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Abstract
We develop a numerical method to solve

Lou, = —%aij(m/e)a%jue =f in Q wu.=0 on 09,

where the matrix a(y) = (ai;(y)) is symmetric positive definite, whose entries
are periodic functions of y with periodic cell Y. More specifically we assume
ai; € CYB(R?), B > 0. It is also assumed that there exists positive constants 7,
and S, such that v, ¢]|? < aij(y)&&; < Ball€]|? for all € € R? and y € Y. The
major goal in this paper is to develop a numerical approximation scheme on a mesh
size h > € (or h >> €) with quasi-optimal approximation on L? and broken H'
norms. The new method is based on asymptotic analysis and a careful treatment
of the boundary corrector term. This kind of equation has applications in areas
such as on the study of flow through porous media and composite materials.

1 INTRODUCTION

On several real world problems the scale € is so smaller than €2 that even with very
heavy computer efforts it is impossible to take h < €, h being the scale (mesh-size) of
the discrete method used to approximate the solution of

0 0 :
Lo, = —a—xi(aij(aﬁ/e)a—xju6 =fin Q u.=0 on 0NQ. (1)
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The major goal in this article is to develop a numerical scheme on a mesh size h >
€ (or h >> €). We note that when h > € standard finite element methods do not result
in good numerical approximations; see [9] . Recently new numerical methods have been
proposed for solving this problem; see for example [7, 8, 13, 15, 1], and [6] for a more
general approach for multi-scale problems.

The method proposed here, opposed to the methods [7, 8, 13] is strongly based on
asymptotic expansions of u.. We construct a first order asymptotic expansion for u,, and
then we numerically approximate each term separately. The construction of boundary
correctors that are suitable for numerical approximation is a key issue in this paper.

2 NOTATION

We assume that Q =Y = [0,1] x [0, 1], and introduce the following notation

Ie={z1=1,25€[0,1]}, Ty ={x1=0,25€]0,1]},
Iy ={zo=1,21 € [0,1]}, T's={xo=0,21 €[0,1]},

where Iy, k € {e,w,n, s} denotes a generic side of 9.
Let D C R? be an open set. We use the standard notation || ||s p, || -||s,p.p for H*(D)

and W (D) norms, and |- |5 p, |+ [sp,p their semi-norms. We define also broken norms
by
Wlsro = 3 0I5,
K;€Ty(D)

where T,(D) = K1, Ky, ...., K, is a regular partition of D with size h. Throughout this
paper, when we do not make reference to the domain D it is assumed that D =
or Y. It is continually used the Einstein summation convention, i.e. repeated indices
indicate summation. In what follows ¢ denotes a generic constant independent of €, h,
and functions being evaluated.

3 THEORETICAL APPROXIMATION

3.1 The Asymptotic Expansion

The solution u,. can be approximated by an asymptotic expansion. This approximation
can be found using equation (1) and the ansatz

ue(z) = uo(w, z/€) + euy (v, 2/€) + Eug(x, z/€) + - - -,



where the functions u;(z,y) are Y periodic in y. These terms are defined below; for
more details see [2, 11, 12] .
Let x/ be the Y periodic solution with zero average on Y of

. 0
Vy - a(y)Vyx’ = Vy - a(y)Vyy; = 8_y~aij(y)' (2)
We have that x/ € C?#(R?) when a;; € 01’5(3‘32); see Theorem 12.1 from [10]. Define
the matrix: 5
-2 (g, — x¥)dy.
A= / 8yl =X 5, =X)dy (3)

It is easy to see that the matrix A is symmetric positive definite. Define uy € H*(Q) N
H; () as the solution of

—V.AVuyy=f in Q, wup=0 on 01, (4)
and let

e 5= (2) 2ot

Note that ug+eu; does not satisfy the zero Dirichlet boundary condition on 0f2. In order
to correct this, the boundary corrector term 6, € H'(f2) is introduced as the solution of

~V-a(z/e)Vh, =0 in 9, Hez—ul(x,g) on 99 (5)

Therefore we obtain ug + eu; + €. € H}(Q2) and it can be shown [11] that the following
estimates hold

[t — (o + euy + €6;)||o < c€?||ug|s,

and
|ue — (uo + €uy + €be)||1 < cel|uol|o-

3.2 Boundary Corrector Approximation

Note that the coefficients a;;j(x/€) and the boundary values —u;(z, ) of the Equation
(5) are highly oscillatory, hence it is not a trivial problem to obtain a good discretization
for 6.. We propose an analytical approximation for ., denoted by ¢, that satisfies the
oscillating boundary condition and is more suitable for numerical approximation.



Note that uy = 0 along 09 implies Vue|sn = 1n0,uo, where 1 denotes the unity
outward normal vector on 99 and O,uo denotes the unity outward derivative of u, (see
Remark 3.1). We then decompose 6, = 6. + 6. where

—V-a(z/e)VO. =0 in Q, 0, =—u; — x Oyuo = (Xj(g)nj —x")0pup on 052, (6)

and
~V-a(z/e)VO. =0 in Q, 0. =x"0yue on 05, (7)
where x*|r, = X} are properly chosen constants . In Remark 3.1 we show that d,uq|r, €
HJ? (Tk), hence x*0,uy € H'/?(0S2), and therefore problems (6) and (7) are well posed.
The approximation ¢, for 6. is defined later as ¢, + ¢., where ¢, = 0. and ¢¢ ~ 0.
Next we define constants xj for which the approximation ¢, decays exponentially

to zero away from the boundary and is suitable for numerical approximation. Also ¢.
satisfies the correct Dirichlet condition —u,(z, %) — x*0,uo on 0.

e
3.2.1 Calculating the Constants xj

Associated to each side of Q define the functions v, k € {e,w, n, s}, as:

1. Let Ge = {(—00,0] x [0,1]} and v, the solution of

—Vy - a(y1,y2)Vyve = 0 in G,

ve(0,2) = x*(1,y2) for 0 <y <1,
Ve(y1,0) = ve(y1,1), for —oo <y <0,
and Zeexp(—yy) € LA(G.), i=1,2.

2. Let Gy = {[0,00) x [0,1]} and v,, the solution of

—Vy a1, 42)Vyv, =0 in Gy,
Vw(0,19) = —x'(1,y2) for 0 <y, <1,
Vw(Y1,0) = vy (y1,1), for 0 <y < oo,
and Feexp(yy) € L*(G,), i=1,2.



3. Let G, = {[0,1] x (—o0,0]} and v,, the solution of

—Vy - a(y,y2)Vyv, =0 in Gy,
Un(y1,0) = x*(11,1) for 0 <y <1,
Un(oaQZ) = vn(l,yg) for —oo <y, <0,
and §rexp(—vyp) € L*(Gn), , i=1,2.

4. Let G5 = {[0,1] x [0,00)} and v, the solution of

—Vy - a(y1,42)Vyvs =0 in G,

vs(y1,0) = —x2(y1,0) for 0 <y <1,
v5(0,y2) = vs(1,y2) for 0 < ys < 00,
and Geexp(yys) € L*(G,), i=1,2.

From [11] Section 6 there exists a unique solution for each of the above equations. Let

x 1 S OX™\ k k &
Xk = (Ank T]k) / [X alj (5‘7772 ay] ) i M ™

+/ ylayZ v yUk * vyvk)dya

ds

'k

where 1 denotes the unity outward normal at 'y and ¥ its ith component. It can be
shown [11] that v, decays exponentially to zero for y; — —o0, i.e.

(ve — x})exp(—yu1) € L*(Ge).

Similar results hold also when k € {w,n, s}.

3.2.2 Approximating 0,

We note by Remark 3.1 that (ui(z, %) — x*Oyuo)|r, € Hy)?(Ty). Thus we can split
ée = Eke{e,w,n,s} éfv where

ik e ) —ui(z, %) = x*Opue  on Ty,
Lebc =0 1in 62, 0 _{ 0 on O\ Ty

We approximate 6% by ¢ given by



~ -1 0
Oc(z1,22) = pe(21) (Ue(xl c 7%) - X:) 6—2(1)(%,332)7 (8)
- 0
Brlarm) = —pul@) (v(2,2) =) (o, ),
€ € 0z
~ -1 0
Gz = pnlo) (0 ) = ) oo, o),
€ € 0T9
= 0
Gilonan) = (o) (0(2, ) = x0) 52w, 3a),
€ € 0o

where ¢, are nonnegative smooth functions satisfying

1if s=1 0 if s=1
%(s)_%(s)_{ 0 if s=0, sow(s)—sos(s)—{ 1 if s=0.

Hence ~ ~
¢6 = Z ¢I:
ke{e,w,n,s}

approximate 6., and ¢, = 6, on the boundary of Q.

3.2.3 Approximating 6,

The boundary condition imposed on Equation (7) does not depend on e. An effective
approximation for @, is given by ¢ € H'(Q) the solution of

—-V-AVé=0 in Q, ¢= X Opug on OS).
We define our theoretical approximation for u. as ug + eu; + €¢., where
¢ = (Z;e + Q_S

Note that ¢¢|an = O¢|sq, therefore ug+eu; +epe = 0 on 9€2. In [14] we prove the following
error bounds

Theorem 3.1 Assume that a;; € CYP(R?) and ug € H?*(Q). Then there ezists a
constant ¢, such that
||U€ — Ug — €U — €(b€||1 S CE“’U,()”Q.



Theorem 3.2  Assume that a;; € CY?(R?) and ug € H3(Y). Then there exists a

constant ¢, such that
3/2

|ue — ug — €ur — €dello < ce’’*||ugl|s-

Remark 3.1 In the case Q = [0,1] x [0, 1] we have

ug
ox1
_Ouwg
— 0.
3nu0 = au‘gl
Do on
b
__0ug
oz on

on

®

on

3

shchele

w»

Since ug satisfies zero Dirichlet boundary condition on 0Q and ug € H*(RY), we have

Jdug — dug _
a_x1|FnUFs =0 and (9_1‘2|F€UFUJ = 0. Therefore

< 8?1,0 811,0 a’U,o aUO )
(9,,u0 =

bl

— + —

where each term on the right hand side satisfies gz 2% =0 on N \ I'x. Using that

Ozj,

dug

goka%‘l € HY(Q) we obtain Prbm

€ H&éz(Fk) and
Tk

|| *Ou || < *8?1,0 * auo + *8u0 *auo
X OpUollmi/290) < Wexeaxl SDwaaxl SDanax2 PsXs 924 X
< e(x)luoll2-
Note also that ui(z,2) = —x (f) g%;?(x). Since X7 € C*P(R?) we can use the same

argument given in this Remark to show that u;|r, € HééZ(Fk).

4 FINITE ELEMENT APPROXIMATION

We now describe how to numerically approximate the terms ug, u1, ¢, and @.

e Solve the cell problem (2) with a second order accurate conforming finite element
in a partition 7;(Y’). Call these solutions x;.

e Obtain A® by



e Define Vh(Q) = {v € C°(Q); vk € Qi(K), K € To(Q), K rectangular} and
V() = VHQ) N HL(Q). Let ug” € VJ satisfying

/Q(A'ALVug’ﬁ,Vvh)da: = /vahda:, ot e V.

The justification for using a rectangular mesh is postponed to Remark 4.1.

hh
Define u;"" as

(o) = = (%) 58“—()

Note that this leads to a nonconforming approximation for w; in the partition

Tn(92).

Let p be a positive integer and G2 = [—p,0] x [0,1]. Define 9. € H'(G?) the
solution of

—Vy - a(y1,42)Vyte =0 in GE,
e(0,92) = x5 (L,y2), 0<yp <1,

Onle =0, on {y € GI; y1 = —p},

and e(y1,0) = Be(y1,1), —p <y <0,

Let v»P be a numerical approximation of 9, using a second order accurate con-
forming finite element on a mesh 7; (G?).

Define

1 ox; (1, 2)
*h, _ 1 . h\7?
Xt = —A’1A11 (Xh(layZ)alk(la?h) [5k1 78?/2 ]) dys

+/ a(y1,y2)V Uil’p ' Vyvf”’)dy.
The other cases k € {w,n, s} are treated similarly.

Let qz_ﬁh’i"p be a second order accurate finite element approximation in a mesh of
size h for the following equation

VAR =0, p=x"PPeuM on Q. 9)



Remark 4.1 Since uh" € H} (), the domain ) is rectangular, and bilinear rect-

angular elements are considered to obtain ug’h, 1S easy to see that a,,ug”‘ 1S con-
tinuous on 052 and linear in every edge of Tn(0R2). Observe also that the zero

Dirichlet boundary condition tmplies 8nug’h = 0 at the corners of ). Therefore
X*’ﬁ’p(?nug’h € HY2(3Q) and Equation (9) is well posed. Taking ¢""? € VI allows

. . .. h.h —p 7
us to use the same stiffness matriz for obtaining ug" and ¢"P.

e Observe that in Equation. (8) the term ve(wl—;l, £2) appears. Since the approxi-
mation v}? is defined in G%, we can calculate vP(2=1, 22 only if z; > 1 — ep.
Since the functions v, — X}, decays exponentially to zero away from the boundary

its is natural to consider the following approximation

i ) B i P h,h .
Fomho(g, 3y) = { Pel@) (0P (U7, 2) —xM) e i @ >1—ep, ()
0 if 1 <1—ep,

and R .
guhe = S Ghmho
€ € *

ke{e,wyn,s}

e Approximate 6, by ¢ih? = Ghhr 4 ghhr and finally construct the numerical
approximation for u, as

hyﬁzp — hail h,il h,il,p
u P = uy” + euy” + eg P

5 ERROR ANALYSIS

When p — oo and h — 0 we prove in [14] the following estimates.

Theorem 5.1  Assume that a;; € CYP(R?) and uy € W>®(Q). Then there ezists a
constant c, such that
|ue — upl1p < c(h + €)||ug

2,00

Theorem 5.2  Assume that a;; € CYP(R?) and ug € W>*(Q) N H3(Q). Then there
erists a constant c, such that

e — unllo < e(h® + €% + ehin(h))(|uo

2,00 T ||0][3)



6 NUMERICAL EXPERIMENTS

In this section, we present some numerical results for solving our model problem with

([ 2+ Psin(27x, /€)
(z) = (2 + Pcos(2mxy/€)

2 + sin(27xy/€)
2 + Psin(27z, Je) ) 2

f(z)=—-1 and u=0 on 0.

We compare the solution obtained by our method with the solution obtained by a second
order accurate finite element method in a fine mesh of size hy, which we call u}. Tables
I and II provide absolute errors estimates for u* — u®*?, on the || - ||o norm and | - |1,n
semi norm for different values of h and e. We have used p = 2, h = 1/128, hy =1/2048,
and a triangular mesh with continuous piecewise linear functions to approximate Xib and

hsp
vt

Table 1: || - ||o error
el h—]1/8 1/16 1/32 1/64
1/16 2.7085e-04 | 7.7993e-05
1/32 2.6300e-04 | 6.6246e-05 | 1.7773e-05
1/64 2.5388e-04 | 5.9446e-05 | 1.4414e-05 | 1.2137e-05
Table 2: | - |1 error
el h—[1/8 |1/16 |1/32 |1/64
1/16 0.0097 | 0.0066
1/32 0.0089 | 0.0051 | 0.0036
1/64 0.0086 | 0.0045 | 0.0026 | 0.0018

From Tables I and 11, we see that for ¢ << h we have errors of order O(h?) and O(h)
for the L? norm and semi norm H' respectively. We observe that when we fix h and
decrease € the errors almost do not change. This is an evidence that in this case the
dominant error term is O(h). Also looking the diagonal values in these tables we see

10



Table 3:
e=1/64, h=1/32, hy = 1/1024

- Ilo [ o
uf — ug” 0.0287 0.0215
ut —up™ — eul” 0.0213 0.0026
ut — ult — eyl — eghhp 6.1557¢-05 | 0.0026
wr —ul® — el — e(@hhe 4 Ghhpy | 6.1557¢-05 | 0.0024

clearly that the numerical error agrees with the theoretical rates from Theorems 5.1 and
5.2.

Table I1I shows the improvement obtained in the final approximation by considering
the numerical approximation for the boundary corrector. We observe a better improve-
ment on the || - ||p norm rather then on | - |, , semi norm. The reason for this is that ¢
is obtained through the homogenized equation associated to Problem (7), therefore it is
a good approximation for #, on L2(€2) norm but not on |- |; semi norm. The term ¢,
is defined in a thin boundary layer that mostly force the approximation to satisfies the
zero Dirichlet boundary condition. )

In our numerical tests we observed a very fast convergence of v™? to the constant
X2 as y; — —p. Consjdering p1<p2 € {1,2...8} we obtained that
SUD (0,111 €[—par—pi]} Ve (=P1, Y2) —v2P2(y1,2)| < 107, That confirms the numerical

approximation for ¢¢ given by Formula (10) is reasonable.

The Figures bellow show the error evolution as we include the asymptotic expansion
terms in our numerical approximation, for Ay = 1/100, h = 1/10, h = 1/50, p = 2 and
e = 1/20; Figure 1 is the plot of the "exact” solution u}. In Figure 2 from left to right
we see that amplitude of error oscillations decreases when we include the approximation
for uy. Its is possible to see an overall improvement in the error from Figure 2 (left) to
Figure 3 (right) when the approximation for ¢ is included, and finally in Figure 3 (left)
we see that the zero boundary condition is satisfied when the complete approximation

up™ + e + e(@MhP 4 Ghhr) is considered.

11
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7 CONCLUSIONS

We propose a new method for approximating numerically the solution of Equation (1).
This method is strongly based on periodicity of the coefficients a;;, and for this rea-
son it has relative low computational cost with quasi optimal error convergence rate.
Although the convergence analysis presented in [14] does not work for the quasi peri-
odic case a;j(z,z/€), we believe that the numerical approximation presented here can
be generalized for this case. This would be done by approximating matrix a(z,z/€)
by 3 @’ (x/€)Ik, (x), where I, is the characteristic function for K; € 7;(f), and then
solving cell problem in each sub-domain Kj;.
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