On unramified coverings of maximal curves
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Abstract. We investigate unramified coverings of algebraic curves over
a finite field, specially in relation with maximal curves and the question

whether maximal curves are covered by the Hermitian curve.

1. INTRODUCTION

Let K denote the finite field with ¢ elements. An algebraic curve y
defined over K is said to be maximal if the cardinality of the set of K-
rational points x(K) attains the Hasse-Weil upper bound; i.e., if we have

#X(K) = 1+¢*+2q- g(x),

where g(x) denotes the genus of the curve.

From maximal curves one can construct interesting linear codes over finite
fields. This construction of codes from algebraic curves is due to Goppa (see
(7], [14] and [17]). Maximal curves have also very interesting properties with
respect to their Jacobian varieties, their automorphism groups and also with
respect to the Stéhr-Voloch theory on Frobenius-orders (see for example [12],
[15], [18] and [16]).

Let ¢: Y — x be a surjective morphism of algebraic curves, where both
curves y and Y and also the map ¢ are all defined over K. In this situation
we say that the curve x is K-covered by the curve ). If the curve ) is
maximal, then the curve y is also a maximal curve over K. This result is
due to Serre (see [10]).

The most interesting maximal curve over K = F» is the so-called Her-
mitian curve (denoted by H). This is the curve H given by the following
plane equation:

Xt 4 yatt 4 zatt — .
The genus of the Hermitian curve satisfies
9(H) = q(¢ —1)/2.

9* Both authors were partially supported by CNPq-Brazil (470193/03-4) and PRONEX
(66.2408/96-9).
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Thara (see [8]) showed that if a curve x is K-maximal then

g(x) < qlg—1)/2.

Riick-Stichtenoth (see [12]) showed that if a curve y is K-maximal and its
genus satisfies g(x) = g(¢—1)/2 then x is isomorphic to the Hermitian curve
H. We refer to [4], [3], [1] and [6] for other results on the classification of
maximal curves with respect to their genera.

Many examples of maximal curves over K are obtained by considering
quotient curves H/H, where H is a subgroup of the automorphism group
G of the Hermitian curve. This group G is huge (see [15]) and its order
satisfies

Gl = ¢*(¢® +1)(¢* — 1).
For the construction of subcovers of the Hermitian curve via such subgroups
of automorphisms H we refer to [6], [5] and [4].
The answer (yes or no) to the following question is unknown:

Question 1. Are there maximal curves x over K which are not K-covered

by the Hermitian curve H?
The following theorem can be obtained from [12], [5], [9] and [2]:

Theorem 1. Let Y be a marimal curve over K = Ty with genus g())
satisfying
6-9(¥)>q" —q+4.

Then the curve Y is K-covered by the Hermitian curve.

In this paper we will consider unramified K-coverings ¢: Y — ¥, specially
when the curve y is maximal over K. In some cases we get that the curve )
is also K-maximal (see Proposition 1) and if the genus g(}) is very big (see
Theorem 1) or the curve ) has a particular type of equation, one concludes
that the curve y is K-covered by the Hermitian.

We give examples of unramified coverings over K = 2 with both curves
Y and x maximal, and with ) being the curve associated to the Hilbert
class field of the curve y with respect to a certain subset S of rational points
on it (see Example 1, Example 2 and Remark 3).

In Section 3 we introduce a certain maximal curve over Fg2 with ¢ = 8
and we examine this maximal curve over Fgs more closely in connection
with unramified coverings and Question 1 (see Proposition 2). This certain

maximal curve is the one given by the equation:

Y2+Y =X? over Fgy.



2. UNRAMIFIED COVERINGS

By a curve x over K = F 2 we will always mean a projective, geometrically
irreducible and nonsingular, algebraic curve defined over K. We denote by
Jac(x) its Jacobian variety and we embed the curve x in Jac(y) via the

natural map:

P € x — class(P — Py) € Jac(y),

where Py is a K-rational point on .

Let now x be a K-maximal curve. Since the K-Frobenius morphism acts
on Jac(x) as multiplication by —q (see [12]) we get that the cardinality of
the set J(K) of K-rational points on Jac(y) satisfies

#I(K) = (g + 1>,

Let S be a subset of K-rational points of a curve y over K (not necessarily
a maximal curve); i.e., we have S C x(K). We then denote by Gg the
subgroup of Jac(y) generated by the points of S and by dg the index

ds = (J(K) : Gg).
Then there exists an unramified abelian K-covering of degree dg (see [11]
and [13])
PS: XS — X
such that the points of the set S splits completely under the map ¢g. The
curve g above corresponds to the Hilbert class field of the curve x with

respect to the set S.
We start with a proposition:

Proposition 1. Let x be a curve defined over K = F 2 of genus g and let
w: Y —x

be an unramified K -covering of degree d.
Suppose that a set S of K-rational points on the curve x splits completely
under the map ¢ and that the cardinality of S satisfies

d-(#8) > (q+ 1) +q-d- (29— 2).
Then both curves x and Y are K-maximal.
Proof. Since ¢ is unramified we get

29(¥) —2=d- (29 - 2).
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From the hypothesis that the set S is splitting completely we get
#Y(K) > d- (#S) > (¢ +1)* +q- (29(Y) - 2).
From the Hasse-Weil upper bound for the curve ) we then see that
#Y(K) = (¢ +1)* +q- (29(¥) - 2).
This means that the curve ) is K-maximal and a fortiori, the curve x is
also a K-maximal curve. Il

Remark 1. With the hypothesis and notations of Proposition 1, suppose

further that

¢ —q+4

—

It then follows from Theorem 1 that the curve ) (and a fortiori also the

d-(g—1)+1>

curve ) is K-covered by the Hermitian curve H.

Remark 2. The situation of a Hilbert class field of a curve x over K with

respect to an appropriate set S of K-rational points is the natural one to

try to apply Proposition 1 and Remark 1 above. Voloch [18] describes a nice

way to construct the corresponding covering curve g and he proves that:
it S = x(K) and g(x) < (¢+2)/8, then dg = 1.

Here on the contrary we are interested on the selection of an appropriate
set of rational points S on a maximal curve x leading to an unramified
covering with degree d > 1.

Example 1. Let n € N, n > 2 and suppose that the characteristic p of K
does not divide

d:=n®>—n+1.
Suppose that d is a divisor of ¢ + 1 and consider the curve x over K = F 2
defined by the equation

XY +Y"Z+XZ"=0.

It is already known that x is maximal over K and that it is K-covered by
the Hermitian. Indeed denoting by Y the curve given by

ud+vd+wd:0,

we see that ) is covered by the Hermitian (since d is a divisor of ¢+ 1) and

we have the following unramified covering

p: Y —x

(u:v:w)— (Ww:w™ :vw").
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Let P = (o, 8) with o € K* and 3 € K* be an affine point on the curve x;
i.e., we have that

"L g4t g1 =0.
Set vy =a" 1.3, =a~!- 3" and m = (g +1)/d, and consider the following
set of rational points S on the curve x

S={(a,8) € x; y" €Fyand §™ € F,} U { Py, P, P3},

where P =(1:0:0), P, =(0:1:0) and P3=(0:0:1). The set S splits
completely under ¢ and after some computations we see that

(q+1)?
#S > 7

+q(d — 3).
Noticing that we have

we can also deduce from Proposition 1 that the curve x is K-maximal. This
example illustrates that sometimes from the completely splitting of a small
set of K-rational points (the set S is a small subset of x(K) if the degree d
is big) one can deduce the maximality of the curve.

Remark 3. With notation as in Example 1 we have determined the Hilbert
class field, since

xs = Y and hence dg = d.
Indeed we have
& d
xs — Y —x
where d’ denotes the degree of yg over ). We also have
29(xs) —2=d"-(29(Y) - 2)

and moreover since all points of Y(K) should split completely in xg we get

(g +1)%+q(29(xs) —2) > d' - ((q+1)* +q(29(Y) - 2)).
From this it follows that d' = 1.

Example 2. Consider the curve x over K with the affine plane equation

ya+l | xlet)/d | x2(¢+l)/d _

where d is an odd divisor of ¢ + 1. The genus of x satisfies

g(X) — (q + 1)(q B 2)

1.
2d +
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The Hermitian curve H (given by u¢+! 4+ v9+1 41 = 0) covers the curve x
via the unramified morphism of degree d below

o H—x

d

(uw:v:1)— (u®:uv:1).

Let P = (o, 3) be a K-rational point on the curve y; i.e.,

It 4 glat)/d L p2a+)/d —

Set now v = al9tD/d and § = v+~2, and consider the set S of rational points
on x given by S = x(K)\ W with W ={P; v ¢ F, and § € F;}. One can
see that S splits completely under the morphism ¢ above and moreover, as
in Remark 3, that the Hermitian curve corresponds to the Hilbert class field
of x with respect to this set S. a

3. A CERTAIN MAXIMAL CURVE

In his lecture at the conference AGCT-10, J.-P. Serre pointed out that
the following equation
vi4+y =X
defines a maximal curve x over Fgq with genus 3. The Hermitian curve H
over Fgyq can be given by the following equation

78+ 7 =wo.

Performing the substitutions z = W3 and y = Z2 + Z, one sees that the

curve x1 given by

vyt +y=a

is K-covered by the Hermitian curve H and hence the curve y; is maximal
over Fgq with genus 3. However one can show that the curves xy and x; are
not isomorphic.

This raises the question (see Question 1): Is the curve x given by the
equation Y* +Y = X3 over Fes a subcover of the Hermitian curve?

We will prove that x is a Galois subcover of H with degree = 9. We will
show that we have an intermediate curve ) and two maps ¢ and ¢ (both of
degree 3)

"Ly 2y

with the above map ¢ unramified. We also show that the Hermitian curve

Z Z
is a Galois cover of x with a Galois group isomorphic to 37 X 37



Consider the curve ) over Fgq given by
78+ 7 =%
Of course the substitution 2 = W? gives the map 1 from H to the curve

above. We can now state our result:

Proposition 2. The curve Y above has an automorphism o of order 3 and
without fized points, such that the quotient curve Y /(o) is isomorphic to the
curve x.

Proof. Consider the following automorphism o of the curve Y (see [15]):
o(Z) =1+ 7" and o(z) = % with a® = a + 1.

One checks easily that o is of order 3 and that it has no fixed points on the
curve ). Consider the following functions on ) that are invariant under the
automorphism o (hence they are functions on the quotient curve):
34+ Z+1
22+ Z

After long computations one sees that the following holds:

and t=z+o0(z)+ 0% (x).

3= (w+w)(w+a)* with a®=a+1 as above.

The equation above is then an equation for the quotient curve /(o). Using
that a* = a and setting

X=t-(w4+a)? and Y =(w+a)?l,
we get the desired relation
VY = X3
|
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