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Abstract

We propose a new image-space algorithm to generate an immersive view in flat or hyperbolic

3-manifolds, orbifolds and more generally polyhedral complexes. The complexity of the algo-

rithm is linear instead of being exponential in depth, as all the previous algorithms developed

for this application.

1 Introduction

With the Geometry Center [15], William Thurston initiated a program to disseminate modern

geometry using interactive visualization. This initiative resulted in software which provided im-

mersive views of 3-manifolds or 3-orbifolds. The goal of such visualization algorithms is to render

what one would see if he/she would lived inside that space. In particular, hyperbolic manifolds,

which will be formally defined further, are fundamental: according to Thurston [17], most of the

manifolds are hyperbolic — i.e., there is a very rich variety of them.

In a view of a compact manifold, a single object appears many times, and in general its images

fill up all the horizon. Indeed a ray of light might loop and such paths can represent every element

of the manifold’s fundamental group. In hyperbolic manifolds, the sizes of the object’s copies are

exponentially small w.r.t. to their distance to the camera, whereas the number of such copies is

exponentially large (since the fundamental group grows exponentially fast).

We present here a new image-space visualization algorithm, based on ray tracing, to render

immersive views in flat or hyperbolic manifolds, orbifolds and more generally polyhedral complexes.

As a consequence, the proposed algorithm is much more efficient than the previous algorithms based

on object-space visualization.

For typical example, it allows interactive visualization of high-resolution images of scenes with

full optical complexity, and can render a scene formed by up to 6100 copies of the same object
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instead of 64 copies, as in previous algorithms 1. Amazingly, although this may seem unreachable,

such a great number of objects reaches subpixel precision and changes dramatically the pattern of

the landscape with respect to the one formed by only 64 objects as is illustrated in Figure 1.

The previous algorithms dealt only with flat or hyperbolic developable orbifolds, the proposed

algorithm deals with the more general category of flat or hyperbolic polyhedral complex which

includes the stratified spaces of constant non positive curvature [3]. These “geometric” polyhedral

complexes will be defined in section 5. Such general objects appear in cosmology [5] and the study

of their geodesic flows is an active area of research in geometry.

The latter algorithm are also generalizable (as the previous algorithms) to geometries which are:

spherical S3, the product H2×E1 of the Hyperbolic plane with Euclidean line, the product S2×E1

of the 2-sphere with Euclidean line, and the universal covering S̃L2 of the modular group.

2 Related Work

As previously mentioned the seminal work in mathematics visualization was developed at the

Geometry Center, during the period of 1994 to 1998. For that purpose, the main software platform

of the center was Geomview, an interactive 3D graphics viewer [1]. This software featured a

powerful plugin architecture, which allowed it to be extended through new modules, to a variety of

uses ranging from animation to video production and scientific simulation. Geomview was based on

a generic object-oriented graphics library, OOGL. It was initially developed for the Silicon Graphics

workstation using the GL interactive low-level graphics. It also allowed output in the Renderman

format for off-line high quality rendering. Subsequently, Geomview was ported to the X11 Linux

platform using OpenGL, and it is still in use today by many practitioners and researchers, even

after the termination of the Geometry Center activities in 1999.

By design, Geomview supported viewing in Euclidean, spherical and hyperbolic geometries ex-

ploiting the fact that the graphics pipeline using projective transformations allowed an elegant

unification of the modeling and camera transformations for these three geometries.

The plugin architecture of Geomview, made possible, among other things the development of

Maniview, a module that works as a Manifold Viewer [8]. Maniview implements the discrete group

structure to generate the elements of PGL(R, 4) required to allow the visualization of the insider’s

view of a manifold.

Maniview has also been used in conjunction with Snappea, a program developed at the Geometry

Center by Jeffrey Weeks for computing hyperbolic structures on three-dimensional manifolds [19].

Other software for modeling and investigation in 3-manifolds includes Regina [4], implemented in

C++ and used in various related projects.

Subsequently, Weeks, created a software for real-time rendering of curved spaces using OpenGL

graphics [20]. It is a standalone program that exploits features of the programmable graphics

pipeline, such as shaders and textures.

1In comparison with previous work, our algorithm can render ray paths 25 times deeper than the ones in object-

space algorithms. This is a significant improvement even if we consider the recent development in graphics hardware.
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4 echoes 6 echoes

15 echoes 100 echoes

Figure 1: Landscape of the mirrored hyperbolic dodecahedron rendered with different levels of

echoes.
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Similarly to Geomview, jReality is a Java based, 3D scene graph package designed for mathe-

matical visualization at TU-Berlin and associated research centers [23]. Among other features, it

provides JOGL, a backend for interactive OpenGL rendering. JReality has intrinsic support for

Euclidean, hyperbolic and spherical geometries, which can be used for creating immersive views of

3-manifolds.

One of the main goals of using computer graphics methods for mathematics visualization is to pro-

vide insights into the world of geometric structures, both for research and education purposes [10].

In that respect, the Geometry Center produced highly successful videos, such as “Not-Knot” [7]

and “The Shape of Space” [18], that were complemented by illustrated books [22].

At another level, Virtual Reality installations allows the user, not only to have a glimpse at

the visual landscape inside a 3-manifold, but also to experiment the sensation of being completely

immersed in such enviroment. Two projects following this directions are Mathenautics [12] and

Alice [6].

In addition to direct visualization and interaction, the properties of such geometric structures

can be exploited to investigate other types of data, such as the World Wide Web connections [14].

A common characteristic of all visualization software developed in previous work for creating

immersive views of 3-manifolds is that they employ object-space rendering algorithms. This fact,

in practice, imposes a limit on the scene complexity which can be depicted by these programs.

In contrast, the new visualization program proposed in this paper uses an image-space algorithm

which can efficiently render scenes with several orders of magnitude more complexity than possible

in previous work. For a comparison, see Figure 1.

3 Three-Manifolds and Orbifolds

A 3-manifold is a paracompact, metric space locally modeled by charts on open sets of R3, such

that the coordinate changes are diffeomophisms of open sets of R3. The unit sphere of R4 and the

torus R3/Z3 are examples of 3-manifolds.

A 3-orbifold is a paracompact, metric space locally modeled by charts on open sets of quotients

of R3 by finite groups, such that the coordinate changes are homeomorphisms of the quotient which

lift to diffeomorphisms of open sets of R3. We remark that a manifold is an orbifold.

Also, if the finite group acts by a single symmetry with respect to a plane, then the quotient is

R2 × R+. If it is the unique action involved (with the trivial one), then the orbifold is a manifold

with boundary. If the action of the finite group is done by symmetries with respect to a plane in

general position, then the group is (Z/2Z)3 and the quotient is diffeomorphic to R3
+. If it is the

only action involved, then the orbifold is a manifold with corners. Other kinds are possible, for

example see [2] or [17].

A Riemannian metric on an open set U of R3 is a smooth family of inner products of R3, indexed

by the points of U . A Riemannian metric on a manifold is the data of a Riemannian metric on the

image for every chart, being pairwise compatible by the coordinate changes. A Riemannian metric

on an orbifold is the data of an equivariant Riemannian metric on the lifted image of every chart,
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being pairwise compatible by the lifted coordinate changes.

An orbifold endowed with a Riemannian metric is a Riemannian orbifold.

Orbifolds are canonically stratified. An orbifold is a manifold if its stratification is trivial, that

is, it has no singularity.

Remark 3.1. For every Riemannian 3-orbifold, the dihedral angle around any stratum of dimension

1 is a divisor of 2π. In particular, if a Riemannian 3-orbifold is a manifold with corner then the

dihedral angle between any two faces is a divisor of 2π.

A parametrized curve in a manifold is differentiable if its composition with any chart is differen-

tiable (on its domain of definition). A parametrized curve in an orbifold M is differentiable if its

composition with the chart lift to a differentiable curve on its domain.

A geodesic is a smooth curve between two points such that its length is locally minimal. The

length of a smooth curve is the integral of the norm of a unit vector tangent to the curve, with

respect to the Riemannian metric. Whenever the space is connected, given two points there exists

a geodesic passing by both of them. Among all geodesics passing by them, the minimal length of

the geodesic segment between these points defines a distance.

Geodesics are the paths taken by rays of light. From a unit vector at a point of the manifold,

there is a unique geodesic in that direction.

These definitions are crucial since they define the immersive view in a manifold. Given an object

embedded in a manifold, a viewer in the manifold will see in a given direction u, the first intersection

between the object and the half geodesic starting at the viewer position and in the direction u.

Many different Riemannian metrics can be employed.

If the metric is with curvature constant and equal to 0, then the Riemannian orbifold is Euclidean

or flat. For instance the 3-torus is a flat manifold.

Example 3.2 (Euclidean space E3). Let N be the Euclidean norm: N(x1, x2, x3) =
√
x2

1 + x2
2 + x2

3

on R3. The 3-Euclidean space E3 is R3, with a Riemannian metric the inner product
∑

i xi · x′i
induced by N . The Euclidean space has zero curvature. The geodesics of E3 are affine lines. The

(global) metric on E3 is dE3(x, x′) := N(x− x′).
The group of isometries is the semi-product O(3) n R3 of the orthogonal group and translation

groups of E3.

If the metric is with curvature constant and negative, then the Riemannian orbifold is hyperbolic.

A basic example of hyperbolic manifold is the hyperbolic space.

Example 3.3 (Klein model H3 of the hyperbolic space). Let q : R4 → R be the (Lorenzian)

quadratic form defined by q(x1, x2, x3, x0) = x2
0 − x2

1 − x2
2 − x2

3. The 3-hyperbolic space H3 is

{x ∈ R4 : q(x) = 1} ∩ R3 × R+

endowed with the metric g equal to the restriction of −q to the tangent space of H3. The space H3

is a Riemannian 3-manifold of constant negative curvature.

The geodesics H3 cannot be straight, since H3 is not an affine subspace of R4. However, the

geodesic passing trough x ∈ H3 in the direction u tangent to H3 at x is the intersection of H3 with

the 2-plane spanned by the vectors ~0x and u of R4.
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The bilinear symmetric form associated to q is B(x, x′) = x0 · x′0− x1 · x′1− x2 · x′2− x3 · x′3, with

x = (xi)i and x′ = (x′i)i. The (global) metric on H3 is dH3(x, x′) := arcosh B(x, x′).

The group of isometries of H3 is equal to the group O(3, 1) of 4×4-matrices which leaves invariant

the form q. Every matrix of this group acts on R4 by matrix product and leaves invariant H3. By

definition of g, every matrix of O(3, 1) acts as an isometry of (H3, g).

Example 3.4 (3-Sphere S3). Let us denote also by N the Euclidean norm of R4: N(x1, x2, x3, x4) =√
x2

1 + x2
2 + x2

3 + x2
4. The 3-sphere space is

S3 := {x ∈ R4 : N(x) = 1}

endowed with the metric g1 equal to the restriction of the Euclidean inner product
∑4

i=1 xi · x′i
to the tangent space of S3. The space (S3, g1) is a Riemannian 3-manifold of constant positive

curvature.

The geodesic from x ∈ S3 in the direction u tangent to S3 at x is the intersection of S3 with the

2-plane spanned by the vectors x and u of R4.

The group of isometries of S3 is equal to the orthogonal group O(4) of 4 × 4-matrices which

leaves invariant the norm N .

A fundamental way to construct 3-orbifolds (and manifolds in particular) is to take a discrete

subgroup Γ of O(3) o R3 (resp. O(3, 1), resp. O(4)) and then regard the orbit space M := Γ\E3

(resp. Γ\H3) of the Γ-action. It is easy to show that M is an orbifold. Such flat (resp. hyperbolic,

spherical) orbifolds are called developable.

Example 3.5. The 3-torus is the quotient Z3\E3 where the (free) action of Z3 on E3 is done by

translation.

More generally there is the following result (see Thm 8, [9]):

Theorem 3.6. Every orbifold (and so manifold) with constant non-positive curvature is devel-

opable.

Proposition 6 of [9] shows that there are orbifolds of constant positive curvature which are not

developable.

In Section §7 we will recall the scheme of all previous algorithms for rendering flat and hyperbolic

orbifolds. They correspond to object space algorithms.

Here we introduce a rendering algorithm for immersive views in the more general class of polyhe-

dral complexes, in which polyhedrons are either flat or hyperbolic. It is an image space algorithm.

4 Visualization of 3-dimensional spaces

A 3D visualization algorithm renders an image of a three-dimensional scene according to a view

specification. The input of the algorithm is a scene description composed of: an ambient 3d space;

3d shapes placed in this ambient space and a viewpoint, among other parameters. The output is a

two dimensional view. In that sense, the rendering process transforms geometric three-dimensional

information into visual two-dimensional information.
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4.1 The Viewing Transformation Pipeline

In order to understand better this process, let us recall the viewing transformation pipeline, which

relates the different spaces and coordinate systems involved in the computation of a rendered image.

Each shape of an object o ∈ S is naturally defined in it’s own local object coordinate system.

The object can be described in parametric or implicit form. All the objects are then placed in

the global world coordinate system of the scene S by a modeling transformation that embeds the

object into the ambient space (which can be a manifold or orbifold). The view is specified by a

viewing transformation V , which defines the camera coordinate system relative to the world (e.g.,

its position and orientation). Finally, the objects that are visible from the camera are mapped to

the image coordinate system (which implements the viewing window). This pipeline is shown in

Figure 2.

Object 

Space

World 

Space

Camera 

Space

Image 

Space

Modeling 

Transformation

Camera  

Transformation

Perspective  

Transformation

Figure 2: Viewing Transformation Pipeline .

The transformations of the viewing pipeline can be defined by real projective mappings in homo-

geneous coordinates in RP3. This scheme has been adopted as a standard in most graphics systems

because it unifies all the transformations involved using 4× 4 projective matrices. In that way, the

3D objects are immersed in projective space, transformed and then, projected to a 2D image space.

This particular way in which the viewing pipeline is defined opens up the possibility to render

views of ambient spaces different than the Euclidean space E3, in particular, with a flat or hyperbolic

geometry, as it will be seen below.

4.2 Types of Algorithms

There are two main types of 3D visualization algorithms. They can be classified into:

• object space;

• image space.

Object space algorithms apply the direct viewing transformation to points of the objects, while

image space algorithms apply the inverse viewing transformation to rays originating from the

camera and corresponding to image pixels.

7



Algorithm 1 Object-Space Visualization

for each o ∈ S do

Map o from scene to camera space

if o is visible then

Project o to image space

end if

end for

The structure of these two types of algorithms is described by the pseudo-codes below:

The object-space algorithm is widely adopted in Computer Graphics and is the one used in the

OpenGL standard.

Algorithm 2 Image-Space Visualization

for each pixel p ∈ I do

Generate a ray r in camera space

Transform r to scene space

Find the intersection i(r) with visible object o ∈ S
if i(r) 6= ∅ then

Paint pixel

end if

end for

The image-space algorithm is the basis of ray tracing rendering methods.

Note that object-space algorithms work at geometric precision and, in principle, must perform

full evaluation when transforming objects in the scene, while image-space algorithms work at image

resolution and may perform a lazy evaluation of transformations required by each ray.

Furthermore, the opposite nature of these two algorithms have a determinant impact on the

complexity of the visualization process and on the strategies used to make them more efficient.

This depends on various factors, such as scene and depth complexity, among others.

The bottom line is that rendering acceleration methods exploit some kind of coherence in different

classes of scenes. We will return to this point further in the paper, regarding the immersive views

of 3-manifolds.

4.3 Inside Views in Non-Euclidean spaces

With a few exceptions, mentioned in Section 2, most 3D visualization software support only ren-

dering of scenes in the Euclidean space E3. However, exploiting the fact that the visualization

process resorts to projective transformations in order to create images of 3D spaces, it is possible

to render different model geometries without structural changes to the visualization algorithm, by

using the appropriate transformations in the viewing pipeline.

Thus, beside the Euclidean space E3, other isotropic model geometries, such as spherical and

hyperbolic can be rendered by the above visualization algorithms. The specialization required in
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the pipeline amounts to taking care of the correct transformations that respect the intrinsic metric

of the model geometry, as discussed in the previous section.

The isometries for a given space (i.e., flat, hyperbolic or spherical) define the set of model

transformations in the viewing pipeline. They are combined with the camera and perspective

transformations, which are defined by the view specification

These transformations are subsumed as elements of PGL(R, 4), the projective general linear

group, and represented as 4× 4 transformations matrices in the visualization algorithm.

To render inside views of 3-dimensional spaces, we generate images that would be seen by an

observer (e.g. a camera) placed in that space. Light paths follow geodesics and reveal the topol-

ogy of the space. In the next section we will discuss in greater detail the construction of mani-

folds/orbifolds, and implications to generate inside views of these spaces.

5 Constructions of 3-dimensional spaces by polyhedral complexes

A simple way to construct a 2-torus is to glue pairwise the opposite edges of a filled square. The

same applies to construct a 3-torus: we merely glue pairwise the opposite faces of a filled cube.

An observer living in this 3-torus, looking towards above would see himself from below. Similarly,

looking towards the right he would see himself from the left, and so on for other directions.

The algorithm below is an image space algorithm to view an object inside this 3-torus from a

camera placed at the observer’s position.
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(Ray tracing inside a 3-torus)

for each pixel p ∈ I do

Generate a ray r from the camera

for i ≤ level do

Find the first intersection i(r) with object

if i(r) 6= ∅ then

Paint pixel break

else The ray r intersects a face F of the cube

Translate r so that it continues it’s path from the opposite face of the cube.

end if

end for

end for

Let us generalize the above mathematical construction for the 3-torus, to get the intuition of the

new algorithm for immersive views in hyperbolic or flat orbifolds, and more generally polyhedral

complexes.

5.1 Polyhedral complex

We can extend the concept of polyhedral complex to Riemannian manifolds (M, g) which are not

necessarily the Euclidean space, see [3]. For the sake of simplicity, we shall deal only with dimension

3: in particular the dimension of M is 3. Let us recall a few classical definitions on which polyhedral

complex are based.

A surface S of M is totally geodesic if every geodesic of M tangent to S is included in it. A

compact subset C of M is convex if every pair of points in C can be joined by a geodesic segment

included in C. A polygon of (M, g) is a convex topological disk included in a totally geodesic

surface, whose boundary is formed by a finite union of geodesic segments. The geodesic segments

are the edges of the polygon, and their end points are the vertices.

A (convex) polyhedron D is a convex topological closed ball embedded in (M, g), the boundary

of which is a finite union of polygons (Pi)i∈ID with disjoint interiors and such that every non-empty

intersection Pi ∩ Pj is equal to a common edge or a vertex of both Pi and Pj .

For any finite family (Dα)α∈J of polyhedrons of (M, g), the compact subset tJDα of the J-copies

tJM of M is called the disjoint union of (Dα)α∈J . Let us denote by Î := tJIDα the set which

indexes the polygons of forming the boundary of D̂.

Definition 5.1. A (M, g)-polyhedral complex structure is:

• a finite disjoint union of polyhedrons D̂ := tJDα,

• an involution σ of the set of faces indexes Î of D̂,

• an isometry gi from Pi onto Pσ(i), such that g−1
i = gσ(i), for every i ∈ Î.
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such that the relation

x ∼ y iff (x = y) or (∃i ∈ I : x ∈ Pi and gi(x) = y)

spans an equivalence relation on D. The equivalence classes form a topological space S := D/ ∼
called a (M, g)-polyhedral complex.

5.2 Flat polyhedral complex

If the Riemannian manifold (M, g) is the Euclidean space E3, then the polyhedral complex S is

called flat (or Euclidean).

For instance the 3-torus has a structure of flat polyhedral complex, where D̂ is formed by a

unique polyhedron equal to a filled cube [0, 1]3, and the isometries are the translations (0, 0,±1),

(0,±1, 0) and (±1, 0, 0).

We can obtain other spaces by changing the translations (0, 0,±1) by composing them with the

symmetry about the axis {0}2 × R.

Example 5.2 (A flat polyhedral complex which is not an orbifold). Let P denote the regular

planar octagon centered at 0. The angle of P are all equal to 3π/4. The product of P with [0, 1]

is a polyhedron of the Euclidean space E3. As before we glue the opposite faces with translations.

The polyhedral complex obtained is topologically the product of torus of genus 2 with a circle.

However it is not anymore diffeomorphic to it. For the quotient identifies all the vertical edges and

immerses them to a circle; in the polyhedral complex, around this circle the angle is 6π. To be an

orbifold, the angle must be a divisor of 2π.

5.3 Hyperbolic polyhedral complex

If the Riemannian manifold (M, g) is the hyperbolic space H3, then the polyhedral complex S is

called hyperbolic.

Observe that every hyperbolic polyhedron D is sent by the map:

p : H3 3 (x1, x2, x3, x0) 7→
(
x1

x0
,
x2

x0
,
x3

x0

)
∈ R3

to an Euclidean polyhedron.

Let us consider a regular dodecahedron of the Euclidean space centered at zero. For a certain

diameter of it, it is included in the unit ball, and its preimage by p is a regular dodecahedron of

the hyperbolic space, such that all the dihedral angles between its faces are π/2. We can glue the

faces by the identity of each of them. The hyperbolic polyhedral complex obtained is an orbifold,

and more precisely it is a manifold with corner, called hyperbolic mirrored dodecahedron.

The same construction can be done for any hyperbolic polyhedron. Then the dihedral angle

between the faces is not necessarily a divisor of 2π and so the polyhedral complex is not necessarily

a differentiable orbifold. Such a generality occurs for instance in [5], where the Einstein equation

near a singularity are modeled by the geodesic flow on a hyperbolic polyhedron, the faces of which

are mirrors.
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5.4 Others homogeneous polyhedral complexes

We can certainly take for (M, g) the sphere S3, the universal covering S̃L2 of the modular group,

or the products E1 × H2 and E1 × S2 of the Euclidean line with the 2-hyperbolic space and the

2-sphere respectively.

Those are four other Thurston geometries. We believe that for paradigmatic examples of orbifolds

of these geometries, the image space algorithm described in the next section works as well, after a

few tricks. The tricks are to deal only with geodesics which project to real lines of the Euclidean

space. Such tricks were performed in [20].

6 An image-space algorithm for immersive views in 3-non Eu-

clidean spaces.

We are now ready to describe the new image-space algorithm for visualization in 3-orbifolds and

more generally polyhedral complexes M which are flat or hyperbolic.

We recall that we want to render the view from a camera in M of an object O inside M .

6.1 Ray tracing in flat polyhedral complexes

Let M = D̂/ ∼, where D̂ is an union of Euclidean polyhedrons (in E3) with faces (Fi)i. Let O0 ⊂ D̂
be the preimage of O by π : D̂ → M . Remember that D̂ is a disjoint union of closed topological

balls. We take the same orientation for each component of the boundary ∂D. Observe that there

exists a unique way to extend each isometry gi : Fi → Fσ(i) to an isometry g̃i of R3 which push

forward the orientations of Fi to the opposite orientation of Fσ(i). Observe that the differential dgi

of gi is constantly equal to an element of O(3).

In contrast to Algorithm 5 in the 3-torus example, the union of polyhedrons is not necessarily

connected.

A ray R from a point c ∈ D in the direction u ∈ R3 \ {0} is the segment:

∪t≥0{c+ t · u : ∀s ∈ [0, t] c+ s · u ∈ D}.

which is parametrized by t.

To trace rays from the camera, each pixel of the screen is canonically associated to a ray R, such

that c is the center of projection and u is the view direction for the pixel:

There are two possibilities:

(i) If R intersects O0, then the pixel color is computed from the intersection of R with O0.

(ii) If R does not intersect O0, then we compute the intersection point x of R with the boundary

of D – The case where x belongs to two different faces Fi is of probability 0 and so is not

considered. In other words, we assume that x belongs to a unique face Fi. Let u be the
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direction of R. We continue the ray path using the new ray R′ starting at c′ and in the

direction u′ given by:

(6.1) c′ := gi(x) u′ = dxgi(u).

Note that when R does not intersect O0, the above procedure is repeated with R′ instead of R,

until a maximum number of echoes is reached, then a background color is painted.

6.2 Ray tracing Hyperbolic polyhedral complexes

We let M = ∆̂/ ∼, where ∆̂ is a disjoint union of hyperbolic polyhedrons (in H3) with faces

(Πi)i. Let O′ ⊂ ∆̂ be the preimage of the object O by π : ∆̂ → M . We chose as before a

particular orientation on the boundary ∂∆̂. Again there exists a unique way to extend each isometry

gi : Πi → Πσ(i) to an isometry g̃i of H3 which push forward the orientations of Πi to the opposite

orientation of Πσ(i).

Let O0 be the image of O′ by the diffeomorphism

p : H3 3 (x1, x2, x3, x0) 7→
(
x1

x0
,
x2

x0
,
x3

x0

)
∈ R3

onto the unit ball of R3. Remember that D̂ := p(∆̂) is a disjoint union of Euclidean polyhedrons.

Observe that O0 = p(O′) is included in D = p(∆).

As the image of geodesics of H3 by p are lines, we are going to deal with rays of D, as defined

in section 3.

However there are two significant differences in the algorithm for hyperbolic polyhedral com-

plexes.

The first difference is due the fact that in general the differential of p does not preserve the angles

of H3 to those of E3. However, the angles at the point c0 = (0, 0, 0, 1) ∈ H3 are preserved.

Therefore, we suppose that the camera is at c0 which is itself in the interior of ∆, even if it

means moving the scene by an (orientation preserving) isometry of H3.

The second difference is from the fact that gi are maps of H3 and not of R3. Thus when a ray

intersects a face Fi of D̂, we shall continue the ray path by using the new ray R′ starting at c′ and

in the direction u′ given by:

(6.2) c′ := p ◦ gi ◦ p−1(x) u′ = dx(p ◦ gi ◦ p−1)(u).

Analytical expression of ψi = p ◦ gi ◦ p−1. We recall that:

p(xj)j =

(
xj
x0

)
j

Observe that p is homogeneous: on every vectorial line it takes a unique value. On the other hand

gj is linear. The following inclusion is helpful:

inc : R3 3 (yj)j 7→ (y1, y2, y3, 1) ∈ R4.
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We remark that inc(yj)j belongs to the same line as p−1(yj)j , and so gi ◦ inc(yj)j and gi ◦ p−1(yj)j

belongs to the same line, as well. Thus:

ψi = p ◦ gi ◦ inc

Observe that

dgj = gj , d inc(uj)
3
j=1 = (u1, u2, u3, 0), d(xj)jp(uj)j =

(
ujx0 − xju0

x2
0

)
j

This provides an easy way to compute the expression for the differential of ψi:

dyψi = (dgi◦inc(y)p) ◦ gi ◦ d inc

6.3 General Algorithm

In summary, the general image-space algorithm for immersive views in flat or hyperbolic polyhedral

complexes is as follows:

Algorithm 3 Image-Space visualization in a polyhedral complex

for each pixel p ∈ I do

Let c := 0 and let u be the direction associated to p

Generate a ray r from (c, u).

for i ≤ level do

Find the intersection i(r) with visible object O0

if i(r) 6= ∅ then

Paint pixel break

else The ray r intersects a face Fi of the disjoint union polyhedrons D̂

(?) Compute the new origin c′ and direction u′ for the continuation of the ray path.

end if

end for

end for

The step (?) is given by expressions (6.1) and (6.2) for polyhedral complex which are flat and

hyperbolic respectively.

We remark that this algorithm has complexity linear with the length of the ray path (asymptotic

to level), that is the number of the echoes. Also, this algorithm uses ray tracing and enables us to

represent analytical surfaces easily and perform computations in closed form.

7 Object-space algorithms for immersive views in 3-orbifolds

Up to our knowledge all the previous rendering methods for immersive views in non-Euclidean

spaces were based on image-space algorithms. In order to compare the performance of these two
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approaches we shall recall their principles. As there is a large literature on this subject we will be

brief. For more details see [16, 8, 21].

Object-space algorithms were implemented to render immersive views in manifolds or orbifolds

which are developable in the geometry G equal2 to H3 or E3.

Let ∆̂ be a G-polyhedral complex with isometries {gi}i∈I of G which “glue” the faces of ∆̂.

Let Γ be the group spanned by the isometries {gi}i∈I :

Γ = {gin × · · · × gi1 : (ij)j ∈ I(N}.

The object-space algorithms works for less general spaces. This restricts our generality by sup-

posing moreover the two following conditions:

(a) the disjoint union of polyhedrons ∆̂ consists of a unique polyhedron ∆, and so it is connected

and convex,

(b) ∀g ∈ Γ, ∀x ∈ int(∆), g(x) = x ⇔ g = identity, where int(∆) denotes the interior of the

polyhedron ∆.

A stronger condition than (b) is the following:

(b’) ∀g ∈ Γ, ∀x ∈ ∆, g(x) = x⇔ g = identity.

The polyhedron ∆ is called a fundamental domain, Γ is called the fundamental group (of the

orbifold) and G is called the universal covering (of the orbifold).

By condition (b), we can extend to G the equivalence relation ∼ defining the polyhedral complex

∆/ ∼ by the following for x, y ∈ G:

x ∼ y ⇔ ∃g ∈ Γ : y = g(x).

Also the polyhedral complex ∆/ ∼ is equal to the space of equivalence classes G/ ∼. The latter

space is usually denoted Γ\G.

The following is well known:

Proposition 7.1. If conditions (a) and (b) hold, the space Γ\G is an orbifold. If conditions (a)

and (b′) hold, the space Γ\G is a manifold. Every compact, connected orbifold (and so manifold)

of a non positive curvature is homotopic to one of the form Γ\G, with Γ satisfying (a) and (b).

One can see that the images of the fundamental domains (g(∆))g∈Γ tile the universal covering G:⋃
g∈Γ

g(∆) = G

From condition (b), the union ∪g∈Γg(int(∆)) is disjoint.

2Actually Weeks also implemented this object space algorithm for the geometries S3, S2×E1, H2×E1 and S̃L2(R)

but the basic idea is the same and our presented algorithm seems to be generalizable without substantial change.
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Let us explain the main difference between our image-space algorithm and the object-space

algorithm. Suppose that we want to render an object O embedded in Γ\G. Let O0 ⊂ ∆ be the

preimage of O by p.

With our image-space algorithm when a ray R gets out of the polyhedron ∆ to enter to the

polyhedron g(∆), we merely continue the ray path to g−1(R).

For the object-space algorithm when a ray R gets out of the polyhedral ∆ to enter to the

polyhedron g(∆), we must make a copy of the object g(O0) and render it on the screen.

Abstractly both constructions are the same, but the way they perform the computations is

dramatically different. Indeed the object-space algorithm is based on the idea that the immersive

view in the quotient Γ\G is the same as the immersive view in G of the object:

Õ := ∪g∈Γg(O0).

In general Γ has infinitely many elements.

The first step of the algorithm is to approximate, given d ≥ 0, the set Õ by the set:

Od := O0 ∪
⋃

j≤d, (ai)i∈{1,...N}j
p ◦ ga1 ◦ · · · ◦ gaj (O0).

Observe that when d is large, the set Od is “close” to Õ.

The second step is to project the object Od to the Euclidean space. This step is trivial when we

deal with G = E3. When G = H it is the projection p := (x, y, z, w) 7→ (x/w, y/w, z/w) ∈ E3.

The last step is to project the object p(Ǒd) to the screen space. This is then done by a perspective

projection.

The operation of duplication, and of rendering are projective transformations, and done by 4×4-

matrix. Those operations are done very efficiently by the graphics processing unit (GPU) using

OpenGL. Therefore this algorithm is not only the one used by Geomview, but also the one behind

the software “Curved space” which produces real-time immersive visualization.

However, the latter works in real time, for hyperbolic mirrored dodecahedron, with level equal to

4. The reason is the following. For the simplest hyperbolic manifold, N is equal to 12. Therefore,

the cardinality of {1, . . . N}d, with d = 4, is already 20736. It is already a large number of objects.

Remark that some elements of ga1 × · · · × gaj can be equal to the identity even if these elements

are not the identity. Therefore one can simplify the list in order to remove the copy. But this does

not change the performance significantly, although the level can be pushed to d = 6 for a simple

object with the current high performance computers.

The main reason is that the isometry group of hyperbolic spaces has its cardinality which in-

creases exponentially fast. This means that the cardinality of

Γd := {ga1 × · · · × gaj : (ai)i ∈ {1, . . . N}j , j ≤ d}

is bounded from below by an exponential function of d. For instance the cardinality of Γ5 is 128762,

the one of Γ6 is 1276425 and the one of Γ7 is 12257733.

As a consequence:
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Claim 7.2. Object-space Algorithms are exponential with respect to the depth d of the image.

Moreover, the way on which the objects (g(Ob)g∈Γd is distributed tend to be equi-distributed on

the horizon, when d goes to infinity. However for low values, such as d = 6, the objects (g(Ob)g∈Γd

are not equi-distributed : the image presents many “holes” although the missing objects are bigger

than a pixel (see figure 1).

A fundamental problem of object-space algorithms, is that they compute many objects which

do not need to be computed, since they are occluded by visible objects.

8 Conclusions and Future Work

In this paper we introduced a new image space algorithm for immersive visualization of flat and

hyperblic 3-manifolds and orbifolds. The algorithm is based on ray tracing and can efficiently

render inside views of flat and hyperbolic polyhedral complexes.

Our work improves the state-of-the-art in two main aspects. First, we can generate views of

scenes several orders of magnitude more complex that are possible with previous methods. Second,

we can handle a more general type of spaces that could not be visualized up to now.

The quality of the image is also improved by the performing stochastic anti-aliasing, i.e. we send

randomly the ray associated to each pixel and then we do the mean of the different colors obtained.

Ongoing and future work, goes in many directions.

The above anti-aliasing is investigated to render radial and topological limit set of finitely gen-

erated Kleinian group. We are also currently extending the algorithm to other homogeneous poly-

hedral complexes, such as solvable and nilpotent manifolds.
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