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Abstract

In this paper we develop the vectorial Ribaucour transformation for Euclidean
submanifolds. We prove a general decomposition theorem showing that under
appropriate conditions the composition of two or more vectorial Ribaucour transfor-
mations is again a vectorial Ribaucour transformation. An immediate consequence
of this result is the classical permutability of Ribaucour transformations. Our main
application is to provide an explicit local construction of an arbitrary Euclidean
n-dimensional submanifold with flat normal bundle and codimension m by means
of a commuting family of m Hessian matrices on an open subset of Euclidean space
R™. Actually, this is a particular case of a more general result. Namely, we obtain a
similar local construction of all Euclidean submanifolds carrying a parallel flat nor-
mal subbundle, in particular of all those that carry a parallel normal vector field.
Finally, we describe all submanifolds carrying a Dupin principal curvature normal
vector field with integrable conullity, a concept that has proven to be crucial in the
study of reducibility of Dupin submanifolds.

An explicit construction of all submanifolds with flat normal bundle of the Euclidean
sphere carrying a holonomic net of curvature lines, that is, admitting principal coordinate
systems, was given by Ferapontov in [§]. The author points out that his construction
“resembles” the vectorial Ribaucour transformation for orthogonal systems developed in
[T3]. The latter provides a convenient framework for understanding the permutability
properties of the classical Ribaucour transformation.

This paper grew out as an attempt to better understand the connection between those
two subjects, as a means of unravelling the geometry behind Ferapontov’s construction.
This has led us to develop a vectorial Ribaucour transformation for Euclidean subman-
ifolds, extending the transformation in [I3] for orthogonal coordinate systems. It turns
out that any n-dimensional submanifold with flat normal bundle of R"™™ can be locally
transformed by a suitable vectorial Ribaucour transformation to the inclusion map of an
open subset of an n-dimensional subspace of R"*™. Inverting such a transformation yields
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the following explicit local construction of an arbitrary n-dimensional submanifold with
flat normal bundle of R by means of a commuting family of m Hessian matrices on
an open subset of R™. Notice that carrying a principal coordinate system is not required.

Theorem 1. Let @1, ..., @, be smooth real functions on an open simply connected subset
U C R" satisfying
[Hess ;, Hess ;] =0, 1<i,j<m,

and let G: U — M,sxm(R) be defined by G = (Vp1, ..., Vo). Then for any x € U there
exists a smooth map Q: 'V — GI(R™) on an open subset V- C U containing x such that
dQ=G'dG and Q+ Q' = G'G + 1. Moreover, the map

= (")

with w = (u1,...,u,) € V and p(u) = (p1(u),...,om(u)) defines, at regular points, an
immersion f: V — R"™ with flat normal bundle.

Conversely, any isometric immersion f: M™ — R™™™ with flat normal bundle can be
locally constructed in this way.

The case of submanifolds of the sphere can be easily derived from the preceding result
and the observation that any such submanifold arises as the image of a unit parallel normal
vector field to a submanifold with flat normal bundle of Euclidean space (see Corollary
[9). In this way we recover Ferapontov’s result for the holonomic case (see Theorem 20),
thus proving his guess correct.

Theorem [M is actually a particular case of a more general result. In fact, we ob-
tain a similar local explicit construction (see Theorem [[§) of all isometric immersions
f: M7t — RMHP carrying a parallel flat normal subbundle of rank m, in particular of
all those that carry a parallel normal vector field, starting with an isometric immersion
f: M™ — R"P and a set of Codazzi tensors ®,...,P,, on M™ that commute one with
each other and with the second fundamental form of f. We refer the reader to [I] for
results of a global nature on such isometric immersions, with strong implications for the
submanifold geometry of orbits of orthogonal representations.

By putting together the preceding result with Theorem 8 of [6], we obtain an explicit
construction (see Theorem B2) in terms of the vectorial Ribaucour transformation of all
Euclidean submanifolds that carry a Dupin principal curvature normal vector field with
integrable conullity (see Section 7 for the precise definitions), a concept that has proven
to be crucial in the study of reducibility of Dupin submanifolds (see [6]).

A key feature of the Ribaucour transformation for submanifolds (in particular, orthog-
onal systems) is its permutability property. Namely, given two Ribaucour transforms of a
submanifold, there is, generically, a fourth submanifold that is a simultaneous Ribaucour
transform of the first two, giving rise to a Bianchi quadrilateral.



More generally, for any integer k > 2 we define a Bianchi k-cube as a (k + 1)-tuple
(Co, .. .,Ck), where each C;, 0 < i < k, is a family of submanifolds with exactly (]:)
elements, such that every element of C; is a Ribaucour transform of the unique element
of Cyp and such that, for every f € Csy1, 1 < s < k —1, there exist unique elements
fl, cee fs+1 € C; satisfying the following conditions:

(i) f is a Ribaucour transform of fi,. .., foi1.

(17) For each pair of indices 1 < i # j < s+ 1 there exists a unique element fij €Csq
such that {fi;, fi, f;, f} is a Bianchi quadrilateral.
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The following Bianchi k-cube theorem was proved in [II] for k£ = 3 in the context of
triply orthogonal systems of Euclidean space. A nice proof in the setup of Lie sphere
geometry was recently given in [2], where also an indication was provided of how the
general case can be settled by using results of [I2] for discrete orthogonal nets together
with an induction argument.

Theorem 2. Let f: M™ — RN be an isometric immersion and let f1, ..., fi be indepen-
dent Ribaucour transforms of f. Then, for a generic choice of simultaneous Ribaucour
transforms fi; of f; and f; such that { fi;, fi, fj, f} is a Bianchi quadrilateral for all pairs
{i,j} C {1,...,k} with i # j, there exists a unique Bianchi k-cube (Cy,...,Cx) such that
Co={ft, Co={f,..-. fu} and Co = {fij}hr<izj<n-

We give a simple and direct proof of Theorem Blin Section 5, where the precise mean-
ings of independent and generic are explained. The proof relies on a general decomposition
theorem for the vectorial Ribaucour transformation for submanifolds (Theorem [[4]), ac-
cording to which the composition of two or more vectorial Ribaucour transformations with
appropriate conditions is again a vectorial Ribaucour transformation. The latter extends
a similar result of [I3] for the case of orthogonal systems and implies, in particular, the
classical permutability of Ribaucour transformations for surfaces and, more generally, the



permutability of vectorial Ribaucour transformations for submanifolds.

Acknowledgment. We are grateful to the referee for useful remarks and for bringing to
our attention the papers [9] and [I0]. As pointed out by him, in those articles a canonical
correspondence between Hamiltonian systems of hydrodynamic type and hypersurfaces
of a (pseudo) Euclidean space is provided, and that construction coincides when m = 1
with (in fact it is the “Legendre dual” of) the one given by Theorem [l He also remarks
that commuting families of Hessian matrices arise in the theory of Hamiltonian systems
of hydrodynamic type by Dubrovin, Novikov and Tsarev among others.

81 Preliminaries.

Let M™ be an n-dimensional Riemannian manifold and let £ be a Riemannian vector
bundle over M™ endowed with a compatible connection V¢. We denote by I'(£) the space
of smooth sections of ¢ and by R¢ its curvature tensor. If ( = £* ®@ n = Hom(&,n) is
the tensor product of the vector bundles £* and 7, where ¢* stands for the dual vector
bundle of £ and 7 is a Riemannian vector bundle over M™, then the covariant derivative
VZ eT(T*M & () of Z € T'(() is given by

(V& 2)(v) = Vi Z(v) = Z(Viv)

forany X € I'(T'M) and v € I'(§). In particular, if w € I'(T*M ®¢) is a smooth one-form
on M™ with values in £, then Vw € I'(T*M @ T*M ® £) is given by

Vw(X,Y) = (V5 %0) (1) = Viw(Y) - w(VxY),

where in the right hand side V denotes the Levi-Civita connection of M™. The exterior
derivative dw € T'(A?T*M ® &) of w is related to Vw by

dw(X,Y) =Vw(X,Y) — Vw(Y, X).

The one-form w is closed if dw = 0. If Z € I'(§), then VZ =dZ € I'(T*M ® £) is the
one-form given by VZ(X) = V5 Z. In case £ = M x V is a trivial vector bundle over M™,
with V' an Euclidean vector space, that is, a vector space endowed with an inner product,
then ['(T*M ® &) is identified with the space of smooth one-forms with values in V. We
use the same notation for the vector space V' and the trivial vector bundle £ = M x V
over M".

Given Z; € T'(§* ®@n) and Z; € I'(n* ® ), we define Zy7; € T'(£* ® ) by

ZyZy(v) = Zy(Z1(v)), v € T(§).
For Z € T'(£* ®@ 1), we define Z! € T'(n* ® £) by
(Z'(u),v) = (u, Z(v)), weT(n) and v e T(§).
For later use, we summarize in the following lemma a few elementary properties of

covariant and exterior derivatives, which follow by straightforward computations.
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Lemma 3. The following facts hold:

(i) If Zy e (" ®@n) and Zy € T'(n* @), then d(Z2Zy) = (dZ2)Zy + Zy(dZy).
(it) If Z e T(£* @ n) then dZ' = (dZ)".

(iii) If Z € T(€) then d*Z(X,Y) = R*(X,Y)Z.

(iv) If (=& ®@n and Z € T(C) then (RY(X,Y)Z)(v) = R"(X,Y)Z(v) — Z(RS(X,Y)v).

We also need the following result.

Proposition 4. Let £,n be Riemannian vector bundles over M™ and w € I'(T*M ® &).
Set(=n*"@TM andy=n*®¢&. Let ® € I'(T*M ® ) be a closed one-form such that

Vw(X,®,Y) =Vw(Y,®,X) forall uel(n), (1)

where we write ®,X = ®(X)(u). Then the one-form p = p(w,®) € I'(T*M ® ) defined
by p(X)(u) = w(P,X) is also closed.

Proof: We have

Vo(X,Y)(w) = Vip(Y) (1) = p(Y)(Viu) = p(VxY)(u)
= V5w(®,Y) = w(Pyy,Y) — w(®,VxY)
= Vw(X,®,Y) +w(VO(X,Y)u). 8 (2)

The following consequence of Proposition Bl will be used throughout the paper.

Corollary 5. Under the assumptions of Proposition[j, assume further that M" is simply-
connected and that & and n are flat. Then there exists Q(w, ®) € I'(n* ® &) such that

dQw, P)(X)(u) = w(®,X) forall X € TM and u € .

Proof: Since ¢ and 7 are flat, the same holds for v = n*®¢ by LemmaBl The manifold M"
being simply-connected, a one-form p € I'(T*M ® ) is exact if and only if it is closed. §

§2 The Combescure transformation.

In this section we introduce a vectorial version of the Combescure transformation for
submanifolds and derive a few properties of it that will be needed later.

Proposition 6. Let f: M" — RN be an isometric immersion of a simply connected
Riemannian manifold, let V' be an Euclidean vector space and let ® € I'(T*MQV*QT M).
Then there exists F € T(V* @ f*TRYN) such that

dF(X)(v) = fi®,X forall X e TMand veV (3)
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if and only if ® is closed and satisfies
a(X,9,Y) =a(Y,®,X) forallvel(V), (4)
where o: TM x TM — T+M is the second fundamental form of f.

Proof: Applying @) for w = f, € I(T*M @ f*TRY) and ® € I'(T*M @ V* @ TM) we
obtain that the one-form p = p(f,, ®) € T(T*M @ V* @ f*TRY) satisfies

Vo(X,Y)u = a(X, ,Y) + f.(VO(X,Y)u).

Therefore, ® being closed and (@) are both necessary and sufficient conditions for p to be
closed. Since V and f*T'R¥ are flat, the result follows from Corollary B 1

We call F a Combescure transform of f determined by & if, in addition,
(P, X,Y) =(X,®,Y) forallvel(V). (5)

Observe that F is determined up to a parallel element in T'(V* & f*TR")). Notice also
that for each fixed vector v € V, regarded as a parallel section of the trivial vector bundle
V, we have that F(v) € T'(f*TRY) satisfies dF(v)(X) = f,®,(X), and hence F(v) is a
Combescure transform of f in the sense of [B] determined by the Codazzi tensor ®,,.

Proposition 7. Let f: M" — RN be an isometric immersion of a simply connected
Riemannian manifold, let V' be an Fuclidean vector space and let & € T'(T*M QV*QTM)
be closed and satisfy ({{)). For F € T(V* @ f*TRY) satisfying (@) write

F = fuw' + 5, (6)
where w e T(T*M @ V') and 8 € T(V* @ T+M). Then
a(X,w' (v) + (VEETMBYy =0 for allv e T(V), (7)

and ® 1s given by
©,X = (Vx *™Mu' o — A X. (8)

Conversely, if w € T(T*M @ V) and 3 € T(V* @ T+M) satisfy (1), then [3) holds for
F =F(w,B) and ® = ®(w, B) given by (@) and [8), respectively. In particular, ® is closed
and ([{l) holds. Moreover, ® satisfies @) if and only if w = dy for some p € I'(V).
Proof: Denote by V* the covariant derivative of V* @ f*TRY. Then,

dF(X)(v) = (Vi fw v + (ViBv = VET fwt(v) — fw (Vo) + (Vi B)o
= £ Vxw!(0) + a(X,0!(v) — fw' (Vo) + (VST M B — fAg X.
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Since, on the other hand, F satisfies ([B)), then (@) and (&) follow.
Conversely, if w and [ satisfy (), then the preceding computation yields () with &
given by (). Finally, taking the inner product of ([§) with Y € T'(T'M) gives

(0, X,Y) = (v, Vw(X,Y)) — (Agwm X, Y),
thus the symmetry of Vw is equivalent to (H). B

Proposition 8. Let f: M" — RN be an isometric immersion of a simply connected
Riemannian manifold. Let V;, 1 < 1 < 2, be Fuclidean vector spaces, and assume that
w; €T(T*M @V;) and B; € (V¥ @ T+ M) satisfy

(X, wl(v) + (V¥ T MB)o =0 for all v € T(V}). (9)
Set Fy = fuwl + G and & X = (V¢ “"Mwhyv, — Ag. ) X. Then,
Vw; (X, q)in) = Vw;(Y, (I){)jX) for all v; € T'(V}) (10)
if and only if
<<I>f,iX, q)in> = (q)iiY, q)in> for all v; e I'(V;) and v; € I'(Vj). (11)
When this is the case, there exists Qi = Q(w;, ®7) € I'(V* @ V;) satisfying
dQ;(X)(vy) = wi((I)Z;jX) for all v; € T'(V}). (12)
In particular,
dQ; = FLdF, (13)
and
Qj + QG = FFj = wwj + Bi B, (14)

up to a parallel element in T'(V; @ V).

Proof: Since w; and f; satisfy (), we have a(X,®]Y) = a(Y, ®] X) by Proposition [
Thus, it follows from

<(I):;ZX7 (I){)]Y> = <Ui7 vwi(Xv (I){}]Y» - <Oé(X, (I)%]Y), 6@(%))

that conditions () and (1) are equivalent. If () holds, then by Corollary B there
exists (;; € ['(V} ® V) satisfying (I2). On the other hand,

FLdF;(X)v; = j—“ff*(l)f)jX = wi(CI){}jX) for all v; € T'(V;),

and ([3) follows. Finally, (I3)) implies that the exterior derivatives of both sides in the
first equality of () coincide. 1

83 The vectorial Ribaucour transformation.

We now introduce the main concept of this paper.
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Definition 9. Let f: M™ — RY be an isometric immersion of a simply connected
Riemannian manifold, and let V' be an Euclidean vector space. Let ¢ € T'(V) and
Bel(V*@T+M) satisfy (@) with w = dp, and let Q € ['(GI(V)) be a solution of
the completely integrable first order system

40 = FtdF (15)
such that
Q1 = FF, (16)
where F = f.w! + 3. If the map f: M" — RY given by
f=f-Faly (17)

is an immersion, then the isometric immersion f . M™ — RY, where M™ stands for M"
with the metric induced by f, is called a vectorial Ribaucour transform of f determined
by (¢, 3,€), and it is denoted by R, s0(f).

Remark 10. If dim V = 1, after identifying V* ®TfLM with TfLM then ¢ and (3 become
elements of C*°(M) and I'(T;} M), respectively, and () reduces to

(X, V) + V3 =0.

Moreover, Q = (1/2)(F,F) for F = f.Ve+ 5, and ([[0) reduces to the parameterization
of a scalar Ribaucour transform of f obtained in Theorem 17 of [5]. In this case, since €
is determined by ¢ and § we write f = R, 3(f) instead of f =R, ga(f).

Next we derive several basic properties of the vectorial Ribaucour transformation.
Proposition 11. The bundle map P € T((f*TRN)* @ f*TRN) given by
P=1-FQ'F (18)

1s a vector bundle isometry and .

f.=Pf.D, (19)
where D = [ —®q-1, € D(T*M @TM). In particular, f has the metric ( , )~ = D*( ).
Proof: We have

PP = -FQYF)-FQ'F)
=1 -FQ'F — FQYF + FQ Y FFQF.

Using (@) in the last term implies that the three last terms cancel out. Thus P is an
isometry. Now, using (B) and ([[H) we obtain

fo=f.—dFQ Yo+ FQLQO o — FQlw
= fo — fPo1, + FQ ' FAFQ o — FQLF'f,
= fu(I = ®g-1,) — FQ'F f(I — Pg1,) = Pf.D. 1



Proposition 12. The normal connections and second fundamental forms of f and f are
related by

Vi€ =PV (20)
and
Ape = D7H(Ag + Po-1e), (21)
or equivalently,
a(X,Y) =P(a(X,DY) + B3(Q H)'e(X)' DY). (22)

Proof: Let V denote the connection of f*TRY. Observing that dF'(X) vanishes on T+ M,
for (dF'(X)E, v) = (€, dF(X)v) = (£ fu®,(X)) = 0, and using (@), [[H) and ([IJ), we get

—foApeX + Vi€ = VxPE = Vi (§ — FQTIFY)

= —[ide X + V& —dF(X)Q ' FIE+ FQQUX)Q I FIE + FQIF(fL A X — V%E)
= —Pf.AX + PVxE — PLO(X)QLFE,
which gives ([20) and (£11). u

Proposition 13. The triple (@N,/@, Q) = (Q71p, PBQY)", Q1) satisfies the conditions
of Definition [ with respect to f, and f = R 54(f). Moreover, F = f.(d@)' + (3 and

P = (ID(dgb,B) are given, respectively, by
F=-FQ ' and D®, = —Dg1,. (23)
Proof: Since Q = dp = —Q 'wdg-1, + Q'w = Q'wD, we have

(Q'(v), X))~ = (v, 'Ww(DX)) = (DW'(Q N, X) = (WH(Q v, D7LX)™,

thus 3
DO = W (Q7)Y, (24)
where we have used that D~! is symmetric with respect to {, )~. We now prove that
~ *QTEM ~
a(X, QW)+ (Vy 7 Blu=0 foral vel(V). (25)
Equations (22)) and ([24) yield
(X, Q' (v) = Pa(X, W' (Q7) ) + B(Q7H) (X)W (27 ), (26)

whereas ([20) gives

(Ve T By = TEB) — BVY0) = PVEBEQ ) — A7) V)
= PV I @ — BB Q). (2)



It follows from (), 6) and 1) that ([Z3) holds.
We now compute F = f,Q' + 3. Using ([[[) in the first equality below, ([24]) in the

second and (@) in the last one, we obtain
F=PLDY + 3 =P(fu' Q) +pQ)) = (I - FQ ' FHFQ ) = —FQ~". (28)
Then, it follows from ([H), ([[H) and X)) that
FrdF = (Y FdrQ™ — () FFQdQ™ = dQ,
and o o
FF=QNYFFQ'=0+Q"
Therefore,
Rosalf)=F—FQlg=f-FQlp— (-FQA)Q0 "o = f.
Finally, the second formula in (£3)) follows from

F0,(X) = dF(X)v = —dF(X)Q v+ FQ1dQ(X)Q v
— _Ji*%flv(X) + FQ lwdg1,(X) = —Pf.Pq1,(X)
= —f.D7'®q1,(X).

84 The decomposition theorem.

A fundamental feature of the vectorial Ribaucour transformation for submanifolds is
the following decomposition property, first proved in [I3] in the context of orthogonal
systems.

Theorem 14. Let Ry, p0(f): M — RN be a vectorial Ribaucour transform of an iso-
metric immersion f: M™ — RY. For an orthogonal decomposition V =V, ® Vs, define

j =7y, 00, Bi=PBl, and Qy=my oy, eT(Vi;oV), 1<4,j<2.  (29)
Assume that §;; is invertible and, for i # j, define Ry 0(pi, Bi, i) = (@4, B, Qi) by
@i = 0 — Q5 05, B = P60 — G;(G))  and Qi = Qi — Q3 Q55 Qs

where P; =1 — ij;jlf;. Then the triples (p;, 3;,€;) and (@;, Bi, Qi) satisfy the condi-
tions of Definition [d with respect to f and f;, respectively, and we have

Repalf) =Ry, 5.0, Ry, s.0,(f))
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Proof: That (¢j, 8;,€;), 1 < j < 2, satisfies the conditions of Definition [ with respect
to f is clear. In order to prove that (@;, 0;,€);) satisfies the conditions of Definition
with respect to f; for i # j we first compute w; = dp;. We have

@i(X) = wi(X) 4+ —dQi;(X)Q5 05 + Q0 dQ; (X)) oy — Q05 wi (X)
= wi(X) — Wi((I)J(X)Qg] ©;) + QZ]Q WJ((I)J(X)QN ©;) — Qiij_jle(X)
= wZ(DJX) QUQ (UJ(D X)

where D; =1 — <I>] . Then

(@ (v:), X)j = (v, wi(D; X) = ;0 w;(D; X))
= (Djw;(v;) — Djwi(92;) % (vi), X)
= (wi(v;) — wi(Q;)'Q;(vi), DT X)),
where (, ); denotes the metric induced by f;. Using that Dj_1 is symmetric with respect

to (, );, we obtain that
Djoo; = w; — wj(Q5;)' ;.

It follows from (22) that
00, (X, 04(01)) = Py (@(X, () — (X, wh (52502 (00)) + 3,257 (XYoot (1)
+0; (1) @7 (X) wi () 25 (vi)
where «; is the second fundamental form of f;. On the other hand, we obtain from
(VxBi)(vi) = Ve Bi(vi) — Bz(v}/(vz)
=P; (VX/GZ(UZ) ﬁ]( )tQt (vi) — ﬁZ(vXUZ) + /6]( )tQt (VXUZ))
and

V385 (Q55) 1% (0i) + 8;(Q551) Q% (V xvi)
—(Vxﬁj)(( i )tﬂﬁj(vi))—ﬁj( ()X (vi)) — B;(25;1)" d;(X) (vi)
that

(VxBi) (i) = Pi((VxBi)(vi) = (VxB;) ((Q551)1Q%; (vi) — B;(;) @7 (X)'wi(vy)
+0;(951) @7 (X)W (Q) €% (),

where we used d€2};(X) = ®/(X)'w}. It follows from (BI) and (BI)) that

o (X, & (v)) + (VxBi)(v;) = 0.

(31)
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Now we have
Fi= $y.8% 4+ B = Pif.Dit + Pyl = By(€5, 152,
= Pi(fuw} + B = fuf ()10 — Bi(;1)1; = Pi(Fi — F3(955)'Q)
=F — ]:](Q;JI)tQﬁj — ijj_jlf}fi + ij;jlf}fj(Qj_jl)tQﬁj
= Fi — FQ5' Qi
where we used that F}F; = Qj; + Qf;. Then,
FidF; = FUAF; — dF0; Qs + FiQ5 9,005 Qi — Fy07 )
= FldF; — FLAF;Q Qs + FLFQ5 dQy; 00y — FLF Q5 dQy — QL Q) FLdF,
+ QL () FEAF; Q5 Qg — Q8 () FLF Q5 dy, 0 Qs + Q8 () FEF; Q5 dSy;.
Using that dSj; = F} dF; and dS);; = Fj dF;, we obtain
Moreover,
FUF = (Ff = Q) D — 25 0)
= FIF; — FIFQ5 Q5 — QL(Q ) FLF; 4 QL () FLF0
= Qi — Q0 Qi + QF — QL) = Qi + QF,

which completes the proof that (g;, i, Q“) satisfies the required conditions.
Now write €2 in matrix notation as

Q1 Qo
Q= .
< Qa1 Qoo )

Since Q and ;; are invertible, then 2;; is invertible for 1 < i < 2 and

01— < Oy — 0 Q1,92 )
— 059 0 O Q5
In particular,
Q=0+ Q;ﬁQijQ;lein;il and Q;Z.lQUQj—jl = Q;Z.lQZ-ij—jl (32)

for 1 <17 # j < 2. Then,

Ropalf) =f— '7:97_1<P )
= f — F(07 (1 — Q2955 2) + Q3 (02 — D21 (1) "1 01))
= f— F1Q7 (o1 — Q12955 92) — Folloy (2 — Q1 Q' 1)
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On the other hand, by ([B2) and (B2) we have

R@i,ﬁ_i7f_2u(fj) = f ﬁQn@z B
=f- ]:QH w; — (Fi — ]:Q lQ S ( QWQH ©;)
= = (5 _]:iQiiIQiij )i — (Fild' — FiQ055 i )i

We conclude that R, 50(f) = Ry, 5.0, (f;) for 1 <i#j <2, 0

Remark 15. It follows from Theorem [4 that a vectorial Ribaucour transformation
whose associated data (@, 3,€)) are defined on a vector space V can be regarded as the
iteration of k = dimV scalar Ribaucour transformations.

In applying Theorem [I4], it is often more convenient to use one of its two following
consequences.

Corollary 16. Let f; = Ry, p.0.(f): M — RN 1 <4 <2, be two vectorial Ribaucour
transforms of f: M™ — RY. Assume that the tensors ® = ®(dy;, 3;) satisfy

[q)f,i,é[)ij] =0 forall v, eV; and v; €V, 1<i#j<2.
Set Fi = f(de;)" + Bi. Then there exists ;; € LV} ® Vi), such that

ji>

(33)

and such that o € T(V),8 € T(V* @ T+*M) and Q € T(V* @ V) defined by (24) for
V =V, @V, satisfy the conditions of Definition [ (and therefore the remaining of the
conclusions of Theorem [T4] hold).

Proof: The first assertion is a consequence of Proposition It is now easily seen that
pel(V),Bel(V*T+M), Qe T(V*® V) defined by 9) for V = V; @& V; satisfy the
conditions of Definition Bl with respect to f if and only if the same holds for (¢;, 5;, ;)
and, in addition, (B3)) holds. §

Corollary 17. Let fi = Ry, 5,01, (f): M™ — RN be a vectorial Ribaucour transform of
f: M™ — RN, Let (@q, B2, Qas) satisfy the conditions of Definition [d with respect to fi.
Assume further that ®* = ®(dps, 32) satisfies

[<I>2 <I>i1] =0, forall vi € V1, vy € V5,

v

where Dy} = —®] | for ' = O(depy, 41). Then there exist Qy; € D(VF @ Vi), i # j,
11 Y
such that

A, = FLdF, and FIF, = Q,+ Q'

jio

(34)
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where Fi = —F1Q and Fy = (f1).(dp2)" + B2. Now define
(02, B2, a2) = (P2 — Qarior, Py o — Sihy, Qoo — Q21 Q11 Q)
Qia = N1Q1p and Qo = — Q.

Then o € T(V), 3 e T(V* QT+ M) and Q € T(V* @ V) defined by (Z3) for V=V, ® V,
satisfy the conditions of Definition[d and Ry pa(f) = R, 55,00 (Rer,61,00 (f))-
Proof: By Proposition [[3, we have f = R, 5 q,,(f1) where

(@1, 41, 1) = (1 01, PLAUQE)", Q).
Moreover, Fi = (f1)«(d@,)t + 31 and ®; = ®(dpy, 3,) are given by

Fi=-F9Q7 and D1(T>11)1 = —CI%,1

1191

Thus, the existence of Q;; € DV ®V;), i # j, satisfying condition (B4) follows from
Proposition B applied to f; and the triples (@;, 5;,€2), 1 < i < 2. Now observe that
(2, B, Qog) = R@Jiﬁ(@Q,BQ,QQ), and hence (g, O, 9y) satisfies ([d) with respect to f;
and dQys = Fi dF, by Theorem [

It remains to check that dS; = Fi dF; and Q;; + Q; = F/F;, < i # j. From the
proof of Theorem [[@ (see ([BF)) we have Fy = Fy — F1Q Qo = Fo — F111Q15. Then,

fé dfl == —(ﬁ; - Q§2Q§1ff d(ﬁlgn) - —f; dflgn - féﬁl dQll -+ Qi2ff dfl
== —dﬁglgn - (le + inQ> dQll + (_232 dQll - d(Qngll)
- dQQl.
A similar computation shows that F} dFy = Qa.
Finally, we have
FiFs = = Fi(Fo — Filiy Qi) = =05y Q2 + Q51 — (Qun + Q4041 Qo)

= _Qil(Qél - Q111911912) = —Qingl + Q11 Q12 = Q1o — (Q1Q1)’
= Qs + O,

and similarly one checks that FiF; = Qo + Q. 1

Given four submanifolds f;: M — RV, 1 < i < 4, we say that they form a Bianchi
quadrilateral if for each of them both the preceding and subsequent ones (thought of as
points on an oriented circle) are Ribaucour transforms of it, and the Codazzi tensors
associated to the transformations commute.

Proof of Theorem [@: We first prove existence. Write f; = R, 5,(f), 1 < i < k. For each
pair {i,j} C {1,...,k} with i < j define ¢ € T'(R?) and 3% € T'((R?)* @ T+M) by

¢ = (pip;) and B =dry @ B+ dws @ B

14



By the assumption that {fi;, fi, f;, f} is a Bianchi quadrilateral, there Q% € GI(R?) with
O (er) = Qi = (1/2)(Fi, Fi) and QY(ex) = Q5 = (1/2)(F;, Fy),

where F, = f.Vo, + 3., r € {i,j}, such that (©¥, 3% QU) satisfies the conditions of
Definition B with respect to f and such that fi; = R, gisgiu(f). Define p € I'(RF),
B eT((RM* @ T+M) and Q € T'((R*)* @ RF) by

k
90:(9017"'730/07 6:de2®6z
i=1

and

k
Q= Z Q“dl', X e; + Z((Qij(el), 62>dl’i &® €; + <Qij(62), 61>dl’j ® 62').
i=1 i<j

It is easy to check that (¢, 3, (2) satisfies the conditions of Definition [ with respect to f.

We now make precise the “generic” assumption on the statement of Theorem
Namely, we require that no principal minor of €2 vanishes, where (2 is regarded as a
square (k x k)-matrix. That is, for any multi-index oo = {iy < ... <4,} C {1,...,k}, the
sub-matrix €, of €2, formed by those elements of € that belong to the rows and columns
with indexes in «, has nonzero determinant. Now, for any such « set

(pa = (807&7 t "Soir)7 60‘ = delj ® 61']‘ and ro = Qa.

j=1

We define C, as the family of (]:) elements formed by the vectorial Ribaucour transforms
R e geqo(f), where o ranges on the set of multi-indexes av = {i; < ... <4, } C {1,...,k}
with r elements. Given

f=Reepoge(f) €Co1, 1<s<k—1and a={i;<...<i.i}C{l,... k},

let aq,...,as1 be the (s 4 1) multi-indexes with s elements that are contained in «.. For
each j =1,...,5+ 1 write @ = o;; U {¢;}. Then,

~

Ji =R gos i () €C, and =Ry, 5 (f))

by Theorem [[4l Therefore f is a Ribaucour transform of fl, cee fs+1. Moreover, for each
pair {a;, o}, set a;; = o; N aj, and let fij = Ryeii geis gii (f). Then fij € Cs_q and
{ fij, fi, fj, f } is a Bianchi quadrilateral

Next we argue for the uniqueness. We first make precise the meaning of fi,..., fx
being independent Ribaucour transforms of f. Namely, if f; is determined by the pair
(i, B;) with ¢; € C*(M) and 3; € I(Tj M), 1 < i < k, we require that the image

15



of the map ¢ = (¢1,...,¢r): M — R* spans R¥ and, in addition, that the linear map
F: RE — f*TRYN given by F = S dr; ® F;, with F; = £.Vg, + (3, is injective.

It is easily seen that all uniqueness assertions follow from the uniqueness for k£ = 3. For
this case, the independence assumption is equivalent to the condition that neither of f,
fa or f3 belong to the associated family determined by the other two. Then, uniqueness
was proved in [I1] by using a nice elementary argument relying on the version of Miquel’s
Theorem for four circumferences.

§5 Submanifolds carrying a parallel flat normal subbundle.

In this section we give an explicit local construction of all submanifolds of Euclidean
space that carry a parallel flat normal subbundle, from which Theorem [l in the introduc-
tion follows as a special case.

Theorem 18. Let f: M"™ — R"P be an isometric immersion of a simply connected
Riemannian manifold and let o; € C°(M) and 3; € T(T+M), 1 < i < m, satisfy

a(X, V) + VxB =0 (35)

and

where ®; = Hess ¢; — Ag,. Define G: M™ — Mpip)xm(R) by
G = (fVoir + B, .., [:Vom + ).

Then there exists a smooth map Q2: U — GL(R™) on an open subset U C M™ such that
dQ=G'dG and Q+ Q' =G'G+ 1. (37)

Moreover, the map f: M™ — R™ P given by

fo = (T ) (39)

where o(p) = (01(p), . ... om(p))t, defines, on an open subset M™ C U of reqular points,
an immersion carrying a parallel flat normal subbundle of rank m.

Conversely, any isometric immersion carrying a parallel flat normal subbundle of
rank m can be locally constructed in this way.

Proof: Set V.= R™ and define 3 € T'(V* & T+M) by B(e;) = B; + e;, where {e;}1<i<m
is the canonical basis of R™ regarded as the orthogonal complement of R"*? in R™tP+m,

16



Then w = dy and 3 satisfy (@) in view of (BH). Moreover, F € ['(V* & f*TR"*™*P) given
by F(v) = fuw'(v) + B(v) satisfies
(9
(1),

where [,,, denotes the m x m identity matrix. Thus
F'dF =G'dG and F'F=G'G+ I,

and the existence of Q satisfying ([B1) follows from Proposition B by using (Bf). Moreover,
comparing ([7) and (B) we have that f = R, 50(f). Since R™ is a parallel flat normal
vector subbundle of T+ M (where f is regarded as an immersion into R****™) and P e
L((f*TRY)* @ f*TRYN) given by ([§) is a parallel vector bundle isometry by virtue of
[20), it follows that P(R™) is a parallel flat normal vector subbundle of TFM of rank m.

In order to prove the converse, it suffices to show that, given an isometric immersion
f: M" — R carrying a parallel flat normal subbundle E of rank m, there exist
locally an immersion f: M™ — R"? c R™?+m and ¢ € [(V :=R™), § € F(V* TLM)

and Q € T(GI(V)) satisfying the conditions of Definition @ such that (B(e))mm = e,
1 <i<m, and that f =R 54(f).

Let &1,...,&,, be an orthonormal parallel frame of E. Let V = R™ be identified with
a subspace of RY and let ey,. .., e, be the canonical basis of R™. Define ¢ € I'(V) and
pel(V*®T+M) by

== (fee; and Bv) = xi(&
i=1 i=1
for v = (z1,...,7,), where e denotes the normal vector field obtained by orthogonally

projecting e; pointwise onto 7M. Then

lef e; and F(v sz & —ei). (39)

Therefore,
(X, W' (0)) + (VO M B0 sz X, fle) + ZWX
= - in(@x(f};ei te Nt = m(Vye)t =0,
i=1 1=1

where V denotes the Euclidean connection, and hence () is satisfied.
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It also follows from (BY) that
<ft§j>v> = <€],f(1))> =Tj— in<§j>ei>>
i=1

thus F'&; = e; — Y " (&, e;)e;. Similarly, Fle; = —ej + >0 (&, ej)e;. We obtain,

FIF@) = 2 F (& —e) =Y 2wje;— Y ai((&rei) + (i ej)en
=1 =1 ig—1

In matrix notation, this reads as

FF =21 - ({§,e) — (& €5))-
Therefore 2 = I — ((&;, e;)) satisfies (IT) and (IH). Moreover, since

m

Qej =e; — Z<€j,€i>€z’ = F'¢;,

i=1

we have

P& =8 —FUFEG =6 -Fej=§—(§—¢) =¢;
Therefore f = R, 50(f) is such that f(M™) is contained in an affine subspace orthogonal
to R™. Since f = RAB,B,Q(f) with the triple (@, 3,(2) given by Proposition [[3, in order

to complete the proof of the theorem it remains to show that (5(e;))grm = e;. But this
follows from

(Bei,e;) = (PR )'er, e5) = (€1, X' F'Plej) = (e, Q' FE) = (esey).

The case of submanifolds with flat normal bundle of the sphere now follows easily from
Theorem [I1

Corollary 19. Let U C R", {¢i}ti<i<m; G: U = Muum(R), and Q: V C U — GI(R™)
be as in Theorem [ Then the Mg ym)xm(R)-valued map

_( g9
w= (20
satisfies W'W = I and any of its columns defines, at regular points, the position vector
of an immersion with flat normal bundle into S*T™1,

Conwversely, any isometric immersion with flat normal bundle f: M™ — S"t™=! can
be locally constructed in this way.
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Proof: Set V = R™ and define 8 € T'(V* & T+ M) by B(e;) = e;, where {e;}1<i<m is the
canonical basis of R™ regarded as the orthogonal complement of R"*™ in R®*?*™  Then
w = dp and S trivially satisfy ([@). Moreover, if F € T'(V* @ f*TR"*™*P) is given by
F(v) = fuw(v) + S(v) then
(G
(1)

where [,,, denotes the m x m identity matrix. Let f = R, p0(id), where id is the inclusion
of U into R™, Then the isometry P as in ([[§) is given by

I — gQ—lgt gQ—l
Q—lgt I — Q—l .

Therefore W!W = I and the (n+p+ j)"-column of W is Pe;, 1 < j < m. Therefore it is
a unit parallel normal vector field to f, and hence defines, at regular points, the position
vector of a submanifold with flat normal bundle of S*+m~1,

The converse follows from the converse in Theorem [[l and the fact that any isometric
immersion f: M"™ — S"*~1 arises as a parallel unit normal vector field of an isometric

immersion F': M"™ — R™™_for instance, F' = i o f, where i is the canonical inclusion of
Sntm=1into R**™. y

We now give a precise statement of Ferapontov’s theorem referred to in the introduc-
tion for the case of holonomic submanifolds of the sphere, and show how it can be derived
from Corollary [[9

Theorem 20. On an open simply connected subset U C R" let {B;;}1<izj<n be smooth
real functions satisfying the completely integrable system of PDE'’s

gizzﬁikﬁkj, I<i#Fj#Fk#i<n,
0 % 9 ? (40)
ai: B —I-Zﬁkzﬁkj =0, i #7,

let H* = (HY, ..., HY), 1 < a < m, be arbitrary solutions of the linear system of PDE’s

0H;
ou;

and let X;: U — R", 1 <1 <n, satisfy

=Py, 1<i#j<n, (41)

% = ﬁinja { 7é ja = - Zﬁksz (42)

8uj hti
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and X'X = I at some point of U, where X = (X1,...,X,), the integrability condi-
tions of 1) and [Z3) being satisfied by virtue of £0). Then there exist vector functions
s = (s¢,...,82): U = R", 1 < a < m, such that ds¢ = > ,_, Xy Hodu", and a

map Q: U — Mpum(R) such that
dQY=G"dG and Q+ Q' =G'G+ 1,
where G = (s, ..., s™). Moreover, the (m + n) x m-matriz

gt
W = e
I,— Q1!
satisfies W'W = I,,, and any of its columns defines, at reqular points, the position vector
of an n-dimensional submanifold M™ C S*t™=1 c R"™™ with flat normal bundle such
that uy, ..., u, are principal coordinates of M™.

Conversely, any n-dimensional submanifold with flat normal bundle of S"*™~! carrying
a holonomic net of curvature lines can be locally constructed in this way.

Proof: Tt is easily checked using ([2), and the fact that X'X = I at some point of U,
that X'X = I everywhere on U, whence X7, ..., X,, determine an orthonormal frame on
U. Define ®* € I'(T*"U ® TU) by

(I)OCXZ:HZOCXZ, 1§z§n, 1§a§m

Then & is a symmetric tensor and, by ([Il) and (E2),

0 OHY 0X; 0
—(P°X;) = LX+ HY L = 3, HYX; + HP B, X = — (9 X;),
8'&]'( ) 8Uj + 7 8Uj ﬁ] J + 7 /63 J 8’&2( ])

hence ®“ is a Codazzi tensor on U. Thus @ is closed as a one-form in U with values in T'U.
Since U is flat, there exists Z* € I'(T'U) such that ®* = dZ®. Moreover, the symmetry of
¢ implies that Z“ = grad ¢* for some ¢* € C*(U), and hence ®* = Hess ¢* (cf. [1]).
Since {X;}i<i<n is a common diagonalizing basis of Hess %, 1 < o < m, it follows that
[Hess ¢, Hess 5] = 0, 1 < a, f < m. Setting s* = grad ¢*, the remaining of the proof
follows from Corollary [ n

Remark 21. Equations () (Lamé equations) and ({Il) are well-known in the theory of
n-orthogonal systems (cf. [3]) where the functions H; and (3;; are usually called the Lamé
and rotation coefficients, respectively.
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§6 Submanifolds carrying a Dupin principal normal.

A smooth normal vector field n of an isometric immersion f: M"™ — RY is called a
principal normal with multiplicity m > 1 if the tangent subspaces

&y = ker (a—=(, )n)

have constant dimension m > 1. If 7 is parallel in the normal connection along the nullity
distribution &, then 7 is said to be a Dupin principal normal. This condition is automatic
if m > 2. If n is nowhere vanishing, it is well-known that &, is an involutive distribution
whose leaves are round m-dimensional spheres in RY. When 7 vanishes identically, the
distribution &, = & is known as the relative nullity distribution, in which case the leaves
are open subsets of affine subspaces of R¥.

Let h: L™™ — RY be an isometric immersion carrying a parallel flat normal sub-
bundle A of rank m, and let ¢ € C*°(L"™™) and 3 € I'(T; L) satisfy

(X, V) + V3 =0.
Assume further that the tangent subspaces
E(x)={Z € T,L: (a(Z,X))pr = 0 *Brn1(Z,X) for all X € T, L}

are everywhere trivial. Define R@{ 5(h): N — RN by

Ry s(h)(t) =R, 5. (W) (2),

where © = 7(t) and ¢ is the parallel section in A such that ¢ (z) = ¢. It was shown in [6]
that RZX 5(h) defines, at regular points, an immersion carrying a Dupin principal normal
with integrable conullity distribution 5# and that, conversely, any such immersion can
be locally constructed in this way.

Using the results of the previous sections we now give an explicit description of all
isometric immersions carrying a Dupin principal normal of multiplicity m and integrable
conullity in terms of the vectorial Ribaucour transformation, starting with an isometric
immersion g: L™ — RY such that g(L"™™) lies in an (N — m)-dimensional subspace
RN-m C R,

Namely, let R, 50(g) be a vectorial Ribaucour transform of an isometric immersion
g: L™ — RY=m C RY determined by (i, 3,Q) as in Definition @l For an orthogonal
decomposition R™™! = R & R™, with R = span {ey}, set

((poaﬁO) = ((907 60>>ﬁ(60))> ((pbﬁl) = (WR’" © 3076|Rm)>

and
(@07 ﬂo) = (<P0 - Q0191_11%017 Bo — 51(91_11)t96160)
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where
Qll = TTrm O Q|Rm and QOl = TR © Q|Rm.

Assume that the bilinear maps v: T, L x T,L — T,L* given by
N2, X) = (ag(Z, D1X) + B1(Q7) @1(Z) D1(X) — @o(Z, X) o)z

have everywhere trivial kernel. Let the subspace R™ = ej be identified with the or-
thogonal complement of RY=™ in RY and choose an orthonormal basis {e,...,en} of
V :i=R™"! Finally, for t = > t;e; € R™ define

m

Br=es®Bo+t)+ > e @Be;) and Q= Q+ ((Bo,t) + (1/2)[t*)ej @ eo.

i=1

Theorem 22. The triple (p, B, %) satisfies the conditions of Definition [A with respect
to g for each t € R™ and the map G: L™ x R™ — RY given by

G(Iv t) = Rsﬁﬂt,ﬂt (g)(l’)

parameterizes, at reqular points, an n-dimensional submanifold carrying a Dupin principal
normal of multiplicity m with integrable conullity.

Conwversely, any isometric immersion carrying a Dupin principal normal of multiplicity
m with integrable conullity can be locally constructed in this way.

Proof: The first assertion is easily checked. By Theorem [[4] we have

R@ﬂtﬂt (g) = Rcﬁoﬁ? (Rsolﬁlﬂu (g))7
where

B = Pi(fo +t — Bu(7) ' Qre0) = B° + Z tini,
i=1

with 3° = P, 3 and n; = Pre;. Then N = P;R™ is a parallel flat normal subbundle A of
rank m of h = R, g, .0, (9) and

G($7 t) = Rcﬁoﬁo-ﬁ-t(h) (l’) = Rg{)ﬁ()(h) (t)a

where t = > | t;n;. Moreover, the assumption on the bilinear map + is easily seen to be
equivalent to the subspaces

E(z) ={Z € T,L : (an(Z,X))prr = — @y Bro{Z, X) for all X € T, L}

being everywhere trivial. By the result of [6] discussed before the statement of Theorem 22
it follows that G parameterizes, at regular points, an n-dimensional submanifold carrying
a Dupin principal normal of multiplicity m with integrable conullity.
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Conversely, given a submanifold f: M™ — RY that carries a Dupin principal normal
of multiplicity m with integrable conullity, by the aforementioned result of [6] there exist
an isometric immersion h: L"™ — R carrying a parallel flat normal subbundle N of
rank m, ¢ € C°(L"™™) and 3 € ['(T;- L) satisfying (X, V) + Vx5 = 0, with

E(x)={Z € T,L: (a(Z, X)) 1 = —p ' Bp1(Z, X) for all X € T, L}

everywhere trivial, such that f is parameterized by the map R@f’ s(h): L™ x R™ — RN
given by
R{;{ﬁ(h) ($7 t) = R@,ﬁ—i—t' (h)(l’),

where t' = > ;1 for some orthonormal parallel frame 7y, ..., 7, of .
As in the proof of Theorem [[Rthere is an isometric immersion g: L"™™ — R¥N-™ c RN
such that h = R, 3,,0.,(9), and hence

RYs(h)(x,1) = R, v (R .00 (9))(2).

In order to apply Corollary [[1, we must verify that the tensor ® = Hessp — Ag

associated to (i, ) commutes with ®,, for every vy € V4, where D@} = —®[ _, | for
1Y

P! = ®(dypy, 31). Since  commutes with the shape operator Ag of h with respect to any
normal vector field £ € T'(T}FL), it commutes in particular with Ap .. But by EI)) we
have

Aplei - Dl_lq)élfllﬁﬁei - Dl_lq);lﬁlei - _i)éﬂ
and we are done. It follows from Corollary [ that there exist (p, 3, €2) satisfying the con-
ditions of Definition @l with respect to g and an orthogonal decomposition R™*! = RGR™
such that

(8017 517 Qll) = (7TRm ° Y, ﬁ
and, setting ¢ = mr 0 ¢, 1 = B, then (¢, 5) = Ry p.0(po, fo) and

Re8(Ryr 61,00 (9) = Repalg)

Defining 3 and €; as in the statement, we have R, 5, (R, 51,01, (9)) = Res,.0.(9)- 1

Rm, TRm O Q Rm)
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