ON THE GALOIS CLOSURE OF TOWERS
ARNALDO GARCIA AND HENNING STICHTENOTH

ABSTRACT. We show that the Galois closures over Fj of certain towers J =
(Fo, F1, Fy,...) also have good limits. We apply our method to the towers F
considered in [4], [5], [7] and [8] (see Remark 2.4 and Theorems 2.5 and 2.7).

0. INTRODUCTION

Much interest on precise information about the number of rational places of
function fields over finite fields comes from applications to Coding Theory. For
an [F-function field F' (we assume that the finite field [, is algebraically closed
in the field F'), we have the so-called Hasse- Weil bound (see [13] and [10])

N(F)<qg+1+2/q-g(F),
where N (F') is the number of F,-rational places of the field F' and g(F') is its genus.

Thara (see [9]) was the first to notice that the Hasse-Weil bound can be signifi-
cantly improved if one fixes the finite field F, and lets g(F') — oo. In this context
it is natural to consider the following concept:

A tower F over a finite field F, (or an F,-tower) is an infinite sequence
F = (Fy, F1, Fy,...)

such that:

a) Each F, is an F,-function field and F, is algebraically closed in F,,.

b) For all n, we have inclusions F,, C F,,;; and the field extensions F,.1/F,
are separable.

¢) We have g(F,,) — oo as n — 0.

The following limit exists (see [5]) and it is called the limit of the tower:
AF) = lim N(E)/g(F).

The tower F is said to be asymptotically good when it has a positive limit; i.e.,
when A(F) > 0. An interesting special class of towers is the so-called recursive
tower F = (Fy, F1, F,,...). This means that there exist a polynomial f(X,Y) €
F,[X,Y] and functions z,, € F, for all n, such that

FO = ]Fq(l'o) and Fn+1 = Fn(xn—i—l) with f(.fl?n, Zl?n+1) =0.

This work was written while the first author was visiting Sabanci University - Istanbul-Turkey
in May-June 2005. The first author was also partially supported by CNPg-Brazil (PRONEX).
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The upper bound below is called the Drinfeld- Viadut bound (see [2] and [10]):
AMF) < q-1, VF,—tower F.

When the cardinality g of the finite field is a square, there exist F,-towers F;
attaining the Drinfeld-Vladut bound (see [9] and [12]), and such towers F; are
called optimal towers. Again here much interest on the construction of opti-
mal towers comes from applications to Coding Theory. For instance, Tsfasman-
Vladut-Zink have used optimal towers to show the existence of infinite sequences
of linear codes with increasing lengths having limit parameters above the so-called
Gilbert-Varshamov bound (see [12]). For practical applications it is highly de-
sirable to construct ezplicit towers with limits as big as possible (by an explicit
tower we mean a tower F where each field F,, is described explicitely by algebraic
equations). For examples of explicit optimal towers of function fields we refer to
[4], [5], [7] and [3].

For ¢ = p* with p a prime number, Zink (see [15]) has shown the existence of
F,-towers F» with limits satisfying

2(p> — 1)
p+2

The first explicit tower F» attaining the Zink bound above was obtained for the
case p = 2 by van der Geer-van der Vlugt; i.e., their tower F; is an Fg-tower
satisfying the equality (see [8]):

A(F2) >

2-(22 -1 3

For a generalization of both results above (the Zink bound and the van der Geer-
van der Vlugt tower) we refer to [1].

Let F = (Fy, F1, Fy,...) be an F -tower. We are going to consider places P of
the field Fy. The place P splits in the tower F if it is [F -rational and it splits
completely in all extensions F,,/Fy. If a place P is ramified in some extension
F,/ Fy, we say that it ramifies in the tower F. The splitting locus of F over Fy is
defined as:

Z(F/Fy) = {P | P splits in F}.
The ramification locus of F over Fy is defined as:
V(F/Fy) = {P | P ramifies in F}.
If the tower F is of finite ramification type (i.e., V(F/Fp) is a finite set), we then
define
degV(F/Fy)= > degP.

PEV(F/Fo)
We will be interested in the asymptotic behaviour of the sequence of fields below

822 (Eo,El,EQ,... ,En,...),
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where FE,, denotes the Galois closure of the extension F,,/Fj.

Our results here are: Proposition 2.1 gives a simple condition implying that £
is also an F -tower. Using the concept of 2-bounded towers (see Definition 1.3),
we then prove in Theorem 2.2 a lower bound for the limit A\(£) in some cases
where the tower F is such that each extension F,./F, is a 2-bounded Galois
p-extension. This gives a unified proof (see Theorems 2.5 and 2.7) for the limits
of the Galois closures of the towers considered in [5], [8] and [4]. The Galois
closure of the tame tower in [7] is considered here in Remark 2.4.

We will need at a crucial point (see the proof of Proposition 1.10) the following
lemma from [6], where p denotes the characteristic of F,,.

Lemma 0.1. Let Ey/F and Ey/F be Artin-Schreier extensions of degree p of an
Fg-function field F', and let E = E, - Ey be the composite field. For a place Q) of
the field E, denote by QQ1,Q2 and P its restrictions to the fields Fy, Fy and F.
Suppose that the different exponents d(Q;|P), for i =1 and i = 2, satisfy

d(Qi|P) € {0,2(p — 1)}
Then the different exponents d(Q|Q;), for i =1 and i = 2, also satisfy
d(Q[Q:) € {0,2(p — 1)}

Remark 0.1. Lemma 0.1 was used in [6] for a simplification of the proofs of the
limits of the towers considered in [5] and in [8].

1. B-BOUNDED TOWERS

We start with a definition.

Definition 1.1. Let B € R be a real constant. A finite and separable field
extension Hy/H; of F -function fields is said B-bounded if for all places Q2 of Hy
we have the inequality

d(Q2|Q1) < B (e(Q2|Q1) — 1),
where Q1 := Q2 N H; denotes the restriction of the place Q7 to the subfield H;.
We will need the following simple result:

Proposition 1.2. Let H;/Hy be a finite and separable extension of Fy-function
fields, and let Hy be an intermediate field. If the extensions Hs/Hy and Hy/H
are both B-bounded, then the extension Hz/H; is also B-bounded.

Proof. Let Q3 be a place of H3 and denote Q3 := Q3 N Hy and ()1 := Q3 N Hi.
From the transitity of different exponents, we have

d(Q3|Q1) = e(Q3]Q2) - d(Q2| Q1) + d(Q3]Q2).
Using that Hs/H; and Hy/H; are both B-bounded, we get
d(Q3]Q1) < e(Q3|Q2)- B+ (e(Qa|Q1) — 1)+ B+ (e(Q3]Q2) — 1) = B+ (e(Q3]Q1) — 1).
O



4 ARNALDO GARCIA AND HENNING STICHTENOTH

Next we introduce this concept of B-boundedness to towers.

Definition 1.3. An F,-tower F = (Fp, Fi,...) is called B-bounded if all the
extensions F;/Fy are B-bounded, fori =1,2,....

Repeated applications of Proposition 1.2 gives us easily:

Proposition 1.4. Let B be a real constant and let F = (Fy, F1, Fy,...) be an
F,-tower such that all the extensions Fyy1/F; are B-bounded, for i = 1,2,....
Then the tower F is B-bounded.

In other words, Proposition 1.4 is saying that an [, -tower which is “stepwise”
B-bounded is “globally” B-bounded. The importance of this concept is apparent
from the next proposition, where the genus v(F) of a tower is defined as

()= i,

Proposition 1.5. Let B be a real constant and suppose that a tower of function
fields F = (Fy, Fy,...) is B-bounded and of finite ramification type. Then the
genus y(F) satisfies the following inequality:

AF) < g(o) ~ 1+ 2 - deg V(F/F).

Proof. Since we are considering the genus, we can extend F, to the algebraic
closure F,. In particular, deg V(F/Fp) is the number of places of Fy - F, that
ramify in F), - Iy, for some n. Since the extension F;/Fj is B-bounded we have

deg Diff(F}/Fy) < B+ [Fy : Fy) - deg V(F/F).

We have used in the inequality above the so-called fundamental equality; i.e.,
that for a place Py of Fy it holds

r

> _c(PilPo) = [Fi : Fy),
j=1
where P, P, ..., P, are the distinct places of the field F; above the place F.

Note that since we are working over the algebraic closure F,, there is no inertia
and all places P; are of degree one. The Hurwitz genus formula gives then

29(F;) — 2 = [Fi : Fo](29(Fp) — 2) + deg Diff (F3/ Fo)
< [Fi: Fo](29(Fp) — 2+ B - deg V(F/Fp)).
Dividing by 2[F; : Fy| and letting i — oo, we get the desired inequality. O

Remark 1.6. Clearly we have that tame towers F are 1-bounded. One can
show that the optimal tower over F,» in [4] is (¢ + 2)-bounded. In [6] one finds a
condition implying that certain recursive Artin-Schreier towers are 2-bounded.

Definition 1.7. Let p = char(F,). We say that a finite field extension is a
p-extension if its degree is a power of the prime number p.

With some further assumptions, the reverse statement of Proposition 1.2 holds:
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Proposition 1.8. Let Hs/H, be a finite and separable p-extension of F,-function
fields. Suppose that Hy is an intermediate field such that both extensions Hs/Ho
and Hy/H, are Galois extensions. If the extension Hz/Hy is 2-bounded, then also
the extensions Hs/Hs and Hy/H, are 2-bounded.

Proof. Let P; be a place of H; and denote by P; a place of Hs above P;, and set
P, := PyN H,. Since both extensions Hs/Hy and Hy/H; are Galois with degrees
that are powers of the characteristic p, it follows from Hilbert’s different formula
(see [10]) that the following inequalities hold:
d(P3|P2) Z 2(6(P3|P2) — ].) and d(P2|P1) 2 2(6(P2|P1) — 1)
The transitivity of different exponents then gives
d(P3|P1) = €(P3|P2)d(P2|P1) + d(P3|P2)
Z 6(P3|P2) -2 (6(P2|P1) — ].) +2 . (6(P3|P2) — ].)
=2 (e(B|P) — 1) = d(Ps| 1),
where the last inequality above follows from the hypothesis that the field extension
Hj3/H, is 2-bounded. Hence the inequalities above are in fact equalities, and we
finally conclude that:
d(PglPQ) = 2(6(P3|P2) — ].) and d(P2|P1) = 2(6(P2|P1) — 1)
O

Remark 1.9. If a Galois p-extension Hs/H; is 2-bounded then we have (for all
places P, of the field Hs)

d(P2|Pr) = 2(e(P| 1) — 1),
since the inequality

d(P|Py) = 2(e(P|Py) — 1)
follows from Hilbert’s different formula.

Now we deal with the concept of B-boundedness for composite fields. Let
E = FE, - E5 be the composite field of E; and E,, where E; and FE, are finite
and separable extensions of an F,-function field F. If both E,/F and E,/F are
1-bounded (i.e., they are tame extensions), then clearly E/F is also 1-bounded.
The next result deals with the 2-bounded case:

Proposition 1.10. Let E = E; - Ey be the composite field as above. Suppose that
both extensions Ei/F and Ey/F are Galois p-extensions and 2-bounded. Then
the extension E/F is also a 2-bounded Galois p-extension.

Proof. 1t is clear that E/F is a Galois p-extension. Since the Galois group of

E,/F is a finite p-group, say of order p, we can refine this extension
F=HyCH CH,C...CE =H,

in such a way that each H;,1/H; is a cyclic extension of degree p. Moreover

each extension H;/H, is Galois, for j = 1,2,... ,m. Proposition 1.8 applied
to Hy C H,, 1 C H,, shows that both extensions H,,/H,, 1 and H,, 1/H, are
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2-bounded. Again, Proposition 1.8 applied to Hy C H,, s C H,, ; shows that
both extensions H,, 1/H,, » and H,, 5/ Hy are 2-bounded, and so on. We have
then refined the extension FE;/F into Galois steps of degree p and each step is
a 2-bounded extension. Of course the same holds for the other extension E,/F.
Proposition 1.10 now follows from repeated applications of Lemma 0.1. O

Remark 1.11. Suppose that E;/F is a tame extension and that Ey/F is a 2-
bounded Galois p-extension. For a place () of the composite field £ = F; - Es,
denote by ()1, Q)2 and P its restrictions to F4, s and F. Denote by

m = e(Q1|P) and q := e(Q|P).
From Abhyankar’s lemma (see [10]) we have:

e(Q|Q2) = m and e(Q[Q1) = ¢.

Since d(Q2|P) = 2(q¢ — 1) (see Remark 1.9), from the transitivity of different
exponents we conclude that

d(Q|@1) +q-(m—1) = (m—1) +m-2(¢ - 1).

Hence we have d(Q|Q1) = (m+1)-(¢—1). In particular the field extension E/E;
is (1 + M)-bounded with M := max{e(Q|P); with @); a place of F;}.

2. THE GALOIS CLOSURE OF A TOWER

Let F = (Fy, F1, Fy, ... ) be a tower of function fields over [F; in particular F,
is algebraically closed in F,,, for all n. Denote by FE,, the Galois closure of the field
extension F,,/Fy, for n =0,1,2,.... The infinite sequence £ of function fields

£ = (E():F(),El,EQ,... ,En,...)

is called the Galois closure of F over Fy. Note that the inclusions E,, C E, . are
not necessarily strict and that the full constant field of E,, may be larger than [F,.

We start with a simple condition ensuring that £ is also an F,-tower; i.e.,
ensuring that the field F, is algebraically closed in E,, for all n.

Proposition 2.1. Let F be an F,-tower with a nonempty splitting locus

Z(F) #0. Then

a) The Galois closure € is an F,-tower.
b) Z(E/Fy) = Z(F/ Fy).
c) V(E/Fo) = V(F/Fo).

Proof. Let P be a place of Fj with deg P = 1 that splits completely in all exten-
sions F,,/Fy, for all n. If o : F,, — Fy is an embedding over Fj into an algebraic
closure F of the field Fy, then it is clear that the place P also splits completely
in the field extension o(F,)/Fpy. Since the Galois closure E,, is the composite of
such fields o(F,,) (as o varies), then the place P splits completely in E,,/Fy. This
shows that [F, is algebraically closed in E,,, for all n, and this proves item a).

The inclusion Z(E/Fy) C Z(F/Fp) is trivial, and the argument given above
shows the other inclusion Z(F/F,) C Z(£/F). Hence item b) holds.
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The inclusion V(F/F,) C V(E/Fy) is trivial. Reversely, if a place of Fj is
unramified in the extension F,,/Fp, it is unramified in o(F,)/Fy (for all o) and
hence it is also unramified in the Galois closure E,, /Fj. O

Theorem 2.2. Let F = (Fy, 1, Fy, . ..) be anFy-tower and denote p := char(F,).
Suppose that the hypothesis a), b) and c) below hold:

a) The splitting locus is nonempty; i.e., Z(F|Fy) # 0.

b) The ramification locus is finite; i.e., deg V (F/Fy) < 00.

c) Each extension F,.1/F, is a 2-bounded Galois p-extension.

If the tower F is asymptotically good, then its Galois closure £ over Fy is also

asymptotically good. Moreover we have that the tower £ is also 2-bounded with a
limit satisfying:

Z(F | F
9(Fo) — 1+ deg V(F/Fy)
Proof. From Proposition 2.1 we know that & is an F,-tower such that
Z(E/Fy) = Z(F | Fy) and V(E/ Fy) = V(F/ Fy).
We have clearly that
#Z(E/Fo)
ANE) > ——=——.
) V(€)
If we show that &£ is also 2-bounded, then the result follows from Proposition
1.5. As follows from Proposition 1.4, we just have to show that each exten-
sion F,,1/E, in the tower £ = (Ey = Fy, By = Fy, F, F3,...) is a 2-bounded
extension. Note that each extension F,.;/E, is a p-extension. We assume by

induction that the extensions E,/F,, and E,/E,_; are both 2-bounded (they are
Galois p-extensions).

En+l

En Fn+1

Fy

Figure 1
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Considering the Galois extensions F,/F, and F,.i/F,, we get from Propo-
sition 1.10 that the composite extension E, - F,,;1/F, is 2-bounded. Applying
Proposition 1.8 to the situation below

anEngEn'Fn+17

we see that E, - F,,.1/E, is also 2-bounded. Of course the field F, . is the
Galois closure of the extension E, - F,,1/Fy, and any embedding o over Fy of
the field E,, - F,,1 is such that o(E,) = E,,. Hence o(E,, - F11) = By, - 0(Fpy1)
is a 2-bounded Galois p-extension of F,, for all . Repeated applications of
Proposition 1.10 gives that E,1/E, is 2-bounded. Since E,1/FE, and E,/F,
are 2-bounded, we get from Proposition 1.2 that F,,,1/F, is 2-bounded. Applying
now Proposition 1.8 to the situation

Fn g Fn+1 g En+17

we conclude that the extension E,.1/F,; is also 2-bounded. This finishes the
proof of Theorem 2.2. O

Remark 2.3. Hypothesis a) and b) in Theorem 2.2 are very natural. Indeed,
if a tower £ = (Ey, E1, Es, ...) is such that it is asymptotically good and there
exists an index j such that the extensions E, /FE; are Galois extensions for all
n > j, then we have that the ramification locus V(£/Ejp) is a finite set. In this
situation we also have that there exists an index m > 0 and a rational place P
of the field E,, that splits completely in the extensions E,,/E,, for all n > m (see
Theorem 2.26 in [7]).

Remark 2.4. Suppose F is a tame F -tower satisfying the hypothesis a) and b)
of Theorem 2.2. Then both towers F and £ are tame and asymptotically good.
Moreover,

#Z(F/Fo)
The inequality A(F) > A(E) holds since F is a subtower of £ (see [5]), and the
other inequality follows easily from Propositions 1.5 and 2.1.

MF) > AE) >

Let F be the recursive tower over F,>» with p an odd prime number, given by

the equation
Ve X?+1
2X

One has that (see [7])
#HZ(F/Fy) =2p—2 and degV(F/F) = 6.
It follows that
AF) = XE) =p -1
i.e., the tower F and its Galois closure £ are optimal towers over F. O

Denote by F; the recursive tower over [F 2 given by the equation
X4

Yi4Y = ——.
* 14 Xt
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The tower F, attains the Drinfeld-Vladut bound; i.e., A(F1) = ¢ — 1 (see [5]).
Denote by F> the recursive tower over the finite field with 8 elements given by

the equation
X2+ X+1
Y24 y=— - -
+ X

The tower F satisfies A\(F3) = 3/2 (see [8]).

The next theorem shows that their Galois closures over F have the same limits.

Theorem 2.5. Let F| and F> be as above, and denote by & and & their Galois
closures over Fy. Then we have:

A1) = AMF1) and N&E) = M(Fy);

i.€., the tower & attains the Drinfeld-Viadut bound and the tower & attains the
Zink bound for p = 2.

Proof. Both towers F; and F; satisfy the hypothesis in Theorem 2.2 (see [5], [§]
and [6]). For the tower F; we have (see [5])

#Z(Fi/Fy) =¢" —q and degV(Fi/Fp) = ¢+ 1.
It follows from Theorem 2.2 that
A1) > q—1 and hence A(&)=q— 1.
The last equality above follows from the Drinfeld-Vladut bound.

For the tower F, we have (see [8])
#Z(Fo/Fy) =6 and degV(Fy/Fy) =5.
It follows from Theorem 2.2 that
A(&) > 3/2 and hence A(&;) = 3/2.
The last equality above follows from
3/2 = A(F2) = A(&2),
since the tower F; is a subtower of & (see [5]). O

Remark 2.6. The Galois closure & of the tower F; above was also considered
in the recent paper [14]. There a more computational proof is given that & is
an optimal tower. In [11], applications of Galois towers to coding theory are
discussed.

Now we deal with the Galois closure of the tower in [4]. Consider again the
tower F; above; i.e., the tower Fy = (Fp, Fi,...) where F,, = F(20, 21,... , 2n)

with the relations

Zq

142071
Consider the tower F| = (Fj, Fy, Fi, ...) where Fj = F2(z)) with 2{ + 2z = 2.
Note that the extension Fy/Fj is also 2-bounded and hence F is 2-bounded. It

q —
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is easily seen that only the zero and the pole of the function z{ ramify in the
tower 7, and that the (¢ — 1) rational places of F{j corresponding to z{, = a with
a € T, are completely splitting. Note that the function 28 + 2o takes elements of
F,> into the subfield F,. Consider now the Kummer extension

Hy := Fj(zo) with 21" = 2]
and denote by H := H, - F| the composite tower of F| with the field Hy; i.e.,
H= (Ho, Hl, HQ, .. ) with Hn = HO . Fn—l-

Defining recursively elements x,, € H, by x,, := z, 1/%,_1, one can check that the
tower H above is the same as the tower in [4]. Let £] denote the Galois closure
over Fj of the tower Fj. It follows from Theorem 2.2 that &£ is a 2-bounded
tower. Finally, we consider the tower G := Hy - £]. All fields in the tower G are
Galois extensions of the field F{j and hence G contains the Galois closure of H
over the field Hy. We show now that the tower G is optimal. From Proposition
2.1 we have

#Z(E1JF) =q—1 and degV(E]/F)) = 2.
From the definition of the field Hy we have

#2(G/Ho) =¢" —1 and degV(G/Hy) = 2.

Note that the function zI" takes 7> into 7. The arguments in Remark 1.11

with M = ¢+ 1 show that the tower G is (¢ + 2)-bounded and hence optimal, as
follows from Proposition 1.5.

Since the Galois closure of ‘H over Hy is a subtower of G we have then proved:

Theorem 2.7. Denoting by H := (Hy, H,...) the optimal tower over F 2 in [4],
we have that its Galois closure over the field Hy is also an optimal tower.

Remark 2.8. Let F be an F,-tower and suppose that its Galois closure £ over
Fy is also an F -tower. It can happen that A(F) > A(E).

Question 2.9. What is the limit of the Galois closure of the tower in [1]?

Question 2.10. Are there recursive Galois towers? Are there asymptotically
good recursive Galois towers?
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