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Abstract. Models for deep bed filtration in the injection of sea water with solid inclusions
depend on an empirical filtration function that represents the rate of particle retention. This
function must be calculated indirectly from experimental measurements of other quantities.
The practical petroleum engineering purpose is to predict injectivity loss in the porous rock
around wells. In this work, we determine the filtration function from the effluent particle
concentration history measured in laboratory tests knowing the inlet particle concentration.

The recovery procedure is based in solving a functional equation derived from the model
equations. Well-posedness of the numerical procedure is discussed. Numerical results are
shown.

Inverse problem, Formation damage, Deep bed filtration, Iterative functional equation,
System of convection-reaction equations

1. Introduction

Most of the oil in the world is produced by injecting water in some wells and recovering oil
in other wells. The recovered oil comes with reservoir water, which contains oil droplets and
solid particles. The produced water must be separated from the oil and discarded taking
environmental precautions. In off-shore fields, produced water and sea water are injected.
However, the injection of poor quality water in a well curtails its injectivity because the
particles suspended in the fluid are trapped while passing through the porous rock. This
is due to particle retention in the pores, or deep bed filtration. In this paper we study the
deep bed filtration during injection of water containing solid particles, which is essential to
predict the loss of injectivity in wells.

Many laboratory studies were carried out to understand the filtration process ([7], [8]).
Our work utilizes the model for deep bed filtration, developed in [2] based on the fundamental
work of Hertzig et al. [8], which consists of equations expressing the particle mass conser-
vation and the particle retention process ([3], [8], [13]). They form a quasi-linear hyperbolic
system of equations containing the empirical filtration function λ(σ), which represents the
kinetics of particle retention.

Methods for determining the filtration function from the effluent concentration history at
the core outlet ce(T ) were presented in [14] and [17], for constant filtration λ. A recovery
method for the general case was presented in [4] and [2], under the assumption that the
injected particle concentration is constant.

In this work a method for obtaining the filtration function is studied relaxing the assump-
tion made in [4] of constant injected particle concentration. The inverse problem consists of
determining λ(σ) from the outlet and inlet particle concentration histories ce(T ) and ci(T ).
The recovery method reduces to solving a functional equation, which is derived from an
invariant along the characteristic lines. The effluent concentration history ce(T ) is measured
in laboratory experiments. Because of cake formation, ci(T ) is smaller than the particle
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concentration in the fluid used in the injection experiment. This cake consists of particles
that do not succeed in penetrating the wall where fluid is injected.

The paper is organized as follows. In Section 2 we present the deep bed filtration model as
a quasi-linear system of hyperbolic equations. Existence, uniqueness and continuous depen-
dence on the initial and boundary condition are discussed. In Section 3, the inverse problem
solved in this work is presented, transformed into a functional equation. We prove that this
equation has a unique solution that depends on the given data in a weakly continuous way.
In Section 4, numerical stability is discussed. In Section 5, the numerical results are shown.
Our results are summarized in Section 6.

2. Global solution for the direct problem in one dimension

We assume that water is incompressible, that the mass density of solid particles in sus-
pended and entrapped states are both equal to the water density and that it is injected at
constant volumetric rate. Neglecting diffusive effects, the mass conservation equation ([2],
[7]) for the particles can be written in nondimensional form as:

∂

∂T
(c + σ) +

∂c

∂X
= 0. (2.1)

Here c(X, T ) and σ(X, T ) are the concentrations of the particles suspended in the water
and entrapped by the rock, respectively, at position X and time T . The time T is in a
nondimensional unit called pore volume or PV. The quantities c and σ have values between
0 and 1, but usually c ∼= 10−4; the independent variables satisfy 0 ≤ X ≤ 1 and T ≥ 0. The
model ([2], [8]) requires a law for particle deposition rate. In non dimensional form this law
is:

∂σ

∂T
= λ(σ)c. (2.2)

The right hand side of Eq. (2.2) means that the retention probability is proportional to the
available concentration of suspended particles. This concentration is in turn proportional to
c and to the flow velocity that was scaled out of Eqs. (2.1)-(2.2) in the nondimensionalization
process.

Physically, (2.2) cannot be valid for large c or σ. In particular, Eq. (2.2) cannot take into
account release of deposited particles. The positive λ(σ) is an empirical coefficient known
as the filtration function, which cannot be measured directly.

We will see in Section 2.3 that (2.1)–(2.2) has two families of characteristic lines; one
family has the form T − X = constant, the other X = constant.

2.1. Boundary and initial conditions. We assume that the solid particle concentration
entering into the porous medium is given, i.e.,

X = 0 : c(0, T ) = ci(T ) > 0, T > 0. (2.3)

Also, we assume that the experimental injected concentration ci is a positive continuously
differentiable function for T > 0.

As initial data at T = 0, we assume that the rock contains water with no particles:

σ(X, 0) = 0 and c(X, 0) = 0. (2.4)

Along the line X = 0 we obtain from Eq. (2.2) and (2.3):

dσ(0, T )

dT
= λ(σ(0, T ))ci(T ), and σ(0, 0) = 0. (2.5)
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Integrating Eq. (2.5) provides σ(0, T ), which is always positive and increasing.

2.2. The invariant along the characteristics. Except at initial times, it turns out that
c is much smaller than σ. Because of this fact, Herzig et al. [8] proposed a simplified
model comprising (2.2) and the following modified version of (2.1), where ∂c/∂T in (2.1)
was neglected relative to ∂σ/∂T :

∂σ

∂T
+

∂c

∂X
= 0. (2.6)

For the model (2.2) and (2.6), under the assumption (2.4a), Herzig et al. in [8] proved the
following relationship between the deposited and suspended particle concentrations along
characteristic lines:

σ(X, T )

c(X, T )
=

σ(0, T − X)

c(0, T − X)
, (2.7)

which is valid for T > X, 0 ≤ X ≤ 1. However, the same relationship was stated in [4] for
the full model (2.1), (2.2) based on an incomplete derivation. Because (2.7) is the basis of
the method for determining λ(σ), here we provide a proof. The reader interested only in the
inverse problem may skip the rest of Section 2.

We make the following positivity assumption:

Assumption 2.1. The filtration function is a positive C1 function of σ in 0 ≤ σ < 1, such
that λ(σ) > 0 for 0 ≤ σ < 1.

This assumption is somewhat stringent in practical applications because λ(σ) may vanish
for colloidal suspensions. From Assumption 2.1, we can define the first integral Ψ of 1/λ ,
i.e., we can choose Ψ so that Ψ(0) = 0 as follows:

Ψ(σ) =

∫ σ

0

dη

λ(η)
. (2.8)

Let us introduce the notation

m =

∫ 1

0

dη

λ(η)
, (2.9)

Depending on the behavior of λ(σ) near 1, the range of Ψ : [0, 1) → [0, m) is either a finite
or infinite interval.

Let us consider a solution of (2.1)–(2.4); we can expect that it is C1 except at the charac-
teristic line X = T , because there is a mismatch between the initial and boundary data for
c at (0, 0). We will focus our attention on the trapezoid {(X, T ) : 0 ≤ X ≤ 1, T ≥ X ≥ 0},
see Fig. 2.1, and make the following assumption, which will be justified in Theorem 1:

σ(X, T ) = 0 for T = X, just above the trapezoid lower edge. (2.10)

Lemma 2.2. Assume that there exists a C1 solution of (2.1)–(2.3) in the trapezoid, satisfying
(2.10). Then σ/c is constant along characteristic lines with slope 1.

Proof: Differentiating Eq. (2.8) and using Eq. (2.2) we obtain

∂Ψ(σ)

∂T
= c for σ in [0, 1). (2.11)

Since Ψ is C2 the derivatives of (2.11) are

∂c

∂T
=

∂2Ψ(σ)

∂T 2
,

∂c

∂X
=

∂2Ψ(σ)

∂T∂X
(2.12)
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are well defined for X �= T . Substituting the expressions (2.11) and (2.12) in (2.1) we have

∂2Ψ(σ)

∂T 2
+

∂2Ψ(σ)

∂T∂X
= − ∂σ

∂T
or − ∂

∂T

(
dΨ(σ)

dX

)
= − ∂σ

∂T
, (2.13)

which is well-defined for X �= T . In (2.13b) d
dX

is the differentiation along characteristic lines

T − X = constant, i.e. d
dX

= ∂
∂X

+ ∂
∂T

, see Fig. 2.1.
Now, we consider (2.13) in the infinite trapezoid {(X, T ) : 0 ≤ X ≤ 1, T ≥ X ≥ 0}.

Integrating (2.13b) in T along a vertical line from the point (X, X) on the lower edge of the
trapezoid to a fixed (X, T ) we obtain

dΨ(σ)

dX

∣∣∣∣∣
(X,T )

− dΨ(σ)

dX

∣∣∣∣∣
(X,X)

= σ

∣∣∣∣∣
(X,T )

− σ

∣∣∣∣∣
(X,X)

. (2.14)

Using (2.8) and (2.10) we see that σ|T=X = 0 and dΨ(σ)
dX

∣∣∣∣
T=X

= 0; using these expressions in

(2.14) we obtain (2.15a). Using Eqs. (2.1) and (2.2) we obtain (2.15b)

dσ

dX
= −λ(σ)σ and

dc

dX
= −λ(σ)c. (2.15)

In summary, we have proved that if (2.1)–(2.2) has a C1 solution in the trapezoid satisfying
(2.5), (2.10), then this solution must satisfy (2.15) in the trapezoid. From Eqs. (2.15a) and
(2.15b), we obtain along characteristic lines

dσ

dc
=

σ

c
. (2.16)

Integrating Eq. (2.16) along characteristic lines with slope 1, we obtain that σ/c is invariant
along such lines, hence (2.7) holds. �

2.3. Well posedness of the direct problem. The system (2.1)–(2.2) can be rewritten as

∂

∂T

(
c
σ

)
+

(
1 0
0 0

)
∂

∂X

(
c
σ

)
=

(−λ(σ) 0
λ(σ) 0

) (
c
σ

)
, (2.17)

which is a quasi-linear hyperbolic system. This system has two characteristic directions,
which are (dX, dT )T = (1, 1)T (with speed 1) and (dX, dT )T = (0, 1)T (with speed 0), see
Fig 2.1.

Theorem 2.3. There exists a unique, well-posed weak solution of (2.1)–(2.4) in the infinite
rectangle for C1 boundary data ci(T ), T > 0. This solution vanishes in the triangle with
vertices (0, 0), (0, 1), (1, 1) in Fig. 2.1; it is C1 in the trapezoid above the triangle, where it
is given by the unique solution of family of the ODE’s (2.5), (2.15).

Proof: We consider the system (2.17) in the triangle {(X, T ) : 0 ≤ T ≤ X ≤ 1} with initial
data (2.4). It follows from the method of characteristics described in Section 5, Chapter 2,
[9] and Section 2, Chapter 5, [6] that the only solution in the triangle vanishes identically.
This is illustrated by the two characteristic lines reaching the point (X, T ) in the triangle
shown in Fig. 2.1: since σ and c vanish at the feet of characteristics, they vanish at (X, T ).

Let us consider bounded weak solutions of (2.1), (2.2) defined near the line X = T (see
Fig 2.1), in the sense of [9]. Integrating (2.2) along segments with fixed X for 0 < X ≤ 1
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X 

T
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1 

(X,T) 

(X,T) 

Figure 2.1. Characteristic lines; triangle (lower) and trapezoid (upper).

from T − ε to T + ε, where ε is positive and small we see that

lim
ε→0

{σ(X, T + ε) − σ(X, T − ε)} = 0.

Thus (2.10) holds. Performing the same integration on (2.1) yields no new information, i.e.
c(X, T ) may be nonzero on T = X, just above the trapezoid lower edge from (0, 0) to (1, 1);
in other words, there may be a shock along T = X.

Now, let us focus on the infinite trapezoid {(X, T ) : 0 ≤ X ≤ 1, T ≥ X ≥ 0}. Consider
the unique C1 solution σ(X, T ), c(X, T ) of (2.5) and (2.15) in the trapezoid. Notice that
(2.14), (2.13), (2.12) and (2.11) hold, therefore (2.1)–(2.2) hold and this is the only solution
of system (2.1)–(2.4) in the trapezoid. This solution is C1 in the trapezoid.

In summary, the system (2.1)–(2.4) has a unique solution on the infinite rectangle. This
solution has a jump in c along the front X = T . This is the unique global weak solution of
(2.1)–(2.2) under proper initial and boundary conditions and the assumption (2.1) on the
filtration function λ(σ). �
Remark 2.4. Since along the front trajectory X = T the deposited concentration is zero,
i.e., (2.10) holds, we obtain the following ordinary differential equation for c(X, X) along
this line in the trapezoid:

dc(X, X)

dX
= −λ(0)c(X, X). (2.18)

Integrating (2.18) and using (2.3) at T = 0, we obtain

c(X, X) = ci(0) exp(−λ(0)X). (2.19)

Since ci(0) > 0, from (2.19) we obtain that c(X, X) is positive for X > 0 in the trapezoid
and 0 below; so there is indeed a shock along the characteristic X = T , as shown in Figure
(2.2a).

Remark 2.5. The system of equations (2.5), (2.15) is convenient for using standard ODE
procedures to solve numerically the PDE.
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Figure 2.2. Typical normalized suspended and deposited particle concentra-
tions before and after breakthrough: notice the discontinuity at T = X on the
left figure.

Remark 2.6. If we take the experimental data function ci(T ) to be C2 instead of C1, then
the solution σ, c of the system (2.1)–(2.4) is C2 in the trapezoid. In particular, the predicted
effluent concentration c(1, T ) is a C2 function for T > 1.

3. The recovery method

Here we describe the recovery method for obtaining the filtration function in (2.17) from
the injected and effluent concentration of particles. See also [1], [2], [4] [10], and [11]. An
inverse problem for a system similar to (2.17) was studied in [5].

3.1. Derivation of the functional equation. Here we generalize [2] and [4], where only
the case of constant injected concentration ci(T ) = cio was considered. It is useful to intro-
duce the variable z ≥ 0 and the notation

ci(z) ≡ c(0, z) > 0, ce(z) ≡ c(1, z + 1) > 0, σi(z) = σ(0, z), σe(z) = σ(1, z + 1). (3.1)

We assume here that the experimental data ci, ce are C2 functions for 0 ≤ z < ∞.
We will also need the C3 functions on 0 ≤ z < ∞

τ = Ci(z) ≡
∫ z

0

ci(s)ds, Ce(z) ≡
∫ z

0

ce(s)ds. (3.2)

From (3.1a) it follows that Ci in (3.2a) is monotone increasing and Ci(0) = 0. Thus, from

the implicit function theorem the inverse function C
(−1)
i (τ) of Ci in (3.2a) and it is C3.

Moreover, this function is monotone increasing. We have

z = C
(−1)
i (τ) or

dz

dτ
=

1

ci(z)
with z(0) = 0.

Because of Assumption 2.1, the definition (2.8) and Ψ′(σ) = 1/λ(σ) > 0, there exists the
function g : [0, m) → [0, 1)

σ = g(ψ), inverse of the function ψ = Ψ(σ); (3.3)

notice that g(0) = 0. Relationships between the deposited and suspended particle concen-
trations at the inlet and outlet points X = 0 and X = 1 can be obtained as follows. We
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integrate Eq. (2.11) in z, use (3.2) and σi(0) = σ(0, 0) = 0, σe(0) = σ(1, 1) = 0, i.e.,

Ψ(σi(z)) = Ci(z), Ψ(σe(z)) = Ce(z). (3.4)

Now, from (3.3) and (3.4) we obtain

σi(z) = g(Ci(z)), σe(z) = g(Ce(z)) for z ≥ 0. (3.5)

Replacing X by 1 and T by T + 1 in (2.7) and using (3.1) with z = T we obtain:

σ(1, T + 1)

c(1, T + 1)
=

σ(0, T )

c(0, T )
or

σe(z)

ce(z)
=

σi(z)

ci(z)
. (3.6)

Substituting the expressions (3.5) into Eq. (3.6b), we obtain the following functional equation
for the function σ = g(ψ):

g(Ce(z)) =
ce(z)

ci(z)
g(Ci(z)) or g(Ce(z)) =

C
′
e(z)

C
′
i(z)

g(Ci(z)) for z ≥ 0. (3.7)

Finally, using the definition of τ in (3.2) and denoting

D(τ) ≡ Ce(C
(−1)
i (τ)) and θ(τ) ≡ ce(C

(−1)
i (τ))

ci(C
(−1)
i (τ))

, (3.8)

equation (3.7) can be rewritten as

g(D(τ)) = θ(τ)g(τ) for τ ≥ 0. (3.9)

Here D and θ are known, so this is a functional equation for g that needs to be solved.
For constant injected concentration ci(z) = cio, (3.9) reduces to Julia’s equation, which is

studied in [11]:

g(D(τ)) = D
′
(τ)g(τ) for τ ≥ 0. (3.10)

The recovery method outlined in [4] is based on the functional equation (3.10); a formula
for the solution of (3.10) is obtained by means of an iterative procedure. In the next section
an analogous formula for the solution g(τ) of (3.9) is obtained for non-constant injected
concentration ci(T ).

From the definitions of g in (3.3) and Ψ in (2.8) we obtain

λ(σ) = g
′
(σ). (3.11)

Thus, once the function σ = g(Ψ) has been found by means of equation (3.9), we determine
the filtration function λ(σ) using (3.11).

Remark 3.1. We will see in the next section that the solution of (3.9) is proportional to
g

′
(0). Notice from (3.11) that g

′
(0) = λ(0). This value is determined from (2.19) as follows:

g
′
(0) = λ(0) = − log(ce(0)/ci(0)). (3.12)

3.2. Solution of the functional equation. In this section the functional equation (3.9)
is solved. We assume that the data ci(T ), ce(T ) are C2, providing sufficient smoothness for
the existence of a unique C2 solution. Sufficient conditions for the existence and uniqueness
of the solution of (3.9) are given in [11].

In practice, the values of the injected and effluent particle concentration are measured up
to the final time Tf . So, we solve the equation (3.9) for τ in [0, r], where r = Ci(Tf ).
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Remark 3.2. Let D : [0, r] → [0, r) be a continuous monotone increasing function, such
that D(0) = 0 and D(τ) < τ in (0, r]. Let τ0 be any point in (0, r]. Consider the nonnegative
sequence in [0, r] given by τn+1 = D(τn), n = 0, 1, 2, . . .. Then this sequence is monotone
decreasing and it converges to 0 (see [1] or [10] for a proof).

Let us consider the Banach space with norm ||g|| = sup
[0,r]

{|g(x)|}+sup
[0,r]

{|g′
(x)|}+sup

[0,r]

{|g′′
(x)|}:

G0 = {C2[0, r] such that g(0) = 0}.
Theorem 3.3. Let D : [0, r] → [0, r) be a C2 monotone increasing function, such that
D(0) = 0 and D(τ) < τ in (0, r]. Let θ : [0, r] → (0, 1) be a C2 function, satisfying
0 < θ(τ) < 1 and [D

′
(0)]2/θ(0) < 1. Furthermore, consider the functional equation (3.9) on

G0, i.e.

g
(
D(τ)

)
= θ(τ)g(τ) for τ in (0, r). (3.13)

Then the functional equation (3.13) has a solution in G0, which is uniquely defined by the
value of g′(0).

Proof: The existence of a unique C2 solution of the functional equation (3.13) is guar-
anteed by Theorem 3.4.2 in [11]. Now, an iterative formula for the solution of (3.13) is
presented in Theorem 5.8 in [10], which depends on an arbitrary function. Here we deter-
mine the solution as follows.

Let us assume that given D and θ as above there exists a g. We present an algorithm or
formula for g. To compute g(τ0) for any 0 < τ0 < r, we define the two infinite sequences

τ1 = D(τ0), τ2 = D(τ1), . . . τn = D(τn−1),

q1 = θ(τ0), q2 = θ(τ1)q1, . . . qn = θ(τn−1)qn−1,

or

τn = Dn(τ0), qn =

n−1∏
k=0

θ(τk).

From Remark 3.2, τn tends to zero monotonically. Notice that τ1 = D(τ0) is continuous in
τ0, and so is τn = Dn(τ0). Similarly, since θ is continuous, qn is a continuous function of τ0.
The following lemma is proved in [10].

Lemma 3.4. lim
n→∞

qn(τ0) = 0 uniformly for τ0 ∈ [0, r).

From the functional equation (3.13), it follows that

g(τk) = g(D(τk−1)) = θ(τk−1)g(τk−1),

so by repeated use of the formula above for k = n, n − 1, · · · , 1 we obtain

g(τn) = g(τ0)

n−1∏
k=0

θ(τk). (3.14)

On the other hand, using the definition of derivative and g(0) = 0 we obtain

g′(0) = lim
n→∞

g(τn) − g(0)

τn − 0
= lim

n→∞
g(τn)

τn
· (3.15)
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Substituting (3.14) in (3.15), we see that

g′(0) = g(τ0) lim
n→∞

∏n−1
k=0 θ(τk)

τn
. (3.16)

Thus, we obtain the solution for the functional equation (3.13) for any τ0 > 0:

g(τ0) = g′(0) lim
n→∞

τn∏n−1
k=0 θ(τk)

or g(τ0) = g′(0) lim
n→∞

τn

qn
· (3.17)

The formula (3.17) can be rewritten as an infinite product, which is very useful for nu-
merical calculations. Let us define

Rn =
τn∏n−1

k=0 θ(τk)
, ρn =

D(τn)

θ(τn)τn
· (3.18)

Then

Rn =
D(τn−1)τn−1

θ(τn−1)τn−1

∏n−2
k=0 θ(τk)

=
D(τn−1)

θ(τn−1)τn−1

Rn−1 = ρn−1Rn−1, (3.19)

so that

g(τ0) = g′(0)

∞∏
n=0

D(τn)

θ(τn)τn
or g(τ0) = g′(0)

∞∏
n=0

ρn. (3.20)

Eq. (3.20) is the basis of the algorithm for solving the functional equation.

Remark 3.5. Now it is possible to verify that the functional equation in (3.9) satisfies the
assumptions of Theorem 3.3. To do so, we take into account the following facts. Applying
Gronwall’s inequality into (2.15b), it was proved in [1] that ce(τ) < ci(τ) for τ ≥ 0; it follows
that 0 < θ(τ) < 1 for τ ≥ 0. Moreover, using (3.8) one verifies that D

′
(0) = θ(0), so the

inequality [D
′
(0)]2/θ(0) = θ(0) < 1 is satisfied.

Now, since 0 < θ(τ) < 1 and ce(τ) < 1 for τ > 0, we obtain that D(τ) < τ for τ > 0.
Finally, D(τ) and θ(τ) are C2 functions because the functions ci and ce are C2.

Remark 3.6. For Julia’s equation the formula (3.20) reduces to

g(τ0) = g′(0)

∞∏
n=0

D(τn)

D′(τn)τn
, with D(τ) = Ce(τ/ci0). (3.21)

Remark 3.7. Once the solution g of the functional equation (3.9) is obtained, we can solve
the direct problem (2.1)–(2.4) using the filtration function λ(σ) determined by (3.11) and
find c(1, T ). It is possible to verify, using the method described in Section 3 and Theorem
3.3, that the correspondent effluent concentration function c(1, T ) coincides with the input
data ce(T ) in (3.1b) used in the recovery procedure.

We have proved the following:

Theorem 3.8. Given the C2 functions ci(T ), ce(T ), there exists a unique λ(σ), (which is
C1) such that the problem (2.1)–(2.4) has a solution satisfying c(1, T ) = ce(T ).

Remark 3.9. More generally, it is possible to prove that given Cm functions ci(T ), ce(T ),
the filtration function λ(σ) is Cm−1.
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4. Stability

In summary, the method for obtaining the filtration function in Section 3 consists of the
following sequence of calculations

{ci, ce} → {Ci, Ce} → {D, θ} → g → λ,

where “→” represents a procedure to obtain output functions from the previous data. To
obtain stable numerical methods for calculating the approximate solution of the filtration
function, we must study the well posedness of Eqs. (3.2), (2.8) and (3.9).

Clearly the functions Ci and Ce depend continuosly on ci and ce respectively. The func-
tions D and θ depend continuosly on ci, ce as well. In [11] it was proved that the solution of
the functional equation (3.9) depends continuously on the functions D(τ) and θ(τ), so the
solution g depends continuously on the functions ci and ce. Finally, the stability of the recov-
ery method requires that the numerical differentiation of the solution g of (3.9) is performed
in a stable way. We have used cubic splines for numerical differentiation; however, better
approximations such as smoothing splines perhaps would lead to less oscillating filtration
functions ([15], [16]). Also, from the definition of Ψ in (2.8), we can expect that serious
numerical instabilities arise when the filtration function values are very small.

5. Numerical results

In this section the implementation of the numerical method for solving the functional
equation is described, along with the experiments we performed over real measurement data,
their results and brief discussion.

5.1. Implementation. We have implemented the product form presented in (3.21) (Julia’s
equation), assuming that ci(T ) is a constant ci0. The algorithm takes this constant and a
time series (T, ce(T )) as input. Data are filtered so that only the pairs with T ≥ 1 for which
ce(T ) > 0 are used. Ideally, the time value T0 of the first of these pairs is 1, but not in
practice: in the four cases we studied, it was in the range [4.26, 7.75]. To provide for the
missing datum ce(1), and also to obtain a dense data set from the sparse points available, we
have added arbitrarily the point (T = 0, ce(0) = 0) to the data series and then we used cubic
spline interpolation to obtain a smooth, dense set with which includes the point (1, ce(1)).

The time series is not necessarily evenly spaced. Over this time grid we compute the
auxiliary quantity D(τ), using standard trapezoidal integration. Next we compute the cubic
spline used to evaluate the function D(τ), stored as a discrete series, and its derivative. Since
D(τ) is the integral of ce(T ), we know its first derivative at the end points, and use it when
computing the spline coefficients.

We now proceed to the computation of g(τ) as in (3.21). We create an evenly spaced
mesh for Ψ in (2.8) covering the interval [0, Tf ], the whole span for which data is available.
Over this mesh, we compute the values of g iteratively as a truncated infinite product. The
criterium for trucation is the quotient τn/qn dropping to zero or its relative difference to
τn−1/qn−1 becoming less than 10−4. These values were determined through experimentation.
We decided to use an evenly spaced mesh for simplicity, as the computation of any g(τ0)
requires the computation of g for many other values in the interval [0, τ0].

Theoretically, g(τ) is non-decreasing, so that g′(τ) = λ(σ) is positive; but using exper-
imental data yielded non-monotonical g(τ) profiles. We analysed six data sets from [12],
and for four of those we obtained good results working around the lack of monotonicity by
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b) Filtration functions.

Figure 5.1. Shown as markers on the left, the data series for which we solved
the inverse problem. The solid lines are the effluent concentrations calculated
on the basis of the recovered filtration functions; the latter are shown on the
right.

removing the decreasing intervals of the function, forcing it to stay constant at the maximum
at the left of each such interval. Finally, we use g(τ) to evaluate λ(σ) as given in (3.11).

Figure 5.1 shows our primary results: on Figure 5.1a, we show as markers the data points
of the series 3 through 6 we obtained from [12]. For each of these data series, λ(σ) was
recovered; these are shown in Figure 5.1b. Finally, the effluent profiles found by solving the
direct problem using the recovered λ(σ) are shown as solid lines in 5.1a. The oscillations in
the filtration functions are due to insufficient smoothness of the data sets. Smoother data
would yield smoother filtration profiles.

5.2. The effect of extrapolating for missing data. Experimental data for the break-
through concentration ce(1) is usually unavailable. These difficulties arise from diffusive the
small value of σ at breakthrough and from difusive effects. The value of ce(1) is a key scaling
factor for the whole procedure, and its sensitivity relative to the value of ce(1) was tested in
the second experiment. We repeated the previous runs using the same data preprocessing,
but setting ce(1) = ce(T0) now, where T0 is the actual PVI value of the first data point avail-
able where ce > 0. The resulting data series are identical to those used previously except
near T = 1. As it can be seen in Figure 5.2, the filtration functions recovered from these
series are very similar to the previous ones, except for very low σ values, i.e. the changes at
ce(1) affected mostly the neighbourhood of λ(0), as expected. For higher σ values, there is
little change in the effluent profiles produced using the filtration functions recovered through
the funcional equation, despite the unavailability of the ce(1) datum. One can set the value
of ce(1) quite arbitrarily without affecting the shape of the filtration function for higher σ
values.

5.3. The impact of data smoothing. In our next experiment, we used a fine mesh and
linear interpolation before smoothing the data with the cubic splines, so as to preserve its
sharp edges. The results, analogous to those of the first experiment, are shown in Figure
5.3. Once again, the direct problem reproduces the input data with great accuracy, and the
filtration functions show the same oscillating nature, however more edgy. The oscilations
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a) Filtration functions for data with imposed ce(1).
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b) Filtration functions from previous experiment.

Figure 5.2. On the left, the filtration coefficients obtained from the series
where the value of ce(1) was imposed. The figure on the right is the same
as 5.1b. Comparing both Figures, notice the difference for low σ, and the
similarity of the profiles as σ increases.

are therefore due to higher values of the lower order derivatives of the curves implied by the
data series.
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Figure 5.3. Third experiment. Same as in Figure 5.1, but using linear in-
terpolation when preprocessing the effluent profile data.

5.4. The effect of data preprocessing. This model for the filtration function recovers
the data series exactly, accounting for all irregularities in the data. However, because of
experimental error, it is common practice in engineering to preprocess the data and replace
it with smooth curves that do not necessarily pass through the experimental points; usually
some sort of least square approximation is used. Figure 5.4a shows smooth profiles obtained
from the data points using a preprocessing method described in a forthcoming work; ap-
plying the algorithm described here to these profiles yielded the extremely smooth filtration
functions shown in 5.4b, which look much more reasonable than those in 5.2b. We calculated
the effluent concentrations using these filtrations and plotted them over the input data on
Figure 5.4a, with which they coincide visually.
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Figure 5.4. Exact recovery obtained using the functional equation over
smooth aproximation of the actual data.

6. Conclusion

The method described here reduces the inverse problem of recovering the empirical filtra-
tion coefficient from measurements of effluent concentration to solving a functional equation.
Taking smooth experimental data functions we obtain a nice inverse problem, with a unique
solution. We presented a stable numerical method which, short of numerical errors, provides
perfect matching between prescribed and predicted data, both for synthetic and for exper-
imental data. As long as the effluent concentration is sufficiently smaller than the injected
concentration, the method is not impaired by the lack of the breakthrough data on which
the calculations rely, and maintains consistency with the raw data through different filter-
ing approaches at the preprocessing stage. The quality of the recovered filtration functions
depends heavily on the type of preprocessing done, and good preprocessing methods should
be further investigated.
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