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Introduction and Outline: The smile curve and the bursty behavior of volatil-
ity is still a challenge and a source of interesting modeling problems in finances.
The empirical remark that volatility tends to fluctuate at different levels and seems
to mean-revert along a derivative contract life time led many authors to consider
stochastic volatility market models [FPS00, Hes93, HW87, Wig87, SS91]. However,
such stochastic volatility models introduce difficulties that cannot be analyzed sat-
isfactorily unless one carefully takes into account the different time scales involved.
This problem led [FPS00] to a very effective and practical way of correcting the com-
puted prices in the Black-Scholes model so as to accomodate for the volatility under
fast mean reversion.

In the present work, we explore a different asymptotic regime of the stochastic
volatility model analyzed in [FPS00], discuss its implications and relevance.

The outline of the paper is the following: We start with some background material
on stochastic volatility models and scaling so as to state some of the results in [FPS00].
Then, we briefly present a different scaling and describe our results.

Background on Stochastic Volatility Models: We start by brifely reviewing
the classical Black-Scholes (B-S) market model so as to fix the notation. We denote
by ( a riskless asset (bond or insured bank deposit) and by X a risky asset. In the
classical B-S model the assets undergo the following dynamics
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where W; is the standard Brownian Motion. Let P(¢,z) denote the price of an Eu-
ropean option at time t and current stock value z. Standard replication and non-
arbitrage arguments lead to the classical Black-Scholes equation
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where h is the payoff at time T. In [FPS00] the following dynamics for the

risky asset is studied and motivated by the need of explaining a number of empirical
observations
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where Z, is a linear combination of two independent Brownian motions (W;) and (Z,).
In this model, the risky asset’s volatility is controlled by a stochastic process y = Y},
which could be thought of as a hidden process. Such process Y;, in turn, undergoes
an Ornstein-Uhlenbeck dynamics. This choice is motivated by the empirical remark
that the volatility tends to return to a historical level after some time. The return
rate to such mean is denoted by a.

Let P = P(t,z,y) be the price of an European option at time ¢ given that the
current stock price is z and its driving state is y. Once again, using a non-arbitrage
argument it is argued in [FPS00] that P(¢,x,y) satisfies
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with final condition P(T,z,y) = h(z)

Equation (2) can be interpreted considering the operator
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The first line consists of the standard Black-Scholes operator with (stochastic) volatil-
ity f(y). The second one consists of a correlation term. The third one is the genera-
tor for the O-U process added to a premium term associated to the market price of
volatility risk.

Furthermore, we may regard ~ as the risk premium factor from the second source
of randomness which is driving the volatility (Z;).

The Rescaled Equation: One key empirical remark in a large number of financial
situations is the presence of multiple time scales. See for example [FPS00, FPSS03b,
FPSS03a]. This is modeled by subsuming that the mean reversion time € := 1/« is
small as compared to the other time scales. After introducing such scaling, Equa-
tion (2) becomes

(%£0+%£1+£2)) Pe=0, (3)



where

v = (3%/(2a), and s(t,x,y) = (B/a)A(t,z,y). Furthermore, v and s(t,x,y) are
assumed to be O(1). [FPS00] considered the following formal expansion

P¢ = Py+ /2P, 4+ €Py + €¥/2P; + O(€?)

After substituing such expansion into Equation (3) and grouping terms of same order
they get

O(E_l) LoFPy =0 = P = Po(t,.ilj) (4)
0(6_1/2) £0P1 -+ £1P0 =0 = P1 == Pl(t,[E). (5)
0(1) LOPQ + £1P1 + £2P0 =0 = £0P2 = _£2P0. (6)

The O(1) equation implies the solvability condition (£,F) = 0 upon applying the
Fredholm alternative, where (g) := [ ¢(y)®(y)dy where £o® = 0. Applying the
solvability condition we get
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where 0 = (f) is an effective volatility. The next order leads to
£0P3+£1P2+£2P1:0.

Once again, applying the solvability condition we get
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Thus, the explicit formula for the corrected price is given by
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where V, = €V} and Vi = d~/3.



The Problem under Consideration: In the present contribution, we consider

the question: what happens if, differently from [FPS00], we assume that v = O(e)?
This is a relevant question because such coefficient v represents the volatility of

the volatility (vol-vol) and pressumably in some markets this might be a more realistic

scenario than the underlying assumption made in [FPS00] that v is of order 1.
Under the above hypothesis v = O(¢), Equation (3) becomes
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Our perturbation analysis yields
P = Py(t,z,y) + €Y2Pi(t,z,y) + ePy(t, x,y) + €/?Py(t, z,5)O(€?) (7)

At level O(e7!), we get LoPy = 0, which implies Py = Py(t,z). At level O(e7/?)
we have that £oP; = 0, and hence that P, = Py(t,z). For O(e°), we have LoP; +
L1FPy = 0. Here, the solvability conditions yields £7'P; = 0, L]* is B-S operator
with ¢ = f(m), and terminal condition Py(T,x) = h(x). The solvability condition
for P3 plus a final condition on P; implies Pi(¢,x,y) = 0. Finally, at order O(e),
the solvability condition for LoPy = —L1 Py, — LoP — %2—;;0, simplifies to L7"P, = 0
and Py (T, x,y) = 0. We remark that in the present context, the solvability condition
cannot be satisfied. In this case one needs to consider a Terminal Layer.

Conclusions: In [FPS00] a far-reaching asymptotic analysis of stochastic volatil-
ity models was developed under a number of hypothesis, including that the vol-vol
coefficient is of the same order (O(1)) of the mean reversion time.

In the present work we show that there exists a distinguished asymptotic limit of
the stochastic volatility model different from that studied in [FPS00] provided one
assumes that the vol-vol coefficient v? is small as compared to the mean reversion
time of the volatility. This result shows the possibility of exploring more complex
situations than those studied in [FPS00]. In particular, we find that there exists a
terminal layer in the asymptotic regime of the price correction of order ¢ = 1/a.
Furthermore, such correction is non-diffusive. One plausible interpretation of this
would be that, in the regime under consideration and close to expiration time, the
option price correction, P; in (7), would not be influenced by the volatility.
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