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Dep. de Matemática Aplicada — UFF & IMPA

msouza@mat.uff.br zubelli@impa.br

Introduction and Outline: The smile curve and the bursty behavior of volatil-
ity is still a challenge and a source of interesting modeling problems in finances.
The empirical remark that volatility tends to fluctuate at different levels and seems
to mean-revert along a derivative contract life time led many authors to consider
stochastic volatility market models [FPS00, Hes93, HW87, Wig87, SS91]. However,
such stochastic volatility models introduce difficulties that cannot be analyzed sat-
isfactorily unless one carefully takes into account the different time scales involved.
This problem led [FPS00] to a very effective and practical way of correcting the com-
puted prices in the Black-Scholes model so as to accomodate for the volatility under
fast mean reversion.

In the present work, we explore a different asymptotic regime of the stochastic
volatility model analyzed in [FPS00], discuss its implications and relevance.

The outline of the paper is the following: We start with some background material
on stochastic volatility models and scaling so as to state some of the results in [FPS00].
Then, we briefly present a different scaling and describe our results.

Background on Stochastic Volatility Models: We start by brifely reviewing
the classical Black-Scholes (B-S) market model so as to fix the notation. We denote
by β a riskless asset (bond or insured bank deposit) and by X a risky asset. In the
classical B-S model the assets undergo the following dynamics

dβt = rβtdt dXt = µXtdt + σXtdWt

where Wt is the standard Brownian Motion. Let P (t, x) denote the price of an Eu-
ropean option at time t and current stock value x. Standard replication and non-
arbitrage arguments lead to the classical Black-Scholes equation

∂P

∂t
+
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σ2x2∂2P
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(
r
∂P

∂x
− P

)
= 0 P (T, ·) = h (1)

where h is the payoff at time T . In [FPS00] the following dynamics for the
risky asset is studied and motivated by the need of explaining a number of empirical
observations

dXt = µXtdt + σtXtdWt σt = f(Yt) dYt = α(m− Yt)dt + βdẐta
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where Ẑt is a linear combination of two independent Brownian motions (Wt) and (Zt).
In this model, the risky asset’s volatility is controlled by a stochastic process y = Yt,
which could be thought of as a hidden process. Such process Yt, in turn, undergoes
an Ornstein-Uhlenbeck dynamics. This choice is motivated by the empirical remark
that the volatility tends to return to a historical level after some time. The return
rate to such mean is denoted by α.

Let P = P (t, x, y) be the price of an European option at time t given that the
current stock price is x and its driving state is y. Once again, using a non-arbitrage
argument it is argued in [FPS00] that P (t, x, y) satisfies
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(α(m− y)− βΛ(t, x, y))
∂P

∂y
= 0

where

Λ(t, x, y) = ρ
µ− r

f(y)
+ γ(t, x, y)

√
1− ρ2

with final condition P (T, x, y) = h(x)
Equation (2) can be interpreted considering the operator
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The first line consists of the standard Black-Scholes operator with (stochastic) volatil-
ity f(y). The second one consists of a correlation term. The third one is the genera-
tor for the O-U process added to a premium term associated to the market price of
volatility risk.

Furthermore, we may regard γ as the risk premium factor from the second source
of randomness which is driving the volatility (Zt).

The Rescaled Equation: One key empirical remark in a large number of financial
situations is the presence of multiple time scales. See for example [FPS00, FPSS03b,
FPSS03a]. This is modeled by subsuming that the mean reversion time ε := 1/α is
small as compared to the other time scales. After introducing such scaling, Equa-
tion (2) becomes (

1

ε
L0 +

1√
ε
L1 + L2)

)
P ε = 0 , (3)
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where
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ν2 := β2/(2α), and s(t, x, y) := (β/α)Λ(t, x, y). Furthermore, ν and s(t, x, y) are
assumed to be O(1). [FPS00] considered the following formal expansion

P ε = P0 + ε1/2P1 + εP2 + ε3/2P3 +O(ε2)

After substituing such expansion into Equation (3) and grouping terms of same order
they get

O(ε−1) L0P0 = 0 ⇒ P0 = P0(t, x). (4)

O(ε−1/2) L0P1 + L1P0 = 0 ⇒ P1 = P1(t, x). (5)

O(1) L0P2 + L1P1 + L2P0 = 0 ⇒ L0P2 = −L2P0. (6)

The O(1) equation implies the solvability condition 〈L2P0〉 = 0 upon applying the
Fredholm alternative, where 〈g〉 :=

∫
g(y)Φ(y)dy where L0Φ = 0. Applying the

solvability condition we get

〈L2〉 =
∂P0

∂t
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+
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r
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)
= 0

where σ2 = 〈f〉 is an effective volatility. The next order leads to

L0P3 + L1P2 + L2P1 = 0 .

Once again, applying the solvability condition we get

〈L2P1〉 = Ṽ2x
2∂2P0

∂x2
+ Ṽ3x

3∂3P0

∂x3

and

P1 = −(T − t)

[
Ṽ2x

2∂2P0

∂x2
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3∂3P0

∂x3

]
.

Thus, the explicit formula for the corrected price is given by

P = P0 − (T − t)

[
V2x

2∂2P0

∂x2
+ V3x

3∂3P0

∂x3

]
+O(ε),

where V2 = εṼ2 and V3 = εṼ3.
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The Problem under Consideration: In the present contribution, we consider
the question: what happens if, differently from [FPS00], we assume that ν = O(ε)?

This is a relevant question because such coefficient ν2 represents the volatility of
the volatility (vol-vol) and pressumably in some markets this might be a more realistic
scenario than the underlying assumption made in [FPS00] that ν is of order 1.

Under the above hypothesis ν = O(ε), Equation (3) becomes

ε−1L0P
ε + L1P

ε + ε1/2L2P
ε + ε

∂2P ε

∂y2
= 0

where now
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∂
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.

Our perturbation analysis yields

P ε = P0(t, x, y) + ε1/2P1(t, x, y) + εP2(t, x, y) + ε3/2P3(t, x, y)O(ε2) (7)

At level O(ε−1), we get L0P0 = 0, which implies P0 = P0(t, x). At level O(ε−1/2)
we have that L0P1 = 0, and hence that P1 = P1(t, x). For O(ε0), we have L0P2 +
L1P0 = 0 . Here, the solvability conditions yields Lm

1 P1 = 0, Lm
1 is B-S operator

with σ = f(m), and terminal condition P0(T, x) = h(x). The solvability condition
for P3 plus a final condition on P1 implies P1(t, x, y) ≡ 0. Finally, at order O(ε),

the solvability condition for L0P4 = −L1P2 − L2P1 − ∂2P0

∂y2 , simplifies to Lm
1 P2 = 0

and P2(T, x, y) = 0. We remark that in the present context, the solvability condition
cannot be satisfied. In this case one needs to consider a Terminal Layer.

Conclusions: In [FPS00] a far-reaching asymptotic analysis of stochastic volatil-
ity models was developed under a number of hypothesis, including that the vol-vol
coefficient is of the same order (O(1)) of the mean reversion time.

In the present work we show that there exists a distinguished asymptotic limit of
the stochastic volatility model different from that studied in [FPS00] provided one
assumes that the vol-vol coefficient ν2 is small as compared to the mean reversion
time of the volatility. This result shows the possibility of exploring more complex
situations than those studied in [FPS00]. In particular, we find that there exists a
terminal layer in the asymptotic regime of the price correction of order ε = 1/α.
Furthermore, such correction is non-diffusive. One plausible interpretation of this
would be that, in the regime under consideration and close to expiration time, the
option price correction, P1 in (7), would not be influenced by the volatility.
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