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Augmented Lagrangian duality provides zero duality gap and saddle point properties for
nonconvex optimization. On the basis of this duality, subgradient-like methods can be applied
to the (convex) dual of the original problem. These methods usually recover the optimal value
of the problem, but may fail to provide a primal solution. We prove that the recovery of a
primal solution by such methods can be characterized in terms of (i) the differentiability
properties of the dual function, and (ii) the exact penalty properties of the primal-dual pair.
We also connect the property of finite termination with exact penalty properties of the dual
pair. In order to establish these facts, we associate the primal-dual pair to a penalty map. This
map, which we introduce here, is a convex and globally Lipschitz function, and its epigraph
encapsulates information on both primal and dual solution sets.
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1. Introduction

A main tool for solving extended real-valued optimization problems is provided by
augmented Lagrangians and their corresponding duality schemes. In Rockafellar
and Wets [15], important duality results such as zero duality gap, saddle point
properties, and exact penalty representations are established regardless of the con-
vexity or smoothness of the primal problem. These results have been extended to
infinite dimensional spaces, for instance, in [10, 13, 14, 16, 18]. Zero duality prop-
erties of augmented Lagrangians allow the use of solution methods which solve
the (nonsmooth and convex) dual problem. The works [2, 3, 6, 7, 9, 12] use a de-
flected subgradient algorithm (DSG) for solving the dual problem induced by an
augmented Lagrangian. DSG is an example of what we call a primal-dual method.
Roughly speaking, a primal-dual method solves the dual problem induced by a suit-
able augmented Lagrangian. The search direction used at each step of the method
requires the computation of a primal variable. In this way, a primal-dual sequence
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is automatically generated by the method, and a key question is whether or not
every accummulation point of the primal sequence is a solution of the original (pri-
mal) problem. We call the latter property primal convergence. An even stronger
property of a primal-dual method is finite termination, which means that primal
convergence is achieved in a finite number of steps. Our aim is to establish a rela-
tionship between these types of primal convergence and exact penalty properties
of the augmented Lagrangian. For establishing these relationships, a key tool turns
out to be the penalty map, a globally Lipschitz convex function defined in the space
of dual variables. This map is also instrumental for understanding the structure of
the dual solution set.
The penalty map allows us to characterize primal convergence in terms of the

differentiability of the dual function at a dual solution. More precisely, we prove
that the differentiability of the dual function at a dual solution is in turn equivalent
to strong exactness (see Definition 3.1) of the penalty map (see Section 3). As
a concrete application of our theory, we use the penalty map to study primal
convergence and finite termination of a wide family of primal-dual methods, which
include DSG as a particular case (see Theorem 4.4). In the particular case of DSG,
we fully characterize primal convergence in terms of the penalty map (see Corollary
5.3 and Theorem 6.1).
As far as we know, the first results relating penalty parameters and convergence

properties of primal-dual methods are reported in [8], where the authors prove,
in a finite dimensional setting, the equivalence between the differentiability of the
dual function at the dual limit and primal convergence. The work [8] considers
an optimization problem with one nonnegative equality constraint in finite dimen-
sional spaces. For this setting, the authors showed that primal convergence of DSG
is equivalent to the differentiability of the dual function at a dual solution and
the existence of exact penalty parameters. These results were later on extended to
more general problems, and more general primal-dual methods, in [1], where still
a finite dimensional setting is used.
In spite of these results, a question remains as to which is the precise interplay

between
(i) exact penalty properties,
(ii) primal convergence of solution methods, and
(iii) differentiability of the dual function at the dual limit.

These properties can be analyzed by means of the penalty function. The purpose
of the present paper is to introduce the penalty map and use it to provide a unified
setting for relating properties (i)-(iii). Our analysis is carried out in a very general
setting, where the primal problem is formulated in a reflexive Banach space and
the dual problem in a Hilbert space. The structure of the augmented Lagrangian
function we use is similar to the one used in [1, 5–7, 10, 18], in which the augmenting
function σ satisfies σ(·) ≥ ‖ · ‖, where ‖ · ‖ is the norm of the Hilbert space used in
the definition of the duality parameterization.
The manuscript is organized as follows. In Section 2 we state our primal-dual

problem and recall some preliminary material on augmented Lagrangians. More-
over, we present in this section a technical result (Proposition 2.6), which estab-
lishes main connections between primal and dual solution sets. In Section 3 we
introduce the penalty map E, and define exact and strongly exact penalty maps.
We illustrate these concepts in Examples 3.2 and 3.3. Moreover, we establish the
equivalence between property (iii) above and strong exactness of E (see Theorem
3.6). Dual localization results are established in Section 3.2. In this section we also
establish a connection between dual convergence of primal-dual methods and the
graph of the penalty map. We prove in Section 3.3 that E is a globally Lipschitz
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convex function, which is proper if and only if the dual solution set is not empty.
As a consequence of this fact, the well known property of a vector y supporting
an exact penalty representation (see [15, Definition 11.60]) becomes equivalent to
simply y belonging to dom (E) (see Remark 4). Section 4 is devoted to the appli-
cation of the new theory to establish primal and finite convergence of primal-dual
methods. We relate the penalty map E with a stopping criterion for these methods,
and establish minimal assumptions under which primal and finite convergence hold
(see Theorem 4.4). In Section 5 we recall the deflected subgradient algorithm and
relate its primal convergence with strong exactness of E. Finally, in Section 6 we
apply our results to an optimization problem with equality constraints. For this
problem, we prove that primal convergence of DSG is equivalent to exactness of E
(see Theorem 6.1).

2. Preliminaries

Let X be a reflexive Banach space, and H a Hilbert space. We denote by ‖ · ‖ the
norm in both X and H. The inner product of z, y ∈ H is denoted by 〈y, z〉. We
consider the optimization problem

minimize ϕ(x) subject to x in X, (1)

where the function ϕ : X → R+∞ := R ∪ {+∞} is a proper (i.e., domϕ 6= ∅
and ϕ > −∞) and weakly lower semicontinuous (w-lsc) function. We consider a
duality scheme by means of a dualizing parameterization for (1), which is a function
f : X ×H → R̄ := R+∞ ∪ {−∞} that verifies f(x, 0) = ϕ(x) for all x ∈ X.

Definition 2.1: (see [4]) A function σ : H → R+∞ is said to be a valley-at-zero
augmenting function if it is proper, w-lsc, and for every t > 0:

σ(0) = 0 and inf
‖z‖≥t

σ(z) > 0.

The augmented Lagrangian function ` : X × H × R+ → R̄ corresponding to the
dualizing parameterization function f and the augmenting function σ is given by

`(x, y, r) := inf
z∈H

{f(x, z)− 〈z, y〉+ rσ(z)}. (2)

The dual function q : H ×R+ → R−∞ is defined as q(y, r) := infx∈X `(x, y, r). The
dual problem is stated as

maximize q(y, r) subject to (y, r) ∈ H × R+. (3)

We denote by MP := infx∈X ϕ(x) and by MD := sup(y,r)∈H×R+
q(y, r) the optimal

values of the primal and dual problem, respectively. The primal and dual solution
sets are denoted by P∗ and D∗, respectively.

The next definition has been used in [10, Section 5] and [18].

Definition 2.2: A function f : X ×H → R̄, is said to be weakly level-compact,
if for all z̄ ∈ H and for all α ∈ R, there exists a weak open neighborhood V of z̄,
and a weak compact set B ⊂ X, such that

LV,f (α) := {x ∈ X : f(x, z) ≤ α} ⊂ B, for all z ∈ V.
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Remark 1 : From now on, we only consider dualizing parameterization functions
which are proper, weakly level-compact, and weakly lower semicontinuous.

Next we summarize some basic results for our primal-dual pair.

Proposition 2.3:

i) The dual function q is concave and weakly upper semicontinuous (w-usc);
ii) the function q(y, ·) is nondecreasing for each fixed y ∈ H; in particular, if (y, c)

is a dual solution then (y, r) is a dual solution for each r ≥ c;
iii) Suppose that f is a proper, w-lsc dualizing parameterization function for problem

(1) and consider the induced dual problem (3). Assume that f is weakly level-
compact and that dom q 6= ∅. Then there is zero-duality gap between the primal
and dual problems, i.e., MP =MD.

Proof : Item (i) follows from the fact that q is the infimum of affine functions.
Item (ii) follows from the fact that the augmenting function σ is nonnegative. Item
(iii) is proved in [18, Theorem 3.1]. �

Remark 2 : The augmented Lagrangians considered in [18, Theorem 3.1] are
generated by a function g(·, ·) instead of 〈·, ·〉. The prototype is still g(y, z) = 〈y, z〉.
Although [18, Theorem 3.1] assumes weak lower semicontinuity of g (which is not
true in general for g(y, z) = 〈y, z〉), its proof requires only lower semicontinuity
of g(y, ·) with y fixed. This latter property holds for g(y, z) = 〈y, z〉 and then
Proposition 2.3 (iii) provides the desired zero-duality gap property. Proposition
2.3(iii) can also be deduced from [4, Theorem 3.2], which holds in a more general
setting.

Definition 2.4: Fix (y, c) ∈ H × R+ and let Φ(y,c) : X ×H → R̄ be defined by

Φ(y,c)(x, z) := f(x, z)− 〈y, z〉+ cσ(z). (4)

Define the point-to-set mapping A : H × R+ ⇒ X ×H as the argmin of Φ(y,c):

A(y, c) := argmin (x,z)Φ(y,c)(x, z) ⊂ X ×H. (5)

Let PX(y, c) be the projection of A(y, c) onto X, namely,

PX(y, c) := {x ∈ X : (x, z) ∈ A(y, c), for some z ∈ H}.

Analogously, we denote by PH(y, c) the projection of A(y, c) in H.

The point-to-set mapping A induces a primal-dual method for problems (1),(3).

Definition 2.5: Let A : H × R+ ⇒ X ×H be defined as in (5). A primal-dual
method induced by A for problems (1),(3) is any sequence {(yk, ck), (xk, zk)} in the
graph of A (i.e., such that (xk, zk) ∈ A(yk, ck) for all k).

DSG, as well as many other variants of subgradient methods applied to the dual
problem (3), is a primal dual method in the sense of Definition 2.5.
For future reference, we note that

q(y, c) = Φ(y,c)(x, z) if and only if (x, z) ∈ A(y, c). (6)

We will also use that

Φ(y,c)(x, z) ≥ inf
z′∈H,x′∈X

Φ(y,c)(x
′, z′) = q(y, c). (7)
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The next proposition summarizes the connection between PX(y, c), PH(y, c) and
the primal solution set P∗.

Proposition 2.6: Let P∗ and D∗ be as in Definition 2.2.
a) For each (y, c) ∈ D∗, it holds that P∗ ⊂ PX(y, c) and 0 ∈ PH(y, c).
b) If (y, c) ∈ D∗ then PH(y, t) = {0} for all t > c.
c) If PH(y, c) = {0} then (y, c) ∈ D∗ and PX(y, c) = P∗.

Proof : (a) Consider x∗ ∈ P∗. By Proposition 2.3, MP =MD, and we can write

q(y, c) =MD =MP = ϕ(x∗) = f(x∗, 0)− 〈y, 0〉+ cσ(0) = Φ(y,c)(x
∗, 0). (8)

Hence (x∗, 0) ∈ A(y, c), which in turn implies that x∗ ∈ PX(y, c) and 0 ∈ PH(y, c).
Since x∗ ∈ P∗ is arbitrary, the result follows.
(b) Take t > c. Since (y, c) ∈ D∗, it follows that (y, t) ∈ D∗, by Proposition 2.3 (ii).
It follows from item (a) that 0 ∈ PH(y, t). Take an arbitrary z ∈ PH(y, t). This
means that there exists x ∈ X such that (x, z) ∈ A(y, t) and then Φ(y,t)(x, z) =
q(y, t) =MD. On the other hand, a simple manipulation shows that

MD = Φ(y,t)(x, z) = Φ(y,c)(x, z) + (t− c)σ(z)
≥ q(y, c) + (t− c)σ(z) =MD + (t− c)σ(z).

Therefore σ(z) = 0, because t > c and σ is nonnegative. As a consequence, z = 0
and then PH(y, t) = {0}.
(c) If PH(y, c) = {0} then every element in A(y, c) has the form (x, 0), with x ∈
PX(y, c). It is enough to show that, in this situation, (y, c) ∈ D∗ and x ∈ P∗.
Indeed, (x, 0) ∈ A(y, c) implies that

q(y, c) = Φ(y,c)(x, 0) = ϕ(x) ≥MP =MD ≥ q(y, c).

The above expression readily yields (y, c) ∈ D∗ and x ∈ P∗. Since x ∈ PX(y, c) is
arbitrary we conclude that PX(y, c) ⊂ P∗. The reverse inclusion follows from (a),
and therefore PX(y, c) = P∗, concluding the proof. �

The next example shows that the inclusion P∗ ⊂ PX(y, c) in Proposition 2.6(a)
may be strict.

Example 2.7 Consider the problem

min
x∈R

ϕ(x) := x+ δ[0,1](x),

with optimal value MP = 0 and P∗ = {0}. Take the parameterization function
given by

f(x, z) = |x− z|+ δ[0,1](x) + δ[0,1](z),

and the augmenting function σ(z) = |z|. It follows that

q(u, c) = min
x,z∈[0,1]

{|x− z|+ (c− u)z} = min{0, c− u}.

Direct calculations show that D∗ = {(u, c) ∈ R × R+ : c ≥ u}, so (t, t) ∈ D∗ for
all t ≥ 0. We claim that PX(t, t) = [0, 1] ) P∗. In order to show this, note that x ∈
PX(t, t) if and only if there exists z ∈ R such that 0 = MD = q(t, t) = Φ(t,t)(x, z).
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For this to hold, we must have

0 = q(t, t) = Φ(t,t)(x, z) = |x− z|+ δ[0,1](x) + δ[0,1](z) + t|z| − tz = |x− z|,

which yields x = z ∈ [0, 1]. Hence PX(t, t) = [0, 1].

3. The Penalty Map

3.1. Main Properties

Consider the function E : H → R+ ∪ {+∞} defined by

E(y) := inf{c ≥ 0 : (y, c) ∈ D∗}. (9)

We call E the penalty map for the primal problems (1)-(3). The infimum above is
+∞ when the argument of the infimum in (9) is empty. Hence,

domE := {y ∈ H : D∗ 6= ∅}.

Remark 1 : Since the dual function q is w-usc we obtain that (y,E(y)) ∈ D∗ if
and only if y ∈ domE. Inasmuch D∗ is a convex set, it is easy to conclude that
the function E is convex. Moreover, the epigraph of E encapsulates information
on both primal and dual solution sets. Denote the strict epigraph of E by
epi s(E) := {(y, c) : c > E(y)}. We have that:

(i) epi s(E) ⊂ D∗,
(ii) If (y, c) ∈ epi s(E) then P∗ = PX(y, c),
(iii) P∗ ⊂ PX(y,E(y)).

All these statements follow directly from Proposition 2.6.

Definition 3.1: The penalty map E is exact at y ∈ dom (E) iff PX(y,E(y)) = P∗.
If for some y ∈ dom (E) it holds PH(y,E(y)) = {0}, then E is strongly exact at y.

Proposition 2.6(c) shows that if E is strongly exact at y then it is exact at y.
This motivates our terminology. Next we present an example in which E is exact
at y but not strongly exact at y.

Example 3.2 Consider the following primal problem with φ : R → R:

minimize φ(x) :=

{
ln(x+ 1), if x ≥ 0,

+∞, otherwise.

It is easy to see that P∗ = {0} andMP = 0. Take σ(z) = |z| and a parameterization
function f given by

f(x, z) :=

{
ln(x+ 1) + z, if x ≥ 0, z ∈ [0, 1],

+∞, otherwise.

From (2), the augmented Lagrangian is obtained as

l(x, y, c) = ln(x+ 1) + min{c− y + 1, 0}+ δ[0,∞](x).
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Hence the dual function is

q(y, c) =

{
c− y + 1, if c < y − 1,

0, if c ≥ y − 1.

Thus,

D∗ = {(y, c) : q(y, c) =MD = 0} = {(y, c) : min{c− y + 1, 0} = 0}
= {(y, c) : c ≥ y − 1}.

Using now the definition of E we obtain E(y) = inf{c ≥ 0 : c ≥ y − 1} =
max{0, y − 1}. Fix ŷ = 1 ∈ dom (E). We will show that PH(ŷ, E(ŷ)) = [0, 1]. We
have that E(ŷ) = 0 and we can write

q(1, E(1)) = q(1, 0) = min(x,z){f(x, z)− z} = minz∈[0,1]{z − z} = 0,

Since the above optimal value is attained for every z ∈ [0, 1] and for x = 0, we
conclude that A(1, E(1)) = A(1, 0) = {0} × [0, 1]. In other words, PX(1, E(1)) =
{0} = P∗ and PH(1, E(1)) = [0, 1]. Therefore E is exact but not strongly exact at
y = 1. Note that q is not differentiable at any point of the form (y,E(y)).

In the next example the penalty map E is strongly exact at every y ∈ dom (E).

Example 3.3 Consider the following primal problem

minimize φ(x) :=

{
ln(x+ 1) + 1, if x ≥ 0,

+∞, otherwise.

Then the optimal set P∗ = {0} andMP = 1. Let σ(z) = |z| and a parameterization
function f given by

f(x, z) :=

{
ln(x+ 1) + exp(−z), if x, z ≥ 0,

+∞, otherwise.

Using (2) and the definition of f , the Lagrangian becomes

l(x, y, c) = ln(x+ 1) + inf
z≥0

{exp(−z) + (c− y)z},

for x ≥ 0. Denote by θ(y, c) := infz≥0{exp(−z)+ (c− y)z}. It is easy to check that

q(y, c) = inf
x≥0

l(x, y, c) = θ(y, c) =


1 if c− y ≥ 1,
(c− y)(1− ln (c− y)) if 1 > c− y > 0,
0 if c = y,
−∞ if c− y < 0.

Then D∗ = {(y, c) : q(y, c) = 1} = {(y, c) : c ≥ y+1}. Also E(y) = max{y+1, 0}.
It is not hard to check that and A(y,E(y)) = {(0, 0)} for all y. In particular,
P (y,E(y)) = P∗ and PH(y,E(y)) = {0H}. Therefore E is strongly exact at every
y ∈ dom (E). In this example q is differentiable at (y,E(y)).

Next, we recall [15, Definition 11.60] and relate it with our setting.
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Definition 3.4: A vector y ∈ H is said to support an exact penalty represen-
tation for Problem (1) if and only if for all c sufficiently large q(y, c) = MP and
argmin x∈X l(x, y, c) = P∗.

Remark 2 : The existence of y supporting an exact penalty representation is
equivalent to (y, c) ∈ D∗ for some c ≥ 0. Therefore, in our setting, we have that y ∈
H supports an exact penalty representation if and only if y ∈ dom (E). Moreover,
the value E(y) is the threshold for y, that is, the infimum of c such that (y, c)
satisfies Definition 3.4.

From now on we make the following assumption on the augmenting function:

(A0) σ(z) ≥ ‖z‖ ∀ z ∈ H.

Remark 3 : The analysis can easily be carried out for the case σ(z) ≥ b‖z‖ for
some b > 0. This would, however, change the Lispchitz constant obtained in Section
3.3 for E.

Examples of augmenting functions that satisfy (A0) are listed below.

i) σp,q(z) =

{
‖z‖p, if ‖z‖ ≤ 1,

‖z‖q, otherwise,
with 0 < p ≤ 1 ≤ q.

ii) H = Rn, σk(z) = (
∑n

i=1 |zi|
1

k )k, with k ∈ N.
iii) σq,p(z) = ‖z‖q + ‖z‖p for each z ∈ H, with 0 < p ≤ 1 ≤ q.

The following technical lemma has a crucial role in relating strong exactness of E
with differentiability of the dual function. Denote by B(y, ε) := {z ∈ H : ‖z−y‖ <
ε} the open ball of center y and radius ε in H.

Lemma 3.5: Let (y, cy) ∈ H × R++ be such that (y, cy) belongs to int(dom q).
Then for each b ≥MP there exist a weak compact set B ⊂ X ×H and ε > 0 such
that

∅ 6= Lb(w, c) := {(x, z) ∈ X ×H : Φ(w,c)(x, z) ≤ b} ⊂ B (10)

for all (w, c) ∈ B(y, ε) × (cy − ε, cy + ε). In particular, A(w, c) 6= ∅ for each
(w, c) ∈ B(y, ε) × (cy − ε, cy + ε), that is, there exists some (x̃, z̃) ∈ X × H such
that

q(w, c) = f(x̃, z̃)− 〈z̃, w〉+ cσ(z̃).

Proof : Take (y, cy) ∈ int(dom q) and suppose that B(y, r)×[cy−r, cy+r] ⊂ dom q
for some r ∈ (0, cy). Take ε := r/2. Let us show that there exists a bounded set
B ⊂ X×H such that Lb(w, c) ⊂ B for all (w, c) ∈ B(y, ε/2)×[cy−ε, cy+ε]. Suppose
by contradiction that this is not true. Thus, there exist {(yk, ck)} ⊂ B(y, ε/2) ×
[cy − ε, cy + ε] and a sequence {(xk, zk)} satisfying (xk, zk) ∈ Lb(yk, ck) for all
k ∈ N and lim

k
‖(xk, zk)‖ = ∞. Let d := cy − r > 0, and recall that Φ(w,c)(x, z) :=

f(x, z)− 〈w, z〉+ cσ(z), for (x, c) ∈ X × R+ and z, w ∈ H. It follows that

Φ(yk,ck)(xk, zk) = f(xk, zk)− 〈yk, zk〉+ ckσ(zk) ≤ b for each k, (11)
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which implies

b ≥ Φ(yk,ck)(xk, zk) = Φ(y,d)(xk, zk) + 〈y − yk, zk〉+ (ck − d)σ(zk)

≥ q(y, d)− ‖yk − y‖‖zk‖+ εσ(zk)

≥ q(y, d) + ε
2‖zk‖,

(12)

where we used the fact that ck ≥ cy − ε = d + ε in the second inequality, and
σ(·) ≥ ‖ · ‖ and yk ∈ B(y, ε2) in the last inequality. We obtain from (12) that
‖zk‖ ≤ 2[b − q(y, d)]/ε := a. Therefore there exists a subsequence {zkj

} weakly
convergent to some z. Take α := b+a(‖y‖+ε). By the compactness assumption on
the sublevel of f (see Definition 2.2), there exists a weak neighborhood W of z and
a weak compact set B such that Lf,W (α) = {x : f(x, u) ≤ α} ⊂ B for all u ∈W .
In particular, since {zkj

} is weakly convergent to z, we obtain zkj
∈ W for all j

sufficiently large. Using the estimates above in (11) we conclude that xkj
∈ Lf,W (α)

for all j sufficiently large and therefore {xkj
} is bounded. Hence {(xkj

, zkj
)} is

bounded, which is a contradiction with the fact that lim
k

‖(xk, zk)‖ = ∞. This

completes the proof of (10). Since each function in the expression of Φ(w,c)(·, ·) is
w-lsc, the last statement of the lemma follows from (10) and the fact that every
w-lsc function attains its minimum on a weakly compact set. �

In the next theorem we establish the equivalence between the differentiability of
the dual function q at (y,E(y)) and the strong exactness of E. We will use the
following fact:

If z ∈ PH(y, c), then (−z, σ(z)) ∈ ∂q(y, c). (13)

Recall that the right-most inclusion can be equivalently written as

q(u, d) ≤ q(y, c)− 〈u− y, z〉+ (d− c)σ(z),

for every (u, d) ∈ H × R+. We denote by 0H the null element of the Hilbert space
H.

Theorem 3.6 : Let y ∈ domE be such that (y,E(y)) ∈ int(dom q). Then the
dual function q is differentiable at (y,E(y)) iff E is strongly exact at y.

Proof : Suppose that q is differentiable at (y,E(y)). Let us prove that
PH(y,E(y)) = {0}. Since (y,E(y)) ∈ D∗ we obtain from Proposition 2.6 (a)
that 0H ∈ PH(y,E(y)). In order to show that 0H is the only element in
PH(y,E(y)), take an arbitrary z ∈ PH(y,E(y)). Thus there exists x ∈ X such
that (x, z) ∈ A(y,E(y)). By (13) (−z, σ(z)) ∈ ∂q(y,E(y)). On the other hand,
(0H , 0) ∈ ∂q(y,E(y)) because (y,E(y)) maximizes the concave function q. Since
q is differentiable at (y,E(y)), we conclude ∂q(y,E(y)) = {(0H , 0)} ⊂ H × R.
Therefore z = 0H and then PH(y,E(y)) = {0H}. In order to prove the converse
statement, suppose that E is strongly exact at y. The differentiability of q at
(y,E(y)) will follow from Lemma 3.5 and a well known representation formula for
the subdifferential of a convex function given by the maximum of convex functions.
Indeed, by Lemma 3.5, there exists a weak compact set B such that

∅ 6= {(x, z) : Φ(w,c)(x, z) ≤MP } ⊂ B,

for all (w, c) ∈ B(y, ε) × (E(y) − ε,E(y) + ε) and some 0 < ε < E(y). It follows
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that

q(w, c) = min{Φ(w,c)(x, z) : (x, z) ∈ B}.

We observe that for each (x, z) ∈ B the function Φ(w,c)(x, z) (as function of (w, c))
is an affine function and its derivative at (w, c) is (−z, σ(z)). Therefore, we obtain
from [17, Proposition 4.5.2] that the superdifferential of q at (y,E(y)) is given by

∂q(y,E(y)) = cow{(−z, σ(z)) : (x, z) ∈ A(y,E(y)) for some x ∈ X},

where cow(Q) denotes the weak closure of the set Q ⊂ H × R. Since {0H} =
PH(y,E(y)) = {z : (x, z) ∈ A(y,E(y)) for some x ∈ X}, we must have
(−z, σ(z)) = (0H , 0) for every (x, z) ∈ A(y,E(y)). This fact, together with the
above expression now yields

∂q(y,E(y)) = cow{(0H , 0)} = {(0, 0)}.

Therefore q is differentiable at (y,E(y)). This completes the proof. �

3.2. Dual Localization results

The function Φ(y,c)(x, z) (defined in (4)) is crucial for analyzing the map E and
the dual solution set. In particular, the following estimate will be useful. For each
y, w ∈ H and c ∈ R+,

Φ(y,c)(x, z) ≤ Φ(w,c+‖w−y‖)(x, z), for all (x, z) ∈ X ×H. (14)

Indeed,

Φ(y,c)(x, z) = f(x, z)− 〈y, z〉+ cσ(z)

= f(x, z)− 〈w, z〉+ (c+ ‖w − y‖)σ(z) + 〈w − y, z〉

−‖w − y‖σ(z),

now using the definition of Φ and Cauchy-Schwarz inequality we obtain

Φ(y,c)(x, z) ≤ Φ(w,c+‖w−y‖)(x, z) + ‖w − y‖(‖z‖ − σ(z)),

and the result follows using (A0).
Proposition 3.7 and its corollary can be seen as a “localization” result for the

dual solution set.

Proposition 3.7: Take (y, c) ∈ D∗. Then (y + h, c+ ‖h‖) ∈ D∗ for all h ∈ H.

Proof : Fix (y, c) ∈ D∗, and take h = w − y, then we have

MD = q(y, c) = inf
(x,z)

Φ(y,c)(x, z) ≤ inf
(x,z)

Φ(w,c+‖w−y‖)(x, z) = q(w, c+ ‖w − y‖) ≤MD,

in view of (14). Use (w, c+ ‖w− y‖) = (y+h, c+ ‖h‖) for completing the proof. �

Corollary 3.8: Take (y, c) ∈ D∗, and ρ > 0. Then

∆ρ := {(y + h, c+ ρ) ∈ H × R+ : ‖h‖ ≤ ρ} ⊂ D∗.
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Proof : The result follows directly from Proposition 3.7 and Proposition 2.3 (ii).
�

We can use our localization results for connecting properties of dual sequences
with the graph of E.

Corollary 3.9: Consider a sequence {(uk, tk)} converging strongly to some
(ū, t̄) ∈ D∗. Assume that PH(uk, tk) 6= {0} for all k. Then t̄ = E(ū).

Proof : Take d := t̄− E(ū). Since (ū, t̄) ∈ D∗, d ≥ 0 by definition of E. We must
show that d = 0. Suppose for the sake of contradiction that d > 0. By Proposition
3.7 applied to (y, c) := (ū, E(ū)) ∈ D∗ and h := u − ū for each u ∈ H, we have
that (u, t) ∈ D∗ for t ≥ E(ū) + ‖u − ū‖. Take k̄ such that ‖uk − ū‖ ≤ d/3 and
tk ≥ t̄− d/3 for all k ≥ k̄. It follows that

tk ≥ t̄− d

3
= E(ū) +

2d

3
≥ E(ū) + ‖uk − ū‖+ d

3
.

Therefore, Propositions 3.7 and 2.6(b) imply that (uk, tk) ∈ D∗ and PH(uk, tk) =
{0} for all k ≥ k̄, which is a contradiction with the assumption. Thus d = 0 as
claimed. �

3.3. Properties of E: more connections with D∗

Define the map T : H ×H → R+ ∪ {+∞} as

T (y, w) := E(y) + ‖w − y‖.

We already mentioned the fact that E is a convex function. It follows that T (·, w) is
a convex function with dom (T ) = dom (E)×H and T (y, y) = E(y) for all y ∈ H.
The function T is useful for proving that E is a Lipschitz continuous mapping.
First we use T to characterize the set of t ≥ 0 such that (0, t) ∈ D∗.

Corollary 3.10: The following statements ae equivalent.

(i) D∗ is nonempty,
(ii) dom (E) = H,
(iii) dom (E) 6= ∅.

In this situation, for each y ∈ H we have that (0, t) ∈ D∗ for all t ≥ T (y, 0).

Proof : (ii) implies (iii) and (iii) implies (i) are trivial from the definitions. We
proceed to prove (i) implies (ii). Fix (y′, c′) ∈ D∗ and y ∈ H. Using Proposition 3.7
with reference point (y′, c′) ∈ D∗ and h := y−y′ we conclude that (y′+h, c′+‖h‖) =
(y, c′ + ‖h‖) ∈ D∗. This yields E(y) ≤ c′ + ‖h‖ and therefore y ∈ domE. Since y
is arbitrary, domE = H. We have proved that (i) implies (ii). In order to prove
the last statement, take any 0 6= y ∈ H = dom (E). Inasmuch (y,E(y)) ∈ D∗,
Corollary 3.8 for h = −y yields

(y + h,E(y) + ‖h‖) = (0, T (y, 0)) ∈ D∗,

using the definition of T . This fact and Proposition 2.3(iii) complete the proof. �

Remark 4 : In view of Corollary 3.10 and Definition 3.4, a point y ∈ H supports
an exact penalty representation if and only if D∗ 6= ∅.



June 28, 2012 Optimization BIM2012

12 Taylor & Francis and I.T. Consultant

We are now in conditions to show that whenever E is proper, it is globally
Lipschitz with constant at most 1. Examples 3.2 and 3.3 show that the maximum
constant value 1 may be attained.

Corollary 3.11: If y ∈ domE then (w, T (y, w)) ∈ D∗, ∀w ∈ H. Consequently,
E(w) ≤ T (y, w) for all y, w ∈ H. In this situation, E is a Lipschitz continuous
mapping in H with Lipschitz constant at most 1.

Proof : Fix y ∈ domE and w ∈ H. Then (y,E(y)) ∈ D∗, and using Proposition
3.7 for h = w − y and reference point (y,E(y)) ∈ D∗, we obtain

(w, T (y, w)) = (w,E(y) + ‖w − y‖) ∈ D∗.

Hence E(w) ≤ T (y, w) and therefore w ∈ dom (E). This yields dom (E) = H. The
latter inequality and the definition of T yield

E(w)− E(y) ≤ ‖w − y‖.

Interchanging the roles of y by w we obtain E(y) − E(w) ≤ ‖y − w‖. Therefore
|E(y)− E(w)| ≤ ‖y − w‖ for any y, w ∈ dom (E) = H, completing the proof. �

The following result can be seen as a characterization of exact penalty properties
in terms of the mapping T . More precisely, E verifies an exact penalty property
at some y ∈ H if and only if T (·, y) verifies an exact penalty property at every
element of H.

Proposition 3.12: Assume that D∗ 6= ∅. Then there exists y ∈ H such that
PX(y,E(y)) = P∗ if and only if PX(w, T (w, y)) = P∗ for every w ∈ H,.

Proof : Note that Corollary 3.10 yields dom (E) = H. Assume first that
PX(w, T (y, w)) = P∗ for every w ∈ H. Choosing w := y and using that
T (y, y) = E(y) we obtain PX(y,E(y)) = P∗. In order to prove the converse
statement, assume that for some y ∈ H it holds that PX(y,E(y)) = P∗. Corol-
lary 3.11 yields (w, T (y, w)) ∈ D∗ for every w ∈ H. In particular, we obtain
that P∗ ⊂ PX(w, T (y, w)), by Proposition 2.6 (a). It remains to prove that
PX(w, T (y, w)) ⊂ P∗. Let d := T (y, w) and xw ∈ PX(w, d). Hence, there exists
zw ∈ H such that (xw, zw) ∈ A(w, d). Let c := E(y) and xy ∈ P∗. By strong
duality (Proposition 2.3 (iii)) and inequality (14) we obtain

MD = ϕ(xy) = q(y, c) ≤ Φ(y,c)(xw, zw) ≤ Φ(w,c+‖w−y‖)(xw, zw) = q(w, d) ≤MD,
(15)

where the last equality follows from the fact that (xw, zw) ∈ A(w, d) and d =
c+ ‖w− y‖. Therefore all the inequalities in (15) are equalities, which implies that

q(y, c) = Φ(y,c)(xw, zw) = f(xw, zw)− 〈zw, y〉+ cσ(zw),

that is, (xw, zw) ∈ A(y, c) and thus xw ∈ PX(y, c). By assumption PX(y, c) =
PX(y,E(y)) = P∗, so that xw ∈ P∗. Since xw is an arbitrary element in PX(w, d),
we obtain that PX(w, d) ⊂ P∗, concluding the proof. �

4. The Penalty Map and Primal-Dual methods

In this section we relate the previous results with convergence properties of primal-
dual methods. We mentioned in the introduction that key properties of primal-dual
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methods are primal convergence and finite termination, which we define formally
below.

Definition 4.1: A primal-dual method induced by A has primal convergence if
and only if for every sequence {(xk, zk) ∈ A(yk, ck)}, it holds that

(i) {xk} ⊂ X is bounded, and
(ii) every weak accummulation point of {xk} belongs to P∗.

We say that a primal-dual method induced by A has finite termination if and only
if it has primal convergence and the sequence {xk} stops (i.e., it becomes constant)
after a finite number of iterations.

The results of this section are devoted to establish conditions under which a
primal-dual method induced by A has primal convergence or finite termination.
We also relate this properties with the penaly map E whenever possible.

Remark 1 : The condition of strong exactness provides a stopping criterion for
the primal-dual method A. Indeed, if for some k we have that PH(yk, ck) = {0H},
then for every (xk, zk) ∈ A(yk, ck) we will have xk ∈ P∗ (by Proposition 2.6(c)).
Therefore, the method may stop here. With this in mind, it may be reasonable to
stop the method A at a point (xk, zk) ∈ A(yk, ck) such that zk = 0. This is the
situation for DSG, as we see in the next section. If A has this stopping criteron
and generates an infinite sequence {(yk, ck)} converging to some (y, c) ∈ D∗, then
Corollary 3.9 yields c = E(y). If E happens to be exact at y, Proposition 2.6(c)
yields primal convergence of A. This is why exactness of E is a crucial property
for primal-dual methods.

The next proposition establishes assumptions under which A has primal conver-
gence.

Proposition 4.2: Consider a primal-dual method induced by A, i.e., a sequence
such that {(xk, zk) ∈ A(yk, ck)}. Assume that:

(i) {(yk, ck)} converges strongly to (ȳ, c̄) ∈ D∗,
(ii) {zk} has weak accummulation points.

In this situation, the following hold:

(a) If PX(ȳ, c̄) = P∗ then every weak accumulation point (if any) of {xk} is a primal
solution.

(b) Every weak accummulation point of {zk} belongs to PH(ȳ, c̄).

Proof : (a) Let z be a weak accummulation point of {zk} and x̄ a weak accummu-
lation point of {xk}. Assume that {zkj

} and {xkj
} are the corresponding weakly

convergent subsequences. Under the assumptions of the proposition, it follows that
〈ykj

, zkj
〉 converges to 〈ȳ, z〉. Using now the lower semicontinuity of both f (see

Remark 1) and σ (see Definition 2.1), we obtain

MD = q(ȳ, c̄) ≤ f(x̄, z)− 〈ȳ, z〉+ c̄σ(z)

≤ lim inf
j

f(xkj
, zkj

)− 〈ykj
, zkj

〉+ ckj
σ(zkj

)

= lim inf
j

q(ykj
, ckj

) ≤MD,

using the fact that (xkj
, zkj

) ∈ A(ykj
, ckj

) in the second equality. The above ex-
pression yields (x̄, z) ∈ A(ȳ, c̄) and hence x̄ ∈ PX(ȳ, c̄) and z ∈ PH(ȳ, c̄). Thus, (b)
is proved. If P∗ = PX(ȳ, c̄), then x̄ ∈ P∗, which completes the proof of (a). �
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Remark 2 : The conclusions of Proposition 4.2 hold under any assumption en-
suring that 〈yk, zk〉 converges to some 〈y, z〉. We will show in Section 5 that the
deflected subgradient algorithm satisfies assumption (i) of Proposition 4.2.

Some primal-dual methods, like the one considered in [2], may not have primal
convergence. To overcome this, the authors of [2] introduced an auxiliary sequence
{x̃k}, and proved that it converges to a primal solution. We consider the sequence
{x̃k} in the next proposition, and prove that it has the stronger property of finite
convergence, in a much more general setting than DSG. The finite convergence
holds because for k sufficiently large, E(yk) is strictly less than the “penalty pa-
rameter” ck + β, β > 0.

Proposition 4.3: Suppose that D∗ is nonempty, and assume that A generates an
infinite dual sequence {(yk, ck)} strongly convergent to a dual solution (ȳ, c̄). Fix
β > 0 and consider an auxiliary sequence {x̃k} such that x̃k ∈ PX(yk, ck + β) for
each k ≥ 0. Then there exists k̄ such that PH(yk̄, ck̄ + β) = {0H}. In particular x̃k̄
is a primal solution.

Proof : Suppose by contradiction that the conclusion is not true, that is,
PH(yk, ck + β) 6= {0H} for each k ≥ 0. Let {(uk, tk)} be defined by (uk, tk) :=
(yk, ck + β), which converges to (ȳ, c̄+ β) ∈ D∗. By Corollary 3.9 we obtain

E(ȳ) = c̄+ β > c̄. (16)

On the other hand, since (ȳ, c̄) ∈ D∗ we have E(ȳ) ≤ c̄ by definition of E, which is a
contradiction with (16). Therefore there exists k̄ such that PH(yk̄, ck̄ + β) = {0H}.
The last statement follows from the latter fact and Proposition 2.6(c). �

The next proposition establishes primal convergence and finite termination when
{σ(zkj

)} converges to zero.

Theorem 4.4 : Let {(xk, zk) ∈ A(yk, ck)} be a sequence generated by a primal-
dual method A which stops when zk = 0H .

(a) Assume that the algorithm never stops and the following statements hold:
(i) {(yk, ck)} converges strongly to (ȳ, c̄) ∈ D∗, and
(ii) there exists a subsequence {σ(zkj

)} converging to zero.
Then A has primal convergence and {zkj

} converges strongly to 0H .

(b) If the algorithm stops, i.e., there exists k̂ such that zk̂ = 0H , then xk̂ ∈ P∗ and
(yk̂, ck̂) ∈ D∗. In other words, A has finite termination.

Proof : (a) First, note that c̄ = E(ȳ). Indeed, this follows from Corollary 3.9, the
stopping criterion, and the fact that A generates an infinite sequence. Second, note
that (ii) implies that {zkj

} is bounded. Indeed, if the latter is not true, then there
exists a subsequence of {zkj

} (which we still call {zkj
} for convenience) such that

‖zkj
‖ ≥ 1. By Definition 2.1 there exists δ1 > 0 such that

0 < δ1 ≤ inf
‖z‖≥1

σ(z) ≤ inf
j
σ(zkj

) = 0,

using (ii) in the equality. Since the above expression entails a contradiction, {zkj
}

is bounded. We claim now that {zkj
} converges strongly to 0H . Indeed, let ẑ be

a weak accummulation point of {zkj
}. For convenience we still denote by {zkj

} a
weakly convergent subsequence to ẑ. From (ii) and assumption (A0), we obtain

0 = lim
j→∞

σ(zkj
) ≥ lim

j→∞
‖zkj

‖ ≥ 0.
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Use now the weak lower semicontinuity of σ and (A0) to obtain

0 = lim
j→∞

σ(zkj
) ≥ σ(ẑ) ≥ ‖ẑ‖ ≥ 0.

and hence ẑ = 0. The combination of these two facts implies that {zkj
} converges

strongly to 0H . By definition of A, we have that for every j the following holds:

f(xkj
, zkj

) = q(ykj
, ckj

) + 〈ykj
, zkj

〉 − ckj
σ(zkj

)
≤ q(ykj

, ckj
) + ‖ykj

‖ ‖zkj
‖,

Taking limsup for j → ∞ and using upper semicontinuity of q, (i) and the fact
that {zkj

} converges strongly to 0H , we obtain

lim sup
j→∞

f(xkj
, zkj

) ≤MD. (17)

We claim now that {xkj
} is has weak accummulation points. Indeed, by Definition

2.2 there exists a weak neighborhood V of 0H such that the set LV,f (MD + 1) :=
{x ∈ X : f(x, z) ≤ MD + 1} is weakly compact for every z ∈ V . Inasmuch {zkj

}
converges strongly to 0H (in fact, weak convergence would suffice here), there exists
j0 such that zkj0

∈ V for every j ≥ j0. Equation (17) now yields

{xkj
}j≥j0 ⊂ LV,f (MD + 1).

The weak compactness implies the existence of a weak accummulation point x̄ ∈ X
of the sequence {xkj

}. For simplicity we still denote by {xkj
} a subsequence weakly

convergent to x̄. Combine the latter fact with the w-lsc of f , the fact that {zkj
}

converges weakly to 0H , and (17), for concluding that

MP =MD ≥ lim sup
j→∞

f(xkj
, zkj

) ≥ lim inf
j→∞

f(xkj
, zkj

) ≥ f(x̄, 0) = ϕ(x̄) ≥MP ,

(18)
which implies that A has primal convergence. This completes the proof of part (a).

In order to prove (b), note that A stops at iteration k̂ if and only if zk̂ = 0. For

k = k̂ we have, by definition of A,

(xk̂, zk̂) = (xk̂, 0) ∈ A(yk̂, ck̂),

which, as in (a), yields

MD ≥ q(yk̂, ck̂) = f(xk̂, 0) = ϕ(xk̂) ≥MP .

Use now strong duality to conclude that xk̂ ∈ P∗ and (yk̂, ck̂) ∈ D∗. This completes
the proof of (b). �

Remark 3 : From the proof of Theorem 4.4(a) we conclude that if {zk} is weakly
convergent to zero and {σ(zk)} has 0 as an accummulation point, then {zk} is
strongly convergent to zero.

5. Application to Deflected Subgradient Methods

We mentioned before that DSG is an example of a primal-dual method. DSG is
defined as follows: given a current dual iterate (uk, ck) ∈ H × R+, find (xk, zk) ∈
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A(uk, ck); the next the dual iterate is defined as

yk+1 := yk − skzk,
ck+1 := ck + (εk + sk)σ(zk),

(19)

where εk, sk > 0 are positive stepsizes. Note that the above update indicates that
DSG stops when zk = 0H . Therefore the results of the previous section, namely,
Theorem 4.4 can be applied to analyze DSG.
The DSG (studied, e.g., in [2, 3, 5–9, 12]) generates a sequence of dual values

{q(uk, ck)} which is strictly increasing and converges to the dual optimal value. Ac-
cording to the choice of sk, DSG may have primal convergence or finite termination
(see [5]). As in the convergence analysis of [5], we take the sequence of parameters
{εk} in (19) as

εk := αksk, where α := inf
k
αk > 0, (20)

In [5], the authors prove that the dual sequence converges weakly to a dual
solution. This sequence, in fact, converges strongly, as we prove next.

Theorem 5.1 : If D∗ 6= ∅, then the sequence {(yk, ck)} generated by DSG is
strongly convergent to a dual solution.

Proof : Using the update formulas yk+1 = yk − skzk and ck+1 = ck + (1 +
αk)skσ(zk), it follows that

‖yk+j − yk‖ ≤
k+j−1∑
l=k

‖yl+1 − yl‖ =

k+j−1∑
l=k

sl‖zl‖ ≤
k+j−1∑
l=k

slσ(zl).

ck+j − ck =

k+j−1∑
l=k

cl+1 − cl =

k+j−1∑
l=k

(αl + 1)slσ(zl).

As a consequence of theses estimates we obtain for all k, j ∈ N,

ck+j − ck ≥ (1 + α)‖yk+j − yk‖. (21)

By [5, Theorem 3.15], {(yk, ck)} is weakly convergent to a dual solution. Therefore
{ck} ⊂ R+ is convergent. In particular {ck} is a Cauchy sequence. The estimate
(21) implies that {yk} is also a Cauchy sequence and hence strongly convergent,
because H is a Hilbert space. Therefore {(yk, ck)} is strongly convergent to a dual
solution. �

The next proposition relates the exactness of E and the primal convergence of
DSG.

Proposition 5.2: Let {(yk, ck)} be an infinite sequence generated by DSG (i.e.,
according to (19)-(20)). Assume that

(i) {(yk, ck)} converges strongly to (ȳ, c̄) ∈ D∗, with c̄ ≥ ck for all k, and
(ii) there exists a subsequence {σ(zkj

)} converging to zero.

Then, the exact penalty map E is strongly exact at ȳ.

Proof : From Theorem 4.4 and Corollary 3.9 we know that {zkj
} converges

strongly to zero and E(ȳ) = c̄. Assume that E is not strongly exact at ȳ, so that
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there exists 0 6= z̄ ∈ PH(ȳ, E(ȳ)). In particular, σ(z̄) > 0. By antimonotonicity of
∂q we have

〈(−z̄, σ(z̄))− (−zkj
, σ(zkj

)), (ȳ, c̄)− (ykj
, ckj

)〉 ≤ 0,

which is equivalent to

〈zkj
− z̄, ȳ − ykj

〉+ (σ(z̄)− σ(zkj
))(c̄− ckj

) ≤ 0.

Using Cauchy Schwarz inequality and re-arranging the resulting expression we
obtain

(σ(z̄)− σ(zkj
))(c̄− ckj

) ≤ ‖z̄ − zkj
‖‖ȳ − ykj

‖.

The estimate (21) implies that ‖ȳ − ykj
‖ ≤ (1 + α)−1(c̄− ckj

). Therefore

(σ(z̄)− σ(zkj
))(c̄− ckj

) ≤ ‖z̄ − zkj
‖(1 + α)−1(c̄− ckj

).

Since DSG generates an infinite sequence and zkj
6= 0 for all j, we must have

0 ≤ ckj
< c̄ for all j. Hence, the above expression simplifies to

(σ(z̄)− σ(zkj
)) ≤ ‖z̄ − zkj

‖(1 + α)−1.

Letting now j → ∞ and using (A0) we obtain

‖z̄‖ ≤ σ(z̄) ≤ ‖z̄‖(1 + α)−1 < ‖z̄‖,

which is a contradiction. The proof is complete. �

The following result characterizes convergence of DSG in terms of the map E.

Corollary 5.3: Let {(xk, zk)} and {(yk, ck)} be bounded sequences generated by
DSG. Suppose that {(yk, ck)} converges strongly to some (ȳ, c̄) ∈ D∗ ∩ int(dom q).
The following statements are equivalent:

a) There sequence {σ(zk)} converges to 0;
b) the dual function q is differentiable at (ȳ, c̄);
c) the penalty map E is strongly exact at ȳ.

Moreover, under any of these statements, the sequence {zk} converges strongly to
0 and every accumulation point of {xk} is a primal solution.

Proof : The last statement follows from (a), assumption (A0), or from Theorem
4.4(a). Note also that the assumption (ȳ, c̄) ∈ int(dom q) implies c̄ > 0, since
dom q ⊂ H × R+. We proceed to prove the equivalences. Theorem 3.6 entails the
equivalences between (b) and (c). Proposition 5.2 shows that (a) implies (c). Hence,
it is enough to show that (c) implies (a). From Proposition 4.2, we know that every
weak accumulation point of {zk} belongs to PH(ȳ, c̄). Since we are assuming (c),
we have that PH(ȳ, c̄) = {0} and thus we obtain that {zk} converges weakly to
0. We observe that since σ is just w-lsc (our prototype of augmenting function is
σ(·) = ‖·‖, which is w-lsc but not weakly continuous), we cannot conclude yet that
(a) holds. Consider the following sequences

mk := f(xk, zk)− 〈yk, zk〉 and qk := mk + ckσ(zk), for all k.
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Since {yk} is strongly convergent to ȳ and {zk} is weakly convergent to 0, we
have {〈yk, zk〉} converges to 0. We know that {qk} converges to MD (= MP , the
optimal value). We claim that {mk} also converges to MD. Fix a subsequence
{mkj

} convergent to m := lim infkmk = supn infk≥nmk. We claim that m is finite.
Indeed,

m = lim infkmk ≤ lim supkmk = lim supk f(xk, zk)− 〈yk, zk〉
= lim supk qk − ckσ(zk) ≤ lim supk qk ≤MP ,

where we used usc of q and strong duality in the last inequality. Take a subsequence
{xkjn

} weakly convergent to some x̂. In particular {mkjn
} converges to m. From

weak lower semicontinuity of f and the fact that f(·, 0) = ϕ(·) we have

MP ≤ ϕ(x̂) ≤ lim inf
n

f(xkjn
, zkjn

)− 〈ykjn
, zkjn

〉 = lim
n
mkjn

= lim inf
k

mk ≤ lim sup
k

mk ≤ lim sup
k

qk =MP .

Therefore {mk} converges to m = MP and hence our claim holds. Since {qk} also
converges to MP and c̄ > 0, we obtain

0 ≤ lim
k→∞

σ(zk) = lim
k→∞

qk −mk

ck
=
MP −MP

c̄
= 0.

That is, {σ(zk)} converges to 0, and then (a) holds. The proof is complete. �

6. Equality Constrained Problems

Consider the following equality constrained problem

min ψ(x) s.t. x ∈ K,h(x) = 0, (22)

where h : X → H is weak-to-weak continuous, ψ : X → R is w-lsc, and K ⊂ X is
weakly compact. Consider the following equivalent extended real-valued problem:

min φ(x) := ψ(x) + δV (x), s.t. x ∈ X,

where V := {x ∈ K : h(x) = 0} and δV (x) = 0 iff x ∈ V , δV (x) = ∞ otherwise.
Take an augmenting function σ(·), and the canonical dualizing parameterization
function given by

f(x, z) =

{
ψ(x) if x ∈ K and z = h(x),

∞, otherwise.
(23)

In this case, we obtain

Φ(y,c)(x, z) =

{
ψ(x)− 〈y, h(x)〉+ cσ(h(x)) if x ∈ K and z = h(x)

∞ otherwise,

(24)



June 28, 2012 Optimization BIM2012

Optimization 19

which yields the following explicit formula for the augmented Lagrangian function

`(x, y, c) =

{
ψ(x)− 〈y, h(x)〉+ cσ(h(x)) if x ∈ K,

∞ otherwise.

The dual function induced by this augmented Lagrangian is

q(y, c) := inf
x∈K

{ψ(x)− 〈y, h(x)〉+ cσ(h(x))},

and the dual problem is

max q(y, c) s.t. (y, c) ∈ H × R+. (25)

It is not difficult to see that, under the assumptions of this section, the canonical
dualizing parameterization function defined in (23) is weakly level-compact.
Defining M(y, c) as M(y, c) = {x ∈ K : `(x, y, c) = q(y, c)}, it follows from (24)
that the set A(y, c) defined in Section 2 becomes

A(y, c) = {(x, h(x)) : x ∈M(y, c)}.

Hence,

PX(y, c) =M(y, c) and PH(y, c) = {h(x) : x ∈M(y, c)}. (26)

Remark 1 : In this setting, PH(y, c) = {0} ⇔ PX(y, c) = P∗, that is, the dual
penalty map E is exact if and only if it is strongly exact. Indeed, in view of
Proposition 2.6(c), if E is strongly exact then E is exact. Assume now that E
is exact, that is, PX(y,E(y)) = P∗. Let z ∈ PH(y,E(y)). Using (26) we have
that z = h(x), for some x ∈ M(y,E(y)) = PX(y,E(y)) = P∗. Since x ∈ P∗, it
follows that h(x) = 0, which implies that z = 0. Since z is an arbitrary element in
PH(y,E(y)), it follows that PH(y,E(y)) = {0}, that is, E is strongly exact.

Combining Remark 1 with Corollary 5.3 and other previous results we obtain the
following theorem.

Theorem 6.1 : Consider the sequences {(yk, ck)} and {xk} generated by DSG
applied to the dual problem (25). Suppose that {(yk, ck)} converges strongly to some
(ȳ, c̄) ∈ D∗ ∩ int(dom q). Then the following statements are equivalent:

a) The dual function q is differentiable at (ȳ, c̄);
b) The dual penalty map E is exact at ȳ;
c) The sequence {h(xk)} converges strongly to 0;
d) Every weak accumulation point of {xk} is a primal solution.

Proof : Under the hypotheses of the theorem, Corollary 3.9 yields that E(ȳ) =
c̄ > 0. The sequence {xk} has weak accummulation points because it is contained
in the weakly compact set K. From Remark 1 and Theorem 3.6 we conclude the
equivalence between (a) and (b). Let us prove now that (b) implies (c). From
Remark 1 and part “(c) implies (a)” of Corollary 5.3, we have that {σ(zk) =
σ(h(xk))} converges to 0. Combining this fact with assumption (A0) we obtain (c).
Let us prove now that (c) implies (d). Let x̂ be a weak accummulation of {xk}
and still denote by {xk} a subsequence weakly convergent to x̂. Use the fact that
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{h(xk)} converges strongly to zero to conclude that

MP ≥ lim supk q(yk, ck) = lim supk f(xk, h(xk))− 〈yk, h(xk)〉+ ckσ(h(xk))
≥ lim infk f(xk, h(xk))− 〈yk, h(xk)〉+ ckσ(h(xk))
≥ lim infk f(xk, h(xk))− 〈yk, h(xk)〉+ lim infk ckσ(h(xk))
≥ f(x̂, 0) = ϕ(x̂) ≥MP ,

and hence x̂ ∈ P∗, as wanted. Now we only need to prove (d) implies (a). Assume
that (d) holds. We show first that (d) implies that {h(xk)} converges weakly to
zero. Indeed, since {xk} has weak accummulation points and h is weak-to-weak
continuous, the sequence {h(xk)} has weak accummulation points. We claim that
0H is the only weak accummulation point of {h(xk)}. To prove the claim, let z be
a weak accummulation point of {h(xk)}, and take a subsequence {h(xkl

)} weakly
converging to z. Since {xkl

} is bounded, it has a weak accummulation point x̃.
Denote still by {xkl

} the subsequence weakly converging to x̃. The weak-to-weak
continuity of h yields

z = weak − lim
l
h(xkl

) = h(x̃) = 0,

because x̃ ∈ P∗ by (d). Hence z = 0 and hence {h(xk)} converges weakly to
0H , as claimed. We claim now that lim infk f(xk, h(xk)) ≥ MP . Indeed, denote by
L := lim infk f(xk, h(xk)) and assume that L < MP . Then there exists δ > 0 such
that L < MP − δ. From the definition of lim inf this implies that there exists a
subsequence {xkl

} such that

f(xkl
, h(xkl

)) < MP − δ.

Without loss of generality we can assume that {xkl
} converges weakly to x̂, which

by (d) belongs to P∗. Altogether,

MP = f(x̂, 0) ≤ lim inf
l

f(xkl
, h(xkl

)) ≤MP − δ,

a contradiction. Hence we must have lim infk f(xk, h(xk)) ≥MP , as claimed. Now
we can write

0 ≤ lim supk ckσ(h(xk)) = lim supk q(yk, ck)− f(xk, h(xk)) + 〈yk, h(xk)〉
≤ lim supk q(yk, ck) + lim supk [−f(xk, h(xk))] + lim supk〈yk, h(xk)〉
≤MP −MP = 0,

where we used the fact that {h(xk)} converges weakly to 0H in the last equality. The
above expression yields limk ckσ(h(xk)) = 0. Because ck converges to E(ȳ) = c̄ > 0,
the sequence {σ(h(xk))} must converge to zero. Using now Corollary 5.3 (part (a)
implies (b)), we obtain (a). �

7. Final Remarks

In this paper we introduce a penalty map and relate its properties with exact
penalty representation of a general augmented Lagrangian scheme. We show that
primal convergence properties of subgradient type methods applied to the duality
scheme via general augmented Lagrangian, under some mild assumptions, are di-
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rected related to strong exactness of the exact penalty map and differentiability of
the dual function at the dual limit point.
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