %“(fw/)WhW + fo (/)ovh'oV + podhoD) + fg (pgwh/QW + /)gvh/gv) ) = 0. (31)

The enthalpies h are all per unit mass and depend on temperature (and on the fixed pressure).
The enthalpy of steam in the gaseous phase is h ., and hy is the enthalpy of water in
the liquid aqueous phase, while h,y is the enthalpy of volatile oil in the gaseous phase.
Furthermore h,y and h,p are the enthalpies of liquid volatile oil and dead oil. The rock
enthalpy H, is per unit volume. The saturation of the oleic, aqueous and gaseous phases
are Sy, Sy, Sy, while f,, fu, f, are their fluxes, defined in Eq. (A.16).We use u to denote
the total Darcy flow velocity and ¢ the constant rock porosity. We can write for the mass
conservation equations of water, volatile oil, and total oil in the steam zone [24],

0 0
@a (pngg + ,OWSw) + %u (pgwfg + prw) =0,

0 0
SDa (pgng + povSo) +

%u (pgvfg + povfo) = 0,
0 ( pgv 9 { pgv
— [ B — | 2 =0. 2
e <vag+So)+axu(pvfg+fo 0 (3.2)
Egs. (3.2) and (3.1) can be written in condensed form as
2G +£F—O for L= T (3.3)
a1 ¢ a??u ¢ = U, O = w,v,0,4. .

We use the subscript £ to denote the components (w, v, 0) and the energy (T"). Notice that
F; are functions of the variables S,,, S;, T. The dependent variables of Eq. (3.3) are S,,, S,
T and u. In the two-phase zone Egs. (3.2) and (3.1) simplify by using pg, = pge = 0. Here
fw depends on S, and T', f, on Sy, po, and T'. The dependent variables in the two-phase
zone in Eq. (3.3) are Sy, pou, 1" and u.

4. ANALYSIS OF ELEMENTARY WAVES

Considering Eqgs. (3.3) and the fact that we use constant injection conditions and homo-
geneous initial data we observe that must exist solutions that are invariant with respect to
scaling x — az, t — at, where a is any positive constant. Such solutions only depend on
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the similarity coordinate x/t and are called Riemann solutions. These solutions represent
large-time asymptotic solutions for many initial and boundary data. Standard theory of con-
servation laws say that Riemann solutions consist of sequences of smooth rarefaction waves,
discontinuities or shocks and constant states. Shock waves satisfy the Rankine-Hugoniot
(RH) conditions, which express mass conservation. We refer the interested reader to Smoller
[33] and Dafermos [13]. Excellent engineering introductions in this field can be found in the
papers by Pope [30], Hirasaki [19] and Dumoré, Hagoort and Risseeuw [14] and in the book
by Lake [24].

We find explicit formulae for the Rankine-Hugoniot (RH) conditions, relating the wave
speed with left and right states of shocks and condensation waves. We derive the charac-
teristic speeds for rarefaction waves. We have also obtained the rarefaction curves, which
represent the rarefaction waves, but we omit their lengthy derivations here. We have used
these formulae to verify the correctness of every single wave found numerically in Section 7.
The concatenation of the waves according to speed and the extended Lax entropy conditions
[33], [13] were verified as well. As far as the authors are concerned the treatment of the
velocity variable is original as there are no time derivatives for this variable in the equations.

4.1. Shocks. The RH conditions for (3.2) and (3.1) can be written as follows, for a shock
with speed v and left and right states (—) and (4), in terms of the normalized quantities
vi=v/uT, at i=ut/u

— 5((pWSw)+ - (pWSw)_) + (ﬂprw)_i_ - (prw)_ +
- 5((pgwsg)+ (pngg)_) + (ﬂpgwfg)+ - (pgwfg)_ = 07 (4 1)
- ((povSO)+ (povSO)_) + (apovf0)+ — (povfo)” +
- 5((pgvsg)+ - (pgng)_) + (ﬁpgvfg)—l— — (pgufg)” =0, (4.2)
—% <<@sg +SO)+ - <@Sg + So>_> + (@ufg +uf0)+ = (@fg +f0>_ —0,
Pv Pv v v
(4.3)
and
- 17((Hr/(,0 + HySw + H,So + H,S,))" — (H, /o + Hw Sy + H,S, + HgSg)‘)
+ (ﬂ(Hwa + Hofo + Hgfg))+ - (Hwa + Hofo + Hgfg)_ - Ov (44>

where the enthalpies per unit volume H,, Hy, etc. are defined in the Table in the Appendix.

We distinguish six kinds of shocks. (1) The volatile oil evaporation shock (speed vg),
with three-phase conditions at the left. Its main feature is that the volatile oil concentration
increases in the downstream (right) direction. The temperature, saturations, and velocity
change across the shock. (2) The steam condensation shock (speed vscp), with a three-
phase condition at the left. The vapor saturation decreases drastically in the downstream
direction. Again all the quantities change across the shock. (3) The volatile oil condensation
shock (speed ve), with a three-phase condition at the left. The volatile oil concentration
decreases in the downstream direction. (4) The volatile oil two-phase composition shock
(speed v, ), which is a contact discontinuity. A contact discontinuity represents the moving
interface between two fluids in the same phase. In reality there is always diffusion, which
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mixes the fluids and such an interface is an idealization. In loose mathematical terms, a
contact discontinuity is defined as a shock for which the characteristic speeds to the right
and to the left are equal to the shock speed. (5) The saturation shock (speed vg). Only the
saturations change, while temperature, composition and the velocity are constant, so that
Eq. (4.4) does not play a role. (6) The Buckley-Leverett shock (speed vpy), with only the
liquid oil and water phases present. All quantities except the liquid saturations are constant,
so that Eq. (4.4) again does not play a role.

4.2. Characteristic speeds. Using G, and F; from Eq. (3.3), we define
G _OF 0

ng aVn,FEn = Wnp Féu - % (UF@) = Ffu (45>
where (Vi, Vs, Vs) = (Su, S, 1'). Note that G does not depend on u. Eq. (3.3) becomes:
oV, oV, ou
ngx%&>Z§K“WJ+% 0, o C=wuvoT (16

Without loss of generality u > 0 and the previous equations can be rewritten as

Z (ng%> + Z (qun%> —|—Fgualnu =0, for (=w,v,0,T. (4.7)

ot ox ox

n=w,q,T’ n=w,q,1’

Let us consider solutions of Eq. (3.3) that depend on (z,t) through the similarity coordinate
n = x/t. Then Eq. (4.7) becomes

d
MW(S,,S,.T, g)d—n(sﬂ,, S, T, Inu)f =0, (4.8)

where

Fii = AGu Fia —AGiy Fizs— MGz B

Foy — MG Fop — AGao Foz — MGz I

F31 — MG Fzp — ANGgo F33— AGsg Iy |7
Fyp —AGy Fyp — MGy Fy3— MNGyg Iy

with (Sy,S,, T,Inu)! denoting a column vector, A\ = n/u, and V = (S, S,,T)!. We have
replaced the subscripts w,v,0,T by 1, 2,3, 4.

MOV, ) = (4.9)

4.2.1. Three-phase flow. The three characteristic speeds, i.e. the eigenvalues A of M® can
be found by a tedious calculation, which we outline here. We observe that making the
determinant of (4.9) equal to zero leads to a polynomial equation of third order in .
Indeed, after performing Gaussian elimination on the matrix (4.9), its determinant becomes
the following, where A, As, Aa, AS,, Ay, Fu, Fus, and Gy3 depend on V, while A3 (N),
Asz (M) are linear expressions in A with coefficients that depend on V. Hence we find

Ofw 3 fuw
%@— Ap ) . A (N A o . 0 |
FE G- Ap(h) Ay | _ | s AP Gs Al — NAL Ay
0 0 A% —2AL A, S || Fis— MG Fu |
0 0 Fiz —AGaz Fu

(4.10)
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Let us define

/ /
(Hg - Hw — Lo (Ho - Hw)) <pg_w) + (Hg - Ho ‘I‘ l;g_v;ﬂ (Ho - Hw)) (pﬂ)

pv Pw oV
— Pav __ Pow ’
v W

where the primes indicate differentiation relative to temperature. We obtain
Fu = AHrfy + Hy+ (H, — Hy) f + (H; - H,) f,,

AHp =

and
Gis = ¢AHpS, + H) + o (H, + (H,, — H}) S, + (H, — H}) S,) -
Furthermore i oo 77 o 77
gw qu
g o, ttw — 7 4do 1))
Fi= w7 Ay = o P (4.11)
ov pw v ow PV
() (1) ()
p P P P
A3y = (1~ Vo) o - 11— i — Pow - — - Vpy fos (4.12)
v W
and
/ /
(5)C-5)- (5)'s
ov W PW [4%
Aby = (1 — vpy) 0S5, —o P + v S,. (4.13)
v W
2
Let us define tr = % + g—g and disc = (% — %) + 4%%. The slow and fast

characteristic speeds for saturation rarefaction waves are given as

A1 = % <tr - %) R % (tr + M) . (4.14)

The corresponding characteristic vectors have constant T', u; only the saturations vary along
these waves. Within the saturation triangle, spanned by Sy, S,, S;, which add to one, there
is a point where disc = 0. Here the two characteristic speeds coincide, giving rise to a rich
wave structure (see e.g. [21]).

The evaporation characteristic speed is

Y AsGys + AL F, .

Along evaporation rarefaction waves all quantities vary.

Ae = A (Su, Sy, T) =

(4.15)

4.2.2. Two-phase flow. In the absence of the gaseous phase, there are three kinds of rar-

efaction waves. The thermal rarefaction wave, along which S, po,, T change. Its speed

_ H G (H, - H)f

@ (H + Hy+ (H], — H}) Su)’
Then we have the Buckley-Leverett rarefaction with speed Agp, along which the liquid

saturation S, changes. Finally we have the composition wave with speed A, which is a

contact discontinuity, along which the composition and liquid water saturation change. The

speeds are

Ar (4.16)

_ 104,

- _l]-_fw
S,

)\ S’w7 OvaT )\ S’w7 OvaT - .
BL( P ) c( p ) ©l—25,

(4.17)
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5. NUMERICAL SOLUTION OF THE EQUATIONS

We will use the notation V = (S, S,, T’) in the three-phase region and V = (Sy,, vy, T') in
the two-phase liquid region.

5.1. Upstream scheme. Consider Eqs. (3.3), where the fluxes F} are functions of V. We
can write the upstream implicit finite difference scheme (¢ = w,v,0,T)

GP(t+ At) +u™ (t+ At) FJ* (t + At) = GJM(t) + (At/Az) u™ ! (£ + At) F)"7H (¢ + At),
(5.1)
where m denotes the grid cell number. The unknowns are u™ (t + At), and the three com-
ponents of V™ (t + At), which show up in the expressions for G7*(t + At) and F}"* (t + At).
Let us rewrite Eq. (5.1) and shorten the unknowns as follows: u™ (¢t + At) as u and
V™ (t + At) as V. We obtain the non-linear implicit scheme

Go(V) + (At/Az) uFy(V) = R™ (5.2)

where we have introduced the notation R;n’m_l for the right hand side of Eq. (5.1). We
assume that F;"~'(t + At) and v '(t + At) have been precomputed when solving the

previous cell m — 1, which may be in a phase conditions different from that of cell m. We

emphasize that R;n’m_l does not depend on the condition of cell m at the new time ¢t + At.

5.2. Solution of the non-linear system. The system (5.2) is solved using Newton-Raphson.
Given an approximate solution in the £** iteration V* and u* of Eq. (5.2) we find a better

approximation in the (k + 1)th iteration. Let us define R¥ (£ = w,v,d,T) as
RE = Go(VF) + (At/Az) u*E,(VF) — R)V™
and Eq. (5.2) becomes
0= Ge(V*1) + (At/Az) u T E(VF) — BP,

Substituting V¥ = VE + dV, w*! = u* + du, defining du = At/Ax du and neglecting
second order terms we obtain

G vk A xOF g At kg, =k
(av V) 5w oy V) ) vt O Fi(Vdu = R,

This is solvable for (dV, du) if %u is not a characteristic speed, which can be achieved by
taking At small enough. We obtain a linear system to be solved at each Newton iteration:

v, ~RE
uF At Az dy. uFAt | —RE
MOy 2T 2 | _uAt 2 .
Az v, ukAt) dVs Az —RE (5:3)
du —RE

5.3. Numerical implementation. The quantities in the grid cells are computed in the
injection-production direction from the left to the right. We specify the fluxes of all com-
ponents at the injection boundary. Initially all cells contain only water and oil at low
temperature.

All calculations in the Newton-Raphson scheme depend on the old phase situation of cell
m, as well as on available information from cells to the left of cell m. The method of solution
depends on the new conditions of the cell, two-phase or three-phase.
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FIGURE 6.1. Left: phase diagram for water, dead oil and volatile oil (heptane)
and azeotropic point. Right: comparison of MOC solution with the FD solution
for the case that neither volatile oil is injected nor present in the initial oil. The
straight curves are obtained with MOC, while the curved ones are obtained
with FD.

The iterative procedure is simple for a cell that starts and stays in the same situation.
When a cell starts in the two-phase situation, but in the two-phase calculation a temperature
arises that exceeds the boiling temperature of the water-liquid oil mixture (see Fig. 6.1(left))
then the calculation is replaced by a three-phase calculation.

Simulations use a uniform grid with 2000 blocks. This implicit method is inexpensive as
it only involves the solution of many 3 X 3 matrices as opposed to a single big matrix. As
far as the authors are concerned, this finite volume method is original in the way the total
velocity is treated, as there is no time derivative for it in the system.

6. METHOD OF CHARACTERISTICS FOR STEAM INJECTION

Figure 6.1(right) compares the numerical solutions obtained by the current finite differ-
ence scheme (FD) and by the Method of Characteristics (MOC) used in [11] for the satura-
tions (S, S,, S,) versus the length along the cylinder for pure steam injection in a cylinder
filled initially with dead oil only. The profiles are shown after the injection of 0.057 P(ore)
V(olume) (cold water equivalent). In the steam zone where S, > 0, we observe a satura-
tion rarefaction wave and the temperature and Darcy velocity are constant. At the steam
condensation front (SCF), where the temperature drops to the initial temperature, the gas
saturation drops to zero. The water saturation is larger than the initial water saturation
(Swe = 0.15), both upstream and directly downstream of the SCF. Further downstream of
the SCF there is a second shock to the initial conditions, i.e., S, = Sue, So = 1 — Swe. The
total downstream Darcy velocity divided by the injection velocity is constant spatially at
1.19 x 1072 in the entire liquid zone, but it shows fluctuations of 20% between time steps.
Nevertheless the average is correct. The oil saturation at the SCF is about 0.3. The observed
behavior is approximately independent of the number of grid blocks. The temperature and
the total Darcy velocity are not plotted because they only change at the SCF.

2.5
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FIGURE 7.1. Steam/cyclobutane displacement of dead oil.

7. RESULTS

The initial conditions for all the results are the following. The initial temperature is 293K
and the gas saturation is zero. The initial water saturation is given as S,, = Sy, = 0.15. We
consider the cases where the initial oil is dead oil and where the initial oil is a volumetric
50% mixture of dead oil and volatile oil; however, for cyclobutane we use a volumetric 20%
mixture of dead oil and volatile oil, as 50% is above the solubility limit. In the former case
we inject an alkane/steam mixture with mass fraction 0.2 (alkane/(alkane + steam)). In the
latter case we displace with pure steam. The injection temperature is 373 K and injection
pressure is one atmosphere. We use atmospheric pressure, because these results are most
easily validated with laboratory experiments. The volumetric injection flux is 9.52 x 10~%
m/s. All figures below plot reduced quantities versus the distance. The reduced velocity (u)
is the total Darcy velocity divided by the injection velocity. The reduced temperature (T)
is (T — T™) /(T — T™) . The reduced concentration (volume fraction) is vy, = poy/pv-

To damp transient quickly long runs were subdivided in smaller ones; in each one the
initial data consisted of the previous one, where every other grid data was omitted [29].
Each run was stopped before breakthrough of the fastest wave, i.e. before it reaches the end
boundary.

7.1. Cyclobutane/steam mixture displacing dead oil. Figure 7.1 shows displacement
of dead oil by steam/cyclobutane. There are four regions from the injection point to the
initial situation. In Region I, there is a fast three-phase saturation rarefaction wave with
constant 7" and u with wave speed given by Eq. (4.14)(right); the volatile oil concentration
(vop) is a small constant. The steam condensation front (SCF) separates Region I from
Region II. In Region II the temperature and the total velocity are constant, but much lower
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FIGURE 7.2. Steam displacement of a dead-oil/cyclobutane mixture.

than in Region I. Region I, II are three-phase regions, whereas region III and IV are two-
phase liquid regions. Region II and III are separated by a cyclobutane evaporation shock,
where the temperature jumps to its initial value in the reservoir and the total velocity to
its final downstream value. There is a constant state in Region III. Region III and IV are
separated by a Buckley-Leverett shock. Region IV contains the initial saturations.

The rarefaction in Region I starts at the injection state (Sye, 1 — Swe, 137, Uin;) and ends
at the left state of the SCF, ( 0. SCF ;SCF,TZ;[U,U”U). The right state of the SCF is
(S3 scr Sisor Taor uger). Left and right states and vscr satisfy the RH conditions
(4.1)-(4.4). The velocity vgor is the same as the speed of fast three-phase rarefaction (Eq.
(4.14)) at the end of Region I, i.e., the SC'F shock is left characteristic. Region II starts at

(83 scr Syscm Taors ucp), which is the upstream (left) state of the cyclobutane conden-

sation shock with speed ve. The right state this shock is (S} 5, S7p = 0,7, u}). Left and
right states and vg satisfy the RH conditions (4.1)-(4.4). Region III starts with a constant
state. Therefore (S, STy = 0,7, u}) is the upstream (left) state of the Buckley-Leverett
shock.

7.2. Pure steam displacing a dead-oil/cyclobutane mixture. See Fig. 7.2. There are
four regions again. In Region I, there is a fast three-phase saturation rarefaction wave at
constant T and u. Separating Region I from Region II there is the SC'F. Note that the
temperature at the right side of the SCF is not the initial reservoir temperature, but an
intermediate temperature. Region II consists of a constant state with the temperature and
the total velocity lower than in Region I. Region II and III are separated by a three-phase
saturation shock, which does not change the temperature but reduces the water saturation to
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FIGURE 7.3. Steam/heptane displacement of dead-oil.

its initial value. The gas saturation in region III is slightly lower than in region II. Between
region III and region IV there is a cyclobutane condensation shock.

Region I (v,, = 0) starts at the injection state (S, Sy =1— Sye, I3, win;) and ends
at (Sy scr S, s0m 11 Winj), which is the left state of the SCF. The right state of the
SCF is (S} gopm ST soms Taor o). Left and right states and vscr satisfy the RH condi-

w, g9,

tions (4.1)-(4.4). The SCF is left characteristic. Region II consists of the constant state
(S3 scr Sisor Taors uber)- Region 11 ends at the three-phase saturation shock with speed

vg. The right state is denoted as (Ssz, ngs, Tdops uSCF) and continues in Region III. This
constant state ends at the condensation shock with speed ve. Region IV is the right state
of this shock, with initial reservoir saturation.

7.3. Steam/heptane mixture displacing a dead-oil. See Fig. 7.3. In Region I, there is
again a fast three-phase saturation rarefaction. At the SCF' the temperature drops to the
initial temperature, and a volatile oil bank (Region II) builds up downstream of the SCF.
The volatile oil bank does not contain any dead oil. Such pure volatile oil bank displaces
all dead oil. Downstream of the volatile oil bank there is a contact wave, that marks the
boundary between region II and III. The contact wave is smooth in the simulation due to
numerical diffusion. Downstream there is only dead oil. Region III consists of a constant
state. Region III and Region IV are separated by a Buckley-Leverett shock.

Region I starts at the injection state (ch, Sg=1— 54T nj Uinj ), and it ends at the left
state of the SC'F, viz. (Sw scr Ogscr L um]) Again the SC'F'is left characteristic. The

right state of the SCF is (S+ scr Sysom Vov = 1, To,u ™) and continues as the constant state
in region II. Between region II and III there is the volatile oil contact wave with right state
(S*C, Sq o> Uow = 0,15, u*) and velocity v,. Downstream of the contact wave the constant
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FIGURE 7.4. Steam displacement of a dead-oil /heptane mixture.

state (S{;C,S;C,vov = O,To,zﬁ) spans Region III. The Buckley-Leverett shock separates
Region III from Region IV. This solution agrees with the observation, made previously by
JB and collaborators in the laboratory experiments [6], [10]. This is the case when analytical,

numerical and experimental results are all available. They all agree.

7.4. Pure steam displacing a dead-oil/heptane mixture. See Fig. 7.4. There are
only three regions. In Region I, there is the usual rarefaction wave with constant 7" and u.
Separating Region I from Region II there is the SC'F. In Region II the temperature is equal
to the initial temperature and the total velocity attains its constant downstream value. At
the SCF' there is a remarkable spike of volatile oil. Left of the spike v,, = 0. Region II
consists of a constant state. Region II and III are separated by a Buckley-Leverett shock.
Region III contains the initial saturations.

Region I starts at the injection state (Sye, Sy = 1 — Sye, T3, uinj) and ends at the left state
of the SCF ie. (S, gops S, scm I3 Uing) - The right state is (S} g0, St gop = 0,15, ut).
Left and right states and vger satisfy the RH conditions (4.1)-(4.4). Again the SCF is
left characteristic. Region II consists of the constant state (S} gop, Sy gcr = 0,To,u™). A
Buckley-Leverett shock with velocity vpy separates Region II from Region III.

Let us discuss the evolution of the volatile oil bank. Initially it does not exist. It starts to
be formed after injection. It grows as long as the steam zone ”swallows” the volatile oil-dead
oil mixture. Growth of condensed volatile oil bank stops as soon as displacement becomes

complete, because the source volatile oil ceases to be in contact with the bank.
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7.5. Steam/dodecane mixture displacing dead-oil. See Fig. 7.5. Besides the fast
three-phase saturation rarefaction in region I, there is a volatile oil condensation wave in
region II with velocity (4.15), where both T, u vary. At the state C joining rarefactions in
I and II the two characteristic speeds coincide. Region II is separated from Region III by
the SC'F. Region III consists of a constant state, which is separated from Region IV by a
Buckley-Leverett shock.

Region I starts at the injection state (Sye, Sy =1 — Sye, 7", Uin;) and it ends at the coin-
cidence point (S, o, Sy, T, win;) , the left state of the condensation rarefaction. The three-
phase rarefaction wave is continued as a condensation rarefaction wave, which is connected
to the SCF. The left state (S gop, Sy scrs I, u™ ), the right state (SF gop, Sy =0, T, u')

w

and vgcr satisfy the RH conditions (4.1)-(4.4). The SCF is left characteristic.

7.6. Pure steam displacing dead-oil/dodecane mixture. See Fig. 7.6. There are five
regions. In Region I, there is a three-phase saturation rarefaction. Near the injection point,
and at some other points very small transient effects are observed. Region II consists of
a constant state starting approximately at distance 0.1. Separating Region II from Region
III there is a dodecane evaporation shock, followed by a fast composition rarefaction wave.
The evaporation shock speed vg coincides with the speed of the left part of the composition
rarefaction wave. In Region III the temperature and the total velocity are lower than in
Region I. Region III and IV are separated by the SC'F', which is characteristic on the left. The
temperature drops to its initial reservoir value and the total velocity to its final downstream
value. There is only a constant state in Region IV. Region IV and V are separated by a
Buckley-Leverett shock with speed vgr. Region V contains the initial saturations.
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FIGURE 7.6. Steam displacement of a dead-oil/dodecane mixture

Region I starts at the injection state (S, S5, T, u) = (Swe, 1 — Swe, 117, Uin;) and ends
at (S;’E, S, B T, Uiny) . Also (SI;E, S, Iy’ Uinj) represents the left side of the dodecane
evaporation shock as Region II is a constant state. The dodecane evaporation shock has
speed vp and right state (S 5, S5, T, uf;). Left and right states and vp satisfy the RH
Egs. (4.1)-(4.4). The evaporation shock is also left characteristic. Region III starts at
(83 g2 S, T uf) with a composition rarefaction, which ends at (S, gopr S, scr 15 Uz) |
the left state of the SCF.

The right state of the SCF is (S} gepm Sy s0r = 0, 1o, ufcy). Left and right states and
vgor satisfy the RH conditions. The SCF is left characteristic. Region IV starts with a
constant state and ends with a Buckley-Leverett shock.

8. CONCLUSIONS

We developed a numerical model that captures the main physical features of thermal three
phase flow, involving steam, dead oil and volatile oil. The numerical solutions for different
injected mixtures and initial oil composition are validated using the semi-analytic rarefaction
and shock solutions. Diffusional effects are numerical.

In the 1-D setting, co-injection of medium boiling temperature volatile oil in steam leads
to 100% recovery of oil. This is due to the formation of an increasingly long volatile oil bank
displacing the oil in place. The presence of medium boiling temperature volatile initially also
improves oil recovery. This is due to the formation of a thin volatile oil bank displacing the
oil in place. Clearly the volatile oil bank displaces all the dead oil because they are in the
same phase. This solution agrees with the observations found previously in the laboratory
experiments. There is agreement between analytical, numerical and experimental results.
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The initial presence of medium boiling temperature volatile has also a positive effect on
the recovery efficiency. The initial presence of high boiling temperature volatile has only
a small positive effect on the recovery efficiency. Co-injection of high boiling temperature
volatile o0il in steam has no effect on recovery efficiency. Co-injected or initially present low
boiling temperature volatile oil has no effect on the recovery efficiency.

The essential mechanism for good recovery is that all the volatile oil condenses and remains
at the point where the steam condenses.
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APPENDIX A. PHYSICAL QUANTITIES; SYMBOLS AND VALUES

In this Appendix we summarize the values and units of the various quantities used in the
computation and empirical expressions for the various parameter functions. All enthalpies
per unit mass are with respect to the enthalpies at the reference temperature of the compo-
nents in their standard form. All heat capacities are at constant pressure. All enthalpies in
their standard form are zero at the reference temperature.
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A.1. Temperature dependent properties of steam and water. We use references [34],
[39] and [36] to obtain all the temperature dependent properties below.
The rock enthalpy is expressed as

Hy = (1=¢) cproos (T —T), Cprock = 3.274 x 10°J/m? /K. (A.1)
The liquid water enthalpy hy (T') [J/kg] as a function of temperature is approximated by
hw(T) =4184.0 (T —T). (A.2)

A conventional choice for the reference temperature is T = 298.15K. The heptane enthalpy
hov[J/kg] and the dead oil enthalpy h,p as a function of temperature is approximated by

hoV (T) = Cupv (T - T) , hoD (T) = CoD (T — T) . (A?))
where the values for the heat capacities for heptane and dead oil are
Coy = 2242, cop = 1914.1 [J/kg/K]. (A.4)

These enthalpies are chosen such that the enthalpy of oil per unit volume is independent
of composition. Therefore the heat capacity of the oleic phase per unit volume can also be
defined independently of composition. The steam enthalpy h,y as a function of temperature
is given by

how (T) = Ry (T) + Aw(T) (A.5)
and the sensible steam enthalpy is approximated as
Rew (T) = g (T —T)  with  cpg = 1964.0. (A.6)
The volatile oil vapor enthalpy h,y as a function of temperature is given by
hav (1) = By (1) + Ay (T) (A7)
and the sensible heptane enthalpy is approximated as as

Wy (T) = Cpgo (T =T)  with ¢y, = 1658.0. (A.8)
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Table: Summary of physical input parameters and variables

Physical quantity Symbol Value Unit
Water, gas, oil fractional flows fws for fo q. (A.16). [m?/m?]
Steam, vol-oil enthalpy/unit mass | hgw, hgv Eqs (A.5), (A.7). [J/kg]
Sensible enthalpy/unit mass Pow, Iy Egs. (A.6), (A.8). [J/kg]
vol-oil, oil enthalpy /unit mass hov s hop Egs. (A.3). [J/kg]
Gas enthalpy, Oil Enthaply H, H, Hgw + Hyyy Hoy + Hog [J/m3]
Steam, vol-oil enthalpy Hyw, Hyy ng(T)th(T) pov (T)hgy (T) [J/m?]
Sensible steam, vol-oil enthalpy Hiy, Hyy pgw (T) gy (T), pav (T ) gy (T) [J/m?]
Partial Steam, vol-oil enthalpy N Pguw(T)hgw (T), pgu(T)hgv(T) [J/m?]
vol-oil, oil enthalpy Hyy, H,p pv (D) hov (1), pop (1) hop(T) [J/m3]
Partial vol-oil, oil enthalpy H,,, Hy Pou(T ) hov (1), poa(T ) hop(T) [J/m?]
Rock enthalpy H, C(T-T), Eq. (A.1). [J/m?]
Water enthalpy Hy w(T)hw (T) [J/m?]
Porous rock permeability k 1.0 x 10712 [m?]
Water, gas, oil rel. perms. Erws krgy kro | Eq. (A.14 and A.15) . [m?/m?3]
Molar weight, H,O, C;H.g, d-oil My, My, Mp | 0.018, 0.10021,0.4 [kg/mole]
Total. pressure P 1.0135 x 10° [Pa]
Atmospheric pressure P, 1.0135 x 10° [Pa]
Partial pressures P, P, Egs. (2.3), (2.4). [Pa]
Water, vapor, oil saturations Swy Sg, So Independent variables. [m?/m?]
Residual oil, connate water satur. | S, Sye 0,0.15 [m?/m3]
Injection saturations Sing | Gind input [m3 /m?]
Temperature T Independent variable. K]
Azeotropic temperature To: (20p = 1) | Eq. (2.5). K]
Reservoir, injection temperature T T 293, 293 — 373. K]
Boiling point of water, vol. oil Ty, 17 373.15, 371.57 for heptane. K]
Total Darcy velocity u Volume flux of all phases. m?/(m?s)]
Total injection velocity um Injected volume flux. [m?3/(m?s)]
Water, vol-oil evaporation heat Aw, Ay see Egs. (A.9). [J/kg]
Water, steam, oil viscosity Lo, Py o Eqgs. (A.10)-(A.13). [Pa s
Water, steam, vol-oil vapor density | pw, pgw, pgv | 998.2, Egs. (2.2). [kg/m?|
Pure heptane, dead oil densities PV, PD 683, 800 [kg/m3]
Steam, vol-oil vapor concentrations | pguw, Pgv pow Puw/ P, povPy/P, Eq. (2.2) [kg/m?]
Liq. vol-oil concentrations Povs Pod Obtained from Egs. (2.6, 2.1) [kg/m?|
Molar fraction vol-oil in dead oil Top Eq. (2.5). ]
Rock porosity ® 0.38 [m?/m?]

All of this leads to an oleic phase heat capacity per unit volume of
C, = 1531 x 10° [J/m?/K] .
For the latent heat Ay (T) (, Av (1)) [J/kg] or evaporation heat of water (heptane) we use

Aw (T) = 3.1056 x 10° — 2220.07, Ay (T) = 5.3883 x 10° — 584.0T.. (A.9)
The temperature dependent liquid water viscosity p., [Pas] is approximated by
o = exp (—12.06 + 1509/T) . (A.10)
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The viscosity of the dead oil u,q and heptane p,, is written as

tod = €xp (—13.79 4+ 3781/T),  pier = exp (—10.813 4 880.2/T) . (A.11)
and the viscosity of the oil mixture is approximated with the quarter power rule
1 1 4
fo = (@uév + @uéd) : (A.12)
Pv PD

We assume that that the viscosity of the gas is independent of composition
[y = 1.8264 % 107 (1/300)*° . (A.13)

The water saturation pressure as a function of temperature is given by Eq. 2.3. The pure
phase densities of steam and volatile oil vapor are given by Eqgs. (2.2) and the corresponding
concentrations pgy, pgy are given in the Table.

A.2. Three phase relative permeabilities. We used Stone’s expressions [16] for three-
phase permeability: equations (A.14)-(A.15) describe the water relative permeability k., the
air relative permeability k., and the oil relative permeability k,, respectively. For convenience
we have taken the residual oil parameter used by Fayers [16] S,,, equal to zero. The relative
permeabilities k., k.4 are functions of the water saturation S, and the gas saturation S,
respectively.

Ferw = ko S5EY, kg = k(1 — Spe)?(1— SiF2), (A.14)
So(1 — Sue)
kro = Erowkiro ) A1
krcow(l - Sw)(l - ch - Sq) g ( )
Sw_ch _1_Sg_ch
Swe N 1 - Sum - Sor ’ Sge B 1 — Mwe T Sm’ ’

! by / A
kTO’LU = krg(l - Swe)2(1 - Si)—gz/ )7 kT’OQ = k’r‘w 532—2/ ‘

We took k;w =1/2, k‘;g =1 and k,cow = 1. Here A = 0.5 is the sorting factor, S, is given
in Table A.1 and S,, = 0 are the connate water saturation and the residual oil saturation
respectively.

We can express the Buckley-Leverett fractional flow functions for o = o, w, g as

fo = (kra/ta) | Rrw/ 1w + Kro/ o + Krg/ 11g) - (A.16)
where f, is the fraction of the volume flux of phase « [2].
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