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Abstract. Let Ξ(H) denote the set of all nonzero closed convex cones in a finite dimensional
Hilbert space H. Consider this set equipped with the bounded Pompeiu-Hausdorff metric δ.
The collection of all pointed cones forms an open set in the metric space (Ξ(H), δ). One
possible way of measuring the degree of pointedness of a cone K is by evaluating the distance
from K to the set of all nonpointed cones. The number ρ(K) obtained in this way is called
the radius of pointedness of the cone K. The evaluation of this number is, in general, a very
cumbersome task. In this note, we derive a simple formula for computing ρ(K), and we propose
also a method for constructing a nonpointed cone at minimal distance from K. Our results
apply to any cone K whose maximal angle does not exceed 120 degrees.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and associated norm ‖ · ‖.
Throughout this work, we assume that 2 ≤ dim H < ∞. A convex cone in H
is understood as a nonempty set K ⊂ H satisfying tK ⊂ K for any t > 0 and
K + K ⊂ K. The zero cone {0} is of no interest, and therefore it is left aside
from the discussion. The set

Ξ(H) = {K ⊂ H : K is a nonzero closed convex cone}

is equipped with the bounded Pompeiu-Hausdorff metric

δ(K1,K2) = sup
‖z‖ ≤1

|dist[z,K1]− dist[z,K2]|, (1)

where dist[z,K] stands for the distance from z to K. It is known (see e.g. [9])
that an equivalent expression for δ is given by

δ(K1,K2) = max

{

sup
z∈K1∩SH

dist[z,K2], sup
z∈K2∩SH

dist[z,K1]

}

, (2)

where SH denotes the unit sphere in H.
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Recall that a cone K ∈ Ξ(H) is said to be pointed if K ∩ −K = {0}. As
shown in [3], the set

P(H) = {K ∈ Ξ(H) : K is pointed}

is open in the metric space (Ξ(H), δ). In order to measure the degree of point-
edness of a cone K, the number

ρ(K) = inf
Q∈M(H)

δ(Q,K), (3)

that is to say, the distance from K to the set

M(H) = {Q ∈ Ξ(H) : Q is not pointed},

has been suggested in [4]. SinceM(H) is compact in the metric space (Ξ(H), δ),
the infimum in (3) is actually attained. The number ρ(K) is called the radius
of pointedness of K because

ρ(K) = sup{r ∈ [0, 1] : Ur(K) ⊂ P(H)}

corresponds to the radius of the largest ball

Ur(K) = {Q ∈ Ξ(H) : δ(Q,K) < r}

centered at K and contained in P(H).

The theoretical properties of the function ρ : Ξ(H) → [0, 1] are discussed
in [4]. What worries us here is that the evaluation of ρ(K), using either (1) or
(2), is, in general, a quite difficult task. Notice that the minimization variable in
(3) is not a usual vector, but an element living in a metric space. The purpose
of this paper is twofold: firstly, to derive a simple formula for evaluating ρ(K);
and, secondly, to construct a nonpointed cone at minimal distance from K.

Denote by θmax(K) the maximal angle that can be formed by picking up two
unit vectors in K ∈ Ξ(H), that is to say,

θmax(K) = sup
u,v∈K∩SH

arccos 〈u, v〉. (4)

In constrast with (3), the above maximization problem takes place in a space
having a linear structure. We assume that evaluating θmax(K) is not too expen-
sive an operation or, at least, it is not as costly as evaluating ρ(K). Necessary
optimality conditions for the nonconvex optimization problem (4) are derived
in [5]. It is now well understood how to exploit these optimality conditions, for
instance, in the case of a polyhedral cone.

As we shall see in a moment, the term θmax(K) plays an important role
in the discussion. Among other things, it appears in the very definition of the
coefficient

σ(K) =

√

1 + cos θmax(K)

2
= cos

(

θmax(K)

2

)

. (5)
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The term inside the square root is called the angular index of K. It ranges over
the closed interval [0, 1], taking the value 0 when K is not pointed and the value
1 when K is a ray. A more detailed explanation on the expression (5) could be
helpful at this point in time, but, without further ado, we simply state:

Theorem 1. Assume that K ∈ Ξ(H) is not a ray. Let K be moderate in
the sense that θmax(K) ≤ 2π/3. Then, the following two conclusions hold:

(a) ρ(K) is equal to σ(K),

(b) if u, v ∈ K∩SH are such that arccos 〈u, v〉 = θmax(K), then K+R(u−v)
is a member of M(H) lying at minimal distance from K.

That a cone is moderate simply means that its maximal angle does not exceed
120 degrees. The reader may rightfully wonder why this special upper bound
comes into the picture. We hope to provide at least a partial answer to this
question by the end of this paper. Theorem 1 is our main result. Its proof is far
from being a trivial exercise, and, unfortunately, we must go over a long series
of preliminary lemmas.

2. Link to Mathematical Programming

Although this paper deals exclusively with the relation between two measures of
pointedness of a closed and convex cone, namely ρ(K) and σ(K), it is worthwhile
to emphasize that it is part of an ongoing research project dealing with all
measures of pointedness (cf. [4–6]). A general analysis of such measures has been
undertaken in [6], where it is shown that any measure of pointedness evaluated
at the dual cone

K+ = {y ∈ H : 〈x, y〉 ≥ 0 ∀x ∈ K}

provides an adequate measure of solidity of K. Measures or indices of solidity
play a meaningful role in the complexity analysis of interior methods for convex
programming with conic constraints, as we describe next. Consider the problem

minimize f(x)

Ax = b, x ∈ K,

where f : Rn → R is a convex and continuously differentiable function, A is an
n×m real matrix, b is a vector in Rm, and K ⊂ Rn is a closed convex cone with
nonempty interior. Generally speaking, these interior point methods execute
Newton steps for minimizing the sum of the objective f plus a barrier function,
subject just to the linear equality constraints. Thus, the iterate xk+1 is obtained
by taking a Newton step from xk, for the penalized objective f(x) + ηkϕ(x),
subject to Ax = b. The terms ηk > 0 are penalization parameter and the barrier
function ϕ : int(K)→ R forces the sequence to stay in the interior of K, because
it diverges to infinity when its argument approaches the boundary of K. A
careful choice of the parameters ηk and the barrier function ϕ makes it possible
to obtain accurate estimates of the number of iterations required to achieve an
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iterate xk whose distance to the solution set does not exceed a certain value ε
(such number is called the computational complexity of the algorithm), and in
fact such complexity is bounded by a low degree polynomial in log(1/ε). One
of the conditions on ϕ, necessary for this kind of result, demands that it be
conically log-homogeneous, i.e. such that ϕ(tx) = ϕ(x) + θ log t for all x ∈ K,
all t > 0 and some θ > 0, and in this case the complexity includes a term of the
order of log(1/θ). It turns out to be the case that the log-homogeneity constant
θ of the barrier function is essentially an index of solidity of K, as considered
in [6]. The most frequent solidity index of a cone K, used in the analysis of
log-homogeneous barriers, is the Frobenius one, namely

Fr(K) =

{

radius of the largest ball contained
in K and centered in a unit vector.

It has been shown in [6] that Fr(K) = f?(K
+), where f?(K) denotes the basic

index of pointedness of K, defined as the distance from the origin to the convex
hull of the intersection ofK with the unit sphere. Thus, indices of pointedness are
of interest for determining the computational complexity ot these interior point
methods. Since indices of solidity and of pointedness are essentially equivalent,
via dualization, an in-depth study of indices of pointedness of cones is very
likely have interesting consequences for the complexity theory of interior point
algorithms. See e.g. [1] and [8] for the use of solidity indices in this context.

3. An equivalent expression for σ(K)

In this section we exhibit an equivalent formulation for σ(K). We start by re-
calling the celebrated orthogonal decomposition lemma established by Moreau
in 1962. We use the notation πK(z) to indicate the projection of z ∈ H onto K,
that is to say, πK(z) is defined as the point in K at the shortest distance from
z. As usual, K− = −K+ stands for the polar (or negative dual) cone of K.

Lemma 1. Consider a closed convex cone K ⊂ H and its polar K−. Each
z ∈ H admits a unique decomposition in the form z = x + y, with x ∈ K,
y ∈ K−, 〈x, y〉 = 0. In fact, x = πK(z) and y = πK−(z).

Proof. See [2] or [7]. ut

Next we present a purely technical trigonometrical lemma.

Lemma 2. For α ∈ [0, π/2] and β ∈ [π/2, π], it holds that

cos(β − α) ≤ 1− 2 min{cos2α, cos2β}. (6)

Equality in (6) occurs exactly when α + β = π (or, equivalently, when
cos2α = cos2β).
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Proof. The inequality (6) can be rewritten in the form

min{cos2 α, cos2 β} ≤ sin2[(β − α)/2].

Assume, on the contrary, that

cos2 α > sin2[(β − α)/2] and cos2 β > sin2[(β − α)/2]. (7)

Note that (β − α)/2 ∈ [0, π/2]. The first inequality in (7) yields

sin[(β − α)/2] < cosα = sin[π/2− α],

from where it follows that α + β < π. Similarly, the second inequality in (7)
yields

sin[(β − α)/2] < − cosβ = sin[β − π/2],

from where we obtain π < α+β. In other words, both inequalities in (7) cannot
occur simultaneously. The second part of the lemma is implicit in the above
discussion. ut

Define, for K ∈ Ξ(H), the minmax coefficient

ξ(K) = inf
‖z‖=1

max{dist[z,K],dist[−z,K]}. (8)

By combining Lemmas 1 and 2, we get:

Proposition 1. For any K ∈ Ξ(H), it holds that σ(K) ≤ ξ(K).

Proof. Suppose that K is not a ray, otherwise the result is trivial. Let z ∈ H
be a unit vector such that

ξ(K) = max {dist[z,K], dist[−z,K]}, (9)

i.e., z ∈ SH achieves the infimum in (8). For convenience, we write (9) in the
form

ξ(K) = max {‖z − πK(z)‖, ‖ − z − πK(−z)‖}.

If πK(z) = 0, then ‖z − πK(z)‖ = 1 and ξ(K) = 1. Similarly, if πK(−z) = 0,
then ‖− z− πK(−z)‖ = 1, and we get again ξ(K) = 1. In both cases, the result
is trivial. So, without loss of generality, we assume that

πK(z) 6= 0 and πK(−z) 6= 0.

This assumption is compatible with the fact that K is not a ray. We claim that

[ξ(K)]2 ≥ 1

2
+

1

2
〈x, y〉, (10)

with x = ‖πK(z)‖−1πK(z) and y = ‖πK(−z)‖−1πK(−z). From Lemma 1, we
obtain 〈z, x〉 = ‖πK(z)‖ and 〈z, y〉 = −‖πK(−z)‖. So, it is rather trivial to prove
that

‖z − πK(z)‖2 = ‖z − 〈z, x〉x‖2 = 1− 〈z, x〉2,
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‖ − z − πK(−z)‖2 = ‖ − z − 〈−z, y〉y‖2 = 1− 〈z, y〉2.
This yields the equality

[ξ(K)]2 = max
{

1− 〈z, x〉2, 1− 〈z, y〉2
}

= 1−min
{

〈z, x〉2, 〈z, y〉2
}

.

Since 〈z, x〉 ∈]0, 1[ and 〈z, y〉 ∈] − 1, 0[, one has α = arccos〈z, x〉 ∈]0, π/2[ and
β = arccos〈z, y〉 ∈]π/2, π[. The use of Lemma 2 produces

[ξ(K)]2 = 1−min
{

cos2 α, cos2 β
}

≥ 1−
(1− cos(β − α)

2

)

=
1

2
+

1

2
cos(β − α).

For proving (10), we must verify that cos(β−α) ≥ 〈x, y〉. With this purpose, we
introduce the vectors

b =
1

sinα
[x− (cosα)z], c =

1

sinβ
[y − (cosβ)z].

By construction, b and c are unit vectors orthogonal to z. Hence,

〈x, y〉 = cosα cosβ + sinα sinβ 〈b, c〉.

Since α, β ∈]0, π[, one has sinα sinβ ≥ 0, and therefore

〈x, y〉 ≤ cosα cosβ + sinα sinβ‖b‖ ‖c‖ = cosα cosβ + sinα sinβ = cos(β − α).

This completes the proof of (10). Let θ= arccos 〈x, y〉. From (10) and (5) we
obtain

ξ(K) ≥
√

1 + cos θ

2
≥
√

1 + cos θmax(K)

2
= σ(K).

ut

Before establishing the reverse inequality to that of Proposition 1, we present
a few additional auxiliary results. The next lemma is elementary and has to do
with the angular index of a finitely generated cone

K = {Ga : a ∈ Rm+}, with Ga = a1g1 + · · · + amgm. (11)

The finite collection {g1, · · · , gm} ⊂ H of nonzero vectors is called a set of
generators for K. Notice that the variational problem

minimize {〈u, v〉 : u, v ∈ K ∩ SH}

takes here the particular form

minimize
{

〈Ga,Gb〉 : a, b ∈ Rm+ , ‖Ga‖2 = ‖Gb‖2 = 1
}

. (12)

Lemma 3. Let K ∈ Ξ(H) be the cone generated by {g1, . . . , gm} ⊂ H. Let
(ā, b̄) be a solution to the minimization problem (12). Then,















Mā− (ātMb̄)Mb̄ ∈ Rm+
Mb̄− (ātMb̄)Mā ∈ Rm+
ātMā = 1
b̄tMb̄ = 1,

(13)

where M denotes the m×m-matrix with entries 〈gi, gj〉 (1 ≤ i, j ≤ m).
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Proof. A simple rearrangement of (12) tells us that the pair (ā, b̄) solves also
the following problem:

min− (a− b)tM(a− b) (14)

s.t. atMa = 1, btMb = 1, a ∈ Rm+ , b ∈ Rm+ . (15)

Thus, (ā, b̄) satisfies the Karush-Kuhn-Tucker optimality conditions for (14)–
(15), namely (15) and additionally

M(b̄− ā)− λ1Mā ∈ Rm+ ,
M(ā− b̄)− λ2Mb̄ ∈ Rm+ ,

āt[M(b̄− ā)− λ1Mā] = 0,

b̄t[M(ā− b̄)− λ2Mb̄] = 0,

for suitable KKT multipliers λ1, λ2 ∈ R. By combining all these conditions, one
gets

λ1 = λ2 = ātMb̄− 1.

By plugging this into the above system, one arrives at the desired conclusion.
ut

Remark: Notice that the conditions (13) are necessary for solving the mini-
mization problem (14)–(15), but they are far from being sufficient. In fact, we
are minimizing a function which is concave, not convex, and the feasible set is
not convex either.

The next result is also related to finitely generated cones. If K admits the
representation (11), then the linear space spanned by K is simply the linear
space spanned by the gj ’s. In short,

spanK = span{g1, · · · , gm}. (16)

Imagine that we have a z in (16), and we want to project this vector onto the
cone K. The following lemma helps us to compute such projection πK(z).

Lemma 4. Let K ∈ Ξ(H) be the cone generated by {g1, . . . , gm} ⊂ H, and
M be the m × m- matrix with entries 〈gi, gj〉 (1 ≤ i, j ≤ m). Take any
z = G(ν̄) with ν̄ ∈ Rm. Then, G(µ̄) is the projection of z onto K if and
only if, the complementarity system

µ̄ ∈ Rm+ , M(µ̄− ν̄) ∈ Rm+ , µ̄tM(µ̄− ν̄) = 0 (17)

holds.

Proof. Clearly G(µ̄) = πK(z) if and only if µ̄ minimizes the function

µ ∈ Rm 7→ ‖G(µ)−G(ν̄)‖2

over the positive orthant Rm+ . This is a convex minimization problem which sat-
isfies usual constraint qualifications, so that the Karush-Kuhn-Tucker conditions
are both necessary and sufficient for optimality. These conditions are precisely
those stated in (17). ut
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We now return to the case of a general cone K ∈ Ξ(H), and pick up the main
stream of the discussion.

Proposition 2. Take any K ∈ Ξ(H). For u, v ∈ K ∩ SH , the following two
conditions are equivalent:

(a) arcos〈u, v〉 = θmax(K),

(b) ‖u− v‖ = diam(K ∩ SH).

If u, v ∈ K ∩ SH satisfies any of these conditions, then

πK(u− v) = (1− 〈u, v〉)u and πK(v − u) = (1− 〈u, v〉)v. (18)

Proof. The equivalence between (a) and (b) is evident. Let us check the con-
clusion (18). If K happens to be a ray, then (18) holds trivially. So, we assume
that u 6= v. We carry out the proof in two steps.

Step 1. We suppose first thatK is finitely generated. Consider the representation
(11), and write u = G(ā), v = G(b̄), with ā, b̄ ∈ Rm+ . In such a case

u− v = G(ν̄), with ν̄ = ā− b̄ ∈ Rm,
and also

(1− 〈u, v〉)u = G(µ̄), with µ̄ = (1− 〈u, v〉)ā = (1− ātMb̄)ā.

In view of Lemma 4, in order to verify that πK(u− v) = (1− 〈u, v〉)u, it suffices
to check that (µ̄, ν̄) satisfies the complementarity system (17). First of all, one
has 〈u, v〉 ≤ ‖u‖‖v‖ = 1, and therefore µ̄ ∈ Rm+ . Secondly,

M(µ̄− ν̄) =M [(1− ātMb̄)ā− (ā− b̄)] =Mb̄− (ātMb̄)Mā.

Since (ā, b̄) solves the problem (12), Lemma 3 yields M(µ̄− ν̄) ∈ Rm+ . Finally,

µ̄tM(µ̄− ν̄) = (1− ātMb̄)ātM [(1− ātMb̄)ā− (ā− b̄)] = 0.

We have proved that πK(u − v) has the required value. A completely similar
argument shows that πK(v − u) = (1− 〈u, v〉)v.

Step 2. We now consider an arbitrary K ∈ Ξ(H). Assume that the first equality
in (18) does not hold, i.e.

πK(u− v) 6= (1− 〈u− v〉)u. (19)

Consider the cone C generated by

g1 = u, g2 = v, g3 = ‖πK(u− v)‖−1πK(u− v).

Since C ⊂ K, we have ‖u− v‖ = diam(C ∩ SH). Since πK(u− v) belongs to C,
we have that πC(u− v) = πK(u− v). Applying Step 1 to the finitely generated
cone C, we conclude that πC(u − v) = (1 − 〈u, v〉)u, which contradicts (19). A
similar contradiction arises if we assume that the second equality in (18) does
not hold. We proceed as before, but now working with the cone C generated by

g1 = u, g2 = v, g3 = ‖πK(v − u)‖−1πK(v − u).

The proof is thus complete. ut
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Next we establish that ξ and σ coincide, which is the main result of this section.

Proposition 3. For all K ∈ Ξ(H), one has

ξ(K) = σ(K). (20)

Proof. Suppose that K is not a ray because otherwise (20) holds trivially. Take
u, v ∈ K ∩SH such that ‖u− v‖ = diam(K ∩SH), and set z = ‖u− v‖−1(u− v).
Since πK is positively homogeneous, the use of Proposition 2 yields

{dist[z,K]}2 = ‖z − πK(z)‖2 = ‖u− v‖−2‖u− v − (1− 〈u, v〉)u‖2.

A further simplification leads to

{dist[z,K]}2 =
‖〈u, v〉u− v‖2

‖u− v‖2
=

1− 〈u, v〉2

‖u− v‖2
=

1 + 〈u, v〉
2

= [σ(K)]2,

using (5) in the last equality. The computation of ‖ − z − πK(−z)‖2 follows the
same line, and produces {dist[−z,K]}2 = [σ(K)]2. This shows that

ξ(K) ≤ max{dist[z,K],dist[−z,K]} = σ(K),

using (8) in the inequality. The opposite inequality clearly follows from Propo-
sition 1. ut

Corollary 1. Suppose that K ∈ Ξ(H) is not a ray. Let u, v ∈ K ∩ SH be
such that arccos 〈u, v〉 = θmax(K). Then σ(K) = dist[z,K] = dist[−z,K], with
z = (u− v)/‖u− v‖.

Proof. This result is implicitly contained in the proof of Proposition 3. ut

The equality between ξ and σ has another important consequence, namely it
implies, as we show next, that σ(K) ≤ ρ(K), with no additional assumptions on
K (the moderation hypothesis is needed for the reverse inequality).

Proposition 4. For all K ∈ Ξ(H), one has σ(K) ≤ ρ(K).

Proof. Take C ∈ M(H) such that ρ(K) = δ(K,C). Since C is not pointed, it
contains a line. Let z be a unit vector in this line, so that both z and −z belong
to C ∩ SH . Then

ρ(K) = δ(K,C) = max

{

sup
x∈K∩SH

dist[x,C], sup
x∈C∩SH

dist[x,K]

}

≥ sup
x∈C∩SH

dist[x,K] ≥ max{dist[z,K],dist[−z,K]} ≥ ξ(K) = σ(K),

using the definition of C in the first equality, (2) in the second one, (8) in the
last inequality, and Proposition 3 in the last equality. ut
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4. Two additional lemmas

We start this section with a technical lemma, in the form of a numerical inequal-
ity.

Lemma 5. Take real numbers α, β and γ such that

−1/2 ≤ α ≤ β ≤ γ ≤ 1, (21)

γ ≥ αβ, (22)

β ≥ αγ. (23)

Then,
(1 + α

2

)

(1− β2)(γ − β)2 ≤ (γ − αβ)2. (24)

Proof. We consider two cases:

(i) Suppose β ≥ 0. Then αβ ≤ β, so that 0 ≤ γ − β ≤ γ − αβ, which implies

(γ − β)2 ≤ (γ − αβ)2. (25)

The inequality (24) follows from (25) and the fact that (1− β2)(1 + α)/2 lies in
]0, 1[.

(ii) Suppose now β < 0. Then α < 0 and γ ≥ αβ > 0. Since −1/2 ≤ α, we have
1 ≤ 2(1 + α), so that 0 < 1 + α ≤ 2(1 + α)2, implying that

√
1 + α ≤

√
2(1 + α).

Multiplying both sides of this inequality by 1− α > 0, we get

(1− α)
√
1 + α ≤

√
2(1− α2),

which gives, after some rearrangement,

0 < −α(
√
1 + α−

√
2α) ≤

√
2−
√
1 + α,

where the leftmost inequality follows from the fact that α < 0. Keeping in mind
the relation (23), we obtain

√
2−
√
1 + α

√
1 + α−

√
2α
≥ −α ≥ −β

γ
,

and, therefore,
β

γ
(
√
2α−

√
1 + α) ≤

√
2−
√
1 + α.

Dividing by γ−1
√
1 + α > 0 and rearranging, we get

0 < γ − β ≤
√

2

1 + α
(γ − αβ). (26)

Squaring both sides of (26) and multiplying by (1 + α)/2, we obtain

(
1 + α

2
)(γ − β)2 ≤ (γ − αβ)2,

and (24) follows because 1− β2 ∈]0, 1[. ut
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The next result deals with the particular case of a cone generated by three
vectors. The proof technique for Lemma 6 relies on the moderation hypothesis.

Lemma 6. Let K ∈ Ξ(H) be generated by three linearly independent vectors
{g1, g2, g3} ⊂ SH . Assume that arccos 〈g1, g2〉 = θmax(K) ≤ 2π/3. Then,

dist[x,K] ≤ σ(K) (27)

for any unit vector x of the form x = s(g1−g2)+tg3, with s ∈ R and t ∈ R+.

Proof. Exchanging the roles of g1 and g2 if necessary, we may assume that s ≥ 0.
If s = 0, then x = g3 ∈ K, and (27) holds trivially. If t = 0, then

x = ‖g1 − g2‖−1(g1 − g2),

in which case dist[x,K] = σ(K) (cf. Corollary 1). So, from now on, we assume
that

s > 0, t > 0. (28)

By linear independence of {g1, g2, g3}, the coefficients

α = 〈g1, g2〉, β = 〈g1, g3〉, γ = 〈g2, g3〉

belong to the open interval ]− 1, 1[. In fact, much more can be said about these
coefficients. Since the pair (g1, g2) solves the minimization problem

cos θmax(K) = inf
u,v∈K∩SH

〈u, v〉, (29)

we have −1/2 ≤ α ≤ min{β, γ}, and, in addition,

β − αγ ≥ 0, (30)

γ − αβ ≥ 0. (31)

The lower bound −1/2 is due to the moderation assumption. The relations
stated in (30) and (31) are obtained by working out the KKT conditons for
the minimization problem in (29). Having said this, we now proceed with the
proof of (27). A priori, there is no direct relationship between the coefficients β
and γ, so two cases must be considered:

Case β ≥ γ. Let πK be the projection mapping into K. Note that πK : H → H
is positively homogeneous because K is a cone. Write x in the form

x = y + ηz, with y = tg3, η = s‖g1 − g2‖, and z = ‖g1 − g2‖−1(g1 − g2).

Since y + πK(ηz) belongs to K, one has

dist[x,K] ≤ ‖x− [y + πK(ηz)]‖ = ‖y + ηz − y − πK(ηz)‖

= η‖z − πK(z)‖ = η dist[z,K].

In view of Corollary 1, we just need to check that η ≤ 1. To do this, we combine

1 = ‖y + ηz‖2 = ‖y‖2 + 2η 〈y, z〉+ η2,
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with the fact that

〈y, z〉 = t‖g1 − g2‖−1〈g3, g1 − g2〉 = t‖g1 − g2‖−1(β − γ) ≥ 0.

Case β < γ. This case is more difficult to deal with. The setting under which
we are working now is as follows:

−1/2 ≤ α ≤ β < γ < 1, (32)

and additionally (30) and (31). Observe, incidentally, that (30)–(32) imply

γ > 0 and β + γ > 0. (33)

On the other hand, we know that (s, t) satisfies the normalization condition
‖s(g1 − g2) + tg3‖2 = 1, that is to say,

2(1− α)s2 − 2(γ − β)st+ t2 = 1. (34)

Since 1− α > γ − β > 0, one has

det

[

2(1− α) β − γ
β − γ 1

]

= 2(1− α)− (γ − β)2 > 0,

so (34) defines a nondegenerate ellipse E ⊂ R2. In fact, (s,t) belongs to

E+ = {(s′, t′) ∈ E : s′ > 0, t′ > 0},

the portion of E that lies in the positive quadrant. Since the vectors {g1, g2, g3}
are linearly independent, it follows that x /∈ K. The projection of x onto K has
the form

πK(x) = µ1g1 + µ2g2 + µ3g3,

with a vector µ = (µ1, µ2, µ3) ∈ R3 solving a certain linear complementarity
problem. According to Lemma 4, the vector µ solves the system

[M(µ− ν)]i ≥ 0, µi ≥ 0, µi[M(µ− ν)]i = 0, for i = 1, 2, 3. (35)

Here ν = (ν1, ν2, ν3) = (s,−s, t) collects the coefficients appearing in the repre-
sentation of x, and

M =





〈g1, g1〉 〈g1, g2〉 〈g1, g3〉
〈g2, g1〉 〈g2, g2〉 〈g2, g3〉
〈g3, g1〉 〈g3, g2〉 〈g3, g3〉



 =





1 α β
α 1 γ
β γ 1





is the Gramian matrix associated to {g1, g2, g3}. For convenience, we write the
first part of (35) in the extended form

(µ1 − s) + α(µ2 + s) + β(µ3 − t) ≥ 0, (36)

α(µ1 − s) + (µ2 + s) + γ(µ3 − t) ≥ 0, (37)

β(µ1 − s) + γ(µ2 + s) + (µ3 − t) ≥ 0. (38)
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We shall exploit these relations in a moment, but first we record a formula for
computing the distance from x to K. It is clear that

{dist[x,K]}2 = ‖x− πK(x)‖2 = 〈µ− ν,M(µ− ν)〉.

Since 1 = ‖x‖2 = 〈ν,Mν〉 and 〈µ,M(µ− ν)〉 = 0, we get

dist[x,K] =
√

1− 〈ν,Mµ〉. (39)

We now proceed with the analysis of the system (35). We must go through the
8 possibilities concerning the structure of J = {i ∈ {1, 2, 3} : µi > 0}, the set of
active indices.

• J = {1, 2, 3}. This means that πK(x) belongs to the interior of K, but this
situation cannot occur because x /∈ K.

• J = ∅. This means that πK(x) = 0, and therefore x belongs to the polar cone
of K. Thus, 〈gi, x〉 ≤ 0 for i ∈ {1, 2, 3}, or, equivalently,

s(1− α) + tβ ≤ 0, s(α− 1) + tγ ≤ 0, s(β − γ) + t ≤ 0. (40)

But, in view of 0 < γ − β < 1− α, the system (40) is inconsistent. Indeed,

0 < t ≤ s(γ − β) < s(1− α) ≤ −tβ ≤ |tβ| < t.

This contradiction leads us to discard the case J = ∅.
• J = {2}, J = {1, 2}, or J = {2, 3}. We shall see that none of these cases can
occur. We have µ2 > 0, and therefore

τ =
s

s+ µ2
∈]0, 1[.

Note that the convex combination y = τπK(x) + (1− τ)x lies in K. Indeed,

y =
s

s+ µ2
(µ1g1 + µ2g2 + µ3g3) +

µ2
s+ µ2

(sg1 − sg2 + tg3)

=
sµ1 + sµ2
s+ µ2

g1 +
sµ3 + tµ2
s+ µ2

g3.

Since the coefficients in front of g1 and g3 are strictly positive, the vector y lies,
in fact, in the relative interior of the face generated by g1 and g3. On the other
hand,

‖x− y‖ = τ‖x− πK(x)‖ < ‖x− πK(x)‖,

contradicting the fact that πK(x) is the projection of x onto K.

• J = {3}. This case can also be discarded. We have µ1 = µ2 = 0, so that πK(x)
belongs to the relative interior of the ray R+g3. It follows that πK(x) coincides
with the projection of x onto the line Rg3, i.e. πK(x) = 〈g3, x〉g3, implying that

µ3 = s(β − γ) + t.
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Condition (36) yields in this case s(α− 1) + βs(β − γ) ≥ 0, that is to say,

1− α+ β(γ − β) ≤ 0,

but this inequality cannot occur because

−β(γ − β) ≤ |β|(γ − β) < γ − β < 1− α.

• J = {1, 3}. This is the toughest case, and the only one where we use the
moderation hypothesis. We have µ2 = 0. Equalities in (36) and (38) yield the
system

µ1 + βµ3 = s(1− α) + βt, βµ1 + µ3 = s(β − γ) + t,

obtaining in this way

µ1 = s+ s (1− β2)−1 (βγ − α), (41)

µ3 = t+ s (1− β2)−1 (αβ − γ). (42)

Since x = s(g1 − g2) + tg3 and πK(x) = µ1g1 + µ3g3, one gets

‖x− πK(x)‖2 = ‖(µ1 − s)g1 + sg2 + (µ3 − t)g3‖2

=
( s

1− β2
)2
‖(βγ − α)g1 + (1− β2)g2 + (αβ − γ)g3‖2.

Thus

‖x− πK(x)‖2 =
( s

1− β2
)2 {

(βγ − α)2 + (1− β2)2 + (αβ − γ)2

+2(βγ − α)(1− β2)α+ 2(αβ − γ)(1− β2)γ + 2(αβ − γ)(βγ − α)β
}

.

After a due simplification, we end up with

‖x− πK(x)‖2 =
κs2

1− β2
≤ κs2max

1− β2
, (43)

where

κ = 1− α2 − β2 − γ2 + 2αβγ = (1− α2)(1− β2)− (γ − αβ)2 > 0, (44)

smax =
[

2(1− α)− (γ − β)2
]−1/2

. (45)

Notice that κ is positive because it is equal to the determinant of the positive
definite matrix M . The right hand side of (45) corresponds to the largest value
that s can achieve when the pair (s, t) ranges over E. Now, plugging (44)–(45)
into (43), we get

‖x− πK(x)‖2 ≤ (1− α2)(1− β2)− (γ − αβ)2

(1− β2)
[

2(1− α)− (γ − β)2
] .

On the other hand, cos θmax(K) = 〈g1, g2〉 = α, and therefore

σ(K) =
√

(1 + α)/2.
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So, in order to obtain the estimate (27), it suffices to check that

(1− α2)(1− β2)− (γ − αβ)2

(1− β2)
[

2(1− α)− (γ − β)2
] ≤ 1 + α

2
. (46)

By rearranging terms, (46) is seen to be equivalent to

(1 + α

2

)

(1− β2)(γ − β)2 ≤ (γ − αβ)2. (47)

We invoke Lemma 5, whose assumptions hold by virtue of (30)–(32), for estab-
lishing the inequality in (47).

We still have to examine the last case concerning the structure of J . Before
proceeding ahead, it is a good idea to pause for a moment, and see what we have
obtained insofar. Denote by FJ = cone{gi : i ∈ J} the face of K generated by
the vectors {gi : i ∈ J}. By convention, F∅ = {0}. If "ri" stands for relative
interior, then the sets

AJ = {(s, t) ∈ E+ : πK(s(g1 − g2) + tg3) ∈ ri FJ},

form a partition of E+. Since AJ = ∅ for the first six choices of J ⊂ {1, 2, 3},
one ends up with the decomposition

E+ = A{1,3} ∪A{1}. (48)

By (41), the set A{1,3} is empty if the condition

1− β2 > α− βγ (49)

is not fulfilled. Under (49), A{1,3} turns out to be an arc of the ellipse E. Indeed,
by (42), the coefficient µ3 is positive only if

t > ms, with m = (1− β2)−1(γ − αβ).

The inequality (37) being here redundant, we get the characterization

A{1,3} = {(s′, t′) ∈ E+ : t′ > ms′}.

This set is an arc of the ellipse E, with extremities (0, 1) and

(s∗, t∗) = [m2 − 2(γ − β)m+ 2(1− α)]−1/2 (1,m).

As seen in Figure 1, the extremity (s∗, t∗) is obtained by intersecting E+ with
the line Lm = {(s′, t′) ∈ R2 : t′ = ms′}. We now switch the attention to A{1}.

• J = {1}. This time πK(x) belongs to the relative interior of the ray R+g1.
More precisely,

πK(x) = µ1g1 with µ1 = s(1− α) + tβ. (50)

For notational convenience, we introduce the linear form

(s′, t′) ∈ R2 7→ `(s′, t′) = s′(1− α) + t′β,
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Fig. 1. Extremities of the arc A{1,3}

and the corresponding quadratic form (s′, t′) ∈ R2 7→ q(s′, t′) = [`(s′, t′)]2. By
working out formula (39), one gets

dist[x,K] =
√

1− q(s, t),

so our job consists in proving that

1− q(s, t) ≤ (1 + α)/2. (51)

Before taking care of (51), recall that the case J = {1} occurs exactly when
(s, t) ∈ A{1}. From (48) , we know that A{1} = E+\A{1,3}. This set is an arc of
the ellipse E, closed at the extremity (s∗, t∗), and open at the extremity

(s0, t0) = ([2(1− α)]−1/2, 0).

We are supposing that γ−αβ > 0, because otherwise A{1} = ∅. Let us compute
A{1} again, but this time using (37)–(38), that is to say,

α(µ1 − s) + s− γt ≥ 0,

β(µ1 − s) + γs− t ≥ 0.

Plugging µ1 − s = tβ − sα into this system, we get after a short rearrangement

(1− α2)s ≥ (γ − αβ)t, (52)

(γ − αβ)s ≥ (1− β2)t. (53)

Since κ > 0, we have
γ − αβ
1− β2

<
1− α2

γ − αβ
,
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and therefore (52) is redundant. In other words, the system (52)–(53) reduces
to t ≤ ms. This confirms that the line Lm is cutting E+ into two disjoints arcs.
We now proceed with the proof of (51). Observe that

1− q(s, t) ≤ 1− q(s̃, t̃), (54)

with (s̃, t̃) being an arbitrary minimizer of q over the closed arc

Ω = A{1} ∪ {(s0, t0)}.

Since the linear form ` is positive over Ω, the point (s̃, t̃) is also a minimizer of `
over Ω. Three different possibilities must be considered. If (s̃, t̃) = (s0, t0), then

1− q(s, t) ≤ 1− q(s0, t0) = (1 + α)/2,

and we are done. If (s̃, t̃) = (s∗, t∗), then we obtain (51) by using a continuity
argument. Indeed, (s∗, t∗) can be approached by a sequence {(sn, tn)}n∈N of
points in A{1,3}. Projecting

xn = sn(g1 − g2) + tng3

into K produces a vector πK(xn) lying in the relative interior of the face gener-
ated by g1 and g3. As we have seen before, such a situation leads to the estimate

{dist[xn,K]}2 ≤ (1 + α)/2.

By passing to the limit, one gets

1− q(s∗, t∗) ≤ (1 + α)/2. (55)

The inequality (51) follows then by combining (54) and (55). Finally, suppose
that (s̃, t̃) is not an extremity of the arc Ω. We claim that this case must be ruled
out because it leads to a contradiction. Observe that now (s̃, t̃) minimizes ` not
only over Ω, but also over E. Recall that a non-zero linear form attains always
a unique minimum over a non-degenerate ellipse. By inspecting the level sets of
the linear form `, one sees that the value `(s, t) decreases when the argument
(s, t) leaves the point (s0, t0) and starts moving toward (s̃, t̃) along the arc Ω.
Since s and t are related through the relation (34), one can write

s = η(t) =
t(γ − β) +

√

2(1− α)− t2 [2(1− α)− (γ − β)2]
2(1− α)

(56)

for all t in some neighborhood V of t0 = 0. We are choosing, of course, the
positive root of the quadratic equation (34). Define now ψ : V → R as

ψ(t) =
t(γ + β) +

√

2(1− α)− t2 [2(1− α)− (γ − β)2]
2

. (57)

It follows from (56) that

`(η(t), t) = η(t)(1− α) + tβ = ψ(t).
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From the previous discussion, we know that ψ(t) ≤ ψ(t0) for any t > 0 small
enough, and therefore ψ′(t0) ≤ 0. But, on the other hand, a direct computation
from (57) gives ψ′(t0) = (γ+β)/2. Since β+γ > 0 by (33), we get a contradiction.
This confirms our claim and completes the proof of Lemma 6. ut

Remark: The point (s∗, t∗) has a special significance because it separates the
regions corresponding to the cases J = {1} and J = {1, 3}. Actually, we did
not use the formula that we got for (s∗, t∗). It was enough to know that such a
borderline point does exist.

5. The main result: proof and consequences

The ground is now prepared for the proof of Theorem 1, our main result.

Proof. Proposition 4 tells us that σ(K) ≤ ρ(K). Let L = R(u − v) be the line
generated by u− v. By assumption, u and v are two unit vectors in K forming
an angle equal to θmax(K). One can check that K ∩ L = {0}, so that K + L is
a nonpointed closed convex cone. From the very definition of ρ(K), one has

ρ(K) ≤ δ(K + L,K),

so everything boils down to proving the inequality

δ(K + L,K) ≤ σ(K). (58)

Since K is a subset of K + L, we get from (2)

δ(K + L,K) = sup
x∈(K+L)∩SH

dist[x,K],

and, therefore, it is enough to show that

dist[x,K] ≤ σ(K) ∀x ∈ (K + L) ∩ SH .

Suppose, on the contrary, that there exists x̃ ∈ (K + L) ∩ SH such that

dist[x̃,K] > σ(K). (59)

We decompose x̃ in the form

x̃ = s(u− v) + ty, with y ∈ K ∩ SH , s ∈ R, t ∈ R+,

and define C as the cone generated by g1 = u, g2 = v, and g3 = y. Observe that
u, v are vectors in C ⊂ K achieving the maximal angle θmax(C) = θmax(K).
Two cases must be distinguished:

(i) Suppose first that the vectors {g1, g2, g3} are linearly dependent. This implies
that the linear space spanned by C is two-dimensional. This type of situation is
well understood. In fact, it is not difficult to prove that

σ(C) = ρ(C) = δ(C + L,C).
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Since x̃ ∈ (C+L)∩SH , one also has dist[x̃, C] ≤ ρ(C). But dist[x̃,K] ≤ dist[x̃, C]
and σ(C) = σ(K), so we are contradicting (59).

(ii) Suppose now that the vectors {g1, g2, g3} are linearly independent. By ap-
plying Lemma 6 to the cone C, we conclude that dist[x̃, C] ≤ σ(C). As before,
the inequalities dist[x̃,K] ≤ dist[x̃, C] and σ(C) = σ(K) lead to a contradiction
with the assumption (59). ut

The case of a perpendicular cone falls within the range of Theorem 1. Recall that
a cone K ∈ Ξ(H) is said to be perpendicular if θmax(K) = π/2. This amounts
to saying that K contains a pair of orthogonal unit vectors, and, in addition,
〈u, v〉 ≥ 0 ∀u, v ∈ K.

Corollary 2. The radius of pointedness of any perpendicular cone is
√
2/2.

Remark: Any self-dual cone is perpendicular. So, the Loewner cone of positive
semidefinite symmetric matrices has a radius of pointedness equal to

√
2/2. The

same remark applies to the Lorentz (or ice-cream) cone, and to the Pareto cone
(or positive orthant). We recover in this way some particular results announced
in [4].

6. By way of conclusion

Theorem 1 has the merit of displaying a nice and simple formula for computing
the radius of pointedness of a moderate cone K. The formula says that

ρ(K) = cos

(

θmax(K)

2

)

. (60)

In addition to this, Theorem 1 shows how to construct a nonpointed cone Q at
minimal distance from K.

A question that is bound to occur is the following one: is it possible to obtain
the same conclusions as in Theorem 1, but without imposing the moderation
assumption? As far as (60) is concerned, there are some facts suggesting that
this formula may be true also for non-moderate cones. Consider, for instance,
the case of a revolution cone

K = {x ∈ H : ‖x‖cos ϑ ≤ 〈e, x〉}, with e ∈ SH .

Even if we take θmax(K) = 2ϑ as large as we want, both sides of (60) yield the
same value, namely cos ϑ. A more elaborate example is that of an elliptic cone

K = {(x, t) ∈ Rd × R :
√

〈x,Ax〉 ≤ t},

with A being a positive semidefinite symmetric matrix of order d × d. Formula
(60) turns out to be true for an arbitrary elliptic cone, be it moderate or not
(see Theorem 8.3 in [4] for details).
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Although our proof method for Theorem 1 relies on the moderation assump-
tion, there is some hope that formula (60) remains true over the whole Ξ(H).
We show next that this is the case, if we manage to prove that ρ is antitone,
meaning that ρ(K) ≥ ρ(K ′) whenever K ⊂ K ′. Indeed, take an arbitrary K in
Ξ(H). Let C ⊂ K be the 2-dimensonal cone generated by two unit vectors in K
realizing its maximal angle. Under the antitonicity assumption, ρ(K) ≤ ρ(C).
Since all 2-dimensional cones are revolution cones, we have ρ(C) = σ(C). Finally,
the choice of C guarantees that C and K have the same maximal angle, so that
σ(C) = σ(K). It follows that ρ(K) ≤ σ(K). The result is then a consequence of
Proposition 4.

However, one should not be over-optimistic either. As the next proposition
shows, without the moderation assumption, at least one of the conclusions of
Theorem 1 fails!

Proposition 5. Let the dimension of H be at least three. For any angle
θ ∈]2π/3, π[, there exist a cone K ∈ Ξ(H) and vectors u, v ∈ K ∩ SH such
that

(a) arccos 〈u, v〉 = θmax(K) = θ,

(b) K + R(u− v) ∈M(H),

(c) δ(K + R(u− v),K) > σ(K).

Proof. Take any θ ∈]2π/3, π[. We shall construct a non-moderate cone generated
by three linearly independent unit vectors. Due to Proposition 3.2 of [4], there
is no loss of generality in supposing that H = R3. From the way the angle θ has
been chosen, one sees that the coefficient

r =
√

(1 + cos θ)/2

belongs to the interval ]0, 1/2[. Consider the cone K generated by the vectors

g1 =
(

−
√

1− r2, r, 0
)

g2 =
(
√

1− r2, r, 0
)

,

g3 =
1

2(1− 2r2)

(
√

1− r2
√

1− 4r2, r
√

1− 4r2,
√

16r4 − 12r2 + 3
)

.

This choice may seem quite strange at first sight, but, in fact, it is dictated by
a certain number of requirements. To start with, observe that g1 and g2 are two
unit vectors forming an angle equal to θ. Indeed,

α = 〈g1, g2〉 = 2r2 − 1 = cos θ.

Observe, incidentally, that α ∈ ]− 1,−1/2[. The first two components of g3 are
chosen so that

β = 〈g1, g3〉 =
−
√

2|α| − 1

2
,

γ = 〈g2, g3〉 =
√

2|α| − 1

2|α|
.
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Fig. 2. Non-moderate polyhedral cone generated by {g1, g2, g3}

Finally, one chooses the last component of g3 so that ‖g3‖ = 1. The vectors
{g1, g2, g3} are linearly independent, and one can easily check that

β = αγ, γ > αβ, α < −1/2 < β < 0 < γ < 1.

Among the extreme rays {g1, g2, g3} of the cone K, the pair (g1, g2) forms the
largest angle because α < β < γ. Although the maximal angle of a finitely
generated cone may fail to be attained by a pair of extreme rays, this is not
occurring in this particular example. Indeed, by using Theorem 6.4 of [5], it is
possible to check that

arccos 〈g1, g2〉 = θmax(K). (61)

Take now

s =
[

2(1− α)− (γ − β)2
]−1/2

, t = (γ − β)s, x = s(g1 − g2) + tg3.

In such case, s > 0, t > 0, ‖x‖ = 1, and we are in the same setting as in the case
J = {1, 3} of Lemma 6, that is to say, πK(x) belongs to the relative interior of
the face of K generated by g1 and g3. In view of (43)–(45), we can write

‖x− πK(x)‖2 =
s2[(1− α2)(1− β2)− (γ − αβ)2]

1− β2
.

If one replaces the value of s and subtracts [σ(K)]2, one ends up with

‖x− PK(x)‖2 − [σ(K)]2 =

(

1− α2
) (

1− β2
)

− (γ − αβ)2

(1− β2) [2(1− α)− (γ − β)2]
− 1 + α

2
.
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Replacing β = αγ, we obtain, after some algebra,

‖x− PK(x)‖2 − [σ(K)]2 =
γ2
(

1− α2
)

[

−α− 1
2 −

α2γ2

2

]

(1− α2γ2) [2− γ2(1− α)]
.

By expressing γ in terms of α, one gets finally

‖x− PK(x)‖2 − [σ(K)]2 =
3(2α+ 1)2

(

1− α2
)

2(5 + 2α)(6α2 + α+ 1)
> 0. (62)

Thus, we have shown that ‖x − PK(x)‖ > σ(K). If we denote by L the line
through g1 − g2, then x ∈ (K + L) ∩ SH and

δ(K + L,K) = sup
w∈(K+L)∩SH

dist[w,K] ≥ dist[x,K] = ‖x− PK(x)‖.

The conclusion is that δ(K + L,K) > σ(K). ut

Observe that the expression on the right-hand side of (62) vanishes not only
for α = −1/2, but also for α = −1. These values correspond, respectively, to
θmax(K) = 2π/3 and θmax(K) = π. One can easily check that Theorem 1 is also
true θmax(K) = π. So, it is the zone 2π/3 < θmax(K) < π that we view as a No
Man’s Land where everything could happen.
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