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Bohmian mechanics is a causal interpretation of quantum mechanics in which particles describe
trajectories guided by the wave function. The dynamics in the vicinity of nodes of the wave function,
usually called vortices, is regular if they are at rest. However, vortices generically move during time
evolution of the system. We show that this movement is the origin of chaotic behavior of quantum
trajectories. As an example, our general result is numerically displayed in the two dimensional
isotropic harmonic oscillator.
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De Broglie-Bohm (BB) approach of quantum mechan-
ics is experienced an increased popularity in nowadays.
This is due to it combines the accuracy of the stan-
dard quantum description with the intuitive insight de-
rived from the causal trajectory formalism, thus provid-
ing a powerful theoretical tool to understand the physi-
cal mechanisms underlying microscopic phenomena [1, 2].
Although the behavior of quantum trajectories are very
different from classical solutions it can be used to gain
intuition in many physical phenomena. Numerous exam-
ples can be found in different areas of research. In par-
ticular, we can mention studies of tunneling of smooth
potential surfaces [3], the quantum back-reaction prob-
lem [4] or ballistic transport of electrons in nanowires
[5].

According to BB theory of quantum motion, a parti-
cle moves in a deterministic orbit under the influence of
the external potential and a quantum potential gener-
ated by the wave function. This quantum potential can
be very intricate because it carry on wave interferences.
Based on it, Bohm already predicted complex behavior
of the quantum trajectories in his seminal work [6]. This
was confirmed recently in several studies. These numer-
ical works have shown the presence of chaos in various
systems [7]. However, the mechanism that cause such a
complex behavior is still lacking. In this letter we show
that movement of the zeros of the wave function, called
vortices in the literature, implies chaos in the dynam-
ics of quantum trajectories. Such a movement perturb
the velocity field producing transverse homoclinic orbits
which generates the well known Small horseshoe, origin
of complex behavior. Our assertion is based on an ana-
lytical proof in a simplified model which resembled the
velocity field near vortices. Moreover, we present a nu-
merical study in a 2-D isotropic harmonic oscillator that
display a route to chaos dominated by this mechanism.

The fundamental equations in the BB theory are de-
rived by introducing the wave function in polar form,
ψ(r, t) = R(r, t) eiS(r,t) (throughout the paper h̄ is set
equal to 1), into the time–dependent Schrödinger equa-

tion, thus obtaining two real equations:
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which are the continuity and quantum Hamilton–Jacobi
equations, respectively. Here, the last term in the left–
hand–side of Eq. (2) is the so–called quantum potential,
a non–local function determined by the quantum state,
which, together with V , determines the total force acting
on the system. Similarly to what happens in the usual
classical Hamilton–Jacobi theory, quantum trajectories
of a particle of mass m can then be defined by means of
the following velocity field equation:

v = ṙ =
1

m
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i
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|ψ|2
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Vortices appear naturally in the BB framework. They
result from wave function interferences so they have no
classical explanation. In systems without magnetic field,
the bulk vorticity ∇ × v in the probability fluid is de-
termined by the points where the phase S is singular.
This may occur only at points where the wave funcions
vanishes. This condition is fulfilled by isolated points
in a 2-D system and lines in a 3-D system. Due to the
single-valuedness of the wave function, the circulation Γ
along any closed contour ξ encircling a vortex must be
quantized, that is,

Γ =

∫

ξ

ṙdr =
2πn

m
, (4)

with n an integer [8, 9]. So, velocity v must diverge as
one approaches to a vortex. In fact, the time dependent
velocity field in the vicinity of a vortex located at time t
in rv(t) is given by
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FIG. 1: Poincare surface of section for the quantum trajecto-
ries generated by the wave function of Eq. (7) with b = c and
a/b = 0 (a) , 0.0553 (b), 0.1138 (c) and 0.17651 (d) with fixed
value of γ1 = 3.876968 and γ2 = 2.684916. The trajectory of
the vortex of the corresponding wave functions are showed in
Fig. 2.

where w ≡ ∇ψ(rv(t)) [10, 11]. We consider here 2-D
systems but the generalization is straightforward.

Before presenting our analytical results we show a nu-
merical simulation of quantum trajectories in a system
consisting of a particle of unit mass in 2-D isotropic
harmonic oscillator. We have set the angular frequency
ω = 1, so the Hamiltonian of the system results

H = −
1

2
(
∂2

∂x2
+

∂2

∂y2
) +

1

2
(x2 + y2). (6)

Its eigenenergies are Enxny
= nx + ny + 1 and

eigenfunctions φnxny
(x, y) = exp(− 1

2 (x2 +

y2))Hnx
(x)Hny

(y)/
√

π 2nx+ny nx! ny! with nx = 0, 1, ...,
ny = 0, 1, ... and Hn the n-th degree Hermite polynomial.

As initial state we choose a general combination of the
first tree eigenstates of the Hamiltonian of Eq. (6)

ψ0 = aφ00 + b exp(−iγ1)φ10 + c exp(−iγ2)φ01, (7)

with a, b, c, γ1 and γ2 real numbers and a2 + b2 + c2 = 1,
the normalization condition. A remarkable point is that
this state generates a periodic time dependent velocity
field with only one vortex. Moreover, the trajectory of
the vortex rv(t) can be obtained analytically resulting

(xv(t), yv(t)) = ( a√
2b

sin(γ2−t)
sin(γ1−γ2)

, a√
2c

sin(γ1−t)
sin(γ1−γ2)

). This fact

allow us to see the influence of the movement of a vortex
in the dynamics of the quantum trajectories without tak-
ing into account the possibility of instantaneous creation
or annihilation of a vortex pair with opposite circulation
[11, 12]. This important phenomenon will be studied
elsewhere [13].

The non-autonomous velocity field generated by the
wave function of Eq. (7) is periodic so the best surface of
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FIG. 2: Path described by the vortex of the velocity field
generated by wave functions of Eq. (7) with b = c and a/b = 0
(filled circle) , 0.0553 (dotted line), 0.1138 (dashed line) and
0.17651 (solid line) with fixed value of γ1 = 3.876968 and
γ2 = 2.684916.
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FIG. 3: Part of the Poincare surface of section for the quan-
tum trajectories generated by the wave function of Eq. (7)
with small values of a/b. The parameter b = c and a/b =
0.01082 (a) , 0.02175 (b), 0.0328 (c) and 0.0440 (d) with fixed
value of γ1 = 3.876968 and γ2 = 2.684916.

section is given by fixing t = 2πn with n = 0, 1, .... (also
called a stroboscopic view). In Fig. 1 it is showed a sur-
face of section with b = c and a/b = 0, 0.0553, 0.1138
and 0.17651 with fixed value of γ1 = 3.876968 and
γ2 = 2.684916. The trajectory of the vortex for the cases
studied in Fig. 1 is plotted in Fig. 2. It is clearly observed
a transition to chaos as the parameter a/b is increased.
If the position of vortex is fixed [see Fig. 1(a)] the tra-
jectories are regular and no chaos is present. However,
irregular dynamics is observed for small a/b [Fig. 1(b)].
The transition to irregular dynamics is showed in Fig. 3.
The movement of the vortex produce a saddle point near
(0.6, 0.75) and the stable and unstable manifold has a
topological transverse intersection generating the well
known homoclinic tangle [14].

Now we will show analytical results that explain the
numerical experiments presented before. Our starting
point is the following model: a particle of unit mass
on the plane in the velocity field of Eq. (5) with the
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stress that the trajectory of the vortex is a time peri-
odic curve with period T0 and wx = iwy [15]. So, the
non-autonomous vector field is equal to

vx =
−(y − yv(t))

(x − xv(t))2 + (y − yv(t))2

vy =
(x− yv(t))

(x − xv(t))2 + (y − yy(t))2
. (8)

Taking x̄ = x−xv(t) ȳ = y−yv(t) and writing in polar
coordinates (x̄ = r cos(θ), ȳ = r sin(θ)), the velocity field
of Eq. (8) results

vr = r[sin(θ)yv(t) + xv(t) cos(θ)]

vθ =
1

r
+ cos(θ)yv(t) − xv(t) sin(θ).

This non-autonomous velocity field can be seen
as a perturbation of the autonomous velocity field
v0 ≡ (0, 1

r
) with Gt(r, θ) ≡ (r[sin(θ)yv(t) +

xv(t) cos(θ)], cos(θ)yv(t)− xv(t) sin(θ)) the time-periodic
perturbation. Note that it is induced by the time depen-
dent Hamiltonian

H(r, θ, t) =
1

2
log(r) + r[cos(θ)yv(t) − sin(θ)xv(t)]. (9)

We consider periodic curves rv(t) such that

∫ T0

0

cos(θ)yv(t) − xv(t) sin(θ)dtds 6= 0 (10)

Under these hypothesis it is proved the following:

there exists a saddle periodic point of the flow associ-
ated to the vector field of Eq. (8), exhibiting a homoclinic
transversal intersection.

This is the main result of the letter which implies that
quantum trajectories show topological chaos. We illus-
trate here the geometrical arguments of the proof and we
leave the full details for a future publication [16].

First, let us consider the flow Φ0
t associated to the au-

tonomous velocity field v0. This flow is defined for every
(x, y) 6= (0, 0). So, given a positive time T0 follows that
it is well defined the map R0 = ΦT0

: <2 \ {(0, 0)} →
<2 \ {(0, 0)}. The map R0 keeps invariant the set of
points with same radius; i.e.: it keeps invariant the cir-
cles. Moreover, the circles are rotated with a rate of ro-
tation inversely proportional to the radius [see Fig. 4(a)
and (b)]. Observe that the map R0 resemble a twist map
with the difference that in the present case, the rate of
rotation grows to infinity when the radius is reduced. In
other words, if the mapR0 is written in polar coordinates,
follows that R0(r, θ) = (r, θ+ 1

r
T0). We want to mention

that for generic conservative perturbations of the twist
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r

FIG. 4: (a) Schematic plot of the invariants of the non-
perturbed map R0 generated by the autonomous velocity field
v0 (solid lines). With dashed line it is plotted a segment with
θ = 0. (b) Non-perturbed mapped R0 of the segment with
θ = 0 (dashed line). (c) It is showed with dashed line the
image of the perturbed map R of a circle Cr with radius r
(solid line). A point q ∈ R(Cr) ∩ Cr is also plotted.

map was proved in Ref. [17] the existence of homoclinic
points associated to a saddle periodic point. This result
is also extended for time periodic perturbation of a flow
which exhibit an elliptic singularity [see Ref.[18]].

Assuming that the vortex moves periodically along a
curve, the time dependent velocity field vt = v0 +Gt in-
duce a flow Φt which is defined for every (x, y) 6= {(0, 0)}.
So, it is well defined the map R = ΦT0

: <2 \ {(0, 0)} →
<2 \{(0, 0)}. The flow Φt is generated by a time periodic
Hamiltonian [Eq. (9)], so R is a conservative map. From
this property and using that the map can be extended
continuously to (0,0) defining R(0, 0) ≡ (0, 0), follows
that the map R verify:

Property A: The map R also has the property that
circles are rotated with a rate of rotation inversely pro-
portional to the radius. In other words, if the map R is
written in polar coordinatesR(r, θ) = (Rr(r, θ), Rθ(r, θ)),
then ∂rR

θ is of the the order of 1
r2 .

Property B: The image of a small circles of radio r
intersect transversally this circle; i.e: R(Cr) ∩ Cr 6= ∅
and if q ∈ R(Cr)∩Cr then the tangent to R(Cr) in q and
the tangent of Cr in q are not collinear [see Fig. 4(c)].

From properties A and B of the perturbed map R fol-
lows that for arbitrarily small r the map R has a fix
point p0 with radius smaller than r and exhibiting a
homoclinic transversal points. It is possible to show r
does not have to be extremely small. This is done in
two steps. First, we see that for each r we take a point
(r, θ0(r)) such that Rr(r, θ0(r)) = r which existences is
guarantee by property B. Then, it is taken the angular
coordinate θ1(r) = Rθ(r, θ0(r)). From property A follows
that the variation of θ1(r) is larger than the variation of
θ0(r); in fact, the derivative of θ1(r) is of the order of
1
r2 . Therefore, the graph of both functions has to inter-
sects each other, which implies that there is r0 such that
R(r0, θ0(r0)) = (r0, θ0(r0)) [see Fig. 5 (a) ].

To show that p0 has a transversal homoclinic point,
first it is observed that the circle C0 of constant radius
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FIG. 5: Schematic plots to show the geometrical properties
needed to prove the existence of a saddle periodic point with
homoclinic transversal intersection. (a) It is represented with
thick solid line the curve r → (r, θ0(r)), and with thick dashed
line the curve r → R((r, θ0(r))) = (r, θ1(r)) which intersect
in the periodic point p0. Two invariants circles (Cr1

and
Cr2

) and their perturbed mapping are also plotted. Note the
transversal intersection between the circles an their respective
mapping (points q1 and q2). (b) It is plotted with thick dashed
line the mapping of the rectangle B (thick solid line) contained
the periodic point p0. With dash-dotted lines it is plotted the
segments γu and γs that connects the periodic point p0 with
the transversal intersection q0. See text for more details.

that contains p0 and its image, R(C0), has at least two
points of intersection (see Fig. 5 (b) ). Let us denote q0
this other point of intersection of R(C0) with C0; let us
also take γu and γs the connected arc of R(C0) and C0

respectively that contain p0 and q0. Then, it is taken
a rectangle B containing p0 and bounded by two pieces
of arcs C1 and C2 contained in Cr1

and Cr2
respectively

and two segments l1 and l2 contained in two different
rays of constant angle. It is proved that B is contracted
by R along directions closed to the tangent of the circles
Cr and expanded along vectors closed to the tangent of
R(Cr). Moreover, it is proved the following: i) R(B) is
closed to γu and intersects C0 in a point closed to q0; ii)
R−1(B) is closed to γs and intersects C0 in a point closed
to q0. The two previous items implies that the unstable
manifold of p0 is closed to γu and the stable is closed to
γs. In [19] it is possible to find similar argument to the
case where the “vortex is in the infinite”. It is important
to emphasize that, although we have been able to prove
rigorously that motion of the vortex implies chaos in the
model presented before, it seems that the former geomet-
rical properties are fulfilled by the general velocity field
[Eq. (5)] as was showed by the numerical experiments.

In summary, we have found an universal mechanism
which leads that quantum trajectories have chaotic be-
havior. We show that the movement of vortices is a
generic time dependent perturbation which creates a sad-
dle point with a transversal homoclinic cross of their sta-
ble and unstable manifold. This transversal cross gener-
ates the well known Small horseshoe which is the origin
of the complexity . Our results are of great importance
due to the fact that such a deterministic orbits are an
important theoretical tool for understanding and inter-
preting several quantum processes in different fields. On
the other hand, our geometrical analysis of a singular
velocity field could be useful for theoretical and applied
problems of dynamical systems, as for example advection
in non-stationary fluids [20].
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