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Abstract. We consider the initial value problem for

∂tu− β∂3
xu− γ∂−1

x u + uux = 0, x, t ∈ R, (0.1)

where u is a real valued function, β and γ are real numbers such that β · γ 6= 0 and
∂−1

x f = ((iξ)−1f̂(ξ))∨.
This equation differs from Korteweg-de Vries equation in a nonlocal term. Neverthe-

less, we obtained local well posedness in Xs = {f ∈ Hs(R) : ∂−1
x f ∈ L2(R)}, s > 3/4,

using techniques developed in [6]. For the case β · γ > 0, we also obtain a global result
in X1, using appropriate conservation laws.

1. Introduction

In this paper we study local and global well-posedness of the initial value problem (IVP)
associated to,

(ut − βuxxx + uux)x = γu, (1.2)

where β ∈ R, β 6= 0 and γ > 0.
The equation above was derived as a model for weakly nonlinear long waves in a rotating

frame of reference. It was proposed by Ostrosvky [11] to describe the propagation of
surface waves in the ocean (see also [10]). The parameter γ measures the effect of rotation
(Coriolis) which is supposed to be small meanwhile β determines the type of dispersion.
In the absence of rotation (γ = 0) the equation (1.2) becomes the well known Korteweg-de
Vries (KdV) equation.

FL was partially supported by CNPq Brazil.
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One of the main concerns regarding equation (1.2) was to determine the existence of
solitary wave solutions. This question naturally appears due to the similarities between
this equation and KdV and Kadomtsev-Petviashvili (KP) equations, which have solitons
as solutions. Several works have been devoted to deal with this problem (see [2] and
references therein). Using techniques inspired in those applied for the KP equations, it
was proved recently in [13], that for β < 0, there are not solitary wave solutions for (1.2)

with phase speed satisfying c <
√

140γ|β|. It was also proved there that for β > 0 and
c < 2

√
γβ, solitary waves do exist and that for certain values of c, the set of ground states

is stable.
Since closed forms for these kind of solutions are not known, numerical techniques has

been used to approximate them, as well as to analyze how an initial perturbation in a
KdV soliton profile will be destroyed and in particular, how long it can exist as a structure
closed to a KdV soliton when the parameter γ is small.

Here we do not address these problems, but instead we will treat the IVP associated
to (1.2). Our main purpose is to establish a local well-posedness theory for data in
low regularity anisotropic Sobolev spaces Xs(R) (see the definition below) and determine
whether or not it is possible to extend the local solutions globally.

Equation (1.2) can be seen as a perturbation of the KdV by a nonlocal term. So, it is
natural to ask whether solutions of the IVP associated to (1.2) enjoy analogous properties
to those of the solutions of the IVP associated to the KdV equation. The answer is
not obvious and surprisingly affirmative in the case of data in anisotropic Sobolev spaces
Xs(R) with indices s > 3/4.

To describe our results we first rewrite the equation (1.2) by making use of the anti-
derivative,

∂−1
x f(x) =

1

2

(∫ x

−∞
f(x′)dx′ −

∫ ∞

x

f(x′)dx′
)

(1.3)

(see [3] for an explanation). With this definition we are led to the following initial value
problem

{
∂tu− β∂3

xu− γ∂−1
x u + uux = 0, x, t ∈ R,

u(x, 0) = u0(x)
(1.4)

where u is a real valued function. We will also admit negative values for γ, so we simply
assume β · γ 6= 0.

With this choice of the antiderivative we have, ∂−1
x f = (

f̂(ξ)

iξ
)∨, so it is natural to define

the function space Xs as

Xs = {f ∈ Hs(R) : ∂−1
x f ∈ L2(R)}, s ∈ R. (1.5)
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Then we consider the integral equivalent formulation of the IVP (1.4), that is,

u(t) = U(t)u0 +

t∫

0

U(t− t′)(u∂xu)(t′) dt′ (1.6)

where

U(t)u0 = (e−it(βξ3+γξ−1)+ixξ û0(ξ))
∨. (1.7)

To prove the local well-posedness we will follow the scheme developed by Kenig, Ponce
and Vega [7] to deal with the IVP associated to the KdV equation. More precisely, we will
establish a series of estimates exploring the smoothing effects related to the operator U(t)
and then use a contraction mapping principle to obtain the desired result. The analysis
of the operator U(t) however is not trivial and we have to distinguish two cases: when
β · γ > 0 and when β · γ < 0.

One of the key estimates in [7] was the global smoothing effect of Kato’s type satisfied
by solutions of the linear problem,

{
vt + vxxx = 0, x, t ∈ R,

v(x, 0) = v0(x),
(1.8)

denoted by v(x, t) = et∂3
xv0, that is,

sup
x

( ∞∫

−∞

|∂xe
t∂3

xv0(x)|2 dt
)1/2

≤ c‖v0‖L2 . (1.9)

For β · γ < 0 we get an analogous estimate, but because of the singularity present in the
symbol ϕ(ξ) = −βξ3−γξ−1, we were only able to obtain a local smoothing of this type (see
(3.27) below) when β · γ > 0. However, this is enough for our purposes. It is interesting
to observe that the Strichartz estimates behave in the opposite way: for β · γ > 0 we
obtain a global estimate meanwhile for the case β ·γ < 0 we just get a local one. Roughly
speaking, the behavior commented above is because the smoothing effect is related to the
first derivative of the symbol (this determines the dispersive character of the equation).
On the other hand, the Strichartz estimates are connected with the “curvature” of the
symbol, i.e. the second derivative of the symbol. We shall also mention that somehow the
structure of the KP equation appears when we looked for maximal function estimates.
Our main tool to prove these estimates was a careful analysis of the oscillatory integral
defining the solutions of the linear problem associated to (1.2) and the theory developed
in [5].

**** These estimates and the contraction mapping principle give us local well-posedness
for data in Hs(R), s > 3/4. To show that we have indeed local well-posedness in Xs,
s > 3/4, we use the solution previously obtained given in the integral form (1.6) and show
that ∂−1

x u(t) ∈ L2(R).****
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To show the global existence of solutions for the IVP (1.4) we observe that the following
quantities are conserved by the flow:

I1(u(t)) =

∞∫

−∞

|u(x, t)|2 dx = I1(u0) (1.10)

and

I2(u(t)) =

∞∫

−∞

(
β(∂xu)2 +

γ

2
(∂−1

x u)2 +
1

3
u3

)
(x, t) dx = I2(u0). (1.11)

Therefore if we consider data in X1 we will obtain an a priori estimate that will allow
us to extend globally in time the local solutions. Later on we will justify the validity of
these two identities.

This paper is organized as follows. We give the statements of our results in Section 2.
Section 3 will be dedicated to establish all the linear estimates needed in the proofs of
the local results. The local theory will be established in Section 4 and the global result
will be proved in Section 5.

2. Main Results

In this section we list the main results in this work. First we have the local well-
posedness theory for the IVP (1.4) in the usual Sobolev spaces Xs(R).

Theorem 2.1. Let u0 ∈ Xs(R), s > 3/4. If β ·γ 6= 0, then there exist T = T (‖u0‖Hs) > 0
and a unique solution u of the IVP (1.4) such that

u ∈ C([0, T ] : Xs(R)), (2.12)

‖Ds
x∂xu‖L∞x L2

T
< ∞, (2.13)

‖∂xu‖L4
T L∞x < ∞ (2.14)

and
‖u‖L2

xL∞T < ∞. (2.15)

In addition, for any T ′ ∈ (0, T ) there exists a neighborhood U of u0 such that the map
data–solution is Lipschitz from Hs into the class defined by (2.12)–(2.15).

With the local theory at hand and the conserved quantities (1.10) and (1.11) we obtain
the next global result.

Theorem 2.2. If u0 ∈ X1(R) and β · γ > 0, the solutions given in Theorem 2.1 can be
extended to any interval of time [0, T ].

Remark 2.3. For the case β · γ < 0 we only establish the local theory because we cannot
use the conserved quantity (1.11) directly to obtain an a priori estimate. It is not clear
whether we can control ‖∂−1

x u(t)‖ by ‖u(t)‖H1. In this situation an a priori estimate could
be established.
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Remark 2.4. Our results improve by far the previous ones obtained in [12] where the
only case treated was β, γ > 0.

Remark 2.5. Our local results seem to be far of being sharp if we compare them with the
ones obtained for KdV equation [8]. On the other hand, since the symbol associated to
equation (1.2) is not homogeneous, a scaling argument cannot be used to predict what the
critical Sobolev space should be to prove local well-posedness. We also notice that when
β < 0 and γ > 0, the symbol has a good algebraic property similar to the one of the KPII
equation. This probably allows one to use the methods in [1] and [8] introduced to study
the KdV equation. So far we have not been able to put these methods forward.

Remark 2.6. Notice that our results here imply the positive stability results in [13] for
data in X1 close to the solitary waves.

3. Linear Estimates

Next we consider the linear problem

{
∂tu− β∂3

xu− γ∂−1
x u = 0, x, t ∈ R,

u(x, 0) = u0(x)
(3.16)

whose solution is given by

u(x, t) = Uβ,γ(t)u0(x) = c

∞∫

−∞

eixξ+itφβ,γ(ξ)û0(ξ) dξ = Iβ,γ(t) ∗ u0(x) (3.17)

where φβ,γ(ξ) = −βξ3 − γξ−1 and

Iβ,γ(t, x) = c

∫

R−{0}
ei(tφβ,γ(ξ)+xξ)dξ.

Let us set φ±(ξ) = ∓ξ3 − 1
ξ

and I±(t, x) = c
∫
R−{0} ei(tφ±(ξ)+xξ)dξ. It is not difficult to

see that when β · γ > 0,

Iβ,γ(t, x) = |γ/β|1/4I+(t|βγ3|1/4sign(γ), x|γ/β|1/4) (3.18)

and that an analogous result also holds when β · γ < 0 with I− instead of I+. This allows
us to simplify the analysis and take β = ±1 and γ = 1, without loss of generality. Now
we can define the corresponding solutions of (3.16) by

u(x, t) = U±(t)u0(x) = I±(t) ∗ u0(x). (3.19)

Our first result regards the Strichartz estimates. To prove these estimate we rely in the
theory of oscillatory integral established by Kenig, Ponce and Vega [5].
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Lemma 3.1. Let f ∈ L2(R). Then

‖Dθ/4
x U+(t)f‖Lq

t Lp
x
≤ c ‖f‖L2 (3.20)

where q = 4
θ

and p = 2
1−θ

with θ ∈ [0, 1].

Let f ∈ L2(R), then

( T∫

0

‖D1/4
x U−(t)f‖4

L∞ dt
)1/4

≤ c (1 + T 1/4)‖f‖L2 . (3.21)

Remark 3.2. The estimate (3.20) is global in time in contrast with (3.21). For our
purposes the case θ = 1 in (3.20) is enough.

Proof. The symbol φ+(ξ) is the general class defined in [5]. Thus Theorem 2.1 in [5]
implies that

∥∥
∞∫

−∞

eixξ+itφ+(ξ)|6ξ +
2

ξ3
|θ/4 dξ

∥∥
Lq

t Lp
x
≤ c ‖f‖L2 . (3.22)

On the other hand, noticing that

|φ′′(x)| = 2

|ξ|3 (3ξ4 + 1) ≥ 6|ξ|

the estimate (3.20) follows.
To prove (3.21) we first notice that the symbol φ−(ξ) is also in the general class defined

in [5]. Thus

‖
∫

R

eitφ−(ξ)+ixξ |φ′′−(ξ)|θ/4 f̂(ξ) dξ‖Lq
t (R:Lp) ≤ c‖f‖L2 (3.23)

where θ ∈ [0, 1], p = 2
1−θ

and q = 4
θ
.

Next we take ψ ∈ C∞
0 (R) a cut-off function, i.e. ψ ∈ C∞

0 (R) such that ϕ ≡ 1 if |x| ≤ 1
and ϕ ≡ 0 if |x| ≥ 2, and write

D1/4
x U−(t)f(ξ) =

∫

R

eitφ−(ξ)+ixξ|ξ|1/4 f̂(ξ)ψ(ξ) dξ

+

∫

R

eitφ−(ξ)+ixξ|ξ|1/4 f̂(ξ)(1− ψ(ξ)) dξ.

(3.24)
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Using the Sobolev lemma and the regularity of ψ we have

( T∫

0

‖
∫

R

eitφ−(ξ)+ixξ |ξ|1/4ψ(ξ)f̂(ξ) dξ‖4
L∞ dt

)1/4

≤ c T 1/4‖D1/4
x (f ∗

∨
ψ)‖H1 ≤ c T 1/4‖f‖L2 .

(3.25)

On the other hand, inequality (3.23) with θ = 1 implies that

( T∫

0

‖
∫

R

eitφ−(ξ)+ixξ |ξ|1/4(1− ψ(ξ))f̂(ξ) dξ‖4
L∞ dt

)1/4

=
( T∫

0

‖
∫

R

eitφ−(ξ)+ixξ |φ′′−(ξ)|1/4 |ξ|1/4

|φ′′−(ξ)|1/4
(1− ψ(ξ))f̂(ξ) dξ‖4

L∞ dt
)1/4

≤ c ‖|ξ|
1/4(1− ψ(ξ))

|φ′′−(ξ)|1/4
f̂(ξ)‖L2

≤ c‖f‖L2

(3.26)

where we have used that
|ξ|1/4(1− ψ(ξ))

|φ′′−(ξ)|1/4
∈ L∞. Combining (3.24), (3.25) and (3.26) the

proof is complete. ¤
The smoothing effects of Kato’s type for solutions of (3.16) are given in the following

lemma.

Lemma 3.3. Solutions of the linear problem (3.16) satisfy

‖∂xU−(t)f‖L∞x L2
T
≤ ‖f‖L2 (3.27)

and

‖∂xU+(t)f‖L∞x L2
T
≤ c (1 + T 1/2)‖f‖L2 . (3.28)

Proof. The inequality (3.27) follows from Theorem 4.1 in [5].
To prove (3.28), let ϕ ∈ C∞(R) such that ϕ ≡ 1 if |x| ≤ 1 and ϕ ≡ 0 if |x| ≥ 2. Then

we can write

∂xU+(t)f =

∞∫

−∞

eixξ+itφ+(ξ)iξf̂(ξ) dξ

=

∞∫

−∞

eixξ+itφ+(ξ) iξf̂(ξ)ϕ(ξ) dξ +

∞∫

−∞

eixξ+itφ+(ξ) iξf̂(ξ)(1− ϕ(ξ)) dξ.
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Thus

sup
x

( T∫

0

|∂xU+(t)f(x)|2 dt
)1/2

≤ sup
x

( T∫

0

|
∞∫

−∞

eixξ+itφ+(ξ) iξf̂(ξ)ϕ(ξ) dξ|2 dt
)1/2

+ sup
x

( T∫

0

|
∞∫

−∞

eixξ+itφ+(ξ) iξf̂(ξ)(1− ϕ(ξ)) dξ|2 dt
)1/2

= I1 + I2.

(3.29)

Sobolev’s lemma and the regularity of ϕ gives us

I1 ≤ c T 1/2‖∂xf ∗ ϕ‖H1 ≤ c T 1/2‖f‖L2 . (3.30)

On the other hand, since φ′+ 6= 0 for |ξ| ≥ 1, we can apply Theorem 4.1 in [5] to obtain

I2 ≤
∞∫

−∞

|ξ|2|f̂(ξ)(1− ϕ(ξ))|2
|φ′+(ξ)| dξ ≤ c‖f‖L2 . (3.31)

Combining (3.29), (3.30) and (3.31) the result follows. ¤
Next we establish maximal function like estimates for the solutions of (3.16).

Lemma 3.4. Let f ∈ Hs2(R) ∩ Ḣ−s1(R), s2 > 3/4 and s1 > 1/4. Then

‖U±(t)f‖L2
xL∞T ≤ c(1 + T )1/2(‖f‖Ḣ−s1 + ‖f‖Hs2 ). (3.32)

Proof. We will argue as in [4] and [6].
Consider the following open covering of R− {0},

Ωk = (−2k+1,−2k−1) ∪ (2k−1, 2k+1), k ∈ Z,

and a subordinated partition of unity {ϕk}∞k=−∞ and let

I±k (t, x) = c

∫

R−{0}
ei(tφ±(ξ)+xξ)ϕk(ξ)dξ. (3.33)

We will prove that for any k ∈ Z, there exists a function H±
k ∈ L1(R) satisfying

|I±k (t, x)| ≤ H±
k (x), (3.34)

for any x ∈ R and |t| ≤ T and such that

‖H±
k ‖L1(R) ≤ c





(1 + T )1/223k/2 , k ≥ 1
(1 + T ) ,−1 ≤ k ≤ 0
(1 + T )1/22−k/2 , k ≤ −2.

To do that, let us take t ∈ [−T, T ]. We shall consider three different cases.
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3.1. Case 1: k ≥ 1. If ξ ∈ Ωk then |φ′±(ξ)| ≤ 6 · 22k. Then for |x| > 12 · 22kT , we have

|tφ′±(ξ) + x| > 1
2
|x| > |x|

3
.

Assume that 12 ·22kT > 1 and let us consider a function h ∈ C∞(R) such that supph ⊂{
ξ : |tφ′±(ξ) + x| ≤ |x|

2

}
and that equals one in

{
ξ : |tφ′±(ξ) + x| ≤ |x|

3

}
. Performing two

integrations by parts and using the remarks above we obtain that when |x| > 12 · 22kT ,

∣∣∣∣
∫

R−{0}
ei(tφ±(ξ)+xξ)ϕk(ξ)(1− h(ξ))dξ

∣∣∣∣ ≤ c
2k

|x|2 . (3.35)

If ξ ∈ Ωk ∩
{

ξ : |tφ′±(ξ) + x| ≤ |x|
2

}
, we have that

|tφ′′±(ξ)| = 2|t|
|ξ| |3ξ

2 ± 1

ξ2
|

≥ 1

|ξ| |tφ
′
±(ξ)|

≥ |x| 2−k,

(3.36)

in the second line we have used that if |ξ| ≥ 1 then

3ξ4 − 1 ≥ 1

2
(3ξ4 + 1). (3.37)

Now we can use Van der Corput’s lemma to get,

∣∣∣∣
∫

R−{0}
ei(tφ±(ξ)+xξ)ϕk(ξ)h(ξ)dξ

∣∣∣∣ ≤ c
2k/2

|x|1/2
. (3.38)

Thus, the lemma follows by choosing

H±
k (x) =





2k , |x| ≤ 1
2k

|x|2 + 2k/2

|x|1/2 , 1 < |x| ≤ 12 · 22kT
2k

|x|2 , |x| > 12 · 22kT,

when 12 · 22kT > 1 and

H±
k (x) =

{
2k , |x| ≤ 1
2k

|x|2 , |x| > 1,

otherwise. In the first case we have ‖H±
k ‖L1 ≤ c(1+T )1/223k/2 and in the second ‖H±

k ‖L1 ≤
c2k.



10 F. LINARES AND A. MILANÉS

3.2. Case 2: k ≤ −2. Now |φ′±(ξ)| ≤ 5 · 2−2k if ξ ∈ Ωk.
To estimate I−k , we do not have inequalities such as in (3.36), but since for ξ ∈ Ωk it

holds |ξ| ≤ 1√
3
≤ 1

31/4 we can use the following calculations,

|φ′′−(ξ)| =
2

|ξ|3 − 6|ξ|

≥ 1

|ξ|3 + 3|ξ|
= |φ′−(ξ)|.

Similarly as in the previous case we obtain

H±
k (x) =





2k , |x| ≤ 1
2k

|x|2 + 2k/2

|x|1/2 , 1 < |x| ≤ 10 · 2−2kT
2k

|x|2 , |x| > 10 · 2−2kT,

and ‖H±
k ‖L1(R) ≤ c(1 + T )1/22−k/2 when 10 · 2−2kT > 1, and

H±
k (x) =

{
2k , |x| ≤ 1
2k

|x|2 , |x| > 1,

with ‖H±
k ‖L1(R) ≤ c2k otherwise.

3.3. Case 3: −1 ≤ k ≤ 0. In this case we have that |φ′±(ξ)| ≤ 20 and we can take

H±
k (x) =

{
1 , |x| ≤ 40T

1
|x|2 , |x| > 40T,

and ‖H±
k ‖L1(R) ≤ c(1 + T ) when 40T > 1, and

H±
k (x) =

{
1 , |x| ≤ 1

1
|x|2 , |x| > 1,

with ‖H±
k ‖L1(R) ≤ c otherwise.

Now that (3.34) has been established we can proceed as in [4] and [6] to obtain the
desired result. ¤
Lemma 3.5. For any f ∈ Hs(R), s > 1/2,

∂−1
x (f∂xf) =

1

2
f 2. (3.39)

Proof. Suppose that f, g ∈ S(R). Then ∂x(fg) = ∂xfg + f∂xg and consequently

∂−1
x (∂xfg + f∂xg) = fg

and
‖∂−1

x (∂xfg + f∂xg)‖L2 = ‖fg‖L2 ≤ ‖f‖s‖g‖s
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for any s > 1/2. Therefore ∂−1
x (∂xfg + f∂xg) defines a continuous bilinear form from Hs

into L2. Hence, it can be uniquely continuously extended over Hs and then we get that
∂−1

x (f∂xf) = 1
2
f 2 for any f ∈ Hs, s > 1/2. ¤

Remark 3.6. Observe that for f ∈ Xs we have

‖f‖Ḣ−s1 ≤ c‖f‖Xs , s1 ≤ 1. (3.40)

To complement the set of linear estimates we will use the Leibniz’s rule for fractional
derivatives established by Kenig, Ponce and Vega [7].

Lemma 3.7 (Leibniz’ rule). Let α ∈ (0, 1), α1, α2 ∈ [0, α] with α = α1 + α2. Let
p, q, p1, p2, q2 ∈ (1,∞), q1 ∈ (1,∞) be such that

1

p
=

1

p1

+
1

p2

and
1

q
=

1

q1

+
1

q2

.

Then
‖Dα

x (fg)− fDα
xg − gDα

xf‖Lp
xLq

T
≤ c ‖Dα1

x f‖L
p1
x L

q1
T
‖Dα2

x g‖L
p2
x L

q2
T

. (3.41)

Moreover, for α1 = 0 the value q1 = ∞ is allowed.

4. Local Theory

We first give the proof of Theorem 2.1 when β · γ > 0.

Proof of Theorem 2.1. We define the space

Ba
T = {v ∈ C([0, T ] : Xs(R)) : |||v||| ≤ a} (4.42)

where

|||v||| := ‖v‖L∞T Hs(R) + ‖∂−1
x v‖L∞T L2

x
+ ‖v‖L2

xL∞T + ‖∂xv‖L4
T L∞x + ‖Ds

x∂xv‖L∞x L2
T

(4.43)

and the operator

Ψ(v) = Ψu0(v) = U+(t)u0 +

t∫

0

U+(t− t′)(vvx)(t
′) dt. (4.44)

We will show that for a and T suitable positive numbers the map Ψ defines a contraction
in Ba

T .
We first estimate the Hs-norm of Ψ(u)(t). So, the Minkowski inequality group proper-

ties and the Hölder inequality give

‖Ψ(u)(t)‖L2 ≤ c ‖u0‖L2 +

T∫

0

‖uux(t)‖L2 dt

≤ c ‖u0‖L2 + c T 3/4 sup
[0,T ]

‖u‖L2‖ux‖L4
T L∞x .

(4.45)
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On the other hand, using Cauchy-Schwarz’s inequality and Leibniz’s rule (3.41) we have
that

‖Ds
xΨ(u)(t)‖L2 ≤ ‖Ds

xu0‖L2 + ‖Ds
x

t∫

0

U+(t− t′)(uux)(t
′) dt′‖L2

≤ ‖Ds
xu0‖L2 + cT 1/2‖Ds

x(uux)‖L2
xL2

T

≤ ‖Ds
xu0‖L2 + cT 1/2(‖Ds

xu‖L4
T L2

x
‖ux‖L4

T L∞x + ‖Ds
xux‖L∞x L2

T
‖u‖L2

xL∞T )

≤ ‖Ds
xu0‖L2 + cT 3/4‖Ds

xu‖L∞T L2
x
‖ux‖L4

T L∞x + cT 1/2‖Ds
xux‖L∞x L2

T
‖u‖L2

xL∞T .

(4.46)

Combining (4.45) and (4.46) we have

sup
[0,T ]

‖Ψ(u)(t)‖Hs ≤ c‖u0‖Hs + c T 3/4‖u‖L∞T Hs
x
‖ux‖L4

T L∞x

+ c T 1/2‖Ds
xux‖L∞x L2

T
‖u‖L2

xL∞T .
(4.47)

Next by using the definition of Xs, Minkowski’s inequality, Plancherel’s indentity and
Lemma 3.5 we deduce

‖∂−1
x Ψ(u)(t)‖L2

x
≤ ‖u0‖Xs +

T∫

0

‖∂−1
x (uux)‖L2 dt

≤ ‖u0‖Xs + cT‖u‖2
L∞T Hs .

(4.48)

By group properties, Lemma 3.4, remark 3.6, Lemma 3.5 and the argument used in
(4.47) we have that

‖Ψ(u)‖L2
xL∞T ≤ c(1 + T )1/4‖u0‖Xs + ‖U+(t)

( t∫

0

U+(−t)(uux)(t
′) dt′

)‖L2
xL∞T

≤ c(1 + T )1/2‖u0‖Xs + c(1 + T )1/2‖
T∫

0

U+(−t)(uux)(t
′) dt′‖Xs

≤ c(1 + T )1/2‖u0‖Xs + c(1 + T )1/2
( T∫

0

‖∂−1
x (uux)‖L2 + T 1/2 ‖uux‖Hs

xL2
T

)

≤ c(1 + T )1/2‖u0‖Xs + cT (1 + T )1/2‖u‖2
L∞T Hs

x

+ c(1 + T )1/2
(
T 3/4‖u‖L∞T Hs

x
‖ux‖L4

T L∞x + T 1/2‖Ds
xux‖L∞x L2

T
‖u‖L2

xL∞T

)
.

(4.49)
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Inequality (3.20) in Lemma 3.1, Cauchy-Schwarz’s inequality and the argument in (4.47)
give

‖∂xΨ(u)‖L4
T L∞x ≤ ‖D1/4

x U+(t)D3/4
x u0‖L2

+ ‖D1/4
x U+(t)

( T∫

0

U+(−t′)D3/4
x (uux)(t

′) dt′
)‖L4

T L∞x

≤ c ‖u0‖Hs + c T 1/2‖uux‖Hs
xL2

T

≤ c ‖u0‖Hs + cT 3/4 ‖u‖L∞T Hs
x
‖ux‖L4

T L∞x + c T 1/2‖Ds
xux‖L∞x L2

T
‖u‖L2

xL∞T .

(4.50)

Finally, Minkowski’s inequality, Lemma 3.3, Cauchy-Schwarz’s inequality and (4.46)
yield

‖Ds
x∂xΨ(u)‖L∞x L2

T
≤ c(1 + T 1/2)‖Ds

xu0‖L2 + c (1 + T 1/2)T 1/2‖Ds
x(uux)‖L2

T L2
x

≤ c (1 + T 1/2)‖u0‖Hs + c T 3/4(1 + T 1/2)‖u‖L∞T Hs
x
‖ux‖L4

T L∞x

+ c T 1/2(1 + T 1/2)‖Ds
xux‖L∞x L2

T
‖u‖L2

xL∞T .

(4.51)

From (4.47)–(4.51) we obtain

‖Ψ(u)‖L∞T Hs
x
≤ c ‖u0‖Xs + c T 1/2(1 + T 1/4)|||u|||2,

‖∂−1
x Ψ(u)‖L∞T L2

x
≤ c ‖u0‖Xs + c T |||u|||2,

‖Ψ(u)‖L2
xL∞T ≤ c(1 + T )1/2‖u0‖Xs + c T 1/2(1 + T )1/2(1 + T 1/4 + T 1/2)|||u|||2,

‖∂xΨ(u)‖L4
T L∞x ≤ c ‖u0‖Xs + c T 1/2(1 + T 1/4)|||u|||2,

and
‖Ds

x∂xΨ(u)‖L∞x L2
T
≤ c(1 + T 1/2)‖u0‖Xs + c T 1/2(1 + T 1/4)(1 + T 1/2)|||u|||2.

Hence choosing a = 2c (1 + T )1/2 ‖u0‖Hs and T > 0 such that

c T 1/2(1 + T )1/2(1 + T 1/4 + T 1/2)a ¿ 1

2
(4.52)

we have that Ψ : Ba
T → Ba

T . The same argument shows that Ψ is a contraction in Ba
T .

Thus the contraction mapping principle guarantees the existence of a unique u in Ba
T

solving the integral equation (4.44). To show the continuous dependence we follow a
similar argument as the one described above. The uniqueness into the space

BT = {v ∈ C([0, T ] : Xs(R)) : |||v||| < ∞} (4.53)

follows using a standard argument so we will omit it.
To complete the proof of Theorem 2.1 we need to consider the case β · γ < 0. This

situation uses a similar argument as the one given in the proof of the case β · γ > 0. The
only difference resides in the estimate (4.50) where we use the inequality (3.21) instead
of (3.20). Thus we will omit the details and so the proof is finished. ¤
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5. Global Theory

In this section we will extend the local solutions obtained in Theorem 2.1, globally in
time. To achieve our goal we will use the conserved quantities (1.10) and (1.11).

Formally, the identities (1.10) and (1.11) can be obtained multiplying by u, integrating
by parts and using the antisymmetry of the operator ∂−1

x . To justify this procedure we
need to use the results in Theorem 2.1 when s is sufficiently large and the continuous
dependence. In fact, let u0 ∈ X1(R) and {u0j} ∈ Xs(R), s sufficiently large, such that

‖u0j − u0‖Hs + ‖∂−1
x (u0j − u0)‖L2 → 0 as j →∞.

Now let uj be the solutions with initial data uj(·, 0) = u0j(·). By Theorem 2.1 uj exists
in [0, T ] for sufficiently large j and uj → u in C([0, T ] : X1(R)).

The identity (1.10) can be easily justified for uj(t) ∈ Xs if s is sufficiently large. To
obtain (1.11) for regular initial data, we can proceed as was made in [9] to justify the
conservation of the energy for KP I. They used an exterior regularization of the equation
by a sequence of smooth functions that cut the low frequencies and a limiting argument.

Once we have (1.10) and (1.11) for regular initial data, we let j →∞ and noting that
uj(t) → u(t) in X1(R), we obtain these identities also for u.

Now we can use (1.10) and (1.11) to obtain an a priori estimate in X1(R).
Observe that (1.10) and a Young’s inequality type inequality imply that

∞∫

−∞

u3(x, t) dx ≤ ‖u(t)‖L∞‖u0‖2
L2 ≤

√
2 ‖u0‖5/2

L2 ‖∂xu(t)‖1/2

L2

≤ β

2
‖∂xu(t)‖2

L2 + C.

(5.54)

On the other hand, the identity (1.11) and (5.54) yield

β ‖∂xu(t)‖2
L2 +

γ

2
‖∂−1

x u(t)‖2
L2 = I2(u0)− 1

3
‖u(t)‖3

L3

≤ |I2(u0)|+ β

2
‖∂xu(t)‖2

L2 + C.

(5.55)

Therefore, for any β and γ positive

β ‖∂xu(t)‖2
L2 + γ ‖∂−1

x u(t)‖2
L2 ≤ C. (5.56)

Thus we obtain an a priori estimate in X1 and we can reapply Theorem 2.1 to extend the
solutions. This shows Theorem 2.2.
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