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Abstract

We prove Kantorovich’s theorem on Newton’s method using a convergence analysis
which makes clear, with respect to Newton’s Method, the relationship of the majorant
function and the non-linear operator under consideration. This approach enable us to
drop out the assumption of existence of a second root for the majorant function, still
guaranteeing Q-quadratic convergence rate and to obtain a new estimate of this rate
based on a directional derivative of the derivative of the majorant function. Moreover,
the majorant function does not have to be defined beyond its first root for obtaining
convergence rate results.
AMSC: 49M15, 90C30.

1 Introduction

Kantorovich’s Theorem on Newton’s Method guarantee convergence of that method to a
solution using semi-local conditions. It does not require a priori existence of a solution,
proving instead the existence of the solution and its uniqueness on some region[5]. For a
current historical perspective, see [7].

Recently, Kantorovich’s Theorem has been the subject of many new research, see [2, 4,
8, 10]. It has been improved by relaxing the (original) assumption of Lipschitz continuity of
the derivative of the non-linear functional in question, see [1, 4, 10] and its references. These
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new versions of Kantorovich’s Theorem has also been used to prove many particular results
on Newton Method, previously unrelated, see [2, 10].

The aim of this paper is twofold. We shall present a new convergence analysis for Kan-
torovich’s Theorem which makes clear, with respect to Newton’s Method, the relationship of
the majorant function and the non-linear operator under consideration. Instead of looking
only to the generated sequence, we identify regions where Newton Method, for the nonlin-
ear ptoblem, is well behaved, as compared with Newton Method applyed to the majorant
function. This new analysis was introduced in [3], to generalize Kantorovich’s Theorem on
Newton’s Method to Riemannian manifolds, and has been also used by [2] in the same con-
text. Now, in a simpler context, this convergence analysis allow us relax the assumptions
for guaranteeing Q-quadratic convergence of the method, and obtain a new estimate of the
Q-quadratic convergence, based on a directional derivative of the derivative of the majo-
rant function. We drop out the assumption of existence of a second root for the majorant
function, still guaranteeing Q-quadratic convergence. Moreover, the majorant function even
don’t need to be defined beyond its first root.

The organization of our paper is as follows. In Subsection 1.1, we list some notations and
auxiliary results used in our presentation. In Section 2 the main result is stated and proved
and we given some remarks about applications of this result in Section 3.

1.1 Notation and auxiliary results

The following notation is used throughout our presentation. Let X, Y be a Banach spaces.
The open and closed ball at x are denoted, respectively by

B(x, r) = {y ∈ X; ‖x− y‖ < r} and B[x, r] = {y ∈ X; ‖x− y‖ 6 r}.
The following auxiliary results of elementary convex analysis will be needed:

Proposition 1. Let I ⊂ R be an interval, and ϕ : I → R be convex.

1. For any u0 ∈ int(I), the application

u 7→ ϕ(u0)− ϕ(u)

u0 − u
, u ∈ I, u 6= u0,

is increasing and there exist (in R)

D−ϕ(u0) = limu→u−0

ϕ(u0)− ϕ(u)

u0 − u
= supu<u0

ϕ(u0)− ϕ(u)

u0 − u
.

2. If u, v, w ∈ I, u < w, and u ≤ v ≤ w then

ϕ(v)− ϕ(u) ≤ [ϕ(w)− ϕ(u)]
v − u

w − u
.
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2 Kantorovich’s Theorem

Our goal is to states and prove the Kantorovich’s theorem on Newton’s method. The first
things that we will do is to prove that this theorem holds for a real majorant function. Then,
we will prove well definedness of Newton’s Method and convergence, also uniqueness in the
suitable region and convergence rates will be established. The statement of the theorem is:

Theorem 2. Let X be a Banach space, C ⊆ X and F : C → Y a continuous function,
continuously differentiable on int(C). Take x0 ∈ int(C) with F ′(x0) non-singular. Suppose
that there exist R > 0 and a continuously differentiable function f : [0, R) → R such that,
B(x0, R) ⊆ C,

‖F ′(x0)
−1 [F ′(y)− F ′(x)] ‖ ≤ f ′(‖y − x‖+ ‖x− x0‖)− f ′(‖x− x0‖), (1)

for x, y ∈ B(x0, R), ‖x− x0‖+ ‖y − x‖ < R,

‖F ′(x0)
−1F (x0)‖ ≤ f(0) , (2)

and

h1) f(0) > 0, f ′(0) = −1;

h2) f ′ is convex and strictly increasing;

h3) f(t) = 0 for some t ∈ (0, R).

Then f has a smallest zero t∗ ∈ (0, R), the sequences generated by Newton’s Method for
solving f(t) = 0 and F (x) = 0 with starting point t0 = 0 and x0, respectively,

tk+1 = tk − f ′(tk)
−1f(tk), xk+1 = xk − F ′(xk)

−1F (xk), k = 0, 1, . . . , (3)

are well defined, {tk} is strictly increasing, is contained in [0, t∗), and converges to t∗, {xk}
is contained in B(x0, t∗) and converges to a point x∗ ∈ B[x0, t∗] which is the unique zero of
F in B[x0, t∗],

‖x∗ − xk‖ ≤ |t∗ − tk|, ‖x∗ − xk+1‖ ≤
t∗ − tk+1

(t∗ − tk)2
‖x∗ − xk‖2, k = 0, 1, . . . , (4)

and the sequences {tk} and {xk} converge Q-linearly as follows

‖x∗ − xk+1‖ ≤
1

2
‖x∗ − xk‖, t∗ − tk+1 ≤

1

2
(t∗ − tk) k = 0, 1, . . . . (5)

If, additionally,
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h4) f ′(t∗) < 0,

then the sequences {tk} and {xk} converge Q-quadratically as follows

‖x∗ − xk+1‖ 6
D−f ′(t∗)

−2f ′(t∗)
‖x∗ − xk‖2, t∗ − tk+1 ≤

D−f ′(t∗)

−2f ′(t∗)
(t∗ − tk)

2, k = 0, 1, . . . , (6)

and x∗ is the unique zero of F in B(x0, τ̄), where τ̄ > t∗ is defined as

τ̄ = sup{t ∈ [t∗, R) : f(t) ≤ 0}.

Remark 1. Under Theorem’s 2 assumptions h1-h3 on f : [0, R) → R,

1. f(t) = 0 has at most one root on (t∗, R);

2. condition h4 is implied by any one of the following alternative conditions on f :

h4-a) f(t∗∗) = 0 for some t∗∗ ∈ (t∗, R),

h4-b) f(t) < 0 for some t ∈ (t∗, R),

where t∗ is the smallest root of f in [0, R).

In the usual versions of Kantorovich’s Theorem, to guarantee R-quadratic convergence
of the sequence {xk} and {tk}, condition h4-a is used. As we discussed, this condition is
more restrictive that condition h4.

From now on, we assume that the hypotheses of Theorem 2 hold, with the exception of
h4, which will be considered to hold only when explicitly stated.

2.1 Newton’s Method applied to the majorant function

In this subsection we will study the majorant function f and prove all results regarding only
the sequence {tk}.

Proposition 3. The function f has a smallest root t∗ ∈ (0, R), is strictly convex, and

f(t) > 0, f ′(t) < 0, t < t− f(t)/f ′(t) < t∗, ∀ t ∈ [0, t∗). (7)

Moreover, f ′(t∗) ≤ 0 and

f ′(t∗) < 0 ⇐⇒ ∃ t ∈ (t∗, R), f(t) ≤ 0. (8)
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Proof. As f is continuous in [0, R) and have a zero there(h3), it must have a smallest zero
t∗, which is greater than 0 because f(0) > 0 (h1). Since f ′ is strictly increasing(h2), f is
strictly convex.

The first inequality in (7) follows from the assumption f(0) > 0 and the definition of t∗
as the smallest root of f . Since f is strictly convex,

0 = f(t∗) > f(t) + f ′(t)(t∗ − t), t ∈ [0, R), t 6= t∗. (9)

If t ∈ [0, t∗) then f(t) > 0 and t∗ − t > 0, which, combined with (9) yields the second
inequality in (7). The third inequality in (7) follows form the first and the second ones. The
last inequality in (7) is obtained by division of the inequality on (9) by −f ′(t) (which is
strictly positive) and direct algebraic manipulations of the resulting inequality.

As f > 0 in [0, t∗) and f(t∗) = 0, we must have f ′(t∗) ≤ 0. In (8), the implication
⇒ holds trivially. To prove the implication ⇐, interchange t and t∗ in (9) and note that
f(t∗) = 0.

In view of the first inequality in (7), Newton iteration is well defined in [0, t∗). Let us
call it

nf : [0, t∗) → R
t 7→ t− f(t)/f ′(t).

(10)

Proposition 4. Newton iteration nf is strictly increasing, maps [0, t∗) in [0, t∗), and

t∗ − nf (t) 6
1

2
(t∗ − t), ∀ t ∈ [0, t∗). (11)

If f also satisfies h4, i.e., f ′(t∗) < 0, then

t∗ − nf (t) ≤
D−f ′(t∗)

−2f ′(t∗)
(t∗ − t)2, ∀ t ∈ [0, t∗). (12)

Proof. The first two statements of the proposition follows trivially for the last inequalities
in (7).

To prove (11) take some t ∈ [0, t∗). Note that f(t∗) = 0 (Prop. 3). Using also (10) and
the continuity of f ′ we have

t∗ − nf (t) =
1

f ′(t)

[
f ′(t)(t∗ − t) + f(t)

]
=

1

f ′(t)

[
f ′(t)(t∗ − t) + f(t)− f(t∗)

]
=

1

−f ′(t)

∫ t∗

t

f ′(u)− f ′(t) du.
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As f ′ is convex and t < t∗, it follows from Proposition 1 that

f ′(u)− f ′(t) 6 [f ′(t∗)− f ′(t)]
u− t

t∗ − t
, ∀u ∈ [t, t∗].

Taking in account the positivity of −1/f ′(t) (second inequality in (7)) and combining the
two above equations we have

t∗ − nf (t) 6 (−1/f ′(t))

∫ t∗

t

[f ′(t∗)− f ′(t)]
u− t

t∗ − t
du.

Direct integration of the last term of the above equation yields

t∗ − nf (t) 6
1

2

(
f ′(t∗)− f ′(t)

−f ′(t)

)
(t∗ − t). (13)

Therefore, above inequality together f ′(x∗) ≤ 0 and f ′(t) < 0 imply (11).
Finally, we assume that f satisfies assumption h4. Take t ∈ [0, t∗). As f ′ is increasing,

f ′(x∗) ≤ 0, and f ′(t) < 0, we obtain

f ′(t∗)− f ′(t)

−f ′(t)
≤ f ′(t∗)− f ′(t)

−f ′(t∗)
=

1

−f ′(t∗)

f ′(t∗)− f ′(t)

t∗ − t
(t∗ − t) ≤ D−f ′(t∗)

−f ′(t∗)
(t∗ − t),

where the last inequality follows from Proposition 1. Combining the above inequality with
(13) we conclude that (12) holds.

The definition of {tk} in Theorem 2 is equivalent to the following one

t0 = 0, tk+1 = nf (tk), k = 0, 1, . . . . (14)

Therefore, using also Proposition 4 we conclude that

Corollary 5. The sequence {tk} is well defined, strictly increasing and is contained in [0, t∗).
Moreover, it satisfies (5) (second inequality) and converges Q-linearly to t∗.

If f also satisfies assumption h4, then {tk} satisfies the second inequality in (6) and
converges Q-quadratically.

So, all statements involving only {tk} on Theorem 2 are valid.
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2.2 Convergence

In this subsection we will prove well definedness and convergence of the sequence {xk}
specified on (3) in Theorem 2, i.e., the sequence generated by Newton’s Method to solve
F (x) = 0 with the starting point x0.

Proposition 6. If ‖x− x0‖ ≤ t < t∗ then F ′(x) is non-singular and

‖F ′(x)−1F ′(x0)‖ 6 −1/f ′(t).

In particular, F ′ is non-singular in B(x0, t∗).

Proof. Take x ∈ B[x0, t], 0 ≤ t < t∗. Using the assumptions (1), h2, h1 of Theorem 2 and
the second inequality of (7) in Proposition 3 we obtain

‖F ′(x0)
−1F ′(x)− I‖ = ‖F ′(x0)

−1[F ′(x)− F ′(x0)]‖ 6 f ′(‖x− x0‖)− f ′(0)

≤ f ′(t)− f ′(0)

= f ′(t) + 1 < 1.

Using Banach’s Lemma and the above equation we conclude that F ′(x0)
−1F ′(x) is non-

singular and

‖F ′(x)−1F ′(x0)‖ 6
1

1− (f ′(t) + 1)
=

1

−f ′(t)
.

Finally, as F ′(x0)
−1F ′(x) is non-singular, F ′(x) is also non-singular.

Newton iteration at a point happens to be a zero of the linearization of F at such point,
which is also the first-order Taylor expansion of F . So, we study the error in the linearization
of F at point in B(x0, t)

E(x, y) := F (y)− [F (x) + F ′(x)(y − x)] , y ∈ C, x ∈ B(x0, R). (15)

We will bound this error by the error in the linearization on the majorant function f .

e(t, v) := f(v)− [f(t) + f ′(t)(v − t)], t, v ∈ [0, R). (16)

Lemma 7. Take
x, y ∈ B(x0, R) and 0 ≤ t < v < R.

If ‖x− x0‖ 6 t and ‖y − x‖ 6 v − t, then

‖F ′(x0)
−1E(x, y)‖ 6 e(t, v)

‖y − x‖2

(v − t)2
.
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Proof. As x, y ∈ B(x0, R) and the ball is convex

x + u(y − x) ∈ B(x0, R) for 0 ≤ u ≤ 1.

Hence, F being continuously differentiable in B(x0, R), (15) is equivalent to

E(x, y) =

∫ 1

0

[F ′(x + u(y − x))− F ′(x)](y − x) du,

which, combined with assumption (1) in Theorem 2 gives

‖F ′(x0)
−1E(x, y)‖ ≤

∫ 1

0

∥∥F ′(x0)
−1[F ′(x + u(y − x))− F ′(x)]

∥∥ ‖y − x‖ du

≤
∫ 1

0

[f ′ (‖x− x0‖+ u ‖y − x‖)− f ′ (‖x− x0‖)] ‖y − x‖ du .

Now, using the convexity of f ′, the hypothesis ‖x − x0‖ < t, ‖y − x‖ < v − t, v < R and
Proposition 1 we have, for any u ∈ [0, 1]

f ′ (‖x− x0‖+ u‖y − x‖)− f ′ (‖x− x0‖) ≤ f ′ (t + u‖y − x‖)− f ′ (t)

≤ [f ′(t + u(v − t))− f ′(t)]
‖y − x‖
v − t

.

Combining the two above equations we obtain

‖F ′(x0)
−1E(x, y)‖ ≤

∫ 1

0

[f ′(t + u(v − t))− f ′(t)]
‖y − x‖2

v − t
du,

which, after performing the integration yields the desired result.

Proposition 6 guarantee non-singularity of F ′, and so well definedness of Newton iteration
map for solving F (x) = 0, in B(x0, t∗). Let us call NF the Newton iteration map (for F ) in
that region

NF : B(x0, t∗) → Y
x 7→ x− F ′(x)−1F (x).

(17)

One can apply a single Newton iteration on any x ∈ B(x0, t∗) to obtain NF (x) which may
not belong to B(x0, t∗), or even may not belong to the domain of F . So, this is enough
to guarantee, on B(x0, t∗), well definedness of only one iteration. To ensure that Newton
iterations may be repeated indefinitely in x0, we need some additional results.
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First, define some subsets of B(x0, t∗) in which, as we shall prove, Newton iteration (17)
is “well behaved”.

K(t) :=

{
x ∈ B[x0, t] : ‖F ′(x)−1F (x)‖ 6 − f(t)

f ′(t)

}
, t ∈ [0, t∗) , (18)

K :=
⋃

t∈[0,t∗)

K(t). (19)

In (18), 0 6 t < t∗, therefore, f ′(t) 6= 0 and F ′ is non-singular in B[x0, t] ⊂ B[x0, t∗) (
Proposition 6). So, the definitions are consistent.

Lemma 8. For each t ∈ [0, t∗), K(t) ⊂ B(x0, t∗) and

NF (K(t)) ⊂ K (nf (t)) .

As a consequence, K ⊂ B(0, t∗) and NF (K) ⊂ K.

Proof. The first inclusion follows trivially from the definition of K(t).
Take t ∈ [0, t∗), x ∈ K(t). Using definition (18) and the first two statements in Proposi-

tion 4 we have

‖x− x0‖ ≤ t, ‖F ′(x)−1F (x)‖ ≤ −f(t)/f ′(t), t < nf (t) < t∗. (20)

Therefore

‖NF (x)− x0‖ 6 ‖x− x0‖+ ‖NF (x)− x‖ = ‖x− x0‖+ ‖F ′(x)−1F (x)‖
6 t− f(t)/f ′(t) = nf (t) < t∗ ,

and
NF (x) ∈ B[x0, nf (t)] ⊂ B(x0, t∗). (21)

Since NF (x), nf (t) belongs to the domain of F and f , respectively, using the definitions of
Newton iterations on (10), (17) and linearization erros (15) and (16), we obtain

f(nf (t)) = f(nf (t))− [f(t) + f ′(t)(nf (t)− t)]

= e(t, nf (t))

and

F (NF (x)) = F (NF (x))− [F (x) + F ′(x)(NF (x)− x)]

= E(x, NF (x)) .
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From the two latter equations, (20) and Lemma 7 we have

‖F ′(x0)
−1F (NF (x))‖ = ‖F ′(x0)

−1E(x, NF (x))‖

≤ e(t, nf (t))
‖F ′(x)−1F (x)‖2

(f(t)/f ′(t))2
≤ e(t, nf (t)) = f(nf (t)).

As ‖NF (x)− x0‖ ≤ nf (t), it follows from Proposition 6 that F ′(NF (x)) is non-singular and

‖F ′(NF (x))−1F ′(x0)‖ ≤ −1/f ′(nf (t)).

Combining the two above inequalities we conclude

‖F ′(NF (x))−1F (NF (x))‖ 6 ‖F ′(NF (x))−1F ′(x0)‖ ‖F ′(x0)
−1F (NF (x))‖

6 −f(nf (t))/f
′(nf (t)).

This result, together with (21) show that NF (x) ∈ K(nf (t)), which proofs the second inclu-
sion.

The next inclusion (first on the second sentence), follows trivially from definitions (18)
and (19). To verify the last inclusion, take x ∈ K. Then x ∈ K(t) for some t ∈ [0, t∗). Using
the first part of the lemma, we conclude that NF (x) ∈ K(nf (t)). To end the proof, note
that nf (t) ∈ [0, t∗) and use the definition of K.

Finally, we are ready to prove the main result of this section which is an immediate
consequence of the latter result. First note that the sequence {xk} ( see (3)) satisfies

xk+1 = NF (xk), k = 0, 1, . . . , (22)

which is indeed an equivalent definition of this sequence.

Corollary 9. The sequence {xk} is well defined, is contained in B(x0, t∗), converges to a
point x∗ ∈ B[x0, t∗],

‖x∗ − xk‖ ≤ t∗ − tk, k = 0, 1, . . . ,

and F (x∗) = 0.

Proof. Form (2) and assumption h1 of the main theorem, we have

x0 ∈ K(0) ⊂ K,

where the second inclusion follows trivially from (19). Using the above equation, the inclu-
sions NF (K) ⊂ K (Lemma 8) and (22) we conclude that the sequence {xk} is well defined
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and rests in K. From the first inclusion on second part of the Lemma 8 we have trivially
that {xk} is contained in B(x0, t∗).

We will prove, by induction that

xk ∈ K(tk), k = 0, 1, . . . . (23)

The above inclusion, for k = 0 is the first result on this proof. Assume now that xk ∈ K(tk).
Thus, using Lemma 8, (22) and (14) we conclude that xk+1 ∈ K(tk+1), which completes the
induction proof of (23).

Now, using (23) and (18), we have

‖F ′(xk)
−1F (xk)‖ ≤ −f(tk)/f

′(tk), k = 0, 1, . . . ,

which, by (3), is equivalent to

‖xk+1 − xk‖ ≤ tk+1 − tk, k = 0, 1, . . . . (24)

Since {tk} converges to t∗, the above inequalities implies that

∞∑
k=k0

‖xk+1 − xk‖ ≤
∞∑

k=k0

tk+1 − tk = t∗ − tk0 < +∞,

for any k0 ∈ N. Hence, {xk} is a Cauchy sequence in B(x0, t∗) and so, converges to some
x∗ ∈ B[x0, t∗]. The above inequality also implies that ‖x∗ − xk‖ ≤ t∗ − tk, for any k.

It remains to prove that F (x∗) = 0. First, observe that

‖F ′(xk)‖ 6 ‖F ′(x0)‖+ ‖F ′(xk)− F ′(x0)‖
≤ ‖F ′(x0)‖+ ‖F ′(x0)‖‖F ′(x0)

−1 [F ′(xk)− F ′(x0)] ‖.

As ‖xk − x0‖ ≤ tk and tk < t∗ < R,

‖F ′(x0)
−1 [F ′(xk)− F ′(x0)] ‖ ≤ f ′(‖xk − x0‖)− f ′(0) ≤ f ′(t∗)− f ′(0).

Combining the two above inequalities we have that {‖F ′(xk)‖} is bounded. On the other
hand, it follows from (3) and (24) that

‖F (xk)‖ 6 ‖F ′(xk)‖ ‖F ′(xk)
−1F (xk)‖

6 ‖F ′(xk)‖ (tk+1 − tk) .
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Due the fact that {‖F ′(xk)‖} is bounded and {tk} converges, we can take limit in the last
inequality to conclude that

lim
k→∞

F (xk) = 0.

Since F is continuous in B[x0, t∗], {xk} ⊂ B(x0, t∗) and {xk} converges to x∗, we also have

lim
k→∞

F (xk) = F (x∗).

2.3 Uniqueness and Convergence Rate

So far we have proved that the sequence {xk} converges to a solution x∗ of F (x) = 0
and x∗ ∈ B[x0, t∗]. Now, we are going to prove that this convergence to x∗ is at least Q-
linearly and x∗ is the unique solution of F (x) = 0 in the region B[x0, t∗]. Furthermore, by
assuming that f satisfies h4, we also prove that {xk} converges Q-quadratically to x∗ and
the uniqueness region increase from B[x0, t∗] to B(x0, τ̄). The results will be obtained as a
consequence of the following lemma.

Lemma 10. Take x, y ∈ B(x0, R) and 0 ≤ t < v < R. If

t < t∗, ‖x− x0‖ ≤ t, ‖y − x‖ ≤ v − t, f(v) ≤ 0, and F (y) = 0,

then,

‖y −NF (x)‖ 6 [v − nf (t)]
‖y − x‖2

(v − t)2
.

Proof. Direct algebraic manipulation yields

y −NF (x) = y − x + F ′(x)−1F (x)− F ′(x)−1F (y)

= −F ′(x)−1 [F (y)− F (x)− F ′(x)(y − x)] = −F ′(x)−1E(x, y),

with the assumption F (y) = 0 being used in the first equality and definition (15) in the last
equality. From the above equation we trivially have

y −NF (x) =
[
−F ′(x)−1F ′(x0)

] [
F ′(x0)

−1E(x, y)
]
.

Taking the norm on both sides of this equality and using Proposition 6, Lemma 7 together
with the assumptions of the lemma we obtain

‖y −NF (x)‖ ≤ (−1/f ′(t)) e(t, v)
‖y − x‖2

(v − t)2
.
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As 0 ≤ t < t∗, f ′(t) < 0. Using also (16) and the assumptions f(v) ≤ 0 we have

(−1/f ′(t)) e(t, v) = v − t + f(t)/f ′(t)− f(v)/f ′(t)

≤ v − t + f(t)/f ′(t) = v − nf (t).

To end the proof, combine the two above equations.

Corollary 11. The sequences {xk} and {tk} satisfy

‖x∗ − xk+1‖ ≤
t∗ − tk+1

(t∗ − tk)2
‖x∗ − xk‖2, for k = 0, 1, . . . . (25)

In particular,

‖x∗ − xk+1‖ 6
1

2
‖x∗ − xk‖, for k = 0, 1, . . . . (26)

Additionally, if f satisfies h4 then

‖x∗ − xk+1‖ 6
D−f ′(t∗)

−2f ′(t∗)
‖x∗ − xk‖2, for k = 0, 1, . . . . (27)

Proof. Take an arbitrary k and apply Lemma 10 with x = xk, y = x∗, t = tk and v = t∗, to
obtain

‖x∗ −NF (xk)‖ ≤ [t∗ − nf (tk)]
‖x∗ − xk‖2

(t∗ − tk)2
.

Equation (25) follows from the above inequality, (22) and (14).
Note that, by (11) in Proposition 4, (14) and Corollary 9, for any k

t∗ − tk+1

t∗ − tk
≤ 1/2 and

‖x∗ − xk‖
t∗ − tk

≤ 1.

Combining these inequalities with (25) we have (26).
Now, assume that h4 holds. Then, by Corollary 5 the second inequality on (6) holds,

which combined with (25) imply (27).

Corollary 12. The limit x∗ of the sequence {xk} is the unique zero of F in B[x0, t∗].
Furthermore, if f satisfies h4 then x∗ is the unique zero of F in B(x0, τ̄), where τ̄ is

defined as in Theorem 2, i.e.,

τ̄ = sup{t ∈ [t∗, R) : f(t) ≤ 0 }.

13



Proof. Let y∗ be a zero of F in B[x0, t∗]:

‖y∗ − x0‖ ≤ t∗, F (y∗) = 0.

We will prove by induction that

‖y∗ − xk‖ ≤ t∗ − tk, k = 0, 1, . . . . (28)

For k = 0 the above inequality holds trivially, because t0 = 0. Now, assume that the
inequality holds for some k. As we also have ‖xk − x0‖ ≤ tk, we may apply Lemma 10 with
x = xk y = y∗, t = tk and v = t∗ to obtain

‖y∗ −NF (xk)‖ ≤ [t∗ − nf (tk)]
‖y∗ − xk‖2

(t∗ − tk)2
.

Using latter inequality, the inductive hypothesis (to estimate the quotient in the last term),
(14) and (22) we obtain that (28) also holds for k + 1. This completes the induction proof.
Because {xk} converges to x∗ and {tk} converges to t∗, from (28) we conclude y∗ = x∗.
Therefore, x∗ is the unique zero of F in B[x0, t∗].

Now, suppose that f satisfies h4 and so, equivalently, t∗ < τ̄ . We already know
that if y∗ ∈ B[x0, t∗] then y∗ = x∗. It remains to prove that F does not have zeros in
B(x0, τ̄) \B[x0, t∗]. For proving this fact by contradiction, assume that F does have a zero
there, i.e., there exists y∗ ∈ X,

t∗ < ‖y∗ − x0‖ < τ̄, F (y∗) = 0.

We will prove that the above assumptions can not hold. First, using Lemma 7 with x = x0,
y = y∗, t = 0 and v = ‖y∗ − x0‖ we obtain that

‖F ′(x0)
−1E(x0, y∗)‖ 6 e(0, ‖y∗ − x0‖)

‖y∗ − x0‖2

‖y∗ − x0‖2
= e(0, ‖y∗ − x0‖).

As we are assuming that F (y∗) = 0, using also (15) and (2) we conclude

‖F ′(x0)
−1E(x0, y∗)‖ = ‖F ′(x0)

−1[−F (x0)− F ′(x0)(y∗ − x0)]‖
= ‖y∗ − x0 + F ′(x0)

−1F (x0)‖
≥ ‖y∗ − x0‖ − ‖F ′(x0)

−1F (x0)‖
= ‖y∗ − x0‖ − f(0).

From (16) and assumption h1 we have that

e(0, ‖y∗ − x0‖) = f(‖y∗ − x0‖)− f(0) + ‖y∗ − x0‖.

14



Now, combining this equality with two above inequalities it easy to see that

f(‖y∗ − x0‖)− f(0) + ‖y∗ − x0‖ ≥ ‖y∗ − x0‖ − f(0),

or equivalently, f(‖y∗ − x0‖) ≥ 0. Thus f , being strictly convex, is strictly positive in the
interval (‖y∗ − x0‖, R). So, τ̄ ≤ ‖y∗ − x0‖, in contradictions with the above assumptions.
Therefore, F does not have zeros in B[x0, τ̄) \ B[x0, t∗] and x∗ is the unique zero of F in
B(x0, τ̄).

Therefore, it follows from Corollary 5, Corollary 9, Corollary 11 and Corollary 12 that all
statements in Theorem 2 are valid.

Remark 2. The proof of the second part of Corollary 12 is essentially the same one presented
in [3, Lemma 3.1]

2.4 Limit Case for Kantorovich’s Theorem

For proving convergence and estimating its rate, only the regions [0, t∗] and B[x0, t∗] were
considered. Indeed, for obtaining Q-quadratic convergence, the behavior of f beyond t∗ was
not used. So, we give now a formulation which involves only the regions above mentioned.

Theorem 13. Let X be a Banach space, C ⊆ X and F : C → Y a continuous function,
continuously differentiable on int(C).

Take x0 ∈ int(C) with F ′(x0) non-singular. Suppose that there exist t∗ > 0 and a
continuously differentiable function f : [0, t∗] → R such that, B[x0, t∗] ⊆ C,

‖F ′(x0)
−1 [F ′(y)− F ′(x)] ‖ ≤ f ′(‖y − x‖+ ‖x− x0‖)− f ′(‖x− x0‖),

for x, y ∈ B(x0, t∗), ‖x− x0‖+ ‖y − x‖ < t∗,

‖F ′(x0)
−1F (x0)‖ ≤ f(0) ,

and

h1’) f(0) > 0, f ′(0) = −1;

h2’) f ′ is convex and strictly increasing;

h3’) f(t) > 0 in [0, t∗) and f(t∗) = 0.
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Then the sequences generated by Newton’s Method for solving f(t) = 0 and F (x) = 0 with
starting point t0 = 0 and x0, respectively,

tk+1 = tk − f ′(tk)
−1f(tk), xk+1 = xk − F ′(xk)

−1F (xk), k = 0, 1, . . . ,

are well defined, {tk} is strictly increasing, is contained in [0, t∗), and converges to t∗, {xk}
is contained in B(x0, t∗) and converges to a point x∗ ∈ B[x0, t∗] which is the unique zero of
F in B[x0, t∗],

‖x∗ − xk‖ ≤ |t∗ − tk|, ‖x∗ − xk+1‖ ≤
t∗ − tk+1

(t∗ − tk)2
‖x∗ − xk‖2, k = 0, 1, . . . ,

and the sequences {tk} and {xk} converge Q-linearly as follows

‖x∗ − xk+1‖ ≤
1

2
‖x∗ − xk‖, t∗ − tk+1 ≤

1

2
(t∗ − tk) k = 0, 1, . . . .

If, additionally,

h4’) f ′(t∗) < 0,

then the sequences {tk} and {xk} converge Q-quadratically as follows

‖x∗ − xk+1‖ 6
D−f ′(t∗)

−2f ′(t∗)
‖x∗ − xk‖2, t∗ − tk+1 ≤

D−f ′(t∗)

−2f ′(t∗)
(t∗ − tk)

2, k = 0, 1, . . . .

3 Final Remarks

Kantorovich’s Theorem was used in [10] to prove Smale’s Theorem [9], and it was used in
[2] to prove Nesterov-Nemirovskii’s Theorem [6]. We present these proofs here, for the sake
of ilustration.

Let we start with a definition.

Definition 1. Let X be a Banach space, C ⊆ X and F : C → Y a continuous function,
continuously differentiable on int(C). Take x0 ∈ int(C) with F ′(x0) non-singular. A contin-
uously differentiable function f : [0, R) → R is said to be a majorant function to F in x0 if
B(x0, R) ⊆ C and (1), (2), h1, h2, h3, h4 are satisfied.

The next results gives a condition more easy to check then condition (1), when de func-
tions under consideration are two times continuously differentiable.
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Lemma 14. Let X be a Banach space, C ⊆ X and F : C → Y a continuous function, two
times continuously differentiable on int(C). Let f : [0, R) → R be a two times continuously
differentiable function with derivative f ′ convex. Then F satisfies (1) if, only if,

‖F (x0)
−1F ′′(x)‖ 6 f ′′(‖x− x0‖), (29)

for all x ∈ C such that ‖x− x0‖ < R.

Proof. If F satisfies (1) then (29) holds trivially.
Reciprocally, taking x, y ∈ C such that ‖x− x0‖+ ‖y − x‖ < R, we obtain that

‖F (x0)
−1[F ′(y)− F ′(x)]‖ 6

∫ 1

0

‖F ′′(x + τ(y − x))‖‖y − x‖dτ.

Now, as f satisfies (29) and f ′ is convex, we obtain from last inequality that

‖F (x0)
−1[F ′(y)− F ′(x)]‖ 6

∫ 1

0

f ′′(‖(x− x0) + τ(y − x)‖)‖y − x‖dτ

6
∫ 1

0

f ′′(‖x− x0‖+ τ‖y − x‖)‖y − x‖dτ

= f ′(‖x− x0‖+ ‖y − x‖)− f ′(‖x− x0‖),

which implies that F satisfies (1), and the lemma is proved.

Theorem 15. (Smale’s Theorem). Let X be a Banach space, C ⊆ X and F : C → Y a
continuous function, analytic on int(C). Take x0 ∈ int(C) with F ′(x0) non-singular and
define

γ := sup
k>1

∥∥∥∥F ′(x0)
−1F (k)(x0)

k!

∥∥∥∥
1

k−1

.

Suppose that B(x0, 1/γ) ⊆ C and there exists β ≥ 0 such that∥∥F ′(x0)
−1F (x0)

∥∥ 6 β,

and α := βγ 6 3− 2
√

2. Then sequence generated by Newton’s Method for solving F (x) = 0
with starting x0

xk+1 = xk − F ′(xk)
−1F (xk), k = 0, 1, . . . ,

is well defined, {xk} is contained in B(x0, t∗) and converges to a point x∗ which is the unique
zero of F in B[x0, t∗], where t∗ := (α+1−

√
(α + 1)2 − 8α)/(4γ). Moreover, {xk} converges

Q-linearly as follows

‖x∗ − xk+1‖ 6
1

2
‖x∗ − xk‖, k = 0, 1, . . . .
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Additionally, if α < 3− 2
√

2 then {xk} converges Q-quadratically as follows

‖x∗ − xk+1‖ 6
γ

(1− γt∗)[2(1− γt∗)2 − 1]
‖x∗ − xk‖2, k = 0, 1, . . . ,

and x∗ is the unique zero of F in B(x0, t∗∗), where t∗∗ := (α + 1 +
√

(α + 1)2 − 8α)/(4γ).

Proof. Use Lemma 14 to prove that f : [0, 1/γ) → R defined by f(t) = t/(1−γt)−2t+β, is
a majorant function to F in x0, with roots equal to t∗ and t∗∗, see [10]. So, the result follows
from Theorem 2.

Theorem 16. (Nesterov-Nemirovskii’s Theorem). Let C ⊂ Rn be a open convex set and let
g : C → R be a strictly convex function, three times continuously differentiable int(C). Take
x0 ∈ int(C) with g′′(x0) non-singular. Define the norm

‖u‖x0 :=
√
〈u, u〉x0 , ∀ u ∈ Rn,

where 〈u, v〉x0 = a−1〈g′′(x0)u, v〉, for all u, v ∈ Rn and some a > 0. Suppose that g is
a-self-concordant, i.e., satisfies

|g′′′(x)[h, h, h]| 6 2a−1/2(g′′(x)[h, h])3/2, ∀ x ∈ C, h ∈ Rn,

W1(x0) = {x ∈ Rn : ‖x− x0‖x0 < 1} ⊂ C and there exists β ≥ 0 such that

‖g′′(x0)
−1g′(x0)‖x0 6 β 6 3− 2

√
2.

Then the sequence generated by Newton method to solve g′(x) = 0 ( or equivalently, to
minimizer g) with starting point x0

xk+1 = xk − g′′(xk)
−1g′(xk), k = 0, 1, . . . ,

is well defined, {xk} is contained in Wt∗(x0) = {x ∈ Rn : ‖x − x0‖x0 < t∗} and converges
to a point x∗ which is the unique minimizer of g in Wt∗ [x0] = {x ∈ Rn : ‖x − x0‖x0 6 t∗},
where t∗ := (β + 1−

√
(β + 1)2 − 8β)/4. Moreover, {xk} converges Q-linearly as follows

‖x∗ − xk+1‖ 6
1

2
‖x∗ − xk‖, k = 0, 1, . . . .

Additionally, if β < 3− 2
√

2 then {xk} converges Q-quadratically as follows

‖x∗ − xk+1‖ 6
1

(1− t∗)[2(1− t∗)2 − 1]
‖x∗ − xk‖2, k = 0, 1, . . . ,

and x∗ is the unique minimizer of g in Wt∗∗(x0) = {x ∈ Rn : ‖x − x0‖x0 < t∗∗}, where
t∗∗ := (β + 1 +

√
(β + 1)2 − 8β)/4.

Proof. Let X := (Rn, ‖.‖x0) be a Banach space. Use Lemma 14 to prove that f : [0, 1) → R
defined by f(t) = t/(1− t)− 2t + β, is a majorant function to g′ in x0, with roots equal to
t∗ and t∗∗, see [2]. So, the result follows from Theorem 2.
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