
ALMOST ALL COCYCLES OVER ANY HYPERBOLIC SYSTEM

HAVE NON-VANISHING LYAPUNOV EXPONENTS
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Abstract. We prove that for any s > 0 the majority of Cs linear cocycles over any

hyperbolic (uniformly or not) ergodic transformation exhibit some non-zero Lyapunov

exponent: this is true for an open dense subset of cocycles and, actually, vanishing

Lyapunov exponents correspond to codimension-∞. This open dense subset is described

in terms of a rather explicit geometric condition involving the behavior of the cocycle
over certain homoclinic orbits of the transformation.
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1. Introduction

In its simplest form, a linear cocycle consists of a dynamical system f : M →M together
with a matrix valued function A : M → SL(d,C). More generally, it is a morphism of
vector bundles covering the transformation f . Linear cocycles arise in many domains of
Mathematics and its applications, from dynamics or foliation theory to spectral theory and
mathematical economics. One important special case is when f is differentiable and the
cocycle corresponds to its derivative: we call this a dynamical cocycle.

Here the main object of interest is the asymptotic behavior of the products of A along
the orbits of the transformation f ,

An(x) = A(fn−1(x)) · · ·A(f(x))A(x),

especially the exponential growth rate (largest Lyapunov exponent)

λ+(A, x) = lim
n→∞

1

n
log ‖An(x)‖ .

The limit exists µ-almost everywhere, relative to any f -invariant probability measure µ on
M for which the function log ‖A‖ is integrable.

We assume that the ergodic system (f, µ) is hyperbolic, possibly non-uniformly. The main
result is that, for any s > 0, an open and dense subset of Cs cocycles exhibit λ+(A, x) > 0 at
almost every point. Exponential growth of the norm is typical also in a measure-theoretical
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sense: full Lebesgue measure in parameter space, for generic parametrized families of cocy-
cles.

This provides a sharp counterpart to recent results of Bochi, Viana [3, 4, 5], where it is
shown that for a residual subset of all C0 cocycles the Lyapunov exponent λ+(A, x) is actu-
ally zero, unless the cocycle has a property of uniform hyperbolicity in the projective bundle
(dominated splitting). Actually, their conclusions hold also in the, much more delicate,
setting of dynamical cocycles.

Precise definitions and statements of our results follow.

1.1. Linear cocycles. Let f : M →M be a continuous transformation on a compact metric
space M . A linear cocycle over f is a vector bundle automorphism F : E → E covering f ,
where π : E →M is a finite-dimensional real or complex vector bundle over M . This means
that π ◦ F = f ◦ π and F acts as a linear isomorphism on every fiber. The archetypical
example is the derivative F = Df of a diffeomorphism on a manifold (dynamical cocycle).

Given r ∈ N∪{0} and 0 ≤ ν ≤ 1, we denote by Gr,ν(f, E) the space of r times differentiable
linear cocycles over f with rth derivative ν-Hölder continuous (for ν = 0 this just means
continuity), endowed with the Cr,ν topology. For r ≥ 1 it is implicit that the space M and
the vector bundle π : E → M have Cr structures. Moreover, we fix a Riemannian metric
on E and denote by Sr,ν(f, E) the subset of F ∈ Gr,ν(f, E) such that detFx = 1 for every
x ∈M .

Let F : E → E be a measurable linear cocycle over f : M → M , and µ be any invariant
probability measure such that log ‖Fx‖ and log ‖F−1

x ‖ are µ-integrable. Suppose first that f
is invertible. Oseledets’ theorem [14] says that almost every point x ∈M admits a splitting
of the corresponding fiber

(1) Ex = E1
x ⊕ · · · ⊕ Ek

x , k = k(x),

and real numbers λ1(F, x) > · · · > λk(F, x) such that

(2) lim
n→±∞

1

n
log ‖Fn

x (vi)‖ = λi(F, x) for every non-zero vi ∈ Ei
x .

When f is non-invertible, instead of a splitting one gets a filtration into vector subspaces

Ex = F 0
x > · · · > F k−1

x > F k
x = 0

and (2) is true for vi ∈ F i−1
x \ F i

x and as n → +∞. In either case, the Lyapunov exponents
λi(F, x) and the Oseledets subspaces Ei

x, F i
x are uniquely defined µ-almost everywhere, and

they vary measurably with the point x. Clearly, they do not depend on the choice of the
Riemannian structure.

In general, the largest exponent λ+(F, x) = λ1(F, x) describes the exponential growth
rate of the norm on forward orbits:

(3) λ+(F, x) = lim
n→+∞

1

n
log ‖Fn

x ‖ .

Finally, the exponents λi(F, x) are constant on orbits, and so they are constant µ-almost
everywhere if µ is ergodic. We denote by λi(F, µ) and λ+(F, µ) these constants.

1.2. Hyperbolic systems. We call hyperbolic system any pair (f, µ) where f : M →M is
a C1 diffeomorphism on a compact manifold M with Hölder continuous derivative Df , and
µ is a hyperbolic non-atomic invariant probability measure with local product structure.
The notions of hyperbolic measure and local product structure are defined in the sequel:

Definition 1.1. An invariant measure µ is called hyperbolic if all Lyapunov exponents
λi(f, x) = λi(Df, x) are non-zero at µ-almost every x ∈M .

Given any x ∈ M such that the Lyapunov exponents λi(A, x) are well-defined and all
different from zero, let Eu

x and Es
x be the sums of all Oseledets subspaces corresponding

to positive, respectively negative, Lyapunov exponents. Pesin’s stable manifold theorem
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(see [11, 16, 17, 20]) states that through µ-almost every point x with non-zero Lyapunov
exponents there exist C1 embedded disks W s

loc(x) and W u
loc(x) such that

(a) Wu
loc(x) is tangent to Eu

x and W s
loc(x) is tangent to Es

x at x.

(b) Given τx < mini |λi(A, x)| there exists Kx > 0 such that

(4)
dist(fn(y1), f

n(y2)) ≤ Kxe
−nτx dist(y1, y2) for all y1, y2 ∈W s

loc(x) and n ≥ 1,

dist(f−n(z1), f
−n(z2)) ≤ Kxe

−nτx dist(z1, z2) for all z1, z2 ∈Wu
loc(x) and n ≥ 1.

(c) f
(

Wu
loc(x)

)

⊃Wu
loc(f(x)) and f

(

W s
loc(x)

)

⊂W s
loc(f(x)).

(d) Wu(x) =

∞
⋃

n=0

fn
(

Wu
loc(f

−n(x)
)

and W s(x) =

∞
⋃

n=0

f−n
(

Wu
loc(f

n(x)
)

.

Moreover, the local stable set W s
loc(x) and local unstable set W u

loc(x) depend measurably
on x, as C1 embedded disks, and the constants Kx and τx may also be chosen depending
measurably on the point. Thus, one may find compact hyperbolic blocks H(K, τ), whose
µ-measure can be made arbitrarily close to 1 by increasing K and decreasing τ , such that

(i) τx ≥ τ and Kx ≤ K for every x ∈ H(K, τ) and

(ii) the disks W s
loc(x) and W u

loc(x) vary continuously with x in H(K, τ).

In particular, the sizes of W s
loc(x) and W u

loc(x) are uniformly bounded from zero on each
x ∈ H(K, τ), and so is the angle between the two disks.

Let x ∈ H(K, τ) and y be any point of H(K, τ) in a closed δ-neighborhood B(x, δ) of x.
If δ is small enough, depending only on K and τ , then W s

loc(y) intersects W u
loc(x) at exactly

one point, and analogously for W u
loc(y) and W s

loc(x). Let

N u
x (δ) = N u

x (K, τ, δ) ⊂W u
loc(x) and N s

x (δ) = N s
x (K, τ, δ) ⊂W s

loc(x)

be the (compact) intersection sets obtained in this way. Reducing δ > 0 if necessary,
W s

loc(ξ)∩W
u
loc(η) consists of exactly one point [ξ, η], for every ξ ∈ N u

x (δ) and η ∈ N s
x (δ). Let

Nx(δ) be the set of such points [ξ, η]. By construction, Nx(δ) contains H(K, τ)∩B(x, δ), and
its diameter goes to zero when δ → 0. Moreover, Nx(δ) is homeomorphic to N u

x (δ)×N s
x (δ)

via

(5) (ξ, η) 7→ [ξ, η] .

Definition 1.2. A hyperbolic measure µ has local product structure if for µ-almost every
point x and every small δ > 0 as before, the restriction ν = µ | Nx(δ) is equivalent to the
product measure νu × νs, where νu and νs are the projections of ν to N u

x (δ) and N s
x (δ),

respectively.

Lebesgue measure has local product structure if it is hyperbolic; this follows from the
absolute continuity of Pesin’s stable and unstable foliations [16]. The same is true, more
generally, for any hyperbolic probability having absolutely continuous conditional measures
along unstable manifolds or along stable manifolds.

1.3. Uniformly hyperbolic homeomorphisms. The assumption that f is differentiable
will never be used directly: it is needed only to ensure the geometric structure (Pesin stable
and unstable manifolds) described in the previous section. Consequently, our arguments
remain valid in the special case of uniformly hyperbolic homeomorphisms, where such struc-
ture is part of the definition. In fact, the conclusions take a stronger form in this case, as
we shall see.

Let us begin by defining precisely what we mean by uniformly hyperbolic homeomor-
phism. This includes the two-sided shifts of finite type and the restrictions of Axiom A
diffeomorphisms to hyperbolic basic sets, among other examples. Let f : M → M be a
continuous transformation on a compact metric space. The stable set of a point x ∈ M is
defined by

W s(x) = {y ∈M : dist(fn(x), fn(y)) → 0 when n→ +∞}
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and the stable set of size ε > 0 of x ∈M is defined by

W s
ε (x) = {y ∈M : dist(fn(x), fn(y)) ≤ ε for all n ≥ 0}.

If f is invertible the unstable set and the unstable set of size ε are defined similarly, with
f−n in the place of fn.

Definition 1.3. We say that a homeomorphism f : M →M is uniformly hyperbolic if there
exist K > 0, τ > 0, ε > 0, δ > 0, such that for every x ∈M

(1) dist(fn(y1), f
n(y2)) ≤ Ke−τn dist(y1, y2) for all y1, y2 ∈W s

ε (x), n ≥ 0;
(2) dist(f−n(z1), f

−n(z2)) ≤ Ke−τn dist(z1, z2) for all z1, z2 ∈Wu
ε (x), n ≥ 0;

(3) if dist(x1, x2) ≤ δ then W u
ε (x1) and W s

ε (x2) intersect at exactly one point, denoted
[x1 , x2], and this point depends continuously on (x1, x2).

The notion of local product structure extends immediately to invariant measures of uni-
formly hyperbolic homeomorphisms; by convention, every invariant measure is hyperbolic.
In this case K, τ, δ may be taken the same for all x ∈ M , and Nx(δ) is a neighborhood of
x in M . We also note that every equilibrium state of a Hölder continuous potential [9] has
local product structure; see for instance [8].

1.4. Statement of results. Let π : E →M be a finite-dimensional real or complex vector
bundle over a compact manifold M , and f : M → M be a C1 diffeomorphism with Hölder
continuous derivative. We say that a subset of Sr,ν(f, E) has codimension-∞ if it is locally
contained in finite unions of closed submanifolds with arbitrary codimension.

Theorem A. For every r and ν with r + ν > 0, and any ergodic hyperbolic measure µ
with local product structure, the set of cocycles F such that λ+(F, x) > 0 for µ-almost every
x ∈ M contains an open and dense subset of Sr,ν(f, E). Moreover, its complement has
codimension-∞.

The following corollary provides an extension to the non-ergodic case:

Corollary B. For every r and ν with r + ν > 0, and any invariant hyperbolic measure µ
with local product structure, the set of cocycles F such that λ+(F, x) > 0 for µ-almost all
x ∈M contains a residual (dense Gδ) subset A of Sr,ν(f, E).

Now let π : E →M be a finite-dimensional real or complex vector bundle over a compact
metric space M , and f : M → M be a uniformly hyperbolic homeomorphism. In this case,
one recovers the full conclusion of Theorem A even in the non-ergodic case.

Corollary C. For every r and ν with r+ν > 0, and any invariant measure µ with local prod-
uct structure, the set of cocycles F such that λ+(F, x) > 0 for µ-almost all x ∈M contains
an open and dense subset A of Sr,ν(f, E). Moreover, its complement has codimension-∞.

The conclusion of Corollary C was obtained before by Bonatti, Gomez-Mont, Viana [7],
under the additional assumptions that the cocycle is dominated (a partial hyperbolicity
condition, see Section 6.2) and the measure is ergodic. Then the set A may be chosen
independent of µ. Also in that partially hyperbolic setting, Bonatti, Viana [8] get a stronger
conclusion: all Lyapunov exponents have multiplicity 1, that is, all Oseledets subspaces E i

are one-dimensional. This should be true in general:

Conjecture. Theorems A and the two corollaries remain true if one replaces λ+(F, x) > 0
by all Lyapunov exponents λi(F, x) having multiplicity 1.

It is important to notice that the regularity hypothesis r + ν > 0 in our statements is
necessary: results of Bochi [3] and Bochi, Viana [4, 5] show that generic C0 cocycles over
general transformations often have vanishing Lyapunov exponents. Even more, for generic
Lp cocycles, 1 ≤ p < ∞, the Lyapunov exponents always vanish, by Arbieto, Bochi [1] and
Arnold, Cong [2].
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1.5. Comments on the proofs. For proving these results it suffices to consider ν ∈ {0, 1}:
the Hölder cases 0 < ν < 1 are immediately reduced to the Lipschitz one ν = 1 by replacing
the metric dist(x, y) in M by dist(x, y)ν . So, we always suppose r + ν ≥ 1.

In the proofs we focus on the case when the vector bundle is trivial: E = M × K
d with

K = R or K = C. Then A(x) = Fx may be seen as a d× d matrix with determinant 1, and
we identify Sr,ν(f, E) with the space Sr,ν(M,d) of Cr,ν maps from M to SL(d,K). The Cr,ν

topology is defined by the norm

‖A‖r,ν = max
0≤i≤r

sup
x∈M

‖DiA(x)‖ + sup
x6=y

‖DrA(x) −DrA(y)‖

dist(x, y)ν

(for ν = 0 omit the last term). The case of a general vector bundle is treated in the same
way, using local trivializing charts.

For the time being we do not need µ to be ergodic: ergodicity will intervene only at the
very end of the proof in Section 5. Local product structure is used in Sections 3.2, 4.2, and
5.3. In Section 6 we discuss a number of extensions and open problems.

Acknowledgments: Some ideas were developed in the course of previous joint projects
with Jairo Bochi and Christian Bonatti, and I am grateful to both for their input.

2. Dominated behavior and invariant foliations

Let µ be a hyperbolic measure and A ∈ Sr,ν(M,d) define a cocycle over f : M →M . Let
H(K, τ) be a hyperbolic block associated to constants K > 0 and τ > 0, as in Section 1.2.
Given N ≥ 1 and θ > 0, let DA(N, θ) be the set of points x satisfying

(6)

k−1
∏

j=0

‖AN (f jN (x))‖ ‖AN (f jN (x))−1‖ ≤ ekNθ for all k ≥ 1,

together with the dual condition, where f and A are replaced by their inverses.

Definition 2.1. Given s ≥ 1, we say that x is s-dominated for A if it is in the intersection
of H(K, τ) and DA(N, θ) for some K, τ,N, θ with sθ < τ .

Notice that if B is an invertible matrix and B# denotes the action of B on the projective

space, then ‖B‖ ‖B−1‖ is an upper bound for the norm of the derivatives of B# and B−1
# .

Hence, this notion of domination means that the contraction and expansion exhibited by
the cocycle along projective fibers are weaker, by a definite factor larger than s, than the
contraction and expansion of the base dynamics along the corresponding stable and unstable
manifolds.

2.1. Generic dominated points. Here we prove that almost every point x ∈ M with
λ+(A, x) = 0 is s-dominated for A, for every s ≥ 1.

Lemma 2.2. For any δ > 0 and almost every x ∈M there exists N ≥ 1 such that

(7)
1

k

k−1
∑

j=0

1

N
log ‖AN (f jN (x))‖ ≤ λ+(A, x) + δ for all k ≥ 1.

Proof. Fix ε > 0 small enough so that 4ε sup log ‖A‖ < δ. Let η ≥ 1 be large enough so that
the set ∆η of points x ∈M such that

1

η
log ‖Aη(x)‖ ≤ λ+(A, x) +

δ

2

has µ(∆η) ≥ (1 − ε2). Let τ(x) be the average sojourn time of the f η-orbit of x inside ∆η,
and Γη be the subset of points for which τ(x) ≥ 1− ε. By sub-multiplicativity of the norms

(8)
1

k

k−1
∑

j=0

1

lη
log ‖Alη(f jlη(x))‖ ≤

1

kl

kl−1
∑

j=0

1

η
log ‖Aη(f jη(x))‖
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for any x ∈ Γη and any k, l ≥ 1. Fix l large enough so that for any n ≥ l at most
(1 − τ(x) + ε)n of the first iterates n of x under f η fall outside Γη . Then the right hand
side of the previous inequality is bounded by

δ

2
+ (1 − τ(x) + ε) sup log ‖A‖ ≤ λ+(A, x) +

δ

2
+ 2ε sup log ‖A‖ < λ+(A, x) + δ,

recall that Lyapunov exponents are constant on orbits. Therefore, x satisfies (7) withN = lη.
On the other hand,

µ(Γη) + (1 − ε)µ(M \ Γη) ≥

∫

τ(x) dµ(x) = µ(∆η) ≥ (1 − ε2)

implies that µ(Γη) ≥ (1 − ε). Thus, making ε → 0 we get the conclusion (7) for µ-almost
every x ∈M . �

Remark 2.3. When µ is ergodic the proof of Lemma 2.2 gives some N ≥ 1 such that

lim sup
l→∞

1

l

l−1
∑

j=0

1

N
log ‖AN (f jN (x))‖ ≤ λ+(A, x) + δ for µ-almost every x.

Indeed, ergodicity implies µ(Γη) = 1. Take k = 1. For every x ∈ Γη the expression in (8) is
smaller than λ+(A, x) + δ if l is large enough.

Corollary 2.4. Given θ > 0 and λ ≥ 0 such that dλ < θ, then µ-almost every x ∈M with
λ+(A, x) ≤ λ is in DA(N, θ) for some N ≥ 1. In particular, µ-almost every x ∈ M with
λ+(A, x) = 0 is s-dominated for A, for every s ≥ 1.

Proof. Fix δ such that dλ+ dδ < θ. Let x and N be as in Lemma 2.2:

1

k

k−1
∑

j=0

1

N
log ‖AN (f jN (x))‖ ≤ λ+(A, x) + δ for all k ≥ 1.

Since detAN (z) = 1 we have ‖AN (z)−1‖ ≤ ‖AN (z)‖d−1 for all z ∈ M . So, the previous
inequality implies

1

kN

k−1
∑

j=0

log
(

‖AN (f jN (x))‖‖AN (f jN (x))−1‖
)

≤ dλ+(A, x) + dδ < θ for all k ≥ 1.

This means that x satisfies (6). The dual condition is proved analogously. The second part
of the statement is an immediate consequence: given any K, τ , and s, take sθ < τ and
λ = 0, and apply the previous conclusion to the points of H(K, τ). �

2.2. Strong-stable and strong-unstable sets. We are going to show that if x ∈ M is
2-dominated then the points in the corresponding fiber have strong-stable sets and strong-
unstable sets, for the cocycle, which are Lipschitz graphs over the stable set and the unstable
set of x. For the first step we only need 1-domination:

Proposition 2.5. Given K, τ , N , θ with θ < τ , there exists L > 0 such that for any
x ∈ H(K, τ) ∩ DA(N, θ) and any y, z ∈W s

loc(x)

Hs
y,z = Hs

A,y,z = lim
n→+∞

An(z)−1An(y)

exists and satisfies ‖Hs
y,z − id ‖ ≤ Ldist(y, z) and Hs

y,z = Hs
x,z ◦Hs

y,x.

We begin with the following observation:

Lemma 2.6. There exists C = C(A,K, τ,N) > 0 such that ‖An(y)‖ ‖An(z)−1‖ ≤ Cenθ for
all y, z ∈W s

loc(x), x ∈ DA(N, θ), and n ≥ 0.
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Proof. By sub-multiplicativity of the norms,

‖An(y)‖ ‖An(z)−1‖ ≤ C1

k−1
∏

j=0

‖AN (f jN (y))‖ ‖AN (f jN (z))−1‖

where k = [n/N ] and the constant C1 = C1(A,N). Since A ∈ Sr,ν(M,d) with r + ν ≥ 1,
there exists L1 = L1(A,N) such that

‖AN (f jN (y))‖/‖AN (f jN (x))‖ ≤ exp
(

L1 dist(f jN (x), f jN (y))
)

≤ exp
(

L1Ke
−jNτ

)

and similarly for ‖AN (f jN (z))−1‖/‖AN (f jN (x))−1‖. It follows that

k−1
∏

j=0

‖AN (f jN (y))‖ ‖AN (f jN (z))−1‖ ≤ C2

k−1
∏

j=0

‖AN (f jN (x))‖ ‖AN (f jN (x))−1‖

where C2 = exp(L1K
∑∞

j=0 e
−jNτ ). The last term is bounded by C2e

kNθ ≤ C2e
nθ, by

domination. Therefore, it suffices to take C = C1C2 . �

Proof of Proposition 2.5. Each difference ‖An+1(z)−1An+1(y)−An(z)−1An(y)‖ is bounded
by

‖An(z)−1‖ · ‖A(fn(z))−1A(fn(y)) − id ‖ · ‖An(y)‖ .

Since A is Lipschitz continuous, the middle factor is bounded by

L2 dist(fn(y), fn(z)) ≤ L2Ke
−nτ dist(y, z),

for some L2 > 0 that depends only on A. Using Lemma 2.6 to bound the other factors,

(9) ‖An+1(z)−1An+1(y) −An(z)−1An(y)‖ ≤ CL2Ke
n(θ−τ) dist(y, z).

Since θ − τ < 0, this proves that the sequence is Cauchy and the limit Hs
y,z satisfies

‖Hs
y,z − id ‖ ≤ Ldist(y, z) with L =

∞
∑

n=0

CL2Ke
n(θ−τ).

The last claim in the proposition follows directly from the definition of Hs
y,z . �

Remark 2.7. If x is dominated for A then it is dominated for any other cocycle B in a C0

neighborhood. More precisely, if x ∈ DA(N, θ) then, given any θ′ > θ, we have x ∈ DB(N, θ′)
if B is uniformly close to A. Using this observation and the fact that the constants L1, L2

may be taken uniform in a neighborhood of the cocycle, we conclude that L itself is uniform
in a neighborhood of A. The same comments apply to the constant L̂ in the next corollary.

Corollary 2.8. Given K, τ , N , θ with 2θ < τ , there exists L̂ > 0 such that for any
x ∈ H(K, τ) ∩ DA(N, θ) and any y, z ∈W s

loc(x),

Hs
fj(y),fj(z) = lim

n→+∞
An(f j(z))−1An(f j(y)) = Aj(z) ·Hs

y,z ·A
j(y)−1

exists for every j ≥ 1, and satisfies

‖Hs
fj(y),fj(z) − id ‖ ≤ L̂ej(2θ−τ) dist(y, z) ≤ L̂ dist(y, z).

Proof. The first statement follows immediately from

An(f j(z))−1An(f j(y)) = Aj(z)
[

An+j(z)−1An+j(y)
]

Aj(y)−1.

Using Lemma 2.6 and inequality (9), with n replaced by n+ j, we deduce

‖An+1(f j(z))−1An+1(f j(y)) −An(f j(z))−1An(f j(y))‖ ≤ CejθCL2Ke
(n+j)(θ−τ) dist(y, z).

Summing over n ≥ 0 we get the second statement, with L̂ = CL. �
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2.3. Dependence of the holonomies on the cocycle. In the next lemma we study the
differentiability of Hs

A,x,y as a function of A ∈ Sr,ν(M,d). At this point we assume 3-

domination. Notice that Sr,ν(M,d) is a submanifold of the Banach space of Cr,ν maps from
M to the space of all d× d matrices. Thus, each TAS

r,ν(M,d) is a subspace of that Banach
space.

Lemma 2.9. Given K, τ , N , θ with 3θ < τ , there is a neighborhood U ⊂ Sr,ν(M,d) of A
such that for any x ∈ H(K, τ) ∩ DA(N, θ) and y, z ∈ W s

loc(x), the map B 7→ Hs
B,y,z is of

class C1 on U , with derivative

∂BH
s
B,y,z : Ḃ 7→

∞
∑

i=0

Bi(z)−1
[

Hs
B,fi(y),f i(z)B(f i(y))−1 Ḃ(f i(y))

−B(f i(z))−1 Ḃ(f i(z))Hs
B,fi(y),f i(z)

]

Bi(y).

Proof. By Remark 2.7, for any θ′ > θ we may find a neighborhood U of A, such that
x ∈ H(K, τ) ∩ DB(N, θ′) for all B ∈ U . Choose 3θ′ < τ , then Hs

B,y,z is well defined on U .
Before proving this map is differentiable, let us check that the expression ∂BH

s
B,y,z is also

well-defined.
Let i ≥ 0. By Lemma 2.6, we have ‖Bi(z)−1‖‖Bi(y)‖ ≤ Ceiθ′

. Corollary 2.8 gives

‖Hs
B,fi(y),f i(z) − id ‖ ≤ L̂ei(2θ′−τ) dist(y, z).

It is clear that ‖B(f i(y))−1 Ḃ(f i(y))‖ ≤ ‖B−1‖r,ν‖Ḃ‖r,ν . Moreover, since B ∈ Sr,ν(M,d)

and Ḃ ∈ TBSr,ν(M,d) are Lipschitz continuous,

‖B(f i(y))−1Ḃ(f i(y)) −B(f i(z))−1Ḃ(f i(z))‖ ≤ 2L3‖Ḃ‖r,ν Ke
−iτ dist(y, z)

where L3 = sup{‖B−1‖r,ν : B ∈ U}. This shows that

‖∂BH
s
B,y,z · Ḃ‖ ≤

∞
∑

i=0

Ceiθ′[

2L̂ei(2θ′−τ)L3 + 2L3Ke
−iτ

]

dist(y, z)‖Ḃ‖r,ν .

Thus ‖∂BH
s
B,y,z · Ḃ‖ ≤

∑∞
i=0 C3e

i(3θ′−τ) dist(y, z)‖Ḃ‖r,ν where C3 = 2CL3(L̂ + K). This
proves that the series does converge.

We have seen in Proposition 2.5 that Hn
B,y,z = Bn(z)−1Bn(z) converges to Hs

B,y,z as
n→ ∞. By Remark 2.7, this convergence is uniform on U . Elementary differentiation rules
give us that each Hn

B,x,y is a differentiable function of B, with derivative

∂BH
n
B,y,z · Ḃ = Bn(z)−1

n−1
∑

i=0

Bn−i(f i(y))B(f i(y))−1Ḃ(f i(y))Bi(y)

−
n−1
∑

i=0

Bi(z)−1B(f i(z))−1Ḃ(f i(z))Bn−i(f i(z))−1Bn(y).

So, to prove the lemma it suffices to show that ∂BH
n
B,y,z converges uniformly to ∂BH

s
B,y,z

when n→ ∞. As a first step we rewrite,

∂BH
n
B,y,z · Ḃ =

n−1
∑

i=0

Bi(z)−1
[

Hn−i
B,fi(y),f i(z)B(f i(y))−1Ḃ(f i(y))

−B(f i(z))−1Ḃ(f i(z))Hn−i
B,fi(y),f i(z)

]

Bi(y).

Let 0 ≤ i ≤ n− 1. From Corollary 2.8 we find that

‖Hn−i
B,fi(y),f i(z) −Hs

B,fi(y),f i(z)‖ ≤ L̂eiθen(θ−τ) dist(y, z).
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We deduce that the difference between the ith terms in the expressions of ∂BH
n
B,y,z · Ḃ and

∂BH
s
B,y,z · Ḃ is bounded by

2CeiθL̂eiθen(θ−τ) dist(y, z)L3‖Ḃ‖r,ν ≤ C4e
2iθen(θ−τ) dist(y, z)‖Ḃ‖r,ν

with C4 = 2CL̂3L. Using the estimates in the previous paragraph to bound the sum of all
terms i ≥ n in the expression of ∂BH

s
B,y,z · Ḃ, we obtain

‖∂BH
n
B,y,z · Ḃ − ∂BH

s
B,y,z · Ḃ‖ ≤

(

n−1
∑

i=0

C4e
2iθen(θ−τ) +

∞
∑

i=n

C3e
i(3θ−τ)

)

dist(y, z)‖Ḃ‖r,ν .

The right hand side tends to zero uniformly when n→ ∞, so the proof is complete. �

2.4. Holonomy blocks. The linear cocycle FA(x, v) = (f(x), A(x)v) induces a projective
cocycle

fA : M × P(Kd) →M × P(Kd)

in the projective space P(Kd) of K
d. For any y, z ∈ W s

loc(x) let hs
y,z : P(Kd) → P(Kd) be

the projective map induced by Hs
y,z. We call hs

x,y the strong-stable holonomy between the
projective fibers of x and y. This terminology is justified by the next lemma, which says
that the Lipschitz graph

W s
loc(x, ξ) = {(y, hs

x,y(ξ)) : y ∈W s
loc(x)}

is a strong-stable set for every point (x, ξ) in the projective fiber of x. Strong-unstable
sets W u

loc(x) and strong-unstable holonomies hu
x,y are defined analogously. The next lemma

explains this terminology. Since it is not strictly necessary for our arguments, we omit the
proof.

Lemma 2.10. Let x ∈ H(K, τ)∩DA(N, θ) with θ < τ . For every y ∈W s
loc(x) and ξ in the

projective space,

(1) lim sup
n→+∞

1

n
log dist

(

fn
A(x, ξ), fn

A(y, hs
x,y(ξ))

)

≤ −τ for all ξ ∈ Ex

(2) lim inf
n→+∞

1

n
log dist

(

fn
A(x, ξ), fn

A(y, η)
)

< −θ if and only if η = hs
x,y(ξ).

We call holonomy block for A any compact set O that is contained in H(K, τ)∩DA(N, θ)
for someK, τ,N, θ with 3θ < τ . By Proposition 2.5, points in the local stable set, respectively
local unstable set, of a holonomy block have strong-stable, respectively strong-unstable,
holonomies Lipschitz continuous with uniform Lipschitz constant L = L(A,K, τ,N, θ). More
than that, by Remark 2.7,

Corollary 2.11. Given any K, τ,N, θ with 3θ < τ , there is a neighborhood U of A in
Sr,ν(M,d) such that any compact subset O of H(K, τ) ∩ DA(N, θ) is a holonomy block for
every B ∈ U , and the Lipschitz constant L for the corresponding strong-stable and strong-
unstable holonomies may be taken uniform on the whole U .

3. Invariant measures of projective cocycles

In this section we assume λ+(A, x) = 0 for µ-almost every x ∈ M . Let fA be the
projective cocycle associated to A. We are going to analyze the probability measures m on
M ×P(Kd), invariant under fA and projecting to µ under (x, ξ) 7→ x. Such measures always
exist, by continuity of fA and compactness of its domain. A disintegration of m is a family
of probability measures {mz : z ∈M} on the fibers Fz = {z} × P(Kd), such that

m(E) =

∫

mz

(

Fz ∩ E
)

dµ(z)

for every measurable subset E. Such a family exists and is essentially unique, meaning that
any two coincide on a full measure subset, cf. Rokhlin [18].
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3.1. Invariance along strong foliations. Let O ⊂M be a holonomy block with positive
µ-measure. By definition, O is contained in some hyperbolic block H(K, τ). Let δ >
0 be some small constant, depending only on (K, τ). Fix any point x ∈ supp(µ | O)
and let N s

x (δ) = N s
x (K, τ, δ), N u

x (δ) = N u
x (K, τ, δ), and Nx(δ) = Nx(K, τ, δ) be the sets

introduced in Section 1.2. Moreover, let N s
x (O, δ), N u

x (O, δ), Nx(O, δ) be the subsets of
N s

x (δ), N u
x (δ), Nx(δ) obtained replacing H(K, τ) by O in the definitions. By construction,

Nx(O, δ) contains O ∩B(x, δ), and so it has positive µ-measure.

Proposition 3.1. Let m be any fA-invariant probability measure that projects down to
µ. Then the disintegration {mz} of m is invariant under strong-stable holonomy µ-almost
everywhere on Nx(O, δ): there exists a full µ-measure subset Es of Nx(O, δ) such that

mz2
=

(

hs
z1,z2

)

∗
mz1

for every z1, z2 ∈ Es in the same stable leaf [z,N s
x (δ)].

Replacing f by f−1 we get that the disintegration is also invariant under strong-unstable
holonomy over a full µ-measure subset Eu of Nx(O, δ) .

The proof of Proposition 3.1 is based on the following slightly specialized version of
Theorem 1 of Ledrappier [13]. Let (M∗,M∗, µ∗) be a Lebesgue space (complete probability
space with the Borel structure of the interval together with a countable number of atoms),
T : M∗ → M∗ be a one-to-one measurable transformation, and B : M∗ → GL(d,C) be a
measurable map such that log ‖B‖ and log ‖B−1‖ are integrable. Denote by FB the linear
cocycle and by fB the projective cocycle defined by B over T . Let λ−(B, x) be the smallest
Lyapunov exponent of FB at a point x. Recall that λ+(B, x) denotes the largest exponent.

Theorem 3.2 (Ledrappier [13]). Let B ⊂ M∗ be a σ-algebra such that

(1) T−1(B) ⊂ B mod 0 and {Tn(B) : n ∈ Z} generates M∗ mod 0
(2) the σ-algebra generated by B is contained in B mod 0.

If λ−(B, x) = λ+(B, x) at µ∗-almost every point then, for any fB-invariant measure m on
M∗ ×P(Cd), the disintegration z 7→ mz of m along projective fibers is B-measurable mod 0.

We also need the following result, whose proof we postpone to Section 3.3:

Proposition 3.3. There exists N ≥ 1 and a family of sets {S(z) : z ∈ N u
x (δ)} such that

(1) [z,N s
x (δ)] ⊂ S(z) ⊂W s

loc(z) for all z ∈ N u
x (δ);

(2) for all l ≥ 1 and z, ζ ∈ N u
x (δ), if f lN (S(ζ)) ∩ S(z) 6= ∅ then f lN (S(ζ)) ⊂ S(z).

We are going to deduce Proposition 3.1 from Theorem 3.2 applied to a modified cocycle,
constructed with the aid of Proposition 3.3 in the way we now explain. Since Proposition 3.1
is not affected when one replaces f by any iterate, we may suppose N = 1 in all that follows.
Consider the restriction {S(z) : z ∈ N u

x (O, δ)} of the family in Proposition 3.3. For each
z ∈ N u

x (O, δ) let r(z) ≥ 0 be largest such that f j(S(z)) does not intersect the union of
S(w), w ∈ N u

x (O, δ) for all 0 ≤ j ≤ r(z) (possibly r(z) = ∞). Take B ⊂ M to be the
sub-σ-algebra generated by the family {f j(S(z)) : z ∈ N u

x (O, δ) and 0 ≤ j ≤ r(z)}, that is,
B consists of all measurable sets E which, for every z and j, either contain f j(S(z)) or are
disjoint from it. Define B : M → GL(d,C) by

(10) B(x) = A(f j(z)) = Hs
f(x),fj+1(z) ◦A(x) ◦Hs

fj(z),x

if x ∈ f j(S(z)) for some z ∈ N u
x (O, δ) and 0 ≤ j < r(z);

(11) B(x) = Hs
f(x),w ◦A(x) ◦Hs

fj(z),x

if x ∈ f j(S(z)) for some z ∈ N u
x (O, δ) , j = r(z), and f j+1(S(z)) ⊂ S(w); and

(12) B(x) = A(x) in all other cases.

Lemma 3.4. (1) f−1(B) ⊂ B and {fn(B) : n ∈ N} generates M∗ mod 0.
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(2) The σ-algebra generated by B is contained in B.
(3) The functions log ‖B‖ and log ‖B−1‖ are bounded.
(4) A and B have the same Lyapunov exponents at µ-almost every x.

Proof. It is clear that f(B) is the sub-σ-algebra generated by {f j+1(S(z)) : z ∈ N u
x (O, δ)

and 0 ≤ j ≤ r(z)}. The Markov property in part (2) of Proposition 3.3 implies that this
σ-algebra contains B. Equivalently, f−1(B) ⊂ B. More generally, fn(B) is generated by
{f j+n(S(z)) : z ∈ N u

x (O, δ) and 0 ≤ j ≤ r(z)} for each n ≥ 1. By (4),

diam f j+n(S(z)) ≤ const e−τn → 0

uniformly as n→ ∞. Hence fn(B), n ≥ 1 generate M mod 0. This proves (1). Definitions
(10) and (11) imply that B−1(E) is in the σ-algebra B for every measurable subset E of
SL(d,C). That is the content of statement (2). Claim (3) is clear, except possibly for
case (11) of the definition. To handle that case notice that Hs

fj+1(ζ),w and Hs
fj(z),fj(ζ) are

uniformly close to the identity, by Proposition 2.5 and Corollary 2.8. To prove (4), we
consider two cases. If the forward orbit of x never enters the union of S(z), z ∈ N u

x (O, δ)
then An(x) = Bn(x) and the statement is obvious. If the forward orbit of x does enter the
union at some time t ≥ 0 then for any n ≥ t there are z, w ∈ N u

x (O, δ) and 0 ≤ j ≤ r(w)
such that

Bn(x) = Hs
fn(x),fj(w) ◦A

n−t(f t(x)) ◦Hs
z,ft(x) ◦A

t(x).

The claim follows, observing that time t is fixed and Hs
fn(x),fj(w) is at bounded distance

from the identity, by Proposition 2.5 and Corollary 2.8. �

Proof of Proposition 3.1. The claim will follow from applying Theorem 3.2 with M∗ = M ,
M∗ = completion of the Borel σ-algebra of M relative to µ∗ = µ, T = f , and B as
constructed above. Notice that (M∗,M∗, µ∗) is a Lebesgue space (because M is a separable
metric space, see[19, Theorem 9]). Since A takes values in SL(d,C), the sum of all Lyapunov
exponents vanishes identically. Therefore,

(d− 1)λ−(A, x) + λ+(A, x) ≤ 0 ≤ λ−(A, x) + (d− 1)λ+(A, x).

So, λ+(A, x) = 0 if and only if λ−(A, x) = λ+(A, x) and, by part (4) of Lemma 3.4, this is
equivalent to λ−(B, x) = λ+(B, x). The other hypotheses of the theorem are also granted
by Lemma 3.4. Let m be any fA-invariant measure as in the statement. Invariance means
that

A(x)∗mx = mf(x) µ-almost everywhere.

Define m̃ to be the probability measure on M × P(Kd) projecting down to µ and with
disintegration {m̃x} defined by

m̃x =

{ (

hx,fj(z)

)

∗
mx if x ∈ f j(S(z)) with z ∈ N u

x (O, δ) and 0 ≤ j ≤ r(z)
mx otherwise.

Let us check that m̃ is fB-invariant. If x ∈ f j(S(z)) with 0 ≤ j < r(z) then, by (10),

B(x)∗m̃x =
(

hs
f(x),fj+1(z)

)

∗
A(x)∗mx =

(

hs
f(x),fj+1(z)

)

∗
mf(x) = m̃f(x) µ-a.s.

Similarly, if x ∈ f j(S(z)) with j = r(z) and f j+1(S(z)) ⊂ S(w) then, by (11),

B(x)∗m̃x =
(

hs
f(x),w

)

∗
A(x)∗mx =

(

hs
f(x),w

)

∗
mf(x) = m̃f(x) µ-a.s.

Case (12) of the definition is obvious. Thus, m̃ is indeed fB-invariant. Using Theorem 3.2,
we conclude that x 7→ m̃x is B-measurable mod 0. This implies that there exists a full
measure subset Es of Nx(O, δ) such that

z1, z2 ∈ Es ∩ S(z) ⇒ m̃z1
= m̃z2

⇔
(

hs
z1,z

)

∗
mz1

=
(

hs
z2,z

)

∗
mz2

⇒
(

hs
z1,z2

)

∗
mz1

= mz2
.

Since S(z) contains [z,N s
x (δ)], this proves the proposition. �
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3.2. Consequences of local product structure. Here we use, for the first time, that µ
has local product structure. The following is a straightforward consequence of the definitions:

(13) supp(µ | Nx(O, δ)) = [supp(µu | N u
x (O, δ)), supp(µs | N s

x (O, δ))].

The crucial point in this section is that the conclusion of the next proposition holds for
every, not just almost every, point in the support of µ | Nx(O, δ) .

Proposition 3.5. Every fA-invariant measure m projecting down to µ admits a disintegra-
tion {m̃z : z ∈M} such that

(1) sup(µ | Nx(O, δ)) 3 z 7→ m̃z is continuous relative to the weak topology.
(2) m̃z is invariant under strong-stable and strong-unstable holonomies everywhere on

sup(µ | Nx(O, δ)):

m̃x =
(

hs
z,x

)

∗
m̃z and m̃y =

(

hu
z,y

)

∗
m̃z

whenever z, x are in the same local stable manifold, and z, y are in the same local
unstable manifold.

Proof. Let E = Es ∩ Eu, where Es and Eu are the full measure subsets of Nx(O, δ) given
by Proposition 3.1. Since µ(Nx(O, δ) \ E) = 0 and µ ≈ µu × µs, we have

µ
(

[ξ,N s
x (O, δ)] ∩ (Nx(O, δ) \ E)

)

= 0

for µu-almost every ξ ∈ N u
x (O, δ). Fix any such ξ. Consider the family {m̄z : z ∈ M} of

probabilities obtained by starting with an arbitrary disintegration {mz : z ∈ M} of m and
forcing strong-unstable invariance from [ξ,N s

x (O, δ)]. What we mean by this is that, by
definition,

m̄z = (hu
η,z)∗mη

if z ∈ [N u
x (O, δ), η] for some η ∈ [ξ,N s

x (O, δ)], and m̄z = mz at all other points. From
the definition and the local product structure, we get that m̄z = mz at µ-almost every
z ∈M . So, this new family is still a disintegration of m. Moreover, m̄z varies continuously
with z along every unstable leaf [N u

x (O, δ), η], as a consequence of the Lipschitz property of
holonomies in Proposition 2.5.

Next, fix η ∈ N s
x (O, δ) such that µ

(

[N u
x (O, δ), η] ∩ (Nx(O, δ) \E)

)

= 0 and let {ms
z : z ∈

M} be the family of probabilities obtained starting with the disintegration {m̄z : z ∈M} and
forcing strong-stable invariance from [N u

x (O, δ), η]. For the same reasons as before, this third
family is again a disintegration of m. By construction, this disintegration is invariant under
strong-stable holonomies everywhere on Nx(O, δ) . Most important, ms

z varies continuously
with z on the whole Nx(O, δ) .

By a dual procedure, we obtain a disintegration {mu
z : z ∈ M} varying continuously

with z on Nx(O, δ) and invariant under strong-stable holonomies everywhere on Nx(O, δ) .
Then ms

z and mu
z must coincide almost everywhere. Hence, by continuity, ms

z = mu
z at

every point z ∈ supp(µ | Nx(O, δ)). Define m̃z = ms
z = mu

z if z ∈ Nx(O, δ) and m̃z = mz

otherwise. The properties in the conclusion of the proposition follow immediately from the
construction. �

3.3. A Markov type construction. Here we prove Proposition 3.3. Fix N ≥ 1 such that
Ke−Nτ < 1/4, then let g = fN . For each z ∈ N u

x (δ) define S0(z) = [z,N s
x (δ)] and

(14) Sn+1(z) = S0(z) ∪
⋃

(j,w)∈Zn(z)

gj(Sn(w))

where Zn(z) is the set of pairs (j, w) ∈ N×N u
x (δ) such that gj(Sn(w)) intersects S0(z). By

induction, Sn+1(z) ⊃ Sn(z) and Zn+1(z) ⊃ Zn(z) for all n ≥ 0. Define

S∞(z) =

∞
⋃

n=0

Sn(z) and Z∞(z) =

∞
⋃

n=0

Zn(z).
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Then Z∞(z) is the set of (j, w) ∈ N ×N u
x (δ) such that gj(S∞(w)) intersects S0(z), and

(15) S∞(z) = S0(z) ∪
⋃

(j,w)∈Z∞(z)

gj(S∞(w)).

Finally, define

(16) S(z) = S∞(z) \
⋃

(k,ξ)∈V (z)

gk(S∞(ξ))

where (k, ξ) ∈ V (z) if and only if gk(S∞(ξ)) is not contained in S∞(z).

Lemma 3.6. We have S0(z) ⊂ S(z) ⊂ S∞(z) ⊂W s
loc(z) for all z ∈ N u

x (δ).

Proof. Relation (15) and the definition of V (z) imply that gk(S∞(ξ)) is disjoint from S0(z)
for all (k, ξ) ∈ V (z). Since S∞(z) contains S0(z), it follows that S0(z) ⊂ S(z). Next, for
each z ∈ N u

x (δ) and 0 ≤ n ≤ ∞, define internal radii

∆n = sup{dist(z, η) : η ∈ Sn(z) and z ∈ N u
x (δ)}.

It is clear that ∆0 goes to zero with δ (linearly). Assume δ is small enough so that the local
stable manifold of every z ∈ N u

x (δ) contains the disk of radius 2∆0 around z. Our choice
of N above implies that diam g(E) ≤ Ke−Nτ diam(E) < (1/4) diam(E) for all j ≥ 1 and
E ⊂W s

loc(z). Therefore, the definition (14) gives

∆n+1 ≤ ∆0 +
1

4
sup

w∈Nu
x (δ)

diamSn(w) ≤ ∆0 +
1

2
∆n

for all n ≥ 0. By induction, it follows that ∆n ≤ 2∆0 for every n ≥ 1. Then ∆∞ ≤ 2∆0 ,
and so S∞(z) ⊂W s

loc(z) for every z ∈ N u
x (δ). �

Lemma 3.7. Suppose gl(S(ζ)) ∩ S∞(z) 6= ∅. Then, for any (k, ξ) ∈ V (z),

(1) gl(S∞(ζ)) ⊂ S∞(z) and
(2) if gl(S(ζ)) ∩ gk(S∞(ξ)) 6= ∅ then gl(S(ζ)) ⊂ gk(S∞(ξ)).

Proof. If gl(S(ζ)) ⊂ gl(S∞(ζ)) intersects S0(z) then (l, ζ) ∈ Z∞(z) and the conclusion
follows directly from (15). So, to prove the first claim, we only need to consider the case
when gl(S(ζ)) intersects gj(S∞(w)) for some (j, w) ∈ Z∞(z). Suppose first that l ≤ j.
Then S(ζ) intersects gj−l(S∞(w)) and so, by the definition (16) of S(ζ), we have that
gj−l(S∞(w)) is contained in S∞(ζ). It follows that gj(S∞(w)) ⊂ gl(S∞(ζ)). This implies
that (l, ζ) ∈ Z∞(z), because (j, w) ∈ Z∞(z), and so gl(S∞(ζ)) ⊂ S∞(z). Now suppose that
l > j. Then gl−j(S(ζ)) intersects S∞(w). This is analogous to the hypothesis of the lemma,
with z replaced by w and l replaced by l− j < l. Hence, by induction on l, we may assume
that gl−j(S∞(ζ)) ⊂ S∞(w). It follows that gl(S∞(ζ)) ⊂ gj(S∞(w)) ⊂ S∞(z), as claimed.

Now we prove the second claim. Suppose l ≤ k. Then S(ζ) intersects gk−l(S∞(ξ)). In
view of (16), this implies gk−l(S∞(ξ)) ⊂ S∞(ζ). Then, using also claim (1) in this lemma,

gk(S∞(ξ)) ⊂ gl(S∞(ζ)) ⊂ S∞(z),

contradicting the assumption (k, ξ) ∈ V (z). So, we must have l > k. Then gl−k(S(ζ))
intersects S∞(ξ). By claim (1) in this lemma, it follows that gl−k(S(ζ)) ⊂ gl−k(S∞(ζ)) is
contained in S∞(ξ). That is, gl(S(ζ)) ⊂ gk(S∞(ξ)), as we wanted to prove. �

Proof of Proposition 3.3. The first part is contained in Lemma 3.6, since [z,N s
x (δ)] = S0(z).

Let us prove the second part. Recall that g = fN and we are assuming gl(S(ζ)) intersects
S(z). Then Lemma 3.7(1) gives that gl(S(ζ)) ⊂ gl(S∞(ζ)) ⊂ S∞(z). So, in view of (16), to
prove that gl(S(ζ)) is contained in S(z) we only have to show that gl(S(ζ)) is disjoint from
gk(S∞(ξ)) for all (k, ξ) ∈ V (z). This is ensured by Lemma 3.7(2): if gl(S(ζ)) intersected
gk(S∞(ξ)) then it would be contained in it, in which case it would not intersect S(z). �
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4. Periodic points and obstructions to vanishing exponents

The next goal is to exhibit geometric obstructions to the vanishing of Lyapunov exponents,
in terms of holonomies over local stable and local unstable sets of periodic points of f . To
this end, we construct holonomy blocks Õ containing any number of dominated periodic
points.

4.1. Dominated periodic points. Let p be a periodic point of f , and κ ≥ 1 be its period.
Suppose p is hyperbolic, with hyperbolicity constants K and τ . We fix s = 3 in what follows,
and say that p is dominated if it is in DA(N, θ) for some N and θ with sθ < τ . An equivalent
condition is that there be P ≥ 1 and θ with sθ < τ such that

(17) ‖AκP (p)‖ ‖AκP (p)−1‖ ≤ eκPθ.

Indeed, (17) implies p ∈ DA(κP, θ), by periodicity, and p ∈ DA(N, θ) implies (17) with
P = N , by sub-multiplicity of norms.

Suppose p is dominated, and let z be any point in the local stable set W s
loc(p). Let

Hs
p,z = Hs

A,p,z and hs
p,z = hs

A,p,z be the corresponding strong-stable holonomies. Recall that

Hs
A,p,z = lim

n→+∞
Aκn(z)−1Aκn(p),

and hs
A,p,z is the projectivization of Hs

A,p,z. In particular, these holonomies depend only on
the values of A on the local stable manifold of p.

Proposition 4.1. Let p ∈M be a dominated periodic point for A ∈ Sr,ν(M,d). Then there
is a neighborhood U of A such that for any z ∈ W s

loc(p) the map B 7→ hs
B,p,z is of class C1

on U . Moreover, given any linearly independent points ξ1 , . . . , ξd in P(Kd),

(18) U 3 B 7→
(

hs
B,p,z(ξ1), . . . , h

s
B,p,z(ξd)

)

∈ P(Kd)d

is a submersion, even restricted to maps with values prescribed outside a neighborhood of z.

In other words, for every B ∈ U and any neighborhood U of z, the restriction of (18)
to those maps which coincide with B outside U is differentiable at B and the derivative is
surjective.

Remark 4.2. The proof uses the following property of G = SL(d,K), shared by other
matrix groups: given any linearly independent η1 , . . . , ηd ∈ P(Kd), the map

G→ P(Kd)d, β 7→ (β(η1), . . . β(ηd))

is a submersion. Equivalently (think of the ηi as norm 1 vectors),

{(β̇(η1), . . . , β̇(ηd)) : β̇ ∈ TβG} +
(

Kη1 × · · · × Kηd

)

= (Kd)d,

for every β ∈ G. The class of matrix groups to which our arguments apply is discussed in
Section 6.3.

Firstly, we note that the evaluation evz : Sν,r(M,d) → SL(d,K), B 7→ B(z) is always a
submersion, even restricted to maps with values prescribed outside a neighborhood of z.

Lemma 4.3. Let B ∈ Sr,ν(M,d), z ∈ M , and U be a neighborhood of z. For every

β̇ ∈ TB(z) SL(d,K) there exists a C1 curve (−ε, ε) 3 t 7→ Bt ∈ Sr,ν(M,d) such that B0 = B,

(∂tBt)t=0(z) = β̇, and Bt = B outside U for all t.

Proof. Let (−ε, ε) 3 t 7→ βt ∈ SL(d,K) be a C1 curve such that β0 = B(z) and (∂tβt)t=0 = β̇.
Let τ : M → [0, 1] be a Cr,ν function such that τ(z) = 1 and τ(w) = 0 if w /∈ U . Define

(−ε, ε) 3 t 7→ Bt ∈ Sr,ν(M,d) by Bt(w) = βtτ(w)B(z)−1B(w).

Then B0 = B and Bt(w) = B(w) for all t ∈ (−ε, ε) and w /∈ U . The curve t 7→ Bt is C1,

with derivative τ(w)∂tβtτ(w)B(z)−1B(w). In particular, (∂tBt)t=0(z) = (∂tβt)t=0 = β̇. �
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Proof of Proposition 4.1. The first statement is a direct consequence of Lemma 2.9, since
the projectivization SL(d,K) → PSL(d,K) is a smooth map. To prove the second one, let
U be any neighborhood of z. Restricting to cocycles that coincide with B outside U means
that we consider tangent vectors Ḃ with Ḃ(w) = 0 for every w /∈ U . It is no restriction to
take U small enough so that it is disjoint from {f j(p), f j(z) : j ≥ 1}. Then the expression
of the derivative of B 7→ HB,p,z given in Lemma 2.9 reduces to

∂BH
s
B,p,z · Ḃ = −B(z)−1Ḃ(z)Hs

B,p,z .

Thus, the derivative of B 7→
(

Hs
B,p,z(ξi)

)

i=1,...,d
∈ (Kd)d (think of the ξi as norm 1 vectors)

is

Ḃ 7→
(

−B(z)−1Ḃ(z)Hs
B,p,z(ξi)

)

i=1,...,d
.

Clearly, the ηi = Hs
B,p,z(ξi) are linearly independent. By Lemma 4.3, Ḃ(z) takes all the

values in TB(z) SL(d,K). Therefore, using the property in Remark 4.2,
{(

Ḃ(z)ηi

)

i=1,...,d
: Ḃ ∈ TBSr,ν(M,d)

}

+ (KB(z)η1 × · · · × KB(z)ηd) = (Kd)d.

Multiplying by −B(z)−1 on the left, we find that
{(

∂BH
s
B,p,zḂ(ξi)

)

i=1,...,d
: Ḃ ∈ TBSr,ν(M,d)

}

⊕ (Kη1 × · · · × Kηd) = (Kd)d.

Since hs
B,p,z is the projectivization of Hs

B,p,z, this means that

TBSr,ν(M,d) 3 Ḃ 7→ ∂Bh
s
B,p,z · Ḃ

is surjective at every B ∈ Sr,ν(M,d) as claimed. �

From Lemma 4.3 we also get the following useful consequence:

Corollary 4.4. Given periodic points p1 , . . . , pk of f , with minimum periods κ1 , . . . , κk ,

A 7→
(

Aκ1(p1), . . . , A
κk(pk)

)

∈ SL(d,K)k

is a submersion at every A ∈ Sr,ν(M,d).

Proof. For each j = 1, . . . , k, write βj = Aκj (pj) and let β̇j be any tangent vector to SL(d,K)
at βj . Fix a neighborhood Uj of each pj , small enough so that these neighborhoods be
pairwise disjoint and pj be the unique point in the intersection of Uj with these periodic
orbits. Using Lemma 4.3 with z = pj and U = Uj , successively for j = 1, . . . , k, we obtain a
C1 curve (−ε, ε) 7→ At in Sr,ν(M,d) such that A0 = A, At = A outside U1 ∪ · · · ∪ Uk, and

(∂tAt)t=0(pj) = A−κj+1(pj)β̇j for j = 1, . . . , k.

Then A
κj

t (pj) = Aκj−1(f(pj))At(pj) and so

(∂tA
κj

t )t=0(pj) = Aκj−1(f(pj))(∂tAt)t=0(pj) = β̇j .

This proves that the derivative of A 7→
(

Aκj (pj)
)

j=1,...,k
is surjective, as claimed. �

4.2. Holonomy blocks containing periodic points. Let M0 = {x ∈M : λ+(A, x) = 0}
and assume µ(M0) > 0. We are going to prove that there exist holonomy blocks containing
any given number of (dominated) periodic points. More precisely,

Proposition 4.5. Given ε > 0 and ` ≥ 1, there exists a holonomy block Õ of A such that
µ(M0 \ Õ) < ε and there exist ` distinct dominated periodic points p1 , . . . , p` ∈ Õ such that

(1) every W u
loc(pi) intersects every W s

loc(pj) at exactly one point

(2) and every pi ∈ supp
(

µ | Õ ∩ f−κi(Õ)
)

, where κi = per(pi).
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The main tool is the following classical result of Katok [12], that extends the shadowing
lemma (see Bowen [9]) to the non-uniformly hyperbolic setting. The Main Lemma in [12] is
stated in terms of a family Λχ,` of hyperbolic blocks defined through a number of uniformity
conditions, the precise form of which does not concern us here. We take Kj = Λχj ,`j

with
χj → ∞ and `j → ∞ as j → ∞, and it suffices to know that µ(Kj) goes to 1 as j → ∞.

Theorem 4.6 (Katok [12]). Given j ≥ 1 there are K > 0, τ > 0, ρ > 0, and given γ > 0
there is ε > 0 such that, for any z ∈ Kj and κ ≥ 1 with fκ(z) ∈ Kj and dist(fκ(z), z) < ε,
there exists a periodic point p ∈M of period κ such that

(1) p is a hyperbolic point for f and the eigenvalues αs of Dfκ(p) satisfy | log |αs|| > κτ .
Moreover, dist(fn(x), fn(y)) ≤ Ke−τn dist(x, y) for all n ≥ 0 and x, y ∈ W s

loc(p).
Analogously for W u

loc(p) with fn replaced by f−n.
(2) W s

loc(p) has size > ρ and is uniformly transverse (angle > ρ) to the unstable sets
of all points w ∈ Kj in the ρ-neighborhood of z. In particular, W s

loc(p) intersects
Wu

loc(w) at exactly one point. Analogously, interchanging stable with unstable.
(3) dist(f j(p), f j(z)) < γ for every 0 ≤ j ≤ κ.

The uniform bound on the eigenvalues of p is not explicitly stated in [12], but is easily
read out from the proof, for instance from (3.42) and (3.44). The rest of statement (1) is also
part of the proof of the Main Lemma of [12]: see Proposition 2.4(ii) and bounds (3.38) and
(3.40). The uniform estimates in statement (2) are part of the definition of (s, 1)−admissible
and (u, 1)−admissible curves, see [12, page 153], and the intersection property is given by
Proposition 2.5 in [12]. Let us also comment on the way part (3) is proven in [12], as we shall
need a similar argument in a while. Uniform transversality of the local invariant manifolds
gives that the local stable manifold of p intersects the local unstable manifold of z at a
unique point ζ, and the distances from ζ to p and z are bounded by Cε for some constant
C > 0. Then fκ(ζ) is a heteroclinic point of p and fκ(z), and the distances from it to the
latter points are also bounded by Cε. It follows that

(19)
dist(f j(p), f j(ζ)) ≤ Ke−τj dist(p, ζ) ≤ Ke−τjCε and

dist(f j(ζ), f j(z)) ≤ Ke−τ(κ−j) dist(fκ(ζ), fκ(z)) ≤ Ke−τ(κ−j)Cε,

and so dist(f j(p), f j(ζ)) ≤ 2KCε. Choosing ε small with respect to γ, one gets the claim.

Proof of Proposition 4.5. Clearly, it is no restriction to suppose ε is smaller than µ(M0).
Fix j ≥ 1 such that µ(M0 \ Kj) < ε/2. Take K, τ , ρ as given by Theorem 4.6. Fix θ > 0
such that sθ < τ . By Corollary 2.4, for µ-almost every x ∈M0 there exists N ≥ 1 such that
x ∈ DA(N, θ). Notice that DA(N, θ) increases when N is replaced by a multiple, by sub-
multiplicity of the norm. Thus, we may choose N such that the measure of M0 \ DA(N, θ)
is less than ε/2. Then O = Kj ∩ DA(N, θ) is a holonomy block. Moreover, µ(M0 \ O) < ε
and so µ(O) is positive. Fix any point x ∈ supp(µ | O).

Lemma 4.7. Given ε > 0, there are ` distinct points z1 , . . . , z` and there are κ1 , . . . , κ` ∈ N

such that

(1) both zi and fκi(zi) are in B(x, ρ/2), and dist(fκi(zi), zi) < ε;
(2) zi ∈ supp

(

µ | O ∩ f−κi(O)
)

; in particular both zi and fκi(zi) are in supp(µ | O).

Moreover, we may choose min{dist(zi , zj) : i 6= j} ≥ r with r > 0 independent of ε.

Proof. Since x ∈ supp(µ | O) and µ is non-atomic, there exist distinct points ζ1 , . . . , ζ` in
B(x, ρ/2) ∩ supp(µ | O). Fix any r > 0 such that dist(ζi , ζj) > r for all i 6= r. For each
i = 1, . . . , ` and any ε > 0, we may find a compact set Γi ⊂ B(ζi , ε/2) ∩ O with µ(Γi) > 0.
Moreover, we may choose Γi ⊂ B(x, ρ/2) with dist(Γi ,Γj) ≥ r for all i 6= j. By the Poincaré
recurrence theorem, there exist κi ≥ 1 such that Γi∩f−κi(Γi) has positive measure. Pick any
zi in the support of (µ | Γi ∩ f

−κi(Γi)). Since Γi is contained in B(x, ρ/2)∩B(ζi, ε/2), part
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(1) of the lemma follows immediately. Since Γi ⊂ O, part (2) is also a direct consequence.
Finally, it is clear from the construction that dist(zi , zj) ≥ r. �

We may assume that the κi are all multiples of N : it suffices to use the recurrence theorem
for fN instead of f . This observation will be useful in Lemma 4.10. Now from Theorem 4.6
we obtain (see Figure 1),

Corollary 4.8. For every γ > 0 there exist ` distinct periodic points p1 , . . . , p` ∈ B(x, ρ/2),
with periods κ1 , . . . , κ` satisfying

(1) dist(fn(x), fn(y)) ≤ Ke−τn dist(x, y) for all n ≥ 0 and x, y ∈W s
loc(pi). Analogously

for the unstable manifold, replacing f by its inverse.
(2) W s

loc(pi) has size > ρ and intersects W u
loc(w) at exactly one point, for every w ∈ O

in B(zi , ρ) ⊃ B(x, ρ/2), and the same is true if we interchange stable with unstable.
(3) dist(f j(pi), f

j(zi)) < γ for every 0 ≤ j ≤ κi .

Proof. It is no restriction to consider γ < r/2. Let ε > 0 be as in Theorem 4.6 and then
take zi and κi as in Lemma 4.7. The theorem gives, for each i = 1, . . . , `, a periodic point pi

with period κi satisfying (1), (2), (3). For part (2) notice that B(x, ρ/2) ⊂ B(zi , ρ), because
zi ∈ B(x, ρ/2). Finally, the choice of γ ensures that the pi’s are all distinct. �

In particular, from part (2) of the lemma we get that these periodic points are all hete-
roclinically related, as claimed in part (1) of Proposition 4.5: the local unstable manifold of
every pi intersects the stable manifold of every pj , transversely, at exactly one point. The

main step to get part (2) of Proposition 4.5 is to construct a new holonomy block Õ ⊃ O
such that pi ∈ Õ and pi is in the support of µ | Õ ∩ f−κi(Õ) for every 1 ≤ i ≤ N . Let us
explain how this is done, with the aid of Figure 1.

PSfrag replacements

z1

z2

z3

Oi(1, 0)p1

p2

p3

pi

x

Oi(0, 1)

Γs
i (l)

Γu
i (k)

Γs
i

Γu
i

Figure 1. Extended holonomy block

Let ν > 0 be small. Since zi is in the support (µ | O | f−κi(O)), we may find a compact
set with µ(Oi) > 0 such that Oi ⊂ B(zi , ν)∩O and fκi(Oi) ⊂ B(fκi(zi), ν)∩O. Reducing
ν if necessary, and recalling that fκi(zi) and zi are close to each other, we may suppose that
both Oi and fκi(Oi) are contained in B(zi , ρ). Then we may use part (2) of Corollary 4.8
to conclude that W s

loc(pi) intersects the local unstable set of every point in Oi and Wu
loc(pi)

intersects the local stable set of every point in fκi(Oi). Let Γs
i ⊂W s

loc(p) and Γu
i ⊂Wu

loc(pi)
be the corresponding (compact) intersections. Denote

Γu
i (k) = f−κik(Γu

i ) and Γs
i (l) = fκil(Γs

i ), for k, l ≥ 0,

with the convention Γu
i (∞) = Γs

i (∞) = {pi}. Reducing ν if necessary, the Γu
i (k) are pairwise

disjoint and so are the Γs
i (l). The λ-lemma (see [15]) implies that, for every k + l ≥ 1, the

local stable manifolds through Γu
i (k) intersect the local unstable manifolds through Γs

i (l)
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transversely, with angles uniformly bounded from zero. Let Oi(k, l) be the corresponding
(compact) intersection set. Notice that Oi(1, 0) = Oi and Oi(0, 1) = fκi(Oi). Finally, define

Õ = O ∪
⋃

k+l≥1

Oi(k, l).

It is clear that µ(M0 \ Õ) ≤ µ(M0 \ O) < ε. The λ-lemma also implies that local stable
manifolds and local unstable manifolds have sizes uniformly bounded from zero, and vary
continuously with the point over the whole Õ. In addition,

Lemma 4.9. There is K ′ > 0 such that, given any ξ ∈ Õ and ξ′, ξ′′ ∈W s
loc(ξ),

dist(fn(ξ′), fn(ξ′′)) ≤ K ′e−τn dist(ξ′, ξ′′) for every n ≥ 0,

and analogously for ξ′, ξ′′ ∈Wu
loc(ξ) and n ≤ 0.

Proof. It follows from O ⊂ H(K, τ) that every local stable manifold through O is contracted
by ≤ Ke−τn under every forward iterate fn. The same is true for the local stable manifold
of any ξ ∈ W s

loc(pi), according to part (1) of Corollary 4.8. Then, just continuity, the local
stable manifold of any ξ ∈ W s(Γs

i (k)) is contracted by ≤ 2Ke−τn under fn, if k is large
enough and we restrict ourselves to iterates inside some small neighborhood of W s

loc(pi).
Then, choosing a convenient Ki > 2K , the local stable manifold of any ξ ∈ Oi(k, l) with
k ≥ 1 is contracted by ≤ Kie

−τn under every fn with n ≤ κik. By construction, the
fκik-image of any such stable manifold is contained in a local stable manifold through
Oi(0, 1) ⊂ O. So, in view of the first sentence in the proof, we have the conclusion of the
lemma as long as K ′ > KiK. �

This means we may consider Õ a subset of a hyperbolic block H(K ′, τ). Hence, the next

lemma proves that Õ is a holonomy block.

Lemma 4.10. Fix θ′ > θ with sθ′ < τ and assume γ was chosen sufficiently small. Then
Õ is contained in DA(N, θ′).

Proof. By construction, O ⊂ DA(N, θ) ⊂ DA(N, θ′). Therefore, we only have to prove that
every Oi(k, l) is contained in DA(N, θ′). Let ζ ∈ Oi(k, l) for some i, k, l. The first step is
to observe that, if k > 0,

(20) dist(f j(ζ), f j(zi)) < γ for all 0 ≤ j ≤ κi .

This follows from the same argument as part (3) of Theorem 4.6, recall (19). By a similar
calculation, if k = 0 and w ∈ B(fκi(zi), ν) ∩ O is such that ζ ∈W s

loc(w),

(21) dist(f j(ζ), w) < γ for all j ≥ 0.

Notice also that fκ
i (Oi(k, l)) ⊂ Oi(k − 1, l + 1) whenever k > 0. Assume γ has been chosen

small enough so that

dist(ξ, η) ≤ γ ⇒ ‖AN (ξ)‖ ‖AN (ξ)−1‖ ≤ eN(θ′−θ)‖AN (η)‖ ‖AN (η)−1‖ .

As observed before, we may suppose that the κi are multiples of N . Denote m̄ = kκi/N .
The relation (20) implies that dist(f jN (ζ), zi) < γ, and so

‖AN (f jN (ζ))‖ ‖AN (f jN (ζ))−1‖ ≤ eN(θ′−θ)‖AN (f jN (zi))‖ ‖A
N (f jN (zi))

−1‖

for all j < m̄. Consequently, recalling that zi ∈ DA(N, θ), we obtain

(22)

m−1
∏

j=0

‖AN (f jN (ζ))‖ ‖AN (f jN (ζ))−1‖

≤ emN(θ′−θ)
m−1
∏

j=0

‖AN (f jN (zi))‖ ‖A
N (f jN (zi))

−1‖ ≤ emNθ′
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for any m ≤ m̄. Similarly, (21) implies that dist(f jN (ζ), f (j−m̄)N (w)) < γ, and so

‖AN (f jN (ζ))‖ ‖AN (f jN (ζ))−1‖ ≤ eN(θ′−θ)‖AN (f (j−m̄)N (w))‖ ‖AN (f (j−m̄)N (w))−1‖

for every j ≥ m̄. Therefore, using that w ∈ DA(N, θ), we obtain

(23)

m−1
∏

j=m̄

‖AN (f jN (ζ))‖ ‖AN (f jN (ζ))−1‖

≤ e(m−m̄)N(θ′−θ)
m−m̄−1

∏

j=0

‖AN (f jN (w))‖ ‖AN (f jN (w))−1‖ ≤ e(m−m̄)Nθ′

for every m > m̄. Inequalities (22) and (23) show that ζ ∈ DA(N, θ′), as claimed. �

By construction, O contains the periodic points pi for every i = 1, . . . , N . Our construc-
tion also yields

Lemma 4.11. We have pi ∈ supp(µ | O ∩ f−κi(O)) for every i = 1, . . . , N .

Proof. By construction, O(1, 0) = Oi and O(0, 1) = fκi(Oi). Then, more generally,

(24) fκi(Oi(k, l − 1)) = Oi(k − 1, l) for all k > 0 and l > 0.

We claim that µ(Oi(k, l)) > 0 for all k + l ≥ 1. In view of (24), and the fact that µ
is f -invariant, it suffices to prove this when l = 0, say. We do that by induction on k.
Notice that the case k = 1 corresponds to µ(Oi) > 0. For the inductive step, suppose it
is known that µ(Oi(k, 0)) > 0. By local product structure, it follows that µu(Γu

i (k)) > 0.
Moreover, µ(Oi(0, 1)) > 0 implies µs(Γs

i (1)) > 0. Since Oi(k, 1) = [Γu
i (k),Γs

i (1)], it follows
that µ(Oi(k, 1)) > 0 and, using (24) again, µ(Oi(k+ 1, 0) > 0. This proves our claim. Now,
it is clear that pi is accumulated by sets Oi(k, l) with k > 0. All these sets are contained

in Õ and, using (24) once more, also in f−κi(Õ). Consequently, pi is in the support of µ

restricted to Õ ∩ f−κi(Õ), as claimed. �

This gives part (2) of Proposition 4.5, and so the proof of the proposition is complete. �

Corollary 4.12. Let p1 , . . . , p` be dominated periodic points as in Proposition 4.5, and qi

be the point of intersection of W s
loc(pi) with Wu

loc(p`), for i = 1, . . . , ` − 1. Consider any
points ξi

a ∈ P(Kd), 1 ≤ i ≤ ` − 1, 1 ≤ a ≤ d such that every {ξi
1, . . . , ξ

i
d} is independent.

Then the map

B 7→
(

hs
pi,qi

(ξi
a), i ∈ {1, . . . , `− 1}, a ∈ {1, . . . , d}

)

∈ P(Kd)(`−1)d

is a submersion on a neighborhood of A, even restricted to cocycles with values prescribed
on a neighborhood of {f−j(qi) : j ≥ 1}, 1 ≤ i ≤ `− 1, and {f j(pi) : 1 ≤ j ≤ κi}, 1 ≤ i ≤ `.

Proof. This is an application of Proposition 4.1. Indeed, the proposition states that every

B 7→ (hs
pi,qi

(ξi
a), a ∈ {1, . . . , d}

)

∈ P(Kd)d

is a submersion on a neighborhood of A, even restricted to cocycles with values prescribed
outside any neighborhood Vi of qi . We may choose these neighborhoods so that their
closures be pairwise disjoint. Then the cocycle may be modified independently on each Vi .
It follows that the map in the statement of the corollary is a submersion restricted to cocycles
with values prescribed on the complement U of V̄1 ∪ · · · ∪ V̄`−1. By further reducing those
neighborhoods, we ensure that U is a neighborhood of every {f−j(qi) : j ≥ 1}, 1 ≤ i ≤ `−1,
and every {f j(pi) : 1 ≤ j ≤ κi}, 1 ≤ i ≤ `. This gives the claim in the corollary. �

Notice that hu
p`,qi

depends only on the values of the cocycle over {f−j(qi) : j ≥ 1}∪{p`}.

Thus, the corollary implies that the stable holonomy map B 7→ (hs
pi,qi

(ξi
a), i, a) is a sub-

mersion, even under perturbations of the cocycle that do not affect the unstable holonomies
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hu
p`,qi

nor the value of the cocycle over the periodic orbit pi . This is the way the corollary
will be used in the next section.

5. Proofs of the main results

5.1. Complex valued cocycles. Here we prove Theorem A when K = C. Let (f, µ) be
an ergodic hyperbolic system. Suppose A ∈ Sr,ν(M,d) is such that λ+(A,µ) = 0. Fix any

` ≥ 1. By Proposition 4.5 there is a positive measure holonomy block Õ ⊂ M containing
at least 2` periodic points p1 , . . . , p2` such that the local unstable set of every pi intersects
the local stable set of every pj at exactly one point. By Corollary 2.11 there exists a

neighborhood U of A in Sr,ν(M,d) such that Õ is a holonomy block for every B ∈ U . Let
κi be the minimum period of each pi. By Corollary 4.4 the map

U 3 B 7→ (Bκ1(p1), . . . , B
κ2`(p2`)) ∈ SL(d,C)2`

is a submersion. Let S be the subset of matrices α ∈ SL(d,C) such that the norms of the
eigenvalues of α are not all distinct. Clearly, S is closed and contained in a finite union
of closed submanifolds of SL(d,C) with codimension ≥ 1. It follows that the subset Z1 of
B ∈ U such that Bκi(pi) ∈ S for at least ` periodic points pi is closed and contained in a
finite union of closed submanifolds with codimension ≥ `.
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Figure 2. Stable holonomies

For every B ∈ U \Z1 there are at least `+1 periodic points pi such that all the eigenvalues
of Bκi(pi) have distinct norms. Restricting to open subsets of U \ Z1 , and renumbering
if necessary, may suppose that they are p1 , . . . , p`+1. Let ξi

a ∈ P(Cd), a ∈ {1, . . . , d}
represent the eigenspaces of Bκi(pi) and let qi be the point in W s

loc(pi) ∩Wu
loc(p`+1), for

i ∈ {1, . . . , `+ 1}. By Corollary 4.12 the map

U1 3 B 7→
(

hs
pi,qi

(ξi
a), i ∈ {1, . . . , `}, a ∈ {1, . . . , d}

)

∈ P(Kd)`d

is a submersion, even restricted to cocycles with values prescribed on the forward orbit of
pi and on {f−j(qi) : j ≥ 1}, for 1 ≤ i ≤ `. See Figure 2. It follows that the subset Z2 of
B ∈ U \ Z1 such that for every i ∈ {1, . . . , `} there exist a, b ∈ {1, . . . , d} such that

hs
pi,qi

(ξi
a) = hu

p`+1,qi
(ξ`+1

b )

is closed and contained in a finite union of closed submanifolds with codimension ≥ `.
For any B ∈ U \ (Z1 ∪ Z2), i ∈ {1, . . . , `}, and a, b ∈ {1, . . . , d},

(25) hs
pi,qi

(ξi
a) 6= hu

p`+1,qi
(ξ`+1

b )
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We claim that λ+(B,µ) > 0 for every B ∈ U \(Z1∪Z2). Indeed, suppose λ+(B,µ) vanishes.
Let m be any fB-invariant probability. Proposition 3.5 gives that m admits a disintegration
{m̃z : z ∈M} such that

(a) The map z 7→ m̃z is continuous on Õ, relative to the weak topology.

(b) m̃z is invariant under strong-stable and strong-unstable holonomies on the whole Õ.

Since m is fB-invariant, B(z)∗m̃z = m̃f(z) for µ-almost every z ∈ M . By Proposition 4.5

each pi is in the support of µ | Õ ∩ f−κi(Õ). Hence, we may find z ∈ Õ arbitrarily close to

p such that B(z)κi
∗ m̃z = m̃fκi (z) and fκi(z) ∈ Õ. Consequently, by continuity (a),

Bκi(pi)∗m̃pi
= m̃pi

for all 1 ≤ i ≤ `+ 1.

As B /∈ Z1 , this implies that each m̃pi
is a convex combination of Dirac measures supported

on the eigenspaces ξi
a, a ∈ {1, . . . , d}. Fix a such that ξ`+1

a is in the support of m̃p`+1
.

Invariance (b) implies that for every i ∈ {1, . . . , `} there is b ∈ {1, . . . , d} such that

hs
pi,qi

(ξi
b) = hu

p`+1,qi
(ξi

a).

For B ∈ U \ (Z1 ∪ Z2) this contradicts (25). This contradiction proves our claim.
Let Z0 be the subset of A ∈ Sr,ν(M,d) such that λ+(A,µ) = 0. We have shown that for

every ` ≥ 1 and A ∈ Z0 there exists a neighborhood U of A such that Z0 ∩ U is contained
in a closed nowhere dense subset Z1 ∪ Z2 of U , itself contained in a finite union of closed
submanifolds with codimension ≥ `. Thus Z0 has codimension-∞, and its closure Z̄0 is
nowhere dense. Then A = Sr,ν(M,d) \ Z̄0 is an open dense subset such that every A ∈ A
has λ+(A,µ) > 0. The proof of Theorem A is complete, in the complex case.

5.2. Real valued cocycles. The previous arguments apply without change in the case
K = R, except for the statement about the set S of matrices whose eigenvalues are not all
distinct in norm: this set has non-empty interior in SL(d,R), corresponding to the existence
of pairs of complex conjugate eigenvalues. The way to bypass this is by showing that, up
to a perturbation of the cocycle, one may always choose the periodic points so that the
eigenvalues of the cocycle on the corresponding orbits are all real and distinct in norm.
Formally, this means that the first exclusion of a codimension ≥ ` subset Z1 takes place
right after Corollary 4.8, allowing for each pi to be replaced by a nearby periodic point p̄i

for which the eigenvalues are real and distinct and the corollary remains valid. We are going
to outline this step, referring the reader to Section 8 of [8], where the same idea has been
used before, for more details.

Start with 2` periodic points pi as in Corollary 4.8. Fix i for a while. By construction, pi

is dominated and has transverse homoclinic points. Fix some homoclinic point zi and let Hi

be the uniformly hyperbolic set (horseshoe) formed by those points whose orbits remain in
a neighborhood of the orbits of pi and zi. Taking this neighborhood sufficiently small, the
cocycle is dominated restricted to Hi, and so is any perturbation of it. This ensures that
the arguments in Section 8 of [8] apply in the present setting. Excluding a codimension 1
subset of cocycles, we may suppose that

(1) all the eigenvalues of Bκi(pi) are real and have distinct norms, except for c ≥ 0 pairs
of complex conjugate eigenvalues;

(2) hs
pi,zi

(E) ∩ hu
pi,zi

(F ) = {0} for any direct sums E and F of eigenspaces of Bκi(pi)
with dimE + dimF ≤ d.

Proposition 8.1 of [8] shows how, avoiding another positive codimension subset of cocycles,
one can find a new periodic point p̄i ∈ Hi, with period κ̄i a multiple of κi, such that all the
eigenvalues of Bκ̄i(p̄i) are real and distinct. Taking the neighborhood of zi that defines Hi

small enough, the conclusion of Corollary 4.8 remains valid for p̄i. In this way, avoiding a
codimension ` subset of cocycles, we may suppose that the p̄i are defined for at least ` values
of i. Up to renumbering, we may suppose they are i = 1, 2, . . . , `. Now we may replace each
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pi by the corresponding p̄i. From then on the proof of Theorem A proceeds just as in the
complex case.

5.3. Proofs of the corollaries. We begin with the following simple ergodic decomposition
statement:

Lemma 5.1. If µ is a hyperbolic measure with local product structure, then there exist finite
or countably many constants cj > 0 and ergodic hyperbolic probabilities µj with local product
structure such that µ =

∑

j cjµj . In the uniformly hyperbolic case the number of ergodic
components µi is uniformly bounded.

Proof. Let M0 ⊂ M be the full measure subset of points where forward and backward
Birkhoff averages exist and coincide, for every continuous function. Consider the equivalence
relation defined on M0 by x1 ∼ x2 ⇔ x1 and x2 have the same Birkhoff averages. The
equivalence classes are invariant sets. Let Nx(δ) = Nx(K, τ, δ) be as in Section 1.2, for
some K, τ , and x ∈ supp(µ |M0 ∩H(K, τ)). Note that M0 ∩Nx(δ) has positive µ-measure
and so, by local product structure, M0 intersects some unstable set [N u

x (δ), η] in a set Mη

with positive µu-measure. Equivalently, µ(M s
η ) > 0 where M s

η is the union of all stable
sets [ξ,N s

x (δ)] through the points of Mη . On the other hand, M s
η intersects a unique

equivalence class, because of the definition of M0 and the fact that forward (backward)
Birkhoff averages of continuous functions are constant on stable (unstable) sets. This proves
that there exists an equivalence class Γ1 ⊂ M0 with µ(Γ1) > 0. Take Γ1 with largest
measure. If µ(M0 \ Γ1) > 0, repeat the argument with M0 replaced by M0 \ Γ1 . In
this way one constructs a finite or countably many equivalence classes Γj with µ(Γj) > 0
and µ(∪jΓj) = 1. The normalized restrictions µj = (µ | Γj)/µ(Γj) are invariant ergodic
probabilities, and µ =

∑

j µ(Γj)µj .
It is clear that µj is absolutely continuous with respect to µ and so µj is a hyperbolic

measure. To show that µj has local product structure, consider any Nz(δ) = [N u
z (δ),N s

z (δ)]
with z ∈ supp(µ | Γj). For a measurable set V ⊂ Nz(δ) let V s be the union of all stable
sets [ξ,N s

z (δ)] through points of V , and V u be the corresponding notion for unstable sets.
The hypothesis that µ has local product structure means that µ(V ) = 0 if and only if
µ(V s) · µ(V u) = 0. Since each stable set and each unstable set intersect at most one
equivalence class, Γj = Γs

j = Γu
j up to zero measure sets. So, (V ∩ Γj)

s = V s ∩ Γj mod 0
and (V ∩ Γj)

u = V u ∩ Γj mod 0. It follows that µj has local product structure:

µj(V ) = 0 ⇔ µ(V ∩ Γj) = 0 ⇔ µ(V s ∩ Γj) · µ(V u ∩ Γj) = 0 ⇔ µj(V
s) · µj(V

u) = 0.

In the uniformly hyperbolic case K, τ , δ may be taken the same for all x ∈ M . Recall
that Nx(δ) contains the ball of radius δ around x in M . Since M0∩Nx(δ) has full µ-measure
in Nx(δ), we may choose η such that M0∩ [N u

x (δ), η] has full µu-measure in [N u
x (δ), η]. Then

Ms
η has full measure in Nx(δ). Recall that, M s

η intersects a unique equivalence class. This
proves that a full µ-measure subset of M is covered by equivalence classes each of which
contains a full measure subset of some δ-ball. Since δ is uniform, there are only finitely
many such equivalence classes. The last claim in the lemma follows. �

This immediately leads to the versions of Theorem A for non-ergodic measures stated in
the two Corollaries:

Proof of Corollaries B and C. Let µ be any invariant hyperbolic measure with local product
structure. By Lemma 5.1, the measure µ has countably many ergodic components µj and
they have local product structure. Thus, for each j, Theorem A provides an open dense
subset Aj such that for every A ∈ Aj we have λ+(A,µj) > 0. Then A = ∩jAj is a residual
subset and λ+(A, x) > 0 at µ-almost every point, for every A ∈ A. This completes the proof
of Corollary B. In the uniform case the ergodic components are finitely many, and so A is
open and dense. Moreover, the set Z0(µ) of cocycles A such that λ+(A, x) = 0 for a positive
µ-measure set of points x is contained in the union of the corresponding sets Z0(µj) for all
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ergodic components. Hence, since every Z0(µj) has codimension-∞, so does Z0(µ). This
proves Corollary C. �

6. Final remarks

To close, we discuss a number of extensions and related open problems.

6.1. Non-invertible transformations. Theorem A remains true if one replaces hyperbolic
by expanding throughout the statements. We define expanding systems (uniformly or not)
and explain how these extensions may be deduced, via natural extensions.

The natural extension of a (non-invertible) transformation f : M → M is the map

f̂ : M̂ → M̂ defined as follows: M̂ is the space of all sequences (xn)n≤0 in M such that
f(xn) = xn+1 for all n < 0, endowed with the metric

d̂
(

(xn)n , (yn)n

)

=

0
∑

n=−∞

2n min{d(xn , yn), 1},

and f̂ : M̂ → M̂ is the shift map

f̂(. . . , xn , . . . , x−1 , x0) = (. . . , xn+1 , . . . , x0 , f(x0)).

Notice that f is bijective and π0 ◦ f̂ = f ◦π0, where π0 : M̂ →M is the canonical projection
onto the zeroth coordinate. We always assume M is compact and f is continuous. Then

(M̂, d̂) is a compact space and f̂ is a homeomorphism.

The functions ψ ◦ π0 ◦ f̂−n : M̂ → R with n ≥ 0 and ψ : M → R measurable, generate
the space of measurable functions on M̂ . Let µ be an f -invariant probability measure on

M . The lift of µ is the f̂ -invariant probability µ̂ defined by
∫

(ψ ◦ π0 ◦ f̂
−n) dµ̂ =

∫

ψ dµ

for every n ≥ 1 and any measurable function ψ : M → R.

Let f : M → M be a C1 local diffeomorphism on a compact manifold M , such that the
derivative is Hölder continuous. An f -invariant probability µ is (non-uniformly) expanding
if all Lyapunov exponents λi(f, x) = λi(Df, x) are positive µ-almost everywhere. We call
(f, µ) an expanding system.

We say that a continuous transformation f : M → M on a compact metric space is
uniformly expanding if it is locally injective and there exist constants K > 0, τ > 0, ε > 0,
such that for every x ∈M and n ≥ 1 there exists an inverse branch f−n

x : B(fn(x), ε) →M
satisfying

(1) f−n
x (fn(x)) = x and fn ◦ f−n

x = id on the ball B(fn(x), ε);
(2) dist(f−n

x (y), f−n
x (z)) ≤ Ke−τn dist(y, z) for every y, z ∈ B(fn(x), ε).

Uniformly expanding maps include, among other examples, one-sided shifts of finite type, as
well as local diffeomorphisms f : M →M on manifolds whose derivative expands uniformly
every tangent vector.

If f : M → M is uniformly expanding then f̂ : M̂ → M̂ is a uniformly hyperbolic
homeomorphism. Indeed, denoting x = (xn)n , y = (yn)n , z = (zn)n , if ε > 0 is small then

(a) W s
ε (x) consists of the points z ∈ M̂ such that z0 = x0 and d̂(x, z) ≤ ε;

(b) Wu
ε (y) contains points z with z0 close to y0 and zn = fn

yn
(z0) for all n < 0.

Property (1) in Definition 1.3 follows from the definition of d̂, and property (2) follows
from condition (b) above. Moreover, W s

ε (x) and W u
ε (y) may intersect only at the point z

defined by z0 = x0 and zn = fn
yn

(z0) for n < 0. If x and y are close enough, this point z is
well-defined, and it is in the intersection of the two ε-manifolds. This gives property (3) in
Definition 1.3.
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Similarly, if µ is an expanding measure then (f̂ , µ̂) has well defined local stable and local
unstable sets at almost every point: local unstable sets project injectively to M under π0,
and the set of all z with z0 = x0 is a local stable set for each x ∈ M̂ . We say that an
invariant measure µ has local product structure for f if the lift µ̂ has local product structure

for the natural extension f̂ : M̂ → M̂ . This is the case, for instance, if (f, µ) has bounded
distortion, in the sense that the inverse branches of fn, n ≥ 1 admit Jacobians with respect
to the measure µ that form an equicontinuous family.

Cocycles defined on M lift canonically to M̂ , preserving the regularity class Cr,ν , in
the sense that the extension is Cr,ν along the horizontal and constant along the vertical.
The arguments used before for hyperbolic systems apply, without change, to the natural
extensions of expanding systems (although M̂ is usually not a manifold). So, to get these
extensions it suffices to observe that all the perturbations are carried out within the space
of cocycles on M̂ lifted from M .

6.2. Uniformity and continuity. The conclusion of Corollary C was first obtained by
Bonatti, Gomez-Mont, Viana [7] under the assumption that the cocycle is partially hyper-
bolic (or dominated). One says that the cocycle defined by a ν-Hölder function A over a
transformation f : M →M is dominated if f is uniformly hyperbolic (or uniformly expand-
ing), with hyperbolicity constants K, τ , and there exists N ≥ 1 such that

(26) ‖AN (x)‖ ‖AN (x)−1‖ <
(

eτN
)ν

for every x ∈M

Note that the definition does not depend on the choice of the metric ‖·‖ on the vector bundle

Σ̂T ×C
d, as long as the metric varies ν-Hölder continuously with the base point x. Also, as

explained before, one may get rid of the Hölder constant in the definition by replacing the
metric d(·, ·) in M by a new metric d(·, ·)ν , relative to which A is Lipschitz. In this situation
one may choose the subset A in the statement independent of the measure µ. Our methods
fall short of extending this conclusion to the general (non-dominated) case:

Problem 1.

(a) Can the residual subset in Corollary B be chosen the same for every hyperbolic
invariant measure µ with local product structure ?

(b) Can the open dense subset in Corollary C be chosen the same for every invariant
measure µ with local product structure ?

In either setting, in view of the arguments in Section 5.3 it suffices to consider the ergodic
case. A possible approach to Problem 1 goes as follows. For each ergodic measure µ
with local product structure each and cocycle A such that λ+(A,µ) = 0, we have found a
neighborhood U of A and a closed nowhere dense subset Z = Z1 ∪ Z2 containing all the
B ∈ U such that λ+(B,µ) = 0. This closed set is defined in terms of certain dominated
periodic points of f contained in the support of µ. As µ varies, so do the periodic points,
and the set Z with them. However, since there are only countably many of them, the union
of all these Z would be a meager set containing all cocycles having vanishing exponents
for some ergodic measure with local product structure. The difficulty with this approach,
currently, is that the neighborhood U itself, where those periodic points remain dominated,
also depends on the measure µ.

Problem 2.

(a) Does the closure of the set Z0 ⊂ Sr,ν(M,d) of cocycles with λ+(A,µ) = 0 have
codimension-∞ ?

(b) Is the set Z0 closed in Sr,ν(M,d) relative to the Cr,ν topology ?

Of course, the second question is stronger than the first one. Both would follow immedi-
ately if we knew that Lyapunov exponents F 7→ λi(F, µ) =

∫

λi(F, x) dµ vary continuously
on Sr,ν(f, E) relative to the Cr,ν topology, when r + ν > 0. However, the latter is not true
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in general. Indeed, Bochi, Viana [3, 4, 5] have given a necessary and sufficient condition for
a cocycle F over an arbitrary transformation to be a point of continuity of F 7→ λi(F, µ)
relative to the C0 = C0,0 topology: the Oseledets splitting must be either dominated or else
trivial over almost every orbit. More precisely, for d = 2 say, [3] showed that, unless the
Oseledets splitting is uniformly hyperbolic, the cocycle may be C0 approximated by another
whose Lyapunov exponents vanish almost everywhere. A closer look at the arguments shows
that they provide examples of discontinuity of the Lyapunov exponents in the C0,ν topology
for small ν > 0. I am grateful to Jairo Bochi for a conversation in the course of which we
realized this fact.

Problem 3.

(a) When do Lyapunov exponents F 7→ λi(F, µ) vary continuously on Sr,ν(f, E) relative
to the Cr,ν topology, with r + ν > 0 ?

(b) In particular, when the base dynamics is uniformly hyperbolic, do Lyapunov expo-
nents vary continuously in the subset of dominated cocycles in Sr,ν(f, E) ?

6.3. Other matrix groups. We have focussed on normalized cocycles, with values in the
group SL(d,K), but the same arguments apply to general cocycles in GL(d,K). The state-
ment is: for an open dense subset of Gr,ν the spectrum is not reduced to a point and, indeed,
one-point spectrum has codimension-∞.

More generally, one may consider cocycles with values in a given subgroup G ⊂ GL(d,K).
For our previous arguments to apply, the group should be sufficiently rich:

(a) Every α ∈ G can be “approximated” by matrices in G whose eigenvalues are all
distinct in norm.

(b) The map G 3 B 7→ (B(ξ1), . . . , B(ξd)) ∈ P(Kd)d is a submersion, for any choice
{ξ1, . . . , ξd} of a basis of K

d.

That property (a) holds for G = SL(d,C) was used in Section 5.1 to prove density. In the
case G = SL(d,R) this assumption took a much more subtle format (which is the reason we
write “approximated” in quotation marks), as discussed in Section 5.2. Concerning property
(b), recall Remark 4.2. This condition requires dimG ≥ d(d− 1) and is not satisfied by the
symplectic group Symp(d,K), for instance.

On the other hand, these two sufficient conditions are probably not optimal for getting
the conclusion of the theorem:

Problem 4.

(a) Characterize the class of groups G ⊂ GL(d,K) for which the theorem is valid.
(b) Does it include the symplectic group Symp(d,K) ?

6.4. Cocycles over partially hyperbolic maps and flows. While it is clear that our
arguments rely on the base dynamics being fairly “chaotic”, it is probably not necessary
to assume the full strength of (non-uniform) hyperbolicity. One possible extension would
be to cocycles over partially hyperbolic maps with some indecomposability property such
as accessibility. We recall the main notions, referring the reader to [6, 10] and references
therein for motivations and more information.

A diffeomorphism f : M → M is partially hyperbolic if there exists a Df -invariant
splitting TM = Eu ⊕ Ec ⊕ Es and there exists λ < 1 and N ≥ 1 such that

‖DfN | Es
x‖ < λ and ‖(DfN | Es

x)(DfN | Ec
x)−1‖ < λ

and

‖(DfN | Eu
x )−1‖ < λ and ‖(DfN | Eu

x )−1(DfN | Ec
x)‖ < λ

for all x. Assume all three subbundles have positive dimension. One calls f accessible if any
two points may be joined by a smooth curve t 7→ γ(t) such that γ̇(t) ∈ Eu

γ(t) ∪E
s
γ(t) at every

point; the velocity γ̇ is allowed to vanish at a finite number of points.
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Problem 5.

(a) Almost all Cr,ν cocycles, r + ν > 0 over an accessible partially hyperbolic vol-
ume preserving diffeomorphism have some non-zero Lyapunov exponents (additional
technical assumptions may be needed).

(b) The problem is equally interesting when the base system is a dissipative diffeomor-
phism endowed with some physical (Sinai-Ruelle-Bowen) measure.

A cocycle over a flow f t : M →M , t ∈ R is a flow F t : M × K
d →M × K

d, t ∈ R of the
form F t(x, v) = (f t(x), At(x)v). The cocycle is Cr,ν if x 7→ At(x) is Cr,ν for every t ∈ R.
Problem 6.

(a) Almost all Cr,ν cocycles, r+ ν > 0 over a hyperbolic flow (f t, µ) with local product
structure have some non-zero Lyapunov exponents.

(b) Even more interesting: replace uniformly hyperbolic by Lorenz-like flow.

6.5. Non-linear cocycles. Our approach is based on analyzing the projective cocycle fA :
M × P(Kd) → M × P(Kd) associated to A. The fact that this skew-product comes from
a linear map is not really crucial for the arguments, and this suggests that these ideas
might be useful in more general, non-linear, settings. One situation we have in mind, are
skew-products

F : M ×N →M ×N, (x, ξ) 7→ (f(x), Fx(ξ))

where M and N are compact manifolds, f : M →M is a homeomorphism, and x 7→ Fx takes
values in the group of diffeomorphisms of N . Assume the derivative DFx(ξ) is uniformly
continuous on (x, ξ), and its norm, as well as the norm of its inverse, are uniformly bounded.

Let m be an F -invariant probability measure and let µ = π∗m, where π : M ×N → M
is the canonical projection. The (largest) Lyapunov exponent of F at (x, ξ) is

λ(F, x, ξ) = lim
n→∞

1

n
log ‖DFn

x (ξ)‖.

This limit exists and is constant m-almost everywhere if the measure m is ergodic. It would
be interesting to understand the behavior of these Lyapunov exponents and, in particular,
when they vanish.

A first step in this direction is to extend Ledrappier’s Theorem 3.2 to this non-linear
setting, and that is indeed possible. A proof will appear elsewhere. For instance, when f is
a two-sided subshift of finite type, if Fx depends only on the positive coordinates of x, and
the Lyapunov exponent vanishes at almost every point, when deduces that the measure m
admits a disintegration into conditional measures along the fibers {x}×N that also depends
only on the positive coordinates.
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