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LyAPUNOV EXPONENTS

The Lyapunov exponents of a sequence
{A",n > 1} of square matrices of dimen-
sion d > 1, are the values of

1
(1)  A(v) =limsup = log||A™ - v||
n—oo T
over all non-zero vectors v € R?. For
completeness, set A(0) = —oo. It is easy

to see that A(cv) = A(v) and A(v+v') <
max{A(v), A(v")} for any non-zero scalar
¢ and any vectors v, v'. It follows that,
given any constant a, the set of vectors
satisfying \(v) < a is a vector subspace.
Consequently, there are at most d Lya-
punov exponents, henceforth denoted by
A < -+ < Ag—1 < Ag, and there exists
a filtration F' < --- < F*~1 < FF = R?
into vector subspaces, such that

A(U) = )\i for all v € Fz \Fifl

and every i =1,... ,k (write Fy = {0}).
In particular, the largest exponent

2)

One calls dim F; — dim F;_; the multi-
plicity of each Lyapunov exponent \;.

There are corresponding notions for
continuous families of matrices Af, t €
(0,00), taking the limit as ¢ goes to oo
in the relations (1) and (2). The theories
for the two types of families, discrete and
continuous, are analogous and so at each
point of what follows we refer to either
one or the other.

1
Ar = limsup — log ||A™]] .
n—soo N
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LYAPUNOV STABILITY

Consider the linear differential equation
() o(t) = B(t) - v(t)

where B(t) is a bounded function with
values in the space of d x d matrices, de-
fined for all t € R. The theory of differ-
ential equations ensures that there exists
a fundamental matriz A', t € R such
that
v(t) = A -y

is the unique solution of (3) with initial
condition v(0) = vg.

If the Lyapunov exponents of the fam-
ily A, t > 0 are all negative then the
trivial solution v(t) = 0 is asymptoti-
cally stable, and even exponentially sta-
ble. The stability theorem of A. M. Lya-
punov asserts that, under an additional
regularity condition, stability is still valid
for non-linear perturbations

4)  wt) = B{t)-w+ F(t,w)

with ||F(t,w)|| < const|lw|**¢, ¢ > 0.
That is, the trivial solution w(t) = 0 is
still exponentially asymptotically stable.

The regularity condition means, es-
sentially, that the limit in (1) does ex-
ist, even if one replaces vectors v by el-
ements v; A --- Ay of any [th exterior
power of R4, 1 < [ < d. By definition,
the norm of an [-vector v; A-- - Ay is the
volume of the parallelepiped determined
by the vectors vy, ..., vg. This condi-
tion is usually tricky to check in specific
situations. However, the multiplicative
ergodic theorem of V. I. Oseledets as-
serts that, for very general matrix-valued
stationary random processes, regularity
is an almost sure property. This result
sets the foundation for the modern the-
ory of Lyapunov exponents. We are go-
ing to discuss the precise statement of
the theorem in the slightly broader set-
ting of linear cocycles, or vector bundle
morphisms.
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LINEAR COCYCLES

Let p be a probability measure on some
space M and f : M — M be a mea-
surable transformation that preserves p.
Let 7 : £ - M be a finite-dimensional
vector bundle, endowed with a Riemann-

ian metric ||-||, on each fiber £, = 7 1(z).

Let A: & — & be a linear cocycle over
f. What we mean by this is that

770A:fo77

and the action A(z) : &, — E(y) of Aon
each fiber is a linear isomorphism. No-
tice that the action of the nth iterate A"
is given by

A(z) = A(f" (@) -

for every n > 1.
Assume the function log* ||A(z)]|, is
p-integrable:

(5) log" | A()ll. € L' (1)

(we write logt ¢ = logmax{¢,1}, for
any ¢ > 0). It is clear that the sequence
of functions a,(z) = log||A™(z)||. satis-
fies

A(f(z)) - Alx)

am+n(T) < am () + an(f™())

for every m, n, and z. It follows from J.
Kingman’s sub-additive ergodic theorem
that the limit

53, 7 7)
exists for p-almost all z. In view of (2),
this means that the largest Lyapunov ex-
ponent A (z) of the sequence A™(z), n >
1 is a limit, and not just a lim sup, at al-
most every point.

MULTIPLICATIVE ERGODIC THEOREM

The Oseledets theorem states that the
same holds for all Lyapunov exponents.
Namely, for py-almost every x € M there
exists k = k(z) € {1,...,d}, a filtration

F!<...<FF'<FF=¢,
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and numbers Ai(z) < --- < Ag(z) such
that

1 n .
6)  lim —log|lA"(2)ll. = Ai(z)

forallve Fi\ Fi-' and i € {1,... ,k}.

The Lyapunov exponents \;(z), and
their number k(z), are measurable func-
tions of z and they are constant on orbits
of the transformation f. In particular, if
the measure p is ergodic then k£ and the
A; are constant on a full y-measure set
of points. The subspaces F! also depend
measurably on the point z and are in-
variant under the linear cocycle:

It is in the nature of things that, usually,
these objects are not defined everywhere
and they depend discontinuously on the
base point z.

When the transformation f is invert-
ible one obtains a stronger conclusion, by
applying the previous kind of result also
to the inverse of the cocycle. Namely, as-
suming that log™ [|A~"|| is also in L' (u),
one gets that there exists a decomposi-
tion

& =Er®--- o EF,

defined at almost every point and such
that A(z) - B} = E}, and

lim
n—=4oco

1
(7) - log[|A"(@)llz = Ai(2)
for all v € E! different from zero and
all i € {1,...,k}. These Oseledets sub-
spaces E! are related to the subspaces
F! through

Fi=@o]_E:.
Hence, dim Ef = dim F! — dim F: ! is
the multiplicity of the Lyapunov expo-
nent \;(x).
The angles between any two Oseledets
subspaces decay sub-exponentially along
orbits of f:

lim
n—+oo

1 i R
- log angle (En (4, Efn () =0
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for every i # j and almost every point.
These facts imply the regularity condi-
tion mentioned previously and, in par-
ticular,

(8)
| ngon|
BI:EOO - log | det A™(z)| =

k
=" Ai(z)dim E}
i=1

Consequently, for cocycles with values in
SL(d,R) the sum of all Lyapunov expo-
nents, counted with multiplicity, is iden-
tically zero.

As we are dealing with almost certain
properties, we may generally restrict the
vector bundle to some full measure sub-
set over which it is trivial. Then each
fiber &, is identified with the space R?,
and we may think of A(x) as a d x d ma-
trix. Then A,(z) = A(f™(z)) is a sta-
tionary random process relative to (f, u).
Thus, in this context it is no serious re-
striction to view a linear cocycle as a sta-
tionary random process with values in
the linear group GL(d,R) of invertible
d x d matrices.

Furthermore, given any such random
process A,, n > 0, one may consider its
normalization B,, = A,/|det A,|. The
Lyapunov exponents of the two random
processes A,, n > 0 and B, n > 0 differ
by the time average

1 n—1
nlgr;g - jgo log | det A; ()|

of the determinant. The Birkhoff ergodic
theorem ensures that the time average is
well-defined almost everywhere, as long
as the function log|det A| is in L!(p);
that is the case, for instance, if both
log* ||A*!|| are integrable. This relates
the general case to random processes with
values in the special linear group SL(d, R)
of d x d matrices with determinant +1.

The Oseledets theorem was extended
by D. Ruelle to certain linear cocycles in
infinite dimension. He assumes that the

A(x) are compact operators on a Hilbert
space H and log™ ||A|| is in L'(u). The
conclusion is the same as in finite dimen-
sion, except that the filtration

...<F;<...<F;:H

may involve infinitely many subspaces,
and the Lyapunov exponents may be —oc.
There is also a version for cocycles over
invertible transformations, where one as-
sumes each A(zx) to be invertible and the
sum of a unitary operator with a com-
pact operator, such that both log ||A%||
are integrable. The conclusion is that
there exists an Oseledets decomposition
H=E!®---@E.®--- at almost every
point, with finitely or countably many
factors.

RANDOM MATRICES

Relation (8) implies that, for SL(d,R)
cocycles, if there is only one Lyapunov
exponent (with full multiplicity) then it
must be zero. When this happens the
theory contains no information on the
behavior of the iterates A™(x) - v, apart
from the fact that there is no exponential
growth nor decay of their norms. Thus,
the question naturally arises under which
conditions is there more than one Lya-
punov exponent or, equivalently, under
which conditions is the largest Lyapunov
exponent, strictly positive.

This problem was first addressed by
H. Furstenberg for products of indepen-
dent random variables, corresponding to
the following class of linear cocycles. Let
v be a probability measure on the group
G = GL(d,R). Consider M = GN and
p="vN (or M = G? and pu = v%), and
let f: M — M be the shift map

F(@);) = (1)
It is clear that p is invariant and also
ergodic for the transformation f. Con-

sider the cocycle A : £ — & defined by
E=M x R* and

A((aj)j) v =qag 0.
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Clearly,
An((aj)j) VU =0p—1"""0100 V.

Corresponding to the hypothesis of the
multiplicative ergodic theorem, assume
that log"t ||a|| (and log™ ||a~'||) are v-
integrable functions of the matrix a.
Furstenberg’s theorem states that if
the closed group G(v) generated by the
support of v is non-compact and strongly
irreducible in R? then the largest Lya-
punov exponent of the cocycle A is strictly
positive. Strong irreducibility means that
there exists no finite union of subspaces
of R? that is invariant under all elements
of the group. Improvements, extensions,
and alternative proofs have been obtained
by several authors since then.
Especially, Y. Guivarc’h, A. Raugi pro-
vided conditions under which there are
exactly d distinct Lyapunov exponents
or, in other words, the multiplicity of
every Lyapunov exponent is equal to 1.
A matrix semigroup has the contraction
property if there exists a sequence of el-
ements h,, and a probability measure on
the projective space of R? that gives zero
weight to any projective subspace, such
that the images (h,)«m of m under the
hy converge to a Dirac mass in the pro-
jective space. They proved that if the
closed semigroup H(v) generated by the
support of the probability v is strongly
irreducible and has the contraction prop-
erty then the largest Lyapunov exponent
has multiplicity 1. Applying this to the
exterior powers of the cocycle, one ob-
tains sufficient conditions for simplicity
of the other Lyapunov exponents as well.
This statement has been improved by
I. Ya. Gol’dsheid, G. A. Margulis, who
formulated the hypotheses in terms of
the algebraic closure G(v) of the semi-
group H(v). They assumed that G(v)
has the contraction property and the con-
nected component of the identity inside
G(v) is irreducible in R?, meaning that
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its elements do not have any common in-
variant subspace. Then the largest Lya-
punov exponent is simple.

SCHRODINGER COCYCLES

The 1-dimensional discrete Schrédinger
equation is the second order difference
equation

9)

derived from the stationary Schrodinger
equation in dimension 1 by space dis-
cretization. Here the energy F is a con-
stant and V,, = V(f"(9)), where the po-
tential V(-) is a bounded scalar function
and f : M — M is a transformation pre-
serving some probability measure p on
M. In what follows we take u to be er-
godic. The equation (9) may be rewrit-
ten as a first order relation,

(e )=("% %

Hence, it may also be interpreted as a
linear cocycle A over f, where the vector
bundle is £ = M x R? and

(VO -E -1
) @)= ("7F
takes values in SL(R,2). By ergodicity,
the Lyapunov exponents are essentially
independent of the base point 6. Let
A(E) denote the largest exponent: by
the relation (8), the other one is —A\(E).
The Lyapunov exponent A(E) is re-
lated to the spectral theory of the linear
operators Ly

_(Un—i-l + Un—l) + Vhup = Bup

Un
Un

Un+1
Un+41

(Cﬂu)n = _(un+1 + unfl) + Vnun

on the space ¢?(Z) of complex square-
integrable sequences u,, n € Z. These
are bounded Hermitian operators and so
the spectra are compact subsets of R.
Using the assumption that p is ergodic
one can prove that the spectrum spec(Ly)
is constant almost everywhere. If the
transformation f is minimal, the spec-
trum is even independent of the point 6.
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Moreover, for all energies,
A(E) > const dist(E, spec(Lg)).

In particular, A(E) is always positive on
the complement of the spectrum.

A fundamental problem (Anderson lo-
calization) is to decide when the spec-
trum is pure-point. This is reasonably
well understood for a few classes of base
dynamics only. One of them are very
chaotic systems such as Bernoulli and
Markov processes (random potentials) or
uniformly hyperbolic maps and flows. An-
other one are the irrational rotations on
the d-dimensional torus (quasi-periodic
potentials). In the latter case, the results
are more complete when there is only one
frequency (d = 1). It was shown by K.
Ishii and by L. Pastur that if A(E) is pos-
itive for almost all values of E in some
Borel set then the absolutely continuous
part of the spectrum is essentially dis-
joint from that set. The converse is also
true, and due to S. Kotani. Thus, check-
ing that A(E) is positive is an important
step towards proving localization.

A very general criterion for positivity
of the Lyapunov exponent was obtained
by Kotani. Namely, he proved that if
the potential is not deterministic then
A(E) is positive for almost all E. In
particular, for non-deterministic poten-
tials the absolutely continuous spectrum
is empty, almost surely. In simple terms,
the hypothesis means that from the val-
ues of the potential for negative n one
can not determine the values for posi-
tive n. More formally, one calls the po-
tential deterministic if every V,, n > 0
is almost everywhere a measurable func-
tion of {V;, : n < 0}. For instance,
quasi-periodic potentials are determinis-
tic, whereas Bernoulli potentials are not.

SUBHARMONICITY METHOD

Let D™ be the set of complex vectors
(21,...,2m) € C™ such that |z;| <1 for
all j and let T™ be the subset defined
by |2;| = 1 for all j. Let f:T™ — T™

STRANGE ATTRACTORS 5
and A : T™ — SL(d,R) be continuous
maps that admit holomorphic extensions
to the interior of D™ with f(0) = 0. As-
sume that f preserves the natural (Haar)
measure g on T™. Let

AMA,p) = | Mz)dp,

Tm
where A(z) denotes the largest Lyapunov
exponent for the cocycle defined by A
over f. It also follows from the sub-
additive ergodic theorem that

1 .
A4, ) = lim / log A" (2)]| di.

M. Herman observed that, since the
function log || A™(z)|| is plurisubharmonic
on D™ one may use the maximum prin-
ciple to conclude that

1 1
—/ log [|A™ ()|l dpu > —log [|A™(0)]] -
n Jrm n

Then, taking the limit when n — oo one
obtains that

(11)

where p(A) denotes the spectral radius
of the matrix A(0). Starting from this
observation, he developed a very effec-
tive method for bounding Lyapunov ex-
ponents from below, that received sev-
eral applications and extensions, in par-
ticular, to the theory of Schrédinger co-
cycles with quasi-periodic potentials.

The best known application is the fol-
lowing bound for integrated Lyapunov
exponents of 2-dimensional cocycles. Let
f: M — M be a continuous transfor-
mation on a compact metric space, pre-
serving some probability measure y, and
A: M — SL(2,R) be a continuous map.
For each fixed 6, let ARy be the cocycle
obtained by multiplying A(z), at every
point z, by the rotation of angle 6. Her-
man proved that

A, p) > p(A)

o [ MARew > [ N)au
27T M
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(A. Avila, J. Bochi later showed that the
equality holds) where
A Alz)!

Vo) = tog MA@+ 1A
Apart from the exceptional case when A
acts by rotation at every point in the
support of u, the right hand side of the
inequality is positive, and so the Lya-
punov exponent of the cocycle ARy is
positive for many values of 6.

NON-UNIFORM HYPERBOLICITY

The prototypical example of a linear co-
cycle is the derivative of a smooth trans-
formation on a manifold. More precisely,
let M be a finite-dimensional manifold
and f : M — M be a diffeomorphism,
that is, a bijective smooth map whose
derivative Df(z) depends continuously

on z and is an isomorphism at every point.

Let £ = TM be the tangent bundle to
the manifold and A = Df be the de-
rivative. If M is compact or, more gen-
erally, if the norms of both Df and its
inverse are bounded, then the hypoth-
esis in Oseledets theorem is automati-
cally satisfied for any f-invariant proba-
bility p. Lyapunov exponents yield deep
geometric information on the dynamics
of the diffeomorphism, especially when
they do not vanish. For most results that
we mention in the sequel, one needs the
derivative D f to be Holder continuous:

[Df(z) = Df(y)ll < constd(z,y)°.

Let Ef be the sum of the Oseledets
subspaces corresponding to negative Lya-
punov exponents. Pesin’s stable mani-
fold theorem states that there exists a
family of embedded disks W} .(x) tan-
gent to E? at almost every point and
such that the orbit of every y € W (z)
is exponentially asymptotic to the orbit
of . This lamination {W?*(x)} is invari-
ant, in the sense that

fW?(z)) Cc W*(f(z))
and has an “absolute continuity” prop-
erty. There are analogous results for the
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sum E of the Oseledets subspaces cor-
responding to positive Lyapunov expo-
nents

The entropy of a partition P of M is
defined by

.1 n
hu(f77)) = nll{%o EHH(,P )7

where P" is the partition into sets of the
form P=Poﬂf*1(P1)ﬂ---ﬂf*"(Pn)
with P; € P and

H,(P") = Y —u(P)logu(P).
PP

The Kolmogorov-Sinai entropy h,(f) of
the system is the supremum of h,(f,P)
over all partitions P with finite entropy.
The Ruelle-Margulis inequality says that
h,(f) is bounded above by the average
sum of the positive Lyapunov exponents.
A major result of the theory, Pesin’s en-
tropy formula, asserts that if the invari-
ant measure p is smooth (e.g. a volume
element) then the two invariants coin-
cide:

h(h) = [ (S f)dn

A complete characterization of the in-
variant measures for which the entropy
formula is true was given by F. Ledrap-
pier and L. S. Young.

The invariant measure y is called hy-
perbolic if all Lyapunov exponents are
non-zero at almost every point. Hyper-
bolic measures are exact dimensional: the
pointwise dimension

log (B (z))

d(z) = lim Tog "

r—0
exists at almost every point, where B,.(z)
is the neighborhood of radius r around
z. This fact was proved by L. Barreira,
Ya. Pesin, and J. Schmeling. Note that
it means that the measure u(B,(z)) of
neighborhoods scales as r%%) when the
radius 7 is small.
Another remarkable feature of hyper-
bolic measures, proved by A. Katok, is
that periodic motions are dense in their
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supports. More than that, assuming the
measure is non-atomic, there exist Smale
horseshoes H,, with topological entropy
arbitrarily close to the entropy h,(f) of
the system. In this context, the topolog-
ical entropy h(f,H,) may be defined as
the exponential rate of growth

lim ~log#{z € H,, : f*(z) = z}.
k—oo k

of the number of periodic points on H,,.

GENERIC SYSTEMS

Given any area preserving diffeomor-
phism on any surface M, one may find
another whose first derivative is arbitrar-
ily close to the initial one and which has
Lyapunov exponents identically zero at
almost every point, or else is globally
uniformly hyperbolic (Anosov). This sur-
prising fact was discovered by R. Mafé,
and a complete proof was given by J.
Bochi. Uniform hyperbolicity means that
the tangent bundle admits a D f-invariant
splitting

TM =E°® E“

such that the line bundle E? is uniformly
contracted and E* is uniformly expanded
by the derivative. It is well-known that
Anosov diffeomorphisms can only occur
if the surface is the torus T2.

In fact, the theorem of Mafié-Bochi is
stronger: for a residual subset (a count-
able intersection of open dense sets) of
all once-differentiable area preserving dif-
feomorphisms on any surface, either the
Lyapunov exponents vanish almost ev-
erywhere or the diffeomorphism is Anosov.
This shows that zero Lyapunov expo-
nents are actually quite common for sur-
face diffeomorphisms that are only once-
differentiable. Moreover, this theorem
has been extended to diffeomorphisms
on manifolds with arbitrary dimension,
in a suitable formulation, by J. Bochi
and M. Viana.

STRANGE ATTRACTORS

However, this phenomenon should be
specific to systems with low differentia-
bility. Indeed, already for Holder contin-
uous linear cocycles over chaotic trans-
formations it is known that vanishing Lya-
punov exponents can only occur with in-
finite codimension. That is, unless the
cocycle satisfies an infinite number of in-
dependent constraints, there exists some
positive exponent. By chaotic we mean
here that the invariant probability p of
the base transformation is assumed to be
hyperbolic and have local product struc-
ture: it is locally equivalent to a product
of two measures, respectively, along sta-
ble and unstable sets.

Under additional assumptions one can
even prove that all Lyapunov exponents
have multiplicity 1 outside an infinite codi-
mension subset. This follows from ex-
tensions of the Guivarc’h-Raugi criterion
for certain linear cocycles over chaotic
transformations, obtained by A. Avila,
C. Bonatti, and M. Viana.

STRANGE ATTRACTORS

This expression was coined by D. Ru-
elle and F. Takens in their celebrated
study on the nature of fluid turbulence.
E. Hopf and also L. D. Landau and E.
M. Lifshitz had suggested that turbu-
lent motion arises from the existence in
the phase space of invariant tori carrying
quasi-periodic flows with large number
of frequencies. Ruelle and Takens ob-
served that dissipative systems such as
viscous fluids do not generally have such
quasi-periodic tori, and concluded that
turbulence must be credited to a differ-
ent mechanism: the presence of some
“strange” attractor.

While they did not propose a precise
definition, two main features were men-
tioned: Complex geometry: a strange at-
tractor is not reduced to an equilibrium
point or a periodic solution of the sys-
tem and, generally, should have a fractal
structure. Chaotic dynamics: solutions
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accumulating on the attractor should be
sensitive to their initial states. As more
examples were found, it became appar-
ent that these two features do not always
come together. This led to two types
of definition in the literature, depending
on whether one emphasizes the geome-
try or the dynamics. We adopt the sec-
ond point of view, and propose to define
strange attractor as one carrying an in-
variant ergodic physical measure which
has some positive Lyapunov exponent.
The notion of physical measure will be
defined near the end. The condition on
the Lyapunov exponent ensures that the
dynamics near the attractor is (exponen-
tially) sensitive to the initial states.

LORENZ-LIKE ATTRACTORS

The uniformly hyperbolic attractors in-
troduced by S. Smale provided an inter-
esting class of examples of strange at-
tractors, both chaotic and fractal. Per-
haps more striking, given that they orig-
inated from a concrete problem in fluid
dynamics, were the strange attractors in-
troduced by E. N. Lorenz. The Lorenz
system of differential equations

T = —0x+ oy =10
(12) g=rz—y—2az r =28
Z=uzy—bz b=28/3

was derived from Lord Rayleigh’s model
for thermal convection, by Fourier ex-
pansion of the stream function and tem-
perature and truncation of all but three
modes. Lorenz observed that its solu-
tions depend sensitively on their initial
states. Consequently, predictions based
on the numerical integration of the equa-
tions may turn out to be very inaccurate,
given that the initial data obtained from
experimental measurements is never com-
pletely precise. This remarkable obser-
vation brought the issue of predictability
in deterministic systems to a whole new
light and motivated intense investigation
of this and many other chaotic systems.
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The dynamical behavior of the equa-
tions (12) was first interpreted through
certain geometric models where the pres-
ence of strange attractors, both chaotic
and fractal, could be proved rigorously.
It was much harder to prove that the
original equations (12) themselves have
such an attractor. This was achieved
just a few years ago, by W. Tucker, by
means of a computer assisted rigorous
argument. At about the same time, a
mathematical theory of Lorenz-like at-
tractors in 3-dimensional space was de-
veloped by C. Morales, M. J. Pacifico,
and E. Pujals. In particular, this the-
ory shows that uniformly hyperbolic at-
tractors and Lorenz-like attractors are
the only ones which are robust under all
small modifications of the vector field.

HENON-LIKE ATTRACTORS

Starting from the work of Lorenz, many
models of strange attractors have been
found and described to some extent, of-
ten related to concrete problems. From
a mathematical point of view, it is usu-
ally hard to give even a rough description
of the dynamics in the chaotic regime.
However, this was especially successful
for the family of strange attractors in-
troduced by M. Hénon. He considered
a very simple non-linear system, partic-
ularly suited for numerical experimenta-
tion: the transformation

(13)  f(z,y) = (1 —az® + by, 2)
where a and b are constant parameters.
In a breakthrough, M. Benedicks and L.
Carleson were able to prove that, for a
set of parameter values with positive prob-
ability, this transformation has some non-
hyperbolic attractor such that the orbits
accumulating on it are sensitive to the
starting point. The system (13) is also a
model for many other situations, includ-
ing the phenomenon of creation of homo-
clinic motions as parameters unfold, and
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the conclusions of Benedicks and Car-
leson have been extended to such situa-
tions, starting from the work of L. Mora
and M. Viana.

Moreover, a detailed theory of Hénon-
like attractors has been developed by M.
Benedicks, M. Viana, D. Wang, L. S.
Young, and other authors. It follows
from this theory that these attractors

carry an invariant ergodic probability mea- [g]

sure y which describes the statistical be-
havior of almost all trajectories f7(z),
j > 1 that accumulate the attractor:
1< ;
Jim 2 Y e) = [

for any continuous function ¢. This prop-
erty implies that, despite the fact that it
is supported on a zero volume set, the
measure 4 is, in some sense, physically
observable. For this reason one calls it a
physical measure. In other words, time
averages along typical orbits in the do-
main of attraction coincide with the space
averages determined by the probability
p. Another property with physical rel-
evance is that p is the zero-noise limit
of the stationary measures associated to
the Markov chains obtained by adding
random noise to f. One says that the
system (f,u) is stochastically stable.

See also

Chaos and attractors. Ergodic
theory. Fractal dimensions in dy-
namics. Generic properties of dy-
namical systems. Homoclinic phe-
nomena. Hyperbolic dynamical sys-
tems. Random dynamical systems.
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