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Abstract

In this paper, the solution of the symmetric Quadratic Eigenvalue Complementarity Prob-
lem (QEiCP) is addressed. The QEiCP has a solution provided the so-called co-regular and co-
hyperbolic properties hold and is said to be symmetric if all the matrices involved in its definition
are symmetric. We show that under the two conditions stated above the symmetric QEiCP can
be reduced to the problem of computing a stationary point of an appropriate nonlinear program
(NLP).

We also investigate the reduction of the QEiCP to a simpler Eigenvalue Complementarity
Problem (EiCP). This transformation enables us to show that the co-regular and co-hyperbolic
properties are not necessary for the existence of a solution to the QEiCP. Furthermore the QEiCP
is shown to be equivalent to the problem of finding a stationary point of a Quadratic Fractional
Program (QFP) under special conditions on the matrices of the QEiCP.

The use of the so-called Spectral Projected-Gradient (SPG) algorithm for dealing with the
programs NLP and QFP is also investigated. Some considerations about the implementation of
this algorithm are discussed. Computational experience is included to highlight the efficiency of
the algorithm for finding a solution of the QEiCP by exploring the nonlinear programs mentioned
above.

Keywords: Eigenvalue Problems, Complementarity Problems, Nonlinear Programming, Global
Optimization.
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1 Introduction

Given a matrix 𝐴 ∈ ℝ
𝑛×𝑛 and a positive definite (PD) matrix 𝐵 ∈ ℝ

𝑛×𝑛 (i.e., 𝑥𝑇𝐵𝑥 > 0 for all
𝑥 ∕= 0), the Eigenvalue Complementarity Problem (EiCP) [24, 26] consists of finding a real number
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𝜆 and vectors 𝑥 ∈ ℝ
𝑛 and 𝑤 ∈ ℝ

𝑛 such that

EiCP: 𝑤 = (𝜆𝐵 −𝐴)𝑥 (1)

𝑤 ≥ 0, 𝑥 ≥ 0 (2)

𝑥𝑇𝑤 = 0 (3)

𝑒𝑇𝑥 = 1, (4)

where 𝑒 ∈ ℝ
𝑛 is a vector of ones. The last constraint has been introduced without loss of generality to

prevent the null vector 𝑥 from being a solution of the problem. The problem finds many applications
in engineering [22, 26] and can be seen as a generalization of the well-known Eigenvalue Problem
(EiP) [9]. As for the EiP, in any solution of the EiCP, the scalar 𝜆 is called an eigenvalue and 𝑥 is an
eigenvector associated to 𝜆. The condition 𝑥𝑇𝑤 = 0 together with the nonnegative requirements on
the variables 𝑥𝑖 and 𝑤𝑖 implies that 𝑥𝑖 = 0 or 𝑤𝑖 = 0 for each 𝑖 = 1, 2, . . . , 𝑛. These two variables are
called complementary, giving the name [5, 6, 18] to the EiCP. It is known [14] that the EiCP always
has a solution, as it can be reformulated as a Variational Inequality Problem on the simplex

Ω = {𝑥 ∈ ℝ
𝑛 : 𝑒𝑇𝑥 = 1, 𝑥 ≥ 0}. (5)

The existence of solutions of the EiCP is also guaranteed under the weaker hypothesis that𝐵 is Strictly
Copositive (SC), that is, when 𝑥𝑇𝐵𝑥 > 0 for all 0 ∕= 𝑥 ≥ 0 [14].

If the matrices 𝐴 and𝐵 are both symmetric and𝐵 is PD, the EiCP is called symmetric and reduces
to the problem of finding a Stationary Point (SP) of the so-called Rayleigh Quotient function on the
simplex Ω [24, 29], that is, a SP of the following Standard Quadratic Fractional Program

SQFP: Minimize
𝑥𝑇𝐴𝑥

𝑥𝑇𝐵𝑥

subject to 𝑒𝑇𝑥 = 1

𝑥 ≥ 0.

A number of techniques have been proposed to solve the EiCP and its extensions [1, 4, 12, 13, 14,
15, 19, 23, 28, 31]. As expected, the symmetric EiCP is easier to solve. A spectral projected-gradient
algorithm has been proposed in [12] for this task. The structure of the SQFP is fully exploited for
the computation of the gradient and of the projection required by the algorithm in each iteration.
Furthermore it is possible to design an exact line-search for finding the stepsize in each iteration
that essentially requires the solution of a binomial equation. Computational experience illustrates the
efficiency of the algorithm for finding a solution for the symmetric EiCP [12].

Recently an extension of the EiCP has been introduced in [27], where some applications are
highlighted. This so-called Quadratic Eigenvalue Complementarity Problem (QEiCP) differs from
the usual EiCP on the existence of an additional quadratic term on 𝜆 and takes the following form

QEiCP: 𝑤 = 𝜆2𝐴𝑥+ 𝜆𝐵𝑥+ 𝐶𝑥

𝑤 ≥ 0, 𝑥 ≥ 0

𝑥𝑇𝑤 = 0

𝑒𝑇𝑥 = 1,

where 𝐴 ∈ ℝ
𝑛×𝑛, 𝐵 ∈ ℝ

𝑛×𝑛 and 𝐶 ∈ ℝ
𝑛×𝑛 are given matrices and, as before, the constraint

𝑒𝑇𝑥 = 1 has been introduced without loss of generality to prevent the null vector to be a solution
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of the problem. Contrary to the EiCP, the QEiCP may have no solution even when the matrix 𝐴 of
the leading term is PD. This has led to the introduction of the co-regular and co-hyperbolic properties
[27] given by

𝑥𝑇𝐴𝑥 ∕= 0 for all 0 ∕= 𝑥 ≥ 0 (6)

(𝑥𝑇𝐵𝑥)2 ≥ 4(𝑥𝑇𝐴𝑥)(𝑥𝑇𝐶𝑥) for all 0 ∕= 𝑥 ≥ 0 (7)

respectively. Under these two hypothesis, the QEiCP can be shown to be equivalent to a Variational
Inequality Problem on the simplex and has always a solution [27]. A number of algorithms has been
proposed to solve the QEiCP. Among these techniques a semi-smooth Newton’s method has been
discussed in [27] and is in general fast for finding a solution to the QEiCP. However, the algorithm
only possesses local convergence and may fail to achieve its goal. A line-search technique in the spirit
of [6, 20] can be employed to compute a stationary point of some merit function [6]. However, there
is no guarantee that such a stationary point is a solution of the QEiCP. Recognizing this difficulty, the
enumerative method discussed in [14] has been extended in [7] to deal with the QEiCP. This algorithm
is in general efficient for finding an solution to the QEiCP but may require too much tree search for
some instances [7]. A hybrid method combining the best features of the semi-smooth and enumerative
algorithms has also been recommended in [8] and seems to improve the efficiency of the enumerative
method in practice.

In this paper, we investigate the solution of the symmetric QEiCP, that is, when all the matrices
𝐴, 𝐵 and 𝐶 are symmetric. As for the EiCP, we are able to show that if the co-regular and co-
hyperbolic properties (6) and (7) hold then the symmetric QEiCP is equivalent to the problem of
finding a stationary point of each one of the two merit functions

𝜆(𝑥) =
−𝑥𝑇𝐵𝑥+

√
(𝑥𝑇𝐵𝑥)2 − 4(𝑥𝑇𝐴𝑥)(𝑥𝑇𝐶𝑥)

2𝑥𝑇𝐴𝑥
(8)

and

�̄�(𝑥) =
−𝑥𝑇𝐵𝑥−

√
(𝑥𝑇𝐵𝑥)2 − 4(𝑥𝑇𝐴𝑥)(𝑥𝑇𝐶𝑥)

2𝑥𝑇𝐴𝑥
(9)

on the simplex Ω given by (5).
We also analyze the reduction of the QEiCP to an EiCP. First, we show that if 𝐶 is symmetric

SC and 𝐵 = 0 then the QEiCP has a solution if and only if there exists a vector �̄� ≥ 0 such that
�̄�𝑇𝐴�̄� < 0. This property also implies that the co-regular and co-hyperbolic conditions are not
necessary for the existence of a solution to the QEiCP. Furthermore we prove that for 𝐶 ∈ SC the
QEiCP is equivalent to an augmented EiCP with eigenvectors (𝑥, 𝑦) belonging to Ω × ℝ

𝑛
+. If 𝐶 is

further symmetric and 𝐴 = −𝐼 then the QEiCP has a solution that can be obtained by finding a
stationary point of the following Quadratic Fractional Program

QFP: Maximize 𝑓(𝑥, 𝑦) =
−𝑥𝑇𝐵𝑥+ 2𝑥𝑇 𝑦

𝑥𝑇𝐶𝑥+ 𝑦𝑇 𝑦
(10)

subject to 𝑥 ≥ 0, 𝑦 ≥ 0

𝑒𝑇𝑥 = 1.

We also investigate the solution of the symmetric QEiCP when 𝐴 is SC and no condition is as-
sumed for 𝐶 . In particular, we are able to show its reduction to the previous case.
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As for the symmetric EiCP [12], the special structure of the merit functions (8), (9) and (10) and of
the constraint sets Ω and Ω×ℝ

𝑛
+ of the corresponding nonlinear programs has led us to investigate the

use of the spectral projected-gradient method [2] for computing a stationary point of these functions.
In this paper we discuss the possible use of this algorithm, namely the computation of the gradients
and projections. For the solution of the QFP it is shown that the stepsize required by the projected-
gradient algorithm can be computed by an exact line-search that essentially requires the solution of a
binomial equation. Some computational experience with medium and large scale QEiCP is included
to illustrate the efficiency of the projected-gradient method for dealing with the symmetric QEiCP.

The organization of the paper is as follows. In Section 2, the merit functions (8) and (9) are
introduced. The reductions of a QEiCP into an EiCP are discussed in Section 3. The projected-
gradient method is described in Section 4. Computational experience with this algorithm is reported
in Section 5. Finally some conclusions are presented in the last section of the paper.

2 Nonlinear Programming Formulations for QEiCP

Consider again the QEiCP

𝑤 = 𝜆2𝐴𝑥+ 𝜆𝐵𝑥+ 𝐶𝑥 (11)

𝑤 ≥ 0, 𝑥 ≥ 0 (12)

𝑥𝑇𝑤 = 0 (13)

𝑒𝑇𝑥 = 1, (14)

and assume that the co-regular and co-hyperbolic properties (6) and (7) hold. Furthermore assume
that the condition (7) is satisfied with a strict inequality. Then (11) and (13) imply

𝜆2(𝑥𝑇𝐴𝑥) + 𝜆(𝑥𝑇𝐵𝑥) + 𝑥𝑇𝐶𝑥 = 0. (15)

If Ω is the simplex (5), then for each 𝑥 ∈ Ω the roots of the binomial in 𝜆 (15) are given by (8)
and (9), or equivalently by

𝜆(𝑥) = −𝑟(𝑥) +
√

(𝑟(𝑥))2 − 𝑠(𝑥) (16)

and

�̄�(𝑥) = −𝑟(𝑥)−
√

(𝑟(𝑥))2 − 𝑠(𝑥) (17)

where

𝑟(𝑥) =
𝑥𝑇𝐵𝑥

2𝑥𝑇𝐴𝑥
, 𝑠(𝑥) =

𝑥𝑇𝐶𝑥

𝑥𝑇𝐴𝑥
. (18)

Under the hypotheses stated above, the functions are continuously differentiable on an open set
containing Ω. Furthermore, as the co-regular property (6) holds then one of the matrices 𝐴 or −𝐴
must be strictly copositive (SC) and the following result can be established.

Theorem 1. (i) If 𝐴 ∈ SC, then any stationary point of

Maximize 𝜆(𝑥) (19)

subject to 𝑥 ∈ Ω (20)
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and of

Minimize �̄�(𝑥) (21)

subject to 𝑥 ∈ Ω (22)

is a solution of QEiCP.

(ii) If −𝐴 ∈ SC, then any stationary point of

Maximize �̄�(𝑥) (23)

subject to 𝑥 ∈ Ω (24)

and of

Minimize 𝜆(𝑥) (25)

subject to 𝑥 ∈ Ω (26)

is a solution of QEiCP.

Proof. We only prove the result for the NLP (19)–(20), as the proofs for the remaining cases are
similar. Consider the NLP equivalent to (19)–(20)

Minimize −𝜆(𝑥) (27)

subject to 𝑥 ∈ Ω.

The KKT conditions for a Stationary Point of NLP (27) are given by

∇(−𝜆(𝑥)) = 𝛼𝑒+ 𝑤
𝑤 ≥ 0, 𝑥 ≥ 0,

𝑥𝑇𝑤 = 0,

𝑒𝑇𝑥 = 1.

Note that

∇(−𝜆(𝑥)) = ∇𝑟(𝑥)− 2𝑟(𝑥)∇𝑟(𝑥)−∇𝑠(𝑥)
2
√

(𝑟(𝑥))2 − 𝑠(𝑥)
=

1

2
√

(𝑟(𝑥))2 − 𝑠(𝑥) [2𝜆(𝑥)∇𝑟(𝑥) +∇𝑠(𝑥)].

Since

∇𝑟(𝑥) = 1

2
× 2[(𝑥𝑇𝐴𝑥)𝐵𝑥− (𝑥𝑇𝐵𝑥)𝐴𝑥]

(𝑥𝑇𝐴𝑥)2
=

1

𝑥𝑇𝐴𝑥
[𝐵𝑥− 2𝑟(𝑥)𝐴𝑥]

∇𝑠(𝑥) = 1

𝑥𝑇𝐴𝑥
[2𝐶𝑥− 2𝑠(𝑥)𝐴𝑥],

we have

2𝜆(𝑥)∇𝑟(𝑥) +∇𝑠(𝑥) =
1

𝑥𝑇𝐴𝑥
[2𝜆(𝑥)𝐵𝑥− 4𝜆(𝑥)𝑟(𝑥)𝐴𝑥 + 2𝐶𝑥− 2𝑠(𝑥)𝐴𝑥]

=
2

𝑥𝑇𝐴𝑥
[(−2𝜆(𝑥)𝑟(𝑥) − 𝑠(𝑥))𝐴𝑥+ 𝜆(𝑥)𝐵𝑥+ 𝐶𝑥].
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Moreover

(𝜆(𝑥))2 = (𝑟(𝑥))2 − 2𝑟(𝑥)
√

(𝑟(𝑥))2 − 𝑠(𝑥) + (𝑟(𝑥))2 − 𝑠(𝑥)
= −2𝑟(𝑥)𝜆(𝑥) − 𝑠(𝑥).

Hence we can write

∇(−𝜆(𝑥)) = 1

(𝑥𝑇𝐴𝑥)
√

(𝑟(𝑥))2 − 𝑠(𝑥) [(𝜆(𝑥))
2𝐴𝑥+ 𝜆(𝑥)𝐵𝑥+ 𝐶𝑥].

Furthermore
𝑥𝑇∇(−𝜆(𝑥)) = 0

due to the definition of 𝜆(𝑥). But

0 = 𝑥𝑇∇(−𝜆(𝑥)) = 𝛼(𝑒𝑇 𝑥) + 𝑥𝑇𝑤
implies 𝛼 = 0. Hence ⎧⎨

⎩

∇(−𝜆(𝑥)) = 𝑤
𝑥 ≥ 0, 𝑤 ≥ 0
𝑥𝑇𝑤 = 0
𝑒𝑇𝑥 = 1

Therefore 𝑥 and 𝜆(𝑥) are an eigenvector and an eigenvalue for the QEiCP.

This theorem shows that under the co-regular and co-hyperbolic properties (6) and (7) the QEiCP
has a solution which can be found by computing a stationary point of one the merit functions (16) and
(17) on the simplex (5).

3 Reduction of QEiCP to EiCP

3.1 Case of 𝐵 = 0 and 𝐶 ∈ SC

Consider again the QEiCP and assume that 𝐶 is a Strictly Copositive (SC) matrix, that is,

∀𝑥 ∈ Ω 𝑥𝑇𝐶𝑥 > 0

where Ω is the simplex given by (5). Note that this class strictly contains the one of Positive Definite
(PD) matrices, that is, those matrices 𝐶 satisfying

∀𝑥 ∕= 0 𝑥𝑇𝐶𝑥 > 0.

The definition of an SC matrix implies that 𝜆 = 0 can not be a solution of the QEiCP. Then for 𝐶 ∈
SC and 𝐵 = 0, the QEiCP reduces to the following EiCP

𝑤 = 𝜇𝐶𝑥− (−𝐴)𝑥 (28)

𝑤 ≥ 0, 𝑥 ≥ 0 (29)

𝑥𝑇𝑤 = 0 (30)

𝑒𝑇𝑥 = 1. (31)

Furthermore 𝜇 > 0 is an eigenvalue with corresponding eigenvector �̄� for the EiCP (28)–(31) if and
only if 𝜆 = ± 1√

𝜇 are eigenvalues for the QEiCP associated to the same eigenvector �̄�. So the QEiCP
reduces to the problem of finding a positive eigenvalue for the EiCP (28)–(31). The following result
gives a necessary and a sufficient condition for the symmetric EiCP to have a positive eigenvalue.
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Theorem 2. If 𝐴 and 𝐶 are symmetric matrices and 𝐶 ∈ SC, then EiCP (28)–(31) has a positive
eigenvalue 𝜇 if and only if there exists an �̄� ∈ Ω such that �̄�𝑇𝐴�̄� < 0.

Proof. (i) If 𝜇 > 0 is an eigenvalue of EiCP (28)–(31), then it follows from (28) and (31) that an
associated eigenvector �̄� satisfies

𝜇 =
�̄�𝑇 (−𝐴)�̄�
�̄�𝑇𝐶�̄�

> 0.

Since 𝜇 > 0 and �̄�𝑇𝐶�̄� > 0, �̄�𝑇𝐴�̄� < 0.
(ii) Consider the nonlinear program

NLP: Maximize
𝑥𝑇 (−𝐴)𝑥
𝑥𝑇𝐶𝑥

= 𝑓(𝑥) (32)

subject to 𝑥 ∈ Ω.

Since there exists �̄� ∈ Ω such that �̄�𝑇𝐴�̄� < 0, we have 𝑓(�̄�) > 0. On the other hand, Ω is a compact
set and the NLP has a global maximum �̃�, which is a stationary point of 𝑓 on Ω. Hence [24]

�̃� =
�̃�𝑇 (−𝐴)�̃�
�̃�𝑇𝐶�̃�

is an eigenvalue for the EiCP (28)–(31). Furthermore

�̃� =
�̃�𝑇 (−𝐴)�̃�
�̃�𝑇𝐶�̃�

≥ �̄�𝑇 (−𝐴)�̄�
�̄�𝑇𝐶�̄�

= 𝑓(�̄�) > 0.

Note that the EiCP (28)–(31) can be solved by computing a stationary point of NLP (32) by a
feasible ascent algorithm with an initial point �̄� satisfying �̄�𝑇𝐴�̄� < 0. Despite the computation of
such a point being NP-hard [18], it is in general easy to find this point [12, 24]. For instance if 𝐴 has
a negative diagonal element 𝑎𝑖𝑖 then �̄� = 𝑒𝑖 can be this initial point, where 𝑒𝑖 is the vector defined by
𝑒𝑖𝑗 = 1 for 𝑗 = 𝑖 and 𝑒𝑖𝑗 = 0 otherwise.

If the EiCP (28)–(31) is solved by computing a stationary point �̄� of NLP (32), then 1√
𝑓(�̄�)

and

− 1√
𝑓(�̄�)

are both eigenvalues of QEiCP associated to the same eigenvector �̄�. This shows that if

𝐵 = 0, 𝐴 and 𝐶 are symmetric and 𝐶 ∈ SC, then the QEiCP has at least one positive and one
negative eigenvalues.

It is easy to see that this theorem does not hold if the matrix 𝐴 is not symmetric. In fact, let 𝐶 be
the identity matrix of order 2 (𝐶 ∈ SC) and

𝐴 =

[ −1 0
1 1

]
.

Then (𝑒1)𝑇𝐴𝑒1 = −1 < 0, where 𝑒1 = (1, 0)𝑇 ∈ ℝ
2. However, it is easy to see that 𝜇 = −1 is the

unique eigenvalue of the EiCP (28)–(31).
Note that Theorem 2 also implies that the co-regular and co-hyperbolic properties (6) and (7) are

not necessary for the QEiCP to have a solution. In fact, consider, the QEiCP with 𝐵 = 0, 𝐶 the
identity matrix of order 2 and

𝐴 =

[
1 0
0 −1

]
.
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Then 𝐶 ∈ SC and
(𝑒2)𝑇𝐴𝑒2 < 0

where 𝑒2 = (0, 1)𝑇 ∈ ℝ
2. By Theorem 2, the QEiCP has at least a solution which satisfies the

conditions

𝜆2𝑥1 + 𝑥1 = 𝑤1

−𝜆2𝑥2 + 𝑥2 = 𝑤2

𝑤1𝑥1 = 𝑤2𝑥2 = 0

𝑥1 + 𝑥2 = 1

𝑥𝑖 ≥ 0, 𝑤𝑖 ≥ 0, 𝑖 = 1, 2.

Then 𝑥1 = 0, 𝑥2 = 1 and 𝜆2 = 1. Hence �̄� = 1 and �̃� = −1 are the eigenvalues of QEiCP. On the
other hand �̃� = (1/2, 1/2) satisfies

�̃�𝑇𝐴�̃� = 0

which means that the co-regular property is not satisfied. Furthermore for 𝑒1 = (1, 0)𝑇 ,

(𝑒1)𝑇𝐵𝑒1 − 4((𝑒1)𝑇𝐴𝑒1)((𝑒1)𝑇𝐶𝑒1) = −4.

Hence the co-hyperbolic property does not hold.

3.2 Case of 𝐵 ∕= 0, 𝐴 = −𝐼 and 𝐶 ∈ SC

Consider again the QEiCP (11)–(14). Since 𝐶 ∈ SC 𝜆 ∕= 0 in any solution of the QEiCP. Let us
consider first the case of 𝜆 > 0. By introducing an additional vector 𝑦 such that 𝑦 = 𝜆𝑥, it is possible
to write the equality (11) in the form

[
𝑤
0

]
=

(
𝜆

[
𝐵 𝐴
−𝐼 0

]
+

[
𝐶 0
0 𝐼

])[
𝑥
𝑦

]
.

Since 𝜆 > 0, 𝜇 = 1
𝜆 > 0 and we can consider the following EiCP:

[
𝑢
𝑣

]
=

(
𝜇

[
𝐶 0
0 𝐼

]
−

[ −𝐵 −𝐴
𝐼 0

])[
𝑥
𝑦

]

𝑥 ≥ 0, 𝑢 ≥ 0

𝑦 ≥ 0, 𝑣 ≥ 0 (33)

𝑒𝑇𝑥 = 1

𝑥𝑇𝑢 = 𝑦𝑇𝑣 = 0.

Next, we show that this EiCP is equivalent to the QEiCP (11)–(14).
Let (�̄�, 𝑦, �̄�) be a solution of EiCP (33). If 𝑦 = 0, then 𝑣 = −�̄� = 0 which is impossible. Then

there exists at least an 𝑖 such that 𝑦𝑖 > 0. Now

(i) 𝑦𝑖 > 0 ⇒ 𝑣𝑖 = 0 ⇒ 𝜇𝑦𝑖 = 𝑥𝑖 ⇒ 𝜇 =
�̄�𝑖
𝑦𝑖
.

(ii) 𝑦𝑖 = 0 ⇒ 𝑣𝑖 = −𝑥𝑖 ⇒ 𝑣𝑖 = �̄�𝑖 = 0.
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Hence 𝑣 = 0 in any solution of EiCP (33). Furthermore 𝑒𝑇 �̄� = 1, �̄� ⩾ 0 and (𝑦𝑖 = 0 ⇒ �̄�𝑖 = 0),
imply that �̄� > 0. So (�̄� = 1

�̄� , �̄�) is a solution of QEiCP. The converse follows immediately from the
construction of the EiCP (33).

It is important to add that any eigenvalue �̄� of EiCP (33) satisfies

�̄� =

[
�̄�
𝑦

]𝑇 [ −𝐵 −𝐴
𝐼 0

] [
�̄�
𝑦

]
[
�̄�
𝑦

]𝑇 [
𝐶 0
0 𝐼

] [
�̄�
𝑦

] =
�̄�𝑇 (𝑦 −𝐴𝑦 −𝐵�̄�)
�̄�𝑇𝐶�̄�+ 𝑦𝑇𝑦

(34)

Furthermore the EiCP (33) is equivalent to the following Variational Inequality Problem (VI) [4]:

VI: Find

[
�̄�
𝑦

]
∈ Ω× ℝ

𝑛
+ : (35)

𝐹 (�̄� , 𝑦)𝑇
([

𝑥
𝑦

]
−

[
�̄�
𝑦

])
≥ 0 ∀

[
𝑥
𝑦

]
∈ Ω× ℝ

𝑛
+,

where Ω is given by (5) and 𝐹 : ℝ𝑛 ×ℝ
𝑛 → ℝ

𝑛 × ℝ
𝑛 is defined by

𝐹 (𝑥 , 𝑦) =

(
𝑥𝑇 (𝑦 −𝐴𝑦 −𝐵𝑥)
𝑥𝑇𝐶𝑥+ 𝑦𝑇 𝑦

[
𝐶 0
0 𝐼

]
−

[ −𝐵 −𝐴
𝐼 0

])[
𝑥
𝑦

]
. (36)

Since ℝ
𝑛
+ is not a compact set, there is no guarantee that the VI (35) has a solution. Necessary

and sufficient conditions for the existence of a solution to this VI should be investigated in the future
as they provide similar conditions for the existence of a solution to the QEiCP.

Now consider the case where 𝐵 and 𝐶 are symmetric matrices and 𝐴 = −𝐼 . Then

[
𝐶 0
0 𝐼

]
,

[ −𝐵 −𝐴
𝐼 0

]

are symmetric matrices. The following theorem shows that in this case the QEiCP is equivalent to
finding a stationary point of the nonlinear program QFP (10).

Theorem 3. Any stationary point of QFP (10) is a solution of QEiCP.

Proof. The KKT conditions for QFP (10) are given by

(2𝐵𝑥− 2𝑦)(𝑥𝑇𝐶𝑥+ 𝑦𝑇 𝑦)− (𝑥𝑇𝐵𝑥− 2𝑥𝑇 𝑦)(2𝐶𝑥)

(𝑥𝑇𝐶𝑥+ 𝑦𝑇 𝑦)2
= 𝛼𝑒 +𝑤 (37)

−2𝑥(𝑥𝑇𝐶𝑥+ 𝑦𝑇 𝑦)− 2𝑦(𝑥𝑇𝐵𝑥− 2𝑥𝑇 𝑦)

(𝑥𝑇𝐶𝑥+ 𝑦𝑇 𝑦)2
= 𝑣 (38)

𝑥 ≥ 0, 𝑤 ≥ 0, 𝑥𝑇𝑤 = 0

𝑦 ≥ 0, 𝑣 ≥ 0, 𝑦𝑇 𝑣 = 0

𝑒𝑇𝑥 = 1,
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where 𝛼 ∈ ℝ, 𝑣 ∈ ℝ
𝑛, and 𝑤 ∈ ℝ

𝑛 are the Lagrange multipliers associated to the constraints
𝑒𝑇𝑥 = 1, 𝑦 ≥ 0 and 𝑥 ≥ 0 respectively.

If 𝜇 = 𝑓(𝑥, 𝑦) then the conditions (37) and (38) can be rewritten as follows

2

𝑥𝑇𝐶𝑥+ 𝑦𝑇 𝑦
(𝜇𝐶𝑥+𝐵𝑥− 𝑦) = 𝛼𝑒+ 𝑤 (39)

2

𝑥𝑇𝐶𝑥+ 𝑦𝑇 𝑦
(𝜇𝑦 − 𝑥) = 𝑣 (40)

Since 𝑦 ≥ 0, 𝑣 ≥ 0, 𝑥 ≥ 0, 𝑒𝑇𝑥 = 1, then (40) implies 𝜇 > 0. Furthermore, for each 𝑖 = 1, . . . , 𝑛

𝑣𝑖 = 0 ⇒ 𝜇𝑦𝑖 = 𝑥𝑖.

On the other hand, if 𝑣𝑖 > 0, then 𝑦𝑖 = 0 and 𝑥𝑖 < 0. Hence 𝑣𝑖 cannot be positive and 𝜇𝑦𝑖 = 𝑥𝑖 for
all 𝑖 = 1, . . . , 𝑛.

Multiplying (39) by 1
2(𝑥

𝑇𝐶𝑥+ 𝑦𝑇 𝑦)𝑥𝑇 , we obtain

𝜇𝑥𝑇𝐶𝑥+ 𝑥𝑇𝐵𝑥− 𝑦𝑇𝑥 =
𝛼

2
(𝑥𝑇𝐶𝑥+ 𝑦𝑇 𝑦). (41)

But since

𝜇 =
−𝑥𝑇𝐵𝑥+ 2𝑥𝑇 𝑦

𝑥𝑇𝐶𝑥+ 𝑦𝑇 𝑦
=

−𝑥𝑇𝐵𝑥+ 2
𝜇𝑥

𝑇𝑥

𝑥𝑇𝐶𝑥+ 1
𝜇2𝑥𝑇𝑥

,

we have

1 =
−𝜇𝑥𝑇𝐵𝑥+ 2𝑥𝑇𝑥

𝜇2𝑥𝑇𝐶𝑥+ 𝑥𝑇𝑥
.

Then
𝜇2𝑥𝑇𝐶𝑥+ 𝑥𝑇𝑥+ 𝜇𝑥𝑇𝐵𝑥− 2𝑥𝑇𝑥 = 0,

which along with 𝜇𝑦 = 𝑥 and 𝜇 > 0 yields

𝜇𝑥𝑇𝐶𝑥+ 𝑥𝑇𝐵𝑥− 𝑦𝑇𝑥 = 0.

Then (41) implies 𝛼 = 0.
Substituting 𝑝 = 0 in (39), the KKT conditions take the following form

𝜇𝐶𝑥+𝐵𝑥− 𝑦 = 𝑝
𝜇𝑦 = 𝑥

𝑥 ≥ 0, 𝑝 ≥ 0, 𝑥𝑇 𝑝 = 0

𝑒𝑇𝑥 = 1.

By writing 𝜇𝑝 = 𝑞, we obtain

𝑞 = 𝜇2𝐶𝑥+ 𝜇𝐵𝑥− 𝑥
𝑥 ≥ 0, 𝑞 ≥ 0, 𝑥𝑇 𝑞 = 0

𝑒𝑇𝑥 = 1.

Hence 𝑥 is a solution of QEiCP with 𝜆 =
1

𝜇
.
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Note that 𝑓(𝑥, 𝑦) cannot be unbounded along a recession direction (Δ𝑥,Δ𝑦) of the feasible set.
In fact, such a direction satisfies

Δ𝑥 = 0, Δ𝑦 ≥ 0 (Δ𝑦 ∕= 0)

and for any feasible solution �̄� ∈ Ω, 𝑦 ∈ ℝ
𝑛
+,

𝑓(�̄�+ 𝛼Δ𝑥, 𝑦 + 𝛼Δ𝑦)

=
−�̄�𝑇𝐵�̄�+ 2�̄�𝑇 (𝑦 + 𝛼Δ𝑦)

�̄�𝑇𝐶�̄�+ (𝑦 + 𝛼Δ𝑦)𝑇 (𝑦 + 𝛼Δ𝑦)

=
−�̄�𝑇𝐵�̄�+ 2�̄�𝑇 𝑦 + 2𝛼 �̄�𝑇Δ𝑦

�̄�𝑇𝐶�̄�+ 𝑦𝑇 𝑦 + 2𝛼 𝑦𝑇Δ𝑦 + 𝛼2(Δ𝑦)𝑇Δ𝑦
→ 0

as 𝛼 → +∞. Therefore a stationary point (�̄�, 𝑦) of QFP (10) exists and (̄𝜆 = 1
𝑓(�̄�,𝑦) , �̄�) is a solution

of the QEiCP.
Now consider the case of a negative eigenvalue for the QEiCP. Then (11) can be written as 𝑤 =

(−𝜆)2𝐴𝑥 + (−𝜆)(−𝐵)𝑥 + 𝐶𝑥. If 𝐵 and 𝐶 are symmetric, 𝐶 ∈ SC and 𝐴 = −𝐼 , then the QEiCP
can be solved by computing a stationary point of the QFP (10) with −𝐵 instead of 𝐵. Hence the
following result holds.

Theorem 4. If 𝐴 = −𝐼 , 𝐵 and 𝐶 are symmetric matrices and 𝐶 ∈ SC, then QEiCP has at least a
positive and a negative eigenvalue.

Furthermore these eigenvalues can be computed as stationary points of quadratic fractional pro-
grams. Note that the existence of an eigenvalue for the QEiCP for 𝐴 = −𝐼 and 𝐶 ∈ SC is also guar-
anteed independently of the symmetry of 𝐵 or 𝐶 , by the fact that the co-regular and co-hyperbolic
properties hold.

3.3 Case of 𝐴 ∈ SC

Consider the homogeneous Linear Complementarity Problem (LCP):

𝑤 = 𝐶𝑥, 𝑥 ≥ 0, 𝑤 ≥ 0, 𝑥𝑇𝑤 = 0. (42)

Recall [5] that 𝐶 is called an𝑅0-matrix if and only if the LCP (42) has the unique solution 𝑥 = 𝑤 = 0.
Then the following result holds independently of the SC condition on 𝐴.

Theorem 5. QEiCP has a solution 𝜆 = 0 if and only if 𝐶 ∕∈ 𝑅0.

Proof. QEiCP has a solution 𝜆 = 0 if and only if the Linear Complementarity Problem

𝑤 = 𝐶𝑥

𝑥 ≥ 0, 𝑤 ≥ 0

𝑥𝑇𝑤 = 0

𝑒𝑇𝑥 = 1

has a solution, and this means that 𝐶 ∕∈ 𝑅0.
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Suppose that 𝐴 ∈ SC and QEiCP has a solution. If 𝐶 ∕∈ 𝑅0 then QEiCP has the solution 𝜆 = 0.
Otherwise, QEiCP may have a solution 𝜆 > 0 or 𝜆 < 0. If 𝜆 > 0, we can write the QEiCP as follows

1

𝜆2
𝑤 = 𝐴𝑥+

1

𝜆
𝐵𝑥+

1

𝜆2
𝐶𝑥

𝑥 ≥ 0, 𝑤 ≥ 0

𝑥𝑇𝑤 = 0

𝑒𝑇𝑥 = 1

and the QEiCP reduces to the case of Subsection 3.2. If 𝜆 < 0 the by writing �̄� = −𝜆 the QEiCP can
be written as

1

�̄�2
𝑤 = 𝐴𝑥+

1

�̄�
(−𝐵)𝑥+ 1

�̄�2
𝐶𝑥

𝑥 ≥ 0, 𝑤 ≥ 0

𝑥𝑇𝑤 = 0

𝑒𝑇𝑥 = 1

and again reduces to the case of Subsection 3.2.
As a conclusion, the symmetric EiCP can always be reduced to the problem of finding a stationary

point of an appropriate merit function when 𝐴 ∈ SC and 𝐶 = −𝐼 .

4 A Projected-Gradient Algorithm

In Section 2 it has been shown that if the co-regular and co-hyperbolic properties (6) and (7) hold,
then the symmetric QEiCP can be solved by computing a stationary point of one of the nonlinear
programs introduced in Theorem 1. The constraint set of these programs is the simplex Ω defined
by (5). The special structure of this set Ω makes the computation of projections of vectors over
Ω very easy. On the other hand, the objective functions of the required nonlinear programs have
Hessians whose computation is quite involved. These features lead to our decision of investigating
first order algorithms that are based on gradients and projections. We have chosen the so-called
Spectral Projected-Gradient (SPG) algorithm [2] mainly due to its good performance for solving the
symmetric EiCP by way of similar nonlinear programs [12]. In this section we discuss this algorithm
not only for dealing with the nonlinear programs mentioned before but also with the QFP (10).

In order to explain the SPG algorithm, let us consider a nonlinear program of the form

Minimize ℎ(𝑥) (43)

𝑥 ∈ 𝑋

where ℎ is a 𝐶1 function on an open subset of ℝ𝑛 containing the feasible set 𝑋. The SPG algorithm
is a feasible descent method, which means that in each iteration 𝑘 the current point 𝑥𝑘 is feasible, i.e.,
𝑥𝑘 ∈ 𝑋 and is updated by using a descent direction for the function ℎ and a positive stepsize [20]. If
𝑥𝑘 ∈ 𝑋 is the current point the so-called projected-gradient direction 𝑑𝑘 is computed by

𝑑𝑘 = 𝑃𝑋(𝑥𝑘 − 𝜂𝑘∇𝑓(𝑥𝑘))− 𝑥𝑘 (44)

where 𝜂𝑘 > 0, ∇𝑓(𝑥𝑘) represents the gradient of 𝑓 at 𝑥𝑘 and 𝑃𝑋(𝑧) denotes the projection of 𝑧 ∈ ℝ
𝑛

on 𝑋. If 𝑢𝑘 = 𝑥𝑘 − 𝑥𝑘−1 and 𝑣𝑘 = ∇𝑓(𝑥𝑘) − ∇𝑓(𝑥𝑘−1) satisfy 𝑢𝑇𝑘 𝑣𝑘 > 0, the so-called Spectral
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parameter [2, 25]

𝜂𝑘 =
𝑢𝑇𝑘 𝑢𝑘

𝑣𝑇𝑘 𝑢𝑘
(45)

should be used. In case of of 𝑣𝑇𝑘 𝑢𝑘 ≤ 0, 𝜂𝑘 should be a positive real number chosen according to
[12]. Now, either 𝑑𝑘 = 0 and 𝑥𝑘 is a stationary point of ℎ at 𝑥𝑘 or a stepsize 𝛿𝑘 ∈ (0, 1] is computed
by a line-search technique [6, 20]. The new iterate is given by 𝑥𝑘+1 = 𝑥𝑘 + 𝛿𝑘𝑑𝑘 and satisfies
𝑥𝑘+1 ∈ 𝑋 and ℎ(𝑥𝑘+1) < ℎ(𝑥𝑘). A new iteration with 𝑥𝑘+1 should be performed. The steps of the
SPG algorithm are presented below.

SPG Algorithm

Step 0 - Let 𝜖 > 0 be a tolerance, 𝑥0 ∈ 𝑋 and 𝑘 = 0.

Step 1 - Compute 𝑑𝑘 by (44).

Step 2 - If ∥𝑑𝑘∥ < 𝜖, stop with 𝑥𝑘 a Stationary Point of ℎ on 𝑋.

Step 3 - Compute 𝛿𝑘 ∈ (0, 1] by a line-search technique.

Step 4 - Update 𝑥𝑘 by 𝑥𝑘+1 = 𝑥𝑘 + 𝛿𝑘𝑑𝑘 and return to Step 1 with 𝑘 = 𝑘 + 1.

The SPG algorithm possesses global convergence to a stationary point of ℎ on 𝑋 under reason-
able hypotheses [2]. Therefore the algorithm is able to find a solution of the symmetric QEiCP by
computing a stationary point of one of the programs mentioned in Theorem 1 and of the QFP (10)
when 𝐴 = −𝐼 and 𝐶 ∈ SC. Next, we discuss the choice of the initial point and the computation of
gradients, search directions and stepsizes for each one of these nonlinear programs. We only consider
the program

NLP: Minimize 𝜆(𝑥)

subject to 𝑒𝑇𝑥 = 1, (46)

𝑥 ≥ 0,

among those introduced in Theorem 1, as the application of the SPG to the remaining programs is
similar. Furthermore QFP (10) is considered in the following equivalent form

QFP: Minimize
𝑥𝑇𝐵𝑥− 2𝑥𝑇 𝑦

𝑥𝑇𝐶𝑥+ 𝑦𝑇 𝑦
= −𝑓(𝑥, 𝑦)

subject to 𝑒𝑇𝑥 = 1, (47)

𝑥 ≥ 0, 𝑦 ≥ 0.
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4.1 Initial Point

As discussed in [12], when applied to NLP (46), the initial point for the SPG algorithm should be
chosen by one of the two possibilities

𝑥0 =
1

𝑛
𝑒 (48)

𝑥0 = 𝑒
𝑖 (49)

where 𝑒 ∈ ℝ
𝑛 is a vector of ones and 𝑒𝑖 is a vector of the canonical basis of ℝ𝑛. For the QFP (47), 𝑥0

should be chosen by (48) or (49) and

𝑦0 = 𝜎𝑥0 (50)

where 𝜎 is a nonnegative real number. In the next section we discuss the importance of these choices
on the efficiency of the SPG algorithm.

4.2 Computation of Gradients

For NLP (46), the proof of Theorem 1 gives the following expression for the gradient ∇𝜆(𝑥) at 𝑥:

∇𝜆(𝑥) = −1

2
√

[𝑟(𝑥)]2 − 𝑠(𝑥) [2𝜆(𝑥)∇𝑟(𝑥) +∇𝑠(𝑥)] (51)

where

∇𝑟(𝑥) = 1

𝑥𝑇𝐴𝑥
[𝐵𝑥− 2𝑟(𝑥)𝐴𝑥] (52)

and

∇𝑠(𝑥) = 1

𝑥𝑇𝐴𝑥
[2𝐶𝑥− 2𝑠(𝑥)𝐴𝑥] . (53)

By simple algebraic manipulations, it is possible to design the following procedure for the computa-
tion of ∇𝜆(𝑥):

Procedure Gradient of 𝜆 at �̄� : 𝑔 = ∇𝜆(�̄�)
⎧⎨
⎩

𝑢 = 𝐴�̄�
𝑣 = 𝐵�̄�
𝑧 = 𝐶�̄�
𝜃1 = �̄�

𝑇𝑢
𝜃2 = �̄�

𝑇 𝑣
𝜃3 = �̄�

𝑇 𝑧

𝑟 = 𝜃2
2𝜃1
, 𝑠 = 𝜃3

𝜃1
, �̄� =

√
(𝑟)2 − 𝑠 , 𝜆 = −𝑟 + �̄�

𝑔 = − 1
𝜃1�̄�

[(𝜆)2𝑢+ 𝜆𝑣 + 𝑧]

Now consider the QFP (47). Then, by simple linear algebra manipulations, (37) and (38) lead to
the following procedure for computing the gradient of −𝑓 at (�̄�, 𝑦):
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Procedure Gradient of −𝑓 at (�̄�, 𝑦) : 𝑔 = (𝑔𝑥, 𝑔𝑦) = −∇𝑓(�̄�, 𝑦):
⎧⎨
⎩

𝑢 = 𝐵�̄�
𝑣 = 𝐶�̄�
𝜃1 = �̄�

𝑇𝑢
𝜃2 = �̄�

𝑇 𝑣
𝜃3 = �̄�

𝑇 𝑦
𝜃4 = 𝑦

𝑇𝑦

𝜆1 = 𝜃1 − 2𝜃3 , 𝜆2 = 𝜃2 + 𝜃4 , 𝜙 = 𝜆1
𝜆2

(𝑔𝑥, 𝑔𝑦) =
2
𝜆2
(𝑢− 𝑦 − 𝜙𝑣 , −𝜙𝑦 − 𝑥)

As a conclusion, at each iteration the computation of the gradients for the two objective functions
of NLP (46) and QFP (47) essentially requires matrix-vector products with the matrices of the QEiCP.

4.3 Computation of the Projected-Gradient Directions

Consider again the NLP (46). Then in each iteration 𝑘, the projected-gradient direction is given by

𝑑𝑘 = 𝑃Ω(𝑥𝑘 − 𝜂𝑘∇𝜆(𝑥𝑘))− 𝑥𝑘 (54)

where Ω is the simplex defined by (5) and 𝑃Ω(𝑣) is the unique global minimum (and stationary point)
of the Strictly Convex Separable Quadratic Program

SCSQP: Minimize
1

2
∥𝑣 − 𝑢∥22 =

1

2
(𝑣 − 𝑢)𝑇 (𝑣 − 𝑢)

subject to 𝑒𝑇𝑢 = 1, (55)

𝑢 ≥ 0.

As discussed in [12], the SCSQP can be solved by a number of algorithms [11, 21, 30]. Among
these methods, the block principal pivoting algorithm [11] has proven to be very efficient [4, 12] and
is used in the implementation of the SPG algorithm.

For the QFP (47), the projected search direction is given by

𝑑𝑘 =

[
𝑑𝑥𝑘
𝑑𝑦𝑘

]
=

[
𝑃Ω(𝑥𝑘 + 𝜂𝑘∇𝑥𝑓(𝑥𝑘, 𝑦𝑘))
𝑃ℝ𝑛

+
(𝑦𝑘 + 𝜂𝑘∇𝑦𝑓(𝑥𝑘, 𝑦𝑘))

]
(56)

where ∇𝑓(𝑥𝑘, 𝑦𝑘) = [∇𝑥𝑓(𝑥𝑘, 𝑦𝑘),∇𝑦𝑓(𝑥𝑘, 𝑦𝑘)] can be computed by the procedure discussed be-
fore. Furthermore the projection over Ω is computed as explained before and 𝑢 = 𝑃ℝ𝑛

+
(𝑣) is given

by

𝑢𝑖 =

{
𝑣𝑖, if 𝑣𝑖 ≥ 0
0, otherwise

(57)

for 𝑖 = 1, . . . , 𝑛.
Finally the spectral parameter 𝜂𝑘 is computed according to the procedure discussed in [12].
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4.4 Line-Search

For the NLP (46), the so-called Armijo Criterion [6, 20] is recommended and consists of finding a
stepsize 𝛿𝑘 such that

𝜆(𝑥𝑘 + 𝛿𝑘𝑑𝑘) ≤ 𝜆(𝑥𝑘) + 𝛿𝑘𝛽∇𝜆(𝑥𝑘)𝑇𝑑𝑘 (58)

where 𝛽 is a small positive constant (usually 𝛽 = 10−4). In practice, 𝛿𝑘 is computed by a finite
number of trials of the form 1

𝜃𝑟 , 𝑟 = 0, 1, . . . , where 𝜃 is a real number greater or equal to 2 (usually
𝜃 = 2).

It is well-known that the exact line-search is usually advantageous over an approximate one based
on the Armijo Criterion or similar [20]. However the exact line-search is very difficult to implement
for a general nonlinear function, as it requires finding the global minimum of the problem

Minimize 𝜆(𝑥𝑘 + 𝛿𝑑𝑘)

subject to 𝛿 ≥ 0.

Next, we show that such a technique can be efficiently implemented for the QFP. Consider the
objective function −𝑓(𝑥, 𝑦) of QFP. If (�̄�, 𝑦) is the current point and 𝑑 = (𝑑𝑥, 𝑑𝑦) is the search
direction, then the line-search function 𝜑(𝛼) is given by

𝜑(𝛼) = −𝑓(�̄�+ 𝛼𝑑𝑥, 𝑦 + 𝛼𝑑𝑦) =
(�̄�+ 𝛼𝑑𝑥)𝑇𝐵(�̄�+ 𝛼𝑑𝑥)− 2(�̄�+ 𝛼𝑑𝑥)𝑇 (𝑦 + 𝛼𝑑𝑦)

(�̄�+ 𝛼𝑑𝑥)𝑇𝐶(�̄�+ 𝛼𝑑𝑥) + (𝑦 + 𝛼𝑑𝑦)𝑇 (𝑦 + 𝛼𝑑𝑦)

=
𝑡1𝛼

2 + 𝑡2𝛼+ 𝑡3
𝑢1𝛼2 + 𝑢2𝛼+ 𝑢3

where

𝑡1 = (𝑑𝑥)𝑇 (𝐵𝑑𝑥)− 2(𝑑𝑥)𝑇𝑑𝑦

𝑡2 = 2[(𝑑𝑥)𝑇 (𝐵�̄�)− �̄�𝑇𝑑𝑦 − 𝑦𝑇𝑑𝑥]
𝑡3 = �̄�𝑇 (𝐵�̄�)− 2�̄�𝑇 𝑦

𝑢1 = (𝑑𝑥)𝑇 (𝐶𝑑𝑥) + (𝑑𝑦)𝑇𝑑𝑦

𝑢2 = 2[(𝑑𝑥)𝑇 (𝐶�̄�) + 𝑦𝑇𝑑𝑦]

𝑢3 = �̄�𝑇 (𝐶�̄�) + 𝑦𝑇 𝑦.

Note that 𝐵�̄�, 𝐶�̄�, 𝑡3 and 𝑢3 have already been obtained in Step 1 of the SPG algorithm when the
gradient of −𝑓 at (�̄�, 𝑦) is computed according to the Procedure Gradient of −𝑓 at (�̄�, 𝑦).

Now

𝜑′(𝛼) =
(2𝑡1𝛼+ 𝑡2)(𝑢1𝛼

2 + 𝑢2𝛼+ 𝑢3)− (2𝑢1𝛼+ 𝑢2)(𝑡1𝛼
2 + 𝑡2𝛼+ 𝑡3)

(𝑢1𝛼2 + 𝑢2𝛼+ 𝑢3)2

=
𝑣1𝛼

2 + 𝑣2𝛼+ 𝑣3
(𝑢1𝛼2 + 𝑢2𝛼+ 𝑢3)2

where

𝑣1 = 2𝑡1𝑢2 + 𝑢1𝑡2 − 2𝑡2𝑢1 − 𝑡1𝑢2 = 𝑡1𝑢2 − 𝑡2𝑢1
𝑣2 = 2𝑡1𝑢3 + 𝑡2𝑢2 − 2𝑢1𝑡3 − 𝑡2𝑢2 = 2(𝑡1𝑢3 − 𝑢1𝑡3)
𝑣3 = 𝑡2𝑢3 − 𝑢2𝑡3.
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Hence
𝜑′(𝛼) = 0 ⇔ 𝑣1𝛼

2 + 𝑣2𝛼+ 𝑣3 = 0.

Let
Δ = 𝑣22 − 4𝑣1𝑣3.

Then there are the following cases:

(i) Δ < 0 ⇒ there is no root for 𝜑′(𝛼) = 0. Since the search direction is descent, then �̄� = 1.

(ii) Δ ≥ 0 ⇒ Let 𝑠𝑖, 𝑖 = 1, 2 (may be equal) be the roots of 𝜑′(𝛼) = 0. Then

– ∀𝑠𝑖 /∈ [0, 1] ⇒ �̄� = 1.

– ∃𝑠𝑖 ∈ [0, 1] ⇒ �̄� = argmin{𝜑(1), 𝜑(𝑠𝑖) : 𝑠𝑖 ∈ [0, 1]}
Hence the exact line-search for QFP essentially reduces to the computation of the roots of a

binomial equation.

5 Computational Experience

In this section, we report some computational experience with the projected-gradient method (SPG),
discussed in Section 4, and the well-known code MINOS [17] for the computation of eigenvalues
and eigenvectors to the QEiCP. All the tests have been performed on a Pentium IV (Intel) with Hyper-
threading, 3.0 GHz CPU, 2GB RAM computer, using the operating system Linux. The SPG algorithm
was implemented in FORTRAN 77 with version 10 of the Intel FORTRAN compiler [10]. The solver
MINOS was implemented in the General Algebraic Modeling System (GAMS) language (Rev 118
Linux/Intel) [3].

We considered a set of test problems, where 𝐴 was taken as −𝐼 , with 𝐼 the identity matrix,
and 𝐵 and 𝐶 are symmetric matrices from the Harwell-Boeing Collection [16]. Furthermore 𝐶 is a
positive definite matrix and then 𝐶 ∈ SC. Hence, these QEiCPs can be solved by computing station-
ary points for the nonlinear programs NLP (46) and QFP (47). These test problems are denoted by
MatHHarwell(𝑛), where 𝑛 represents the order of the matrices 𝐴, 𝐵, and 𝐶 . A second set of test
problems, MatRHarwell(𝑛), was constructed. This differs from the first set in the matrix 𝐵, which
is given by 𝐵 = 𝐹𝑇𝐹 , where the matrix 𝐹 was randomly generated with elements uniformly dis-
tributed in the interval (0, 1). Furthermore the matrices 𝐵 and 𝐶 of the two sets of test problems have
been scaled so that all their elements belong to the interval [0, 1]. Note that the matrices 𝐵 of the set
MatHHarwell(𝑛) are quite sparse while the matrices 𝐵 of the set MatRHarwell(𝑛) are dense. In our
computational experience for solving the NLP (46), we considered two initial points given by (48)
and (49), where 𝑖 is such that

∣𝑏𝑖𝑖∣ = max{∣𝑏𝑗𝑗∣ : 𝑗 = 1, 2, . . . , 𝑛}. (59)

For the QFP (47), the initial vector 𝑥0 is chosen and

𝑦0 =

{
0, if 𝑥0 is given by (48)

∣𝑏𝑖𝑖∣𝑒𝑖, otherwise

where, as before, 𝑖 is such that (59) holds. The computational performance of the algorithms SPG and
MINOS for solving the test problems mentioned above are displayed in Tables 1, 2, 3 and 4, where
the following notation is used:
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• 𝜖− tolerance for the SPG algorithm;

• 𝜆− value of the eigenvalue computed by the algorithms;

• IT - number of iterations required by the algorithms;

• CPU - CPU time in seconds spent by the algorithms;

• c - exponent of the value 10−𝑐 of the complementarity gap 𝑥𝑇𝑤, for the eigenvalue 𝜆 and
eigenvector 𝑥 computed by the algorithms, where

𝑤 = 𝜆2𝐴𝑥+ 𝜆𝐵𝑥+ 𝐶𝑥; (60)

• r - exponent of the value 10−𝑟 of the smallest component of 𝑤 given by (60), where 𝑥 and 𝜆 are
the eigenvector and eigenvalues computed by the algorithms;

• ∗− SPG algorithm was not able to compute an eigenvalue and an eigenvector within 40 000
iterations.

Note that 𝜆 and 𝑥 should be considered to be an eigenvalue and an eigenvector, respectively, if
𝑐 and 𝑟 are big, i.e., 10−𝑐 and 10−𝑟 are small. The bigger 𝑐 and 𝑟 are the better precisions of the
eigenvalue and eigenvector are. Furthermore 𝑐 and 𝑟 equal to ∞ means that the precision is optimal,
as 10−𝑐 = 0, i.e., 10−𝑐 < 𝜖𝑀 , with 𝜖𝑀 the machine precision. Furthermore MINOS was only tested
with the initial point given by (49) and (59), since such a choice is much better than (48) for a code
based on basic and superbasic solutions [17].

Table 1: Performance of SPG and MINOS for solving QFP (47) with initial point given by (49) and
(59).

SPG - 𝜖 = 10−4 SPG - 𝜖 = 10−5 MINOS
Problem 𝜆 c r IT CPU 𝜆 c r IT CPU 𝜆 c r IT CPU
MatHHarwell(48) 0.550 9 6 834 0.03 0.550 11 7 1290 0.05 0.654 16 4 106 0.01
MatHHarwell(66) 0.471 9 6 1194 0.06 0.473 11 8 3414 0.17 0.410 16 2 452 0.02
MatHHarwell(112) 0.316 9 5 4675 0.46 0.316 11 7 11595 1.14 0.316 ∞ 4 16 0.05
MatHHarwell(132) 0.416 9 7 3 0.00 0.416 11 7 4 0.00 0.416 16 5 46 0.08
MatHHarwell(153) 0.371 9 5 450 0.07 0.371 11 7 2514 0.41 0.371 17 3 1088 0.11
MatHHarwell(420) 0.317 10 7 44 0.03 0.317 12 7 58 0.05 0.318 17 4 19 0.93

MatRHarwell(48) 1.491 16 16 2 0.00 1.491 16 16 2 0.00 1.491 14 14 3 0.01
MatRHarwell(66) 1.315 16 16 2 0.00 1.315 16 16 2 0.00 1.315 17 17 4 0.03
MatRHarwell(112) 1.093 16 16 2 0.01 1.093 16 16 2 0.01 1.093 15 15 2 0.08
MatRHarwell(132) 1.092 17 17 2 0.02 1.092 17 17 2 0.02 1.092 15 15 3 0.11
MatRHarwell(153) 1.156 16 16 2 0.03 1.156 16 16 2 0.03 1.156 17 17 4 0.15
MatRHarwell1(420) 1.631 ∞ ∞ 2 0.19 1.631 ∞ ∞ 2 0.19 1.631 13 13 3 1.50

The numerical results presented in the Tables 1, 2, 3 and 4 lead to the following observations:

(i) The SPG algorithm with a tolerance of 𝜖 = 10−4 is always able to find an eigenvalue and an
eigenvector when applied to both the nonlinear programs NLP (46) and QFP (47). Furthermore
for the NLP (46), the SPG algorithm may face difficulties to terminate if the tolerance is chosen
smaller than 10−4 (see Table 4, 𝜖 = 10−5).

(ii) The numerical precision of the eigenvalue and eigenvector computed by the SPG algorithm is
good even for tolerance of 10−4 and usually better than that obtained by MINOS with its default
parameters.
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Table 2: Performance of SPG for solving QFP (47) with initial point given by (48).

SPG - 𝜖 = 10−4 SPG - 𝜖 = 10−5

Problem 𝜆 c r IT CPU 𝜆 c r IT CPU
MatHHarwell(48) 0.550 9 6 372 0.01 0.550 11 7 688 0.03
MatHHarwell(66) 0.471 9 6 1483 0.08 0.474 11 8 3763 0.21
MatHHarwell(112) 0.316 10 5 432 0.04 0.316 11 6 8396 0.82
MatHHarwell(132) 0.326 9 5 2580 0.31 0.326 11 7 13838 1.69
MatHHarwell(153) 0.371 9 5 1079 0.17 0.371 11 7 3079 0.51
MatHHarwell(420) 0.316 10 6 983 0.81 0.316 12 7 4245 3.51

MatRHarwell(48) 1.437 15 15 14 0.00 1.437 15 15 14 0.00
MatRHarwell(66) 1.486 14 14 14 0.00 1.486 14 14 14 0.00
MatRHarwell(112) 1.558 10 10 13 0.01 1.558 16 16 14 0.01
MatRHarwell(132) 1.516 11 11 13 0.02 1.516 16 16 14 0.02
MatRHarwell(153) 1.502 11 11 13 0.03 1.502 ∞ ∞ 14 0.03
MatRHarwell1(420) 1.548 10 10 12 0.20 1.548 16 16 13 0.20

Table 3: Performance of SPG and MINOS for solving NLP (46) with initial point given by (49) and
(59).

SPG - 𝜖 = 10−4 SPG - 𝜖 = 10−5 MINOS
Problem 𝜆 c r IT CPU 𝜆 c r IT CPU 𝜆 c r IT CPU
MatHHarwell(48) 1.092 16 16 1 0.00 1.092 16 16 1 0.00 1.092 17 17 1 0.01
MatHHarwell(66) 0.475 ∞ ∞ 1294 0.12 0.475 ∞ ∞ 1294 0.12 0.410 17 2 193 0.02
MatHHarwell(112) 1.106 17 ∞ 1 0.01 1.106 17 ∞ 1 0.01 1.106 17 ∞ 1 0.06
MatHHarwell(132) 0.416 17 17 1 0.02 0.416 17 17 1 0.02 0.416 17 5 20 0.08
MatHHarwell(153) 0.383 18 4 796 0.40 ∗ ∗ ∗ ∗ ∗ 0.371 ∞ 3 462 0.12
MatHHarwell(420) 1.245 16 ∞ 1 0.20 1.245 16 ∞ 1 0.20 1.245 17 ∞ 1 0.90

MatRHarwell(48) 1.491 16 16 1 0.00 1.491 16 16 1 0.00 1.491 16 16 1 0.02
MatRHarwell(66) 1.315 16 16 1 0.00 1.315 16 16 1 0.00 1.315 17 17 1 0.03
MatRHarwell(112) 1.093 17 17 1 0.01 1.093 17 17 1 0.01 1.093 16 16 1 0.09
MatRHarwell(132) 1.092 17 17 1 0.02 1.092 17 17 1 0.02 1.092 17 17 1 0.13
MatRHarwell(153) 1.156 16 16 1 0.03 1.156 16 16 1 0.03 1.156 17 17 1 0.18
MatRHarwell1(420) 1.631 ∞ ∞ 1 0.20 1.631 ∞ ∞ 1 0.20 1.631 16 16 1 1.71

Table 4: Performance of SPG and MINOS for solving NLP (46) with initial point given by (48).

SPG - 𝜖 = 10−4 SPG - 𝜖 = 10−5

Problem 𝜆 c r IT CPU 𝜆 c r IT CPU
MatHHarwell(48) 0.550 17 4 7493 0.47 ∗ ∗ ∗ ∗ ∗
MatHHarwell(66) 0.459 18 3 14 0.00 ∗ ∗ ∗ ∗ ∗
MatHHarwell(112) 0.319 17 3 4 0.00 ∗ ∗ ∗ ∗ ∗
MatHHarwell(132) 0.326 17 6 206 0.03 0.326 17 7 2399 0.26
MatHHarwell(153) 0.371 ∞ ∞ 11 0.02 0.371 ∞ ∞ 11 0.02
MatHHarwell(420) 0.318 18 5 13677 46.36 ∗ ∗ ∗ ∗ ∗
MatRHarwell(48) 0.727 17 17 2 0.00 0.727 17 17 2 0.00
MatRHarwell(66) 1.195 ∞ ∞ 2 0.00 1.195 ∞ ∞ 2 0.00
MatRHarwell(112) 0.754 17 17 2 0.01 0.754 17 17 2 0.01
MatRHarwell(132) 0.920 16 16 2 0.02 0.920 16 16 2 0.02
MatRHarwell(153) 0.886 ∞ ∞ 2 0.03 0.886 ∞ ∞ 2 0.03
MatRHarwell1(420) 1.473 ∞ ∞ 2 0.20 1.473 ∞ ∞ 2 0.20

(iii) The choice (49) with (59) of a canonical vector 𝑒𝑖 for the initial point seems to be more appro-
priate than using the barycenter (48).

(iv) The QFP (47) usually provides solutions with better precision than the NLP (46). This is ex-
pected, as the expression of the objective function of QFP (47) is simpler and does not involve
square roots. However, it is important to add that the QFP formulation only applies to the case
where 𝐴 = −𝐼 and 𝐶 ∈ SC, while NLP (46) seems to have a broader application.

(v) The SPG algorithm usually requires less computational time than MINOS, particularly when
the dimension 𝑛 of the QEiCP increases.
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(vi) The MINOS and SPG algorithms may compute different eigenvalues and eigenvectors.

In conclusion, the SPG algorithm seems to be a valid approach for solving the symmetric QEiCP
in practice by computing a stationary point of an appropriate nonlinear program.

6 Conclusions

In this paper the solution of the symmetric Quadratic Eigenvalue Complementary Problem (QEiCP) is
investigated. Two nonlinear programming formulations for the QEiCP are introduced and it is shown
that stationary points of these programs provide eigenvalues and eigenvectors for the QEiCP. The
use of the Spectral Projected-Gradient (SPG) algorithm for dealing with these nonlinear programs is
investigated. Numerical evidence of the good performance of the SPG algorithm in practice is shown.

In this paper, it is also established that the so-called co-regular and co-hyperbolic properties do not
have to hold in order to guarantee a solution to the symmetric QEiCP. The study of weaker sufficient
conditions for the existence of a solution to the QEiCP should also be investigated in future, together
with special purpose algorithms to deal with these problems in practice.
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