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Abstract

By means of a simple warped product construction we obtain examples of

submanifolds with nonpositive extrinsic curvature and minimal index of relative

nullity in any space form. We then use this to extend to arbitrary space forms

four known splitting results for Euclidean submanifolds with nonpositive sectional

curvature.

Let f : Mn → Qn+p
c be an n-dimensional isometrically immersed submanifold of

codimension p in a space form Qn+p
c with nonpositive extrinsic sectional curvature, that

is, the sectional curvature KM of Mn verifies KM ≤ c. For such a submanifold, in [3] it
was shown that the index of relative nullity ν = νf of f , i.e., the dimension of the nullity
space ∆ of the second fundamental form α of f , ∆ = Ker α = {X ∈ TM : α(X, · ) = 0},
satisfies that ν ≥ n− 2p everywhere. This result has several deep implications since the
positiveness of ν imposes strong restrictions on the manifold Mn and on its isometric
immersion f . For example, along connected components of an open dense subset, the
relative nullity ∆ is an integrable distribution with totally geodesic leaves in both Mn

and Qn+p
c . So, the bigger ν is, the more geometrical restrictions we get.

This estimate is in fact sharp since the product immersion f1 × · · · × fp : Mn → Rn+p

of p nowhere flat Euclidean hypersurfaces fi : Mni

i → Rni+1, 1 ≤ i ≤ p, with nonpositive
sectional curvature satisfies the equality ν ≡ n − 2p, n =

∑
ni. It was a surprise

to discover that this is the unique way to make the estimate sharp: any Euclidean
submanifold in codimension p with nonpositive sectional curvature and minimal index
of relative nullity must split (locally) as a product of p hypersurfaces; cf.[6]. Moreover,
for ν = n − 2p + 1 it was shown in [7] that the two natural constructions also give all
possible examples. Either f splits as the product of p−1 Euclidean submanifolds, p−2 of
which are hypersurfaces and the remaining has codimension two, or f is a composition,
f = h ◦ f ′, where f ′ : Mn → Rn+p−1 splits as the product of p − 1 hypersurfaces and
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h : U ⊂ Rn+p−1 → Rn+p is a flat hypersurface. Nothing more is known in this general
setting, although for irreducible Euclidean submanifolds with flat normal bundle the
sharpest estimate is known to be ν ≥ n − p − 1; see [4]. For closely related results for
real Kähler Euclidean submanifolds, see [8], [5] and [11].

The phenomena for a nonpositively extrinsically curved submanifold f in a space
form Qn+p

c of curvature c 6= 0 were much less understood, since neither the curvature
property nor the structure of the ambient space are preserved by taking products. It was
known that such a submanifold does not exist if either ν = n−2p = 0 or ν = n−2p+1 = 0
at some point; cf. Corollary 2 in [6] or Theorem 2 in [7]. However, we show now a natural
way to construct examples using an auxiliary space form Qp−1

c , that we call the warping
factor, to ‘warp’ the factors.

For simplicity, we will assume from now on that c = ±1. Let us consider the
usual model of Qr−1

c as an umbilical submanifold of Er, where Er stands for either the
Euclidean space Rr or the Lorentzian space Lr with its canonical metric 〈 , 〉 according
with c, i.e., dx2 = c dx2

1 + dx2
2 + · · · + dx2

r. That is,

Qr−1
c = {x ∈ Er : 〈x, x〉 = c, with x1 > 0 if c = −1}.

We also denote the sphere by Sr−1 = Qr−1
1 and the hyperbolic space by Hr−1 = Qr−1

−1 .

Consider any open subset Q̂r−1
c ⊂ {x ∈ Qr−1

c : xi 6= 0, 1 ≤ i ≤ r}. Define the c–product
Mn1

1 ×
c
×Mnr

r of r Riemannian manifolds (Mni

i , gi), 1 ≤ i ≤ r, as the warped product

Mn1

1 ×
c
× Mnr

r := Q̂r−1
c ×λ1

Mn1

1 ×λ2
· · · ×λr

Mnr

r ,

where λi is the height function λi : Q̂r−1
c → R+, λi(x) = xi, 1 ≤ i ≤ r. In other words,

the metric on the product is given by g = π∗

0〈 , 〉 +
∑

λ2
i π

∗

i gi. This construction is
symmetric in the factors M1, . . . , Mr if c = 1, while M1 has a special role for c = −1.

Accordingly, given r isometric immersions f1 : Mn1

1 → Qn1+p1

c and fi : Mni

i → Sni+pi,
2 ≤ i ≤ r, we call c–product (isometric) immersion the map denoted by

f c = f1 ×
c
× fr : Mn1

1 ×
c
× Mnr

r → Qn+p
c ,

with n = r − 1 +
∑

ni and p =
∑

pi, that is given by

f c(x, y1, . . . , yr) = (x1f1(y1), . . . , xrfr(yr)) ∈ Qn+p
c ⊂ En+p+1.

In particular, if pi = 0, 1 ≤ i ≤ r, we get the isometry Ψ, called a warped product
representation in [9], over an open dense subset of Qn

c given by Ψ : Qn1

c ×
c
×Snr → Qn

c ,

Ψ(x, w1, . . . , wr) = (x1w1, . . . , xrwr). The c–product and the usual product immersions
are then related by f c = Ψ ◦ (id× f1 × · · ·× fr). If such a decomposition of Qn+p

c exists
for an isometric immersion f , we say that f splits as a c–product of r submanifolds.
Observe that although the boundary of the positive quadrant is singular for Ψ, it is not
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singular for the closure of its image. In this sense, a complete submanifold may also
split as a c–product.

The key geometric properties of the c–product f c = f1 ×
c
× fr : Mn → Qn+p

c

important to us are the following (see Remark 6):

• f c has nonpositive extrinsic curvature if and only if all the factors fi have;

• f c has flat normal bundle if and only if all the factors fi have;

• The leaves of the warping factor Q̂r−1
c are contained in the relative nullity leaves

of f c, as well as the relative nullity leaves of each factor;

• In fact, νfc

(x, x1, . . . , xr) = r − 1 +
∑

νfi(xi).

In particular, any c–product of p hypersurfaces with (nowhere vanishing) nonpositive
extrinsic curvature is an example of a submanifold with nonpositive extrinsic curvature
and minimal index of relative nullity ν ≡ n − 2p. This shows that our belief (ii) in the
final comments on [6], that was based in its Corollary 2, was false. The last assertion
in Theorem 1 below will completely clarify this phenomenon.

The purpose of this note is to extend the aforementioned main results in [6], [7] and
[4] to arbitrary space forms by showing that, as for Euclidean submanifolds, the above
c–product construction exhausts all the possibilities for the lowest indexes of relative
nullity. Recalling our notation, from now on f : Mn → Qn+p

c will stand for an isometric
immersion of a Riemannian manifold with sectional curvature KM ≤ c = ±1. We then
know that ν ≥ n − 2p. The extension of Theorem 1 in [6] is the following:

Theorem 1. Assume that ν = n − 2p everywhere. Then, there exists an open dense
subset U ⊂ Mn such that, for each connected component U ′ of U , f |U ′ splits as a
c–product of p hypersurfaces. That is, there are p hypersurfaces, f1 : Mn1

1 → Qn1+1
c with

KM1
≤ c, and fi : Mni

i → Sni+1 with KMi
≤ 1, 2 ≤ i ≤ p, such that

U ′ = M1 ×
c
× Mp and f |U ′ = f1 ×

c
× fp

split. In particular, ν ≥ p − 1 and hence n ≥ 3p − 1.

Recall that any hypersurface in a nonflat space form with nonpositive (nonvanishing)
extrinsic sectional curvature as above must have relative nullity of codimension two and
then can be easily parametrized using the Gauss parametrization: it just coincides with
the usual immersion of the unit normal bundle of a surface, its Gauss map (cf. [2]).

Let us make a few remarks on the geometry of the submanifolds of Theorem 1.
Observe that they all have flat normal bundle. In fact, there is (locally) an orthonor-
mal tangent frame {X1, . . . , Xn}, an orthonormal normal frame {ξ1, . . . ξp}, and pos-
itive smooth functions λ1, . . . , λ2p, such that the second fundamental form decom-
poses as α(Xi, Xj) = 0, α(X2s−1, X2s−1) = λ2s−1ξs, α(X2s, X2s) = −λ2sξs, and ∆ =
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span{X2p+1, . . . , Xn}, where 1 ≤ i 6= j ≤ n, 1 ≤ s ≤ p. The normal vector fields λ2s−1ξs

and −λ2sξs (together with ξ = 0) are called the principal normals of the immersion,
whose corresponding principal distributions span{X2s−1} and span{X2s} have all multi-
plicity one (cf. [10]). This principal directions gives rise to a “warped product net”, i.e.,
TU ′ =

⊕p

i=0 Vi, with X2s−1, X2s ∈ Vs, 1 ≤ s ≤ p, and V0 ⊂ ∆, each Vi being a spherical
distribution with integrable complement V ⊥

i . The distributions Vs are obtained taking
successive derivatives of span{X2s−1, X2s}.

The results in this note are essentially local in nature since there are explicit construc-
tions where the relative nullity actually “jumps” from one factor to another. Indeed, it
is easy to construct, for example using the Gauss parametrization, a connected submani-
fold f : Mn → Rn+p that has an open dense subset W ⊂ Mn divided in three irreducible
connected components, W = (Nm+r

1 × N s
2 ) ∪ (Nm

3 × Rr × N s
4 ) ∪ (Nm

5 × N s+r
6 ), with

constant relative nullity ν = r and with f splitting accordingly along each component.
However, if we somehow can control this phenomenon, we get global consequences. For
example, this is the case if the estimate in the last assertion of Theorem 1 is also sharp:

Corollary 2. Suppose that Mn is complete and simply connected, with n = 3p − 1.
If ν ≡ n − 2p, then f splits globally as a c–product of p complete surfaces of negative
extrinsic Gaussian curvature.

There are two natural ways to construct a submanifold f with nonpositive extrinsic
curvature and ν = n − 2p + 1, and it turns out that these are the only ones. The
extension of Theorem 1 in [7] then reads:

Theorem 3. Assume ν = n − 2p + 1 everywhere. Then, there is an open dense subset
U ⊂ Mn such that each connected component U ′ of U satisfies U ′ = Mn1

1 ×
c
× M

np−1

p−1

and either:

i) f |U ′ = f1 × c
× fp−1 splits as a c–product of p − 1 submanifolds, all but one of

which are hypersurfaces and the remaining having codimension two, or

ii) f |U ′ is a composition, f |U ′ = h◦(f1× c
×fp−1), of a c–product of p−1 hypersurfaces

and an extrinsically flat hypersurface h : U ⊂ Qn+p−1
c → Qn+p

c .

The composition h in part (ii) destroys the flat normal bundle of the c–product. For
flat normal bundle, we obtain the corresponding generalization of Theorem 1 in [4]:

Theorem 4. Assume that f has flat normal bundle and that ν ≤ n−p− r everywhere,
for some integer 2 ≤ r ≤ p. Then, there exists an open dense subset U ⊂ Mn such that,
along each connected component U ′ of U , f |U ′ splits as a c–product of r submanifolds.
In particular, ν ≥ r − 1 and hence n ≥ p + 2r − 1.
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1 The proofs

Let f : Mn → Qn+p
c ⊂ En+p+1, c = ±1, be an isometric immersion whose second

fundamental form is α = αf , and set ∆(x) = ∆f (x) = Ker α(x) for its relative nullity.
Consider the cone over f , F : M̃n+1 = R+ ×id Mn → En+p+1, given by F (t, x) = tf(x).
Observe that M̃ is Riemannian for c = 1 and Lorentzian for c = −1. Denoting by
ı : Qn+p

c → En+p+1 the inclusion, the normal space of f ′ = ı ◦ f at x ∈ Mn is given by

T⊥

f ′(x)M = T⊥

f(x)M ⊕⊥ < f(x) >,

where < v > denotes the line spanned by v ∈ En+p+1. Thus, we have

T⊥

F (t,x)M̃ = T⊥

f(x)M,

and then the vector ∂t(t, x) := F∗(t,x)(1, 0) = f(x) belongs to the relative nullity of F .

In addition, for any (t, x) ∈ M̃ ,

αF (t, x)(X, Y ) = t αf(x)(X, Y ), ∀ X, Y ∈ TxM. (1)

We resume now the main geometric properties of the cone that we need:

Lemma 5. The following relations between f and its cone F hold:

i) ∆F (t, x) = ∆f(x) ⊕⊥ < ∂t(t, x) > and then νF (t, x) = νf (x) + 1;

ii) KM ≤ c if and only if KM̃ ≤ 0;

iii) f has flat normal bundle if and only if F has flat normal bundle.

Proof: i). This is a direct consequence of (1).
ii). Consider a plane σ ⊂ TxM ⊂ T(t,x)M̃ and an orthonormal basis X, Y of σ. Then,

by the Gauss equation, KM(σ)− c = 〈αf(X, X), αf(Y, Y )〉 − ‖αf(X, Y )‖2 = t−2KM̃(σ),
where the last equality is a consequence of 〈F∗(t,x)X, F∗(t,x)Y 〉 = t2〈f∗xX, f∗xY 〉. The
assertion follows since ∂t belongs to the relative nullity of F and the relative nullity is
always contained in the nullity of the curvature tensor due to the Gauss equation.

iii). Since both Qn+p
c and En+p+1 have constant sectional curvature, the Ricci equa-

tion for f and F gives for the normal curvature tensors R⊥

F (∂t, X) = 0, R⊥

F (X, Y ) =
R⊥

f (X, Y ) because the shape operators of f and F in any direction ξ ∈ T⊥

x M = T⊥

(t,x)M̃

are related by AF
ξ |∆⊥

F
= t−1A

f
ξ .

Remark 6. The above proves all the properties of the c–product f stated in the
introduction, since the cone of a c–product of r submanifolds is clearly a product of r

cones. For example, f = f1 × c
× fr has nonpositive extrinsic sectional curvature if

and only if its cone F has, which in turn is equivalent to each factor Fi of F being
nonpositively curved, or that each fi having nonpositive extrinsic sectional curvature.
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The idea now is quite simple: to reduce the problems in space forms to Euclidean
(or Lorentzian) space using the cone of f . Observe that, although the results in [6], [7]
and [4] are stated for the Euclidean space as their ambient space, the same proofs hold
for any semiriemannian flat space form Rm,n and, in particular, for Ln+1 = R1,n.

Proof of Theorem 4: By Lemma 5 ii) and iii), the cone F of f has nonpositive sectional
curvature and flat normal bundle. Moreover, by part i), its relative nullity satisfies
νF = νf + 1 ≤ (n + 1) − p − r, where now p is the codimension of F and n + 1
its dimension. Therefore, by Theorem 1 in [4], we have that, locally, F splits as the
product of r Euclidean submanifolds Fi : M̃ni+1

i → V
ni+pi+1
i , 1 ≤ i ≤ r, of nonpositive

sectional curvature: En+p+1 = V1 ⊕
⊥ · · · ⊕⊥ Vr,

M̃ = M̃1 × · · · × M̃r and F = F1 × · · · × Fr

split. In addition, all the V ′

i s are Euclidean, except, say, V1, that is Lorentzian for
c = −1. In fact, no Vi can be degenerate since, by construction, the decomposition of
En+p+1 is as a direct sum of the V ′

i s, and thus Vi ∩ V ⊥

i = 0.

Claim: Each factor Fi is also a cone with its vertex at the origin.

To prove the claim, observe first that an Euclidean submanifold in EN+1 is a cone
with its vertex at the origin if and only if it is invariant by the homotheties v 7→ tv, t > 0,
v ∈ EN . In fact, the submanifold will be a cone over the intersection of the submanifold
with QN

c ⊂ EN+1. So, (tF1(y1), . . . , tFr(yr)) = tF (y) = F (z) = (F1(z1), . . . , Fr(zr)),
since F is a cone with its vertex at the origin. So, each Fi is invariant under the
homotheties, and hence a cone.

Since the result is local in nature, we can assume that f is an embedding. Now,
consider the intersections, which are transversal since the factors are cones, Mn1

1 =
F−1

1 (F1(M̃1)∩Qn1+p1

c ), and M
nj

j = F−1
j (Fj(M̃j)∩Snj+pj), 2 ≤ j ≤ r, and set fi = Fi|Mi

.

Therefore, M̃i = R+ ×id Mi and Fi is the cone over fi. Observe that ‖f1‖
2 = c,

‖fj‖
2 = 1, 2 ≤ j ≤ r. We can write for T = (t1, . . . , tr) ∈ Er, F (T, y1, . . . , yr) =

(t1f1(y1), . . . , trfr(yr)) and ‖F (T, y1, . . . , yr)‖
2 = ct21 + t22 + · · · + t2r . We conclude that,

locally, Mn = F−1(F (M̃n+1) ∩ Qn+p
c ) = Mn1 ×

c
× Mnr and f = F |M = f1 × c

× fr, as
desired.

Proof of Theorem 1: As above, the cone of f has KM̃ ≤ 0 and minimal index of relative
nullity. Thus it has flat normal bundle by Theorem 1 in [4]. Then, so do f and we can
apply Theorem 4 for r = p.

Proof of Corollary 2: Since the relative nullity is all absorbed by the warping factor, the
decomposition of F is globally well defined. The only singular point of F is the origin,
so each factor fi is complete.
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Proof of Theorem 3: Similarly, we take the cone F of f for which it applies Theorem 1
in [7]. We have that either F splits as a product of p − 1 cones, or it is a composition
of a product of p − 1 nowhere hypersurfaces Fi of nonpositive sectional curvature and
a flat hypersurface H : U ⊂ En+p → En+p+1, F = H ◦ (F1 × · · · × Fp−1). The first case
occurs when the nullity of F (or, equivalently, of f) coincides with its relative nullity;
see the remark below Theorem 1 in [7]. The same argument as for Theorem 4 takes
care of the first case, so we can restrict ourselves to the second one.

We have that the second fundamental form of F decomposes orthogonally as scalar
bilinear forms, αF = β1 ⊕

⊥ · · · ⊕⊥ βp, where βp = αH |TM̃×TM̃ has relative nullity ∆p of
codimension one, βj = αFj

has relative nullity ∆j of codimension two, 1 ≤ j ≤ p − 1,
and ∆⊥

F = ∆⊥
1 ⊕ · · · ⊕ ∆⊥

p . Therefore, by (1) the same property holds for f . That is,
T⊥

f M decomposes orthogonally as line bundles, T⊥

f M = L1 ⊕ · · ·⊕Lp, each Li spanned

by a unitary vector field ξi, rank A
f
ξp

= 1, rankA
f
ξj

= 2, and

∆⊥

f = Im A
f
ξ1
⊕ · · · ⊕ Im A

f
ξp

, (2)

for the shape operators of f . Let α′ the orthogonal projection of α onto L = L⊥

p . Since

A
f
ξp

has rank one, α′ satisfies the Gauss equation for Mn in space of constant curvature c.
That α′ also satisfies the Codazzi and Ricci equations with the connection on L induced
by the normal connection ∇⊥ of f was proved in Proposition 5 of [7] using just (2),
since these equations are independent of the curvature of the ambient space form. So,
there is an isometric immersion f ′ : Mn → Qn+p−1

c whose second fundamental form is
τ ◦α′, for some parallel bundle isometry τ : L → T⊥

f ′M . In particular, νf ′ = n−2(p−1).
Therefore, Theorem 1 applies to f ′ which is then a c–product of p− 1 hypersurfaces. It
only remains to show that f is a composition f = h ◦ f ′.

The Codazzi equation for A
f
ξp

gives

A
f
ξp

[X, Y ] = A
f

∇⊥

X
ξp

Y − A
f

∇⊥

Y
ξp

X ∈ ∆⊥

α′ , ∀ X, Y ∈ Ker A
f
ξp

.

This and (2) imply that 〈∇⊥

Xξp, ξj〉A
f
ξj

Y = 〈∇⊥

Y ξp, ξj〉A
f
ξj

X, for all X, Y ∈ Ker A
f
ξp

,

1 ≤ j ≤ p − 1. Again by (2) and rankA
f
ξj

= 2 we easily obtain ∇⊥

Xξp = 0, for all

X ∈ Ker A
f
ξp

. Thus the bundle W := {∇̃Xξp : X ∈ TM} ⊂ Im A
f
ξp
⊕ L is a line bundle

with W ∩ L = 0. We conclude that

Γ := W⊥ ∩ (Im A
f
ξp
⊕ L)

is a vector bundle of rank p − 1, with Γ ∩ TM = 0. Moreover, if Φ := IdTM ⊕ τ , by
definition of Γ and α′, and the parallelism of τ we get that ∇̃Xη ∈ TM ⊕ L, and

∇̃′

XΦη = Φ∇̃Xη, ∀ X ∈ TM, (3)

where ∇̃ and ∇̃′ stand for the connections of Qn+p
c and Qn+p−1

c , respectively.
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Let G : Γ → Qn+p−1
c , G(ηx) = exp′f ′(x)Φηx, where ηx ∈ Γ(x), and exp′ (resp. exp)

stands for the exponential map of Qn+p−1
c (resp. Qn+p

c ). By the transversallity between
Γ and TM , there is an open neighborhood N ⊂ Γ of the 0-section such that G|N is a
local diffeomorphism onto the open subset U = G(N) ⊂ Qn+p−1

x . Let h′: N → Qn+p
c be

the immersion h′(ηx) = expf(x)ηx. Using (3) we easily check that G and h′ define the
same metric on Nn+p−1. Hence, h = h′ ◦ G−1|U : U ⊂ Qn+p−1

x → Qn+p
c is an isometric

immersion and (h ◦ f ′)(x) = h(G(0x)) = h′(0x) = f(x).

Remark 7. The construction in the last part of the above proof shows that Proposi-
tion 8 in [1] also holds for any space form as ambient space.
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