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Abstract

We extend recent existence results for compact constant mean curvature
normal geodesic graphs with boundary in space forms in a unified way to a
large class of ambient spaces. That extension is achieved by solving a con-
stant mean curvature existence problem in a general setting presented in two
isometrically equivalent versions.

Various existence results for compact with boundary constant mean curvature
normal (geodesic) graphs Σn in flat Euclidean space Rn+1 and standard hyperbolic
space Hn+1 have been recently obtained. The common context for these results is
that of a bounded domain Ω contained in a nonnegatively curved totally umbilical
hypersurface Pn of the ambient space form. In addition, the boundary Γ of Ω is
mean convex, that is, its mean curvature HΓ as a submanifold of Pn is positive with
respect to the inner orientation. Then, for any number H satisfying −HΓ < H 6 0 it
is shown that there exists a normal graph Σn over Ω with boundary Γ and constant
mean curvature H.

The case of normal graphs over a domain in a round sphere Sn contained in
Rn+1 was solved in [7] when the closure of the domain is contained in an open
hemisphere. For n = 2, this also follows from the general result given in [3]. A
proof for normal graphs in Hn+1 over a domain in an horosphere under the weaker
assumption −HΓ < H 6 1, was obtained in [8] after the earlier result in [10] for
H ∈ (0, 1). Moreover, the case of a domain with closure contained in an open
hemisphere of a geodesic sphere in Hn+1 was solved in [6].

Constant mean curvature normal geodesic graphs have also been considered
outside ambient space forms, namely, they have been studied in [2] and [5] as vertical
graphs in product manifolds M3 = P2 × R.

In all of the above cases, it is shown that there exists a smooth function u on
Ω vanishing at Γ such that the corresponding normal geodesic graph (i.e., the set
of points at distance u(x) along the unit speed normal geodesic starting at x ∈ Ω
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in the direction of the mean curvature vector of Pn) is a hypersurface of constant
mean curvature H.

Our goal in this article is to extend the aforementioned results in a unified way
to a large class of Riemannian ambient spaces. In the process, some of them are also
generalized. Our extension is achieved by solving a constant mean curvature exis-
tence problem in a general setting presented in two isometrically equivalent versions.
The first version is for hypersurfaces in warped product spaces, and the second one
in ambient spaces conformal to Riemannian products. A precise description of both
versions of our setting, as well as the condition for equivalence, is given in the first
section. In the following two sections of the paper we state and prove our results.

Finally, we would like to thank Jaime Ripoll for several useful comments.

1 The setting

We can describe with further details the common framework of the results in the
introduction as being that of a bounded domain Ω contained in a leaf of a foliation
orthogonal to a closed conformal Killing field of the ambient space. Moreover, the
leaves are parallel totally umbilical constant mean curvature hypersurfaces and the
flow of normal geodesics acts homethetically on them.

If the ambient is just a space form, the geometric context has the following
elementary description. Associated to any given complete totally umbilical hyper-
surface Pn of either Rn+1, Sn+1 or Hn+1, there is a warped product representation
of the space form (possibly up to one or two points) as a warped product I ×% Pn.
Here I ⊂ R is an open interval and the warping function % ∈ C∞(I) can be seen
as a height function when considered in the proper setting; see [11] for details.
Then T = −%(t)∂/∂t is a closed conformal Killing field orthogonal to the foliation
t ∈ I 7→ {t}×Pn determined by the representation. For instance, Rn+1 = R+×tSn in
the Euclidean case. In the hyperbolic case, we have Hn+1 = R×et Rn if the foliation
is by horospheres and Hn+1 = R+ ×sinh t Sn if by geodesic hyperspheres.

In view of the results referred in the introduction it is natural to work in the
following general setting.

1.1 The 1st version

Consider the product manifold I×Pn, where I ⊂ R is an open interval and (Pn, 〈 , 〉P)
an n-dimensional Riemannian manifold. Let

Mn+1 = I×% Pn

be the product manifold endowed with the Riemannian warped product metric

〈 , 〉M = π∗I (dt
2) + %2(πI)π

∗
P(〈 , 〉P),
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where πI and πP denote the projections onto the corresponding factor and %: I → R+

is a given smooth function.
Each leaf of the foliation

t ∈ I 7→ Pt := {t} × Pn

of Mn+1 is a totally umbilical hypersurface with constant mean curvature

H(t) = %′(t)/%(t)

pointing in direction of −T , where T = ∂/∂t ∈ TM . Notice that we denote equally
functions on I and their lift to Mn+1.

Moreover, we have that T = %T is a closed conformal vector field on Mn+1 since

∇̄XT = %′X for any X ∈ TM, (1)

where ∇̄ stands for the Levi-Civita connection in Mn+1. In [9, §3] it was shown that
any Riemannian manifold with a closed conformal vector field is locally isometric to
a warped product manifold I×% Pn as above.

Throughout the paper Ω stands for a domain of compact closure contained in a
normal geodesic ball of Pn. By the normal graph Σn = Σn(u) in Mn+1 = I ×% Pn

over Ω ⊂ Pc determined by a continuous function u: Ω → I vanishing at Γ = ∂Ω we
mean the compact hypersurface with boundary Γ defined as

Σn(u) = {(c+ u(x), x) : x ∈ Ω}.

A straightforward computation shows that Σn(u) has constant mean curvature
H and boundary Γ if u ∈ C2(Ω) ∩ C0(Ω̄) is a solution of the Dirichlet problem T (u) = Div

(
Du√

%2(u)+|Du|2

)
+ n%(u)

(
H − %′(u)√

%2(u)+|Du|2

)
= 0 on Ω

u|Γ = 0,

(2)

where Div and D denote the divergence and gradient operators in Pn.

1.2 The 2nd version

We describe next an isometrically equivalent second version of the setting where the
Dirichlet problem (2) takes the more convenient form of a divergence type second
order quasilinear elliptic partial differential equation.

Consider the product manifold M̄n+1 = J×Pn, where J ⊂ R is an open interval,
endowed with the conformal metric

〈 , 〉 = λ2(s)
(
ds2 + 〈 , 〉Pn

)
,
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where the conformal factor λ: J → R+ is any given smooth function. Each leaf
of the foliation s ∈ J 7→ Ps of M̄n+1 = (M̄n+1, λ) is a hypersurface with constant
mean curvature H̄(s) = λ′(s)/λ2(s) pointing in direction of −T̄ , where T̄ = ∂/∂s.
Moreover, we have that T̄ is a closed conformal vector field since it satisfies

∇̄X T̄ =
λ′

λ
X for any X ∈ TM.

In this version of the setting the normal graph Σn(v) has constant mean curvature
H and boundary Γ ⊂ Pc if v ∈ C2(Ω) ∩ C0(Ω̄) is a solution of the Dirichlet problem Q(v) = Div

(
Dv√

1+|Dv|2

)
+ n

(
Hλ(v)− λ′(v)

λ(v)
√

1+|Dv|2

)
= 0 on Ω

v|Γ = 0,

(3)

where Div and D denote the divergence and gradient operators in Pn.

1.3 The equivalence

Next, we establish conditions for an isometric equivalence between the above two
versions of the setting. In that regard, fix c ∈ I and let φ: I → J := φ(I) be the
increasing diffeomorphism given by

φ(t) = c+

∫ t

c

1

%(r)
dr. (4)

Then, the map J : I× Pn → J× Pn defined as

J (t, x) = (s = φ(t), x)

is an isometry between Mn+1 = I×% Pn and M̄n+1 = (J× Pn, λ) if and only if

λ(s) = %(φ−1(s)). (5)

Notice that the inverse J −1: M̄n+1 →Mn+1 is J −1(s, x) = (φ−1(s), x), where

φ−1(s) = c+

∫ s

c

λ(r)dr. (6)

Examples 1. (1) If Mn+1 = R+ ×t Pn and c > 0, then

φ(t) = c+ log(t− c).

Thus M̄n+1 = R× Pn with conformal factor λ(s) = c+ es−c.
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(2) If Mn+1 = R×et Pn and c = 0, then

φ(t) = 1− e−t

Thus M̄n+1 = J × Pn where J = (−∞, 1) and λ(s) = 1/(1 − s). The change of
parameter r = 1 − s reverses orientation, and for Pn = Rn yields the standard
parametrization of Hn+1 in the half-space model.

(3) If Mn+1 = R+ ×sinh t Pn and c > 0, then

φ(t) = c+ log(b tanh (t/2)) where b−1 = tanh (c/2).

Thus M̄n+1 = J×Pn where J = (−∞, c− b−1) and λ(s) = sinh(2 arctanh(b−1es−c)).

2 The general result

In this section, we first state our general result in both versions of the setting. Then
we proceed to give the proof.

In the sequel, we always work with an interval I = (a,+∞) where a ≥ −∞ and,
without loss of generality, we parametrize I such that a < 0. Thus 0 ∈ I, and we
always take

Ω ⊂ P0 = {0} × Pn ⊂Mn+1.

To establish the equivalence between both versions of the setting, we choose c = 0
in (4) so that 0 = φ(0) ∈ J = φ(I). In particular, we also have that Ω ⊂ P0 ⊂ M̄n+1.
Observe that in both cases P0 carries the induced metric

〈 , 〉P0 = µ2〈 , 〉P,

where µ := %(0) = λ(0).
From now on, we denote by HΓ the mean curvature function of the boundary Γ

with respect to the inward pointing unit conormal vector field as a hypersurface of
P0 endowed with the above metric.

One of the assumptions we will require is T = ∂/∂t = (1/λ(s))∂/∂s to be the
direction of least Ricci curvature of Mn+1, i.e.,

RicM(X) > RicM(T ) for all X ∈ TM. (∗)

This condition was first considered in [9] and then in [1] also. The relation between
the Ricci tensors of Mn+1 and P is given by

RicM(X, Y ) = RicP (πP∗X, πP∗Y )− (nH2 +H′)〈X, Y 〉− (n− 1)H′〈X,T 〉〈Y, T 〉. (7)
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Therefore, condition (∗) in terms of the Ricci curvature of Pn and either %(t) or λ(s)
means that

RicP > sup (%′ 2 − %%′′) = sup (−% 2H′) (∗∗)

or, equivalently, that

RicP > sup

(
λλ′′ − 2λ′2

λ2

)
= sup (−λH̄′).

Of course, condition (∗) (or the equivalent condition (∗∗)) is trivially satisfied if
Mn+1 is a space form. Notice that RicP > 0 implies condition (∗) if H′ > 0 and, for
later use, that (∗) reduces to RicP > 0 if H is constant.

Next we state our general result in the first version of the setting.

Theorem 2. Assume that Mn+1 = I×% Pn with RicP > 0 also satisfies:

(i) limt→a+ %(t) = 0,

(ii) %′(t) > 0 and %′′(t) ≥ 0 for all t ∈ I,

(iii) Condition (∗) holds on the subset (a, 0]× Pn ⊂Mn+1.

Suppose further that Γ in C2,α is mean convex and let H satisfy −HΓ < H 6 0. Then
there exists a function u ∈ C2,α(Ω̄) whose normal graph is a hypersurface of constant
mean curvature H in Mn+1 with boundary Γ.

It is clear that Theorem 2 applies if Pn is a round sphere in Rn+1. It also applies
in Hn+1 if Pn is either a horosphere or a geodesic sphere. However, two results
referred in the introduction are not covered by this result. In fact, our assumptions
on % are not satisfied if the ambient space is just a Riemannian product. Moreover,
Theorem 2 does not allow H to take positive values as in the result for horospheres
in Hn+1. Nevertheless, in the last section we give two general results that show that
the conclusions of Theorem 2 still hold in both cases.

We proceed to state our result in the second version of the setting. If we denote
J = (d, e), then from (6) we have that

+∞ = φ−1(e) =

∫ e

0

λ(s)ds.

Moreover, we obtain from (5) that

%′(φ−1(s)) = λ′(s)/λ(s) (8)

and, in particular, we have H = λ′/λ2.

In the second version of the setting it is easily seen that Theorem 2 reads as
follows.
Theorem 2′. Assume that M̄n+1 = (J× Pn, λ) with RicP > 0 also satisfies:
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(i) lims→d+ λ(s) = 0 and
∫ e

0
λ(s)ds = +∞,

(ii) λ′(s) > 0 and (λ′(s)/λ(s))′ ≥ 0 for all s ∈ J,

(iii) Condition (∗) holds on the subset (d, 0]× Pn ⊂ M̄n+1.

Suppose further that Γ in C2,α is mean convex and let H satisfy −HΓ < H 6 0. Then
there exists a function u ∈ C2,α(Ω̄) whose normal graph is a hypersurface of constant
mean curvature H in M̄n+1 with boundary Γ.

Proof of Theorem 2. It follows easily from (3), (5) and (8) that u is a solution of
the Dirichlet problem (2) if and only if v = φ(u) is a solution of Q(v) = Div

(
Dv√

1+|Dv|2

)
+ n

(
H%(φ−1(v))− %′(φ−1(v))√

1+|Dv|2

)
= 0 on Ω

v|Γ = 0.

(9)

Consider on I× Pn the one-parameter family of warped product metrics

%τ = τ% for τ ∈ (0, 1] (10)

and notice that φ−1
τ (s) = φ−1(τs). From (9) we have the family of Dirichlet problems Qτ (vτ ) = Div

(
Dvτ√

1+|Dvτ |2

)
+ τn

(
H%(φ−1(τvτ ))− %′(φ−1(τvτ ))√

1+|Dvτ |2

)
= 0 on Ω

vτ |Γ = 0,

(11)

where Div and D denote the divergence and gradient operators in Pn.
To prove that (3) can be solved we apply the continuity method for τ ∈ [0, 1].

Namely, we have to show that

J = {τ ∈ [0, 1] : The problem (11) can be solved for τ}

is a nonvoid, open and close subset of [0, 1]. Thus J = [0, 1], and we are done.
To conclude that J is closed we have to obtain apriori C2,α estimates of any solu-

tion of the family of Dirichlet problems (11). In fact, standard theory for divergence
type quasilinear elliptic equations and Schauder theory guarantee that it is sufficient
to obtain apriori C1 estimation; see [4]. For τ = 0, the problem has v = 0 as its
unique solution. In particular, this shows that J is nonempty. Hence, to obtain
closeness it suffices to deal with τ ∈ (0, 1] and prove the existence of a constant
K = K(Ω) independent of τ such that any solution vτ ∈ C2,α(Ω̄) of (11) satisfies

‖vτ‖C1(Ω̄) = sup
Ω
|vτ |+ sup

Ω
|Dvτ | < K. (12)
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Our proof of Theorem 2 relays on two basic results given in [1]. The first one is
[1, Proposition 18]; a half-space type result proved without any assumption on RicP
or the sign of H as a consequence of a tangency principle. For the proof of (12) it
is convenient to argue for uτ = φ−1

τ (vτ ) in the first version of the setting. It follows
from our hypotheses and Hτ = H that H 6 0 6 inf [0,+∞)Hτ for every τ ∈ (0, 1].
Thus part (i) of [1, Proposition 18] applies, and yields the apriori estimate

uτ 6 0 on Ω. (13)

Before proceeding with the proof, we briefly describe the second basic result from
[1] to be used next. Let Θ be the angle function on Σn(u) defined as

Θ(p) = 〈N(p), T 〉

where the orientation N of Σn(u) is chosen so that Θ < 0. Take any primitive
σ ∈ C∞(I) of % and consider the function ψ on Σn(u) defined by

ψ = σ(u)H + %(u)Θ,

where u is seen as the height function u(p) = πI|Σn(p). Then [1, Theorem 13] assumes
condition (∗) and states that the function ψ on Σn(u) is subharmonic. Although
the result in [1] assumes condition (∗) on all of I it can be easily seen that the proof
only requires (∗) to hold on the interval πI(Σ

n(u)).
Coming back to our proof, let us consider the function ψτ = στ (uτ )H+%τ (uτ )Θτ

on Σn
τ = Σn(uτ ) where we choose

στ (t) =

∫ t

0

%τ (r)dr = τσ(t).

Then, [1, Theorem 13] applies since (13) holds and we have RicP > sup(a,0] (−% 2
τH′

τ )
from (10) and our hypotheses on Pn. Thus ψτ is subharmonic, and we obtain from
the maximum principle that

ψτ 6 max
∂Σn

τ

ψτ = τµΘτ (qτ )

at a certain qτ ∈ Γ. Equivalently, we have

σ(uτ )H + %(uτ )Θτ 6 µΘτ (qτ ). (14)

The functions σ and % are, in particular, nondecreasing. It follows from (13) that
σ(uτ ) 6 σ(0) = 0 and %(uτ ) 6 µ, and we conclude from (14) and H 6 0 that

Θτ 6 Θτ (qτ ). (15)
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The next step of the proof is to give a gradient estimate along the boundary of
the domain. The following step uses this result to provide an height estimate for
the graph. We want to show that there exists an explicitly computable constant
C(τ) > 0 such that

Θτ (qτ ) = max
Γ

Θτ 6 −C(τ) < 0. (16)

To see this, first observe that the gradient of πI in Mn+1 is ∇̄πI = T . Therefore,

∇uτ = T −ΘτN (17)

where ∇ denotes the gradient on Σn
τ . We obtain using (1) that

∇%τ (uτ )Θτ = ∇〈N, Tτ 〉 = −A(Tτ − 〈Tτ , N〉N) = −%τ (uτ )A∇uτ , (18)

where A = AN stands for the second fundamental form of Σn
τ . It follows that

∇ψτ = %τ (uτ )H∇uτ − %τ (uτ )A∇uτ .

The maximum principle yields

〈∇ψτ (qτ ), νqτ 〉 = −τµ〈A∇uτ (qτ )−H∇uτ (qτ ), νqτ 〉 6 0, (19)

where ν stands for the inward pointing unit conormal vector field along Γ. From
(17) and uτ |Γ = 0, we obtain ∇uτ = 〈∇uτ , ν〉ν = 〈T, ν〉ν along Γ. Then (19) gives

〈T, νqτ 〉〈Aνqτ −Hνqτ , νqτ 〉 > 0. (20)

Moreover, 〈∇uτ , ν〉 = 〈T, ν〉 6 0 along Γ since uτ 6 uτ |Γ on Σn
τ . In fact, we may

assume that 〈T, νqτ 〉 < 0 since, otherwise, we obtain using (17) that Θτ (qτ ) = −1,
and we are done. Thus (20) yields

〈Aνqτ , νqτ 〉 6 H.

Choosing an orthonormal basis {e1, . . . , en−1} of Tqτ Γ, from

nH =
∑

i

〈Aei, ei〉+ 〈Aνqτ , νqτ 〉,

we obtain
(n− 1)H 6

∑
i

〈Aei, ei〉. (21)

Observe that ∂Σn
τ = Γ ⊂ P0(τ), where P0(τ) denotes P0 seen as a hypersurface of

I×%τ Pn, and that P0(τ) is homothetic to P0 with homothety factor τ 2. In particular,

Hτ
Γ =

1

τ
HΓ. (22)
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Let η denote the inward pointing unit conormal η along Γ in P0(τ). Then

〈N, η〉 = 〈T, ν〉 = −
√

1−Θ2
τ ,

and hence
N = −

√
1−Θ2

τ η + ΘτT. (23)

Taking into account that P0(τ) is totally umbilical in I×%τ Pn with mean curvature
vector field −Hτ (0)T = −H(0)T and using (23), we have

〈Aei, ei〉 = 〈∇̄ei
ei, N〉 = −〈Bηei, ei〉

√
1−Θ2

τ (qτ )−H(0)Θτ (qτ ) (24)

where Bη stands for the second fundamental form of Γ in P0(τ). We conclude from
(21), (22) and (24) that

H +H(0)Θτ (qτ ) +
κ

τ

√
1−Θ2

τ (qτ ) 6 0, (25)

where κ := minΓHΓ.
In view of (25) consider the equation

P (x) := H +H(0)x+
κ

τ

√
1− x2 = 0. (26)

Our hypotheses yield P (−1) = H −H(0) 6 0 and P (0) = H + κ
τ

> H + κ > 0. It
is easy to see that (26) has a unique root −C(τ) ∈ [−1, 0) where

C(τ) =
HH(0)τ 2 + κ

√
κ2 + τ 2(H2(0)−H2)

κ2 + τ 2H2(0)
.

But (25) simply means that P (Θτ (qτ )) 6 0, and we conclude that (16) holds.
We obtain from (15) and (16) that supΣn

τ
Θτ 6 −C(τ) < 0. A straightforward

computation gives

dC

dτ
=
−τκ

(
κH +H2(0)

√
κ2 + τ 2(H(0)−H2)

)2

(κ2 + τ 2H2(0))2
√
κ2 + τ 2(H2(0)−H2)

, (27)

and hence dC/dτ ≤ 0. Therefore,

sup
Σn

τ

Θτ 6 −C for any τ ∈ (0, 1], (28)

where C := C(1) ∈ (0, 1] is given by

C =
HH(0) + κ

√
κ2 +H2(0)−H2

κ2 +H2(0)
.

10



In the second version of the setting it is easy to see that

Θτ =
−1√

1 + |Dvτ |2
, (29)

and we obtain from (28) the gradient estimate

sup
Ω
|Dvτ | 6 K1 :=

√
1− C2

C
. (30)

It remains to estimate supΩ |vτ |. First observe that (13) is equivalent to

vτ = φτ (uτ ) 6 φτ (0) = 0 on Ω. (31)

Thus, it suffices to estimate infΩ vτ or, equivalently, minΣn
τ
uτ . Let pτ be a point in

the interior of Σn
τ where

uτ (pτ ) = uτ = min
Σn

τ

uτ .

Hence ∇uτ (pτ ) = 0 and Θτ (pτ ) = −1 by (17). Then (14) jointly with (16) give

σ(uτ )H − %(uτ ) 6 µΘτ (qτ ) 6 −µC(τ). (32)

Using that σ(uτ )H > 0, we obtain

%(uτ ) > σ(uτ )H + µC(τ) > µC(τ) > 0.

By our hypotheses infI % = 0 and % is strictly increasing. We obtain that

min
Σn

τ

uτ = uτ > %−1(µC(τ)) > a.

Recall that vτ = φτ (uτ ) where φτ = (1/τ)φ is strictly increasing. Thus,

inf
Ω
vτ = φτ (uτ ) > φτ (%

−1(µC(τ))) = α(τ), (33)

where α(τ) = (1/τ)β(τ) and β(τ) = φ(%−1(µC(τ))).
We claim that α(τ) is continuous on [0, 1]. Actually, we obtain from C(0) = 1

that β(0) = 0. Moreover, using that dC/dτ(0) = 0 from (27), we also have that
limτ→0 α(τ) = limτ→0 β

′(τ) = 0, and the claim follows. From (33) and the claim
we obtain that infΩ vτ > −K2, where K2 := −min[0,1] α is independent of τ and
satisfies K2 > 0. This and (31) give

sup
Ω
|vτ | 6 K2, (34)

and (12) follows from (30) and (34).
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To show that J is open we use the implicit function theorem for elliptic partial
differential equations. Recall that the linearized mean curvature operator about a
normal geodesic graph in a Riemannian manifold M is given by

L = ∆ + ‖A‖2 + RicM(N,N),

where ∆ is the Laplace-Beltrami operator on M and ‖A‖ denotes the norm of the
second fundamental form of the graph.

To prove that the operator Qτ is invertible, it suffices to show that Lf ≥ 0
for some function f on Σn

τ satisfying f < 0. Similarly as in [8] for hyperbolic
space, we work with the negative valued function f = %(uτ )Θτ . A straightforward
computation using (18) and the Codazzi equation for the graph (for details see the
proof of [1, Theorem 13]) gives

∆f = %(uτ )RicM(N,∇uτ )− n%′(uτ )H − ‖A‖2f.

It follows using (17) that

Lf = −n%′(uτ )H + %(uτ )RicM(N, T ).

It is easy to verify from (7) that RicM(N, T ) = −n%′′(uτ )Θτ/%(uτ ). Hence,

Lf = −n(%′(uτ )H + %′′(uτ )Θτ ). (35)

Thus Lf ≥ 0 since %′, %′′ ≥ 0, and this concludes the proof of Theorem 2.

3 Two further cases

There are two cases in which all leaves of the umbilical foliation of a warped product
Mn+1 = I×% Pn have the same constant mean curvature H. The first case is when
the ambient space is just a Riemannian product R×Pn, and hence leaves are totally
geodesic. In this case Theorem 2 does not apply but the result still holds.

Theorem 3. Let Mn+1 = R×Pn be a Riemannian product with RicP > 0. Assume
that Γ in C2,α is mean convex and let H satisfy −HΓ < H 6 0. Then there exists
a function u ∈ C2,α(Ω̄) whose vertical graph is a hypersurface of constant mean
curvature H in Mn+1 with boundary Γ.

Proof: By [1, Proposition 18] the solution for H = 0 is the trivial graph. Thus, we
may assume −HΓ < H < 0. The proof of Theorem 2 works step by step in this
product case up to equation (32) included, that reads as

uτH − 1 ≤ −C(τ),
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where uτ = minΣn
τ
uτ and

0 < C(τ) =
1

κ

√
κ2 − τ 2H2 < 1.

Therefore, uτ > (1− C(τ))/H. Using vτ = φτ (uτ ) and φτ (t) = t/τ , this gives

inf
Ω
vτ = (1/τ)uτ > α(τ),

where α(τ) = β(τ)/τ and

β(τ) =
1

H

(
1− 1

κ

√
κ2 − τ 2H2

)
.

Again α(τ) is continuous on [0, 1], and we obtain the estimate infΩ vτ > −K2, where
K2 := −min[0,1] α is independent of τ and satisfies K2 > 0. The proof concludes as
in Theorem 2 observing from (35) that in this case f = Θτ < 0 satisfies Lf = 0.

The second case weather H 6= 0 is constant (after normalization for simplicity)
corresponds to %(t) = et (λ(s) = 1/s) and, hence, the ambient space belongs to a
class referred to as pseudo-hyperbolic manifolds in [12]; see also [1] or [9] for a brief
discussion of the class in the context of this paper.

Theorem 4. Assume that Mn+1 = R ×et Pn has RicP > 0. Suppose that Γ in
C2,α is mean convex and let H satisfy −HΓ < H 6 1. Then there exists a function
u ∈ C2,α(Ω̄) whose normal graph is a hypersurface of constant mean curvature H in
Mn+1 with boundary Γ.

Proof: For H 6 0 the result follows from Theorem 2, and for H = 1 the solution
is the trivial graph by [1, Proposition 18]. In the sequel, we see that the proof of
Theorem 2 can be adapted to the case 0 < H < 1.

In the present situation σ(t) = et − 1, and therefore ψτ = τ(euτ (H + Θτ )−H).
Then (14) reduces to

euτ (H + Θτ ) 6 H + Θτ (qτ ). (36)

Moreover, (25) takes the form

H + Θτ (qτ ) 6 −κ
τ

√
1−Θ2

τ (qτ ) 6 0. (37)

It follows from (36) and (37) that Θτ 6 −H, and we conclude using (29) that

sup
Ω
|Dvτ | 6 K1 :=

√
1−H2

H
.

13



Equation (26) now reads

P (x) := H + x+
κ

τ

√
1− x2 = 0,

and satisfies P (−1) = H − 1 < 0 and P (0) = H + κ
τ

> H + κ > 0. The only root
−C(τ) ∈ (−1, 0) is given by

C(τ) =
Hτ 2 + κ

√
κ2 + τ 2(1−H2)

κ2 + τ 2
.

Since (37) reads as P (Θτ (qτ )) 6 0, we conclude that

Θτ (qτ ) 6 −C(τ) < 0. (38)

By [1, Proposition 18] we have uτ 6 0, and uτ 6= 0 since H < 1. As in the
proof of Theorem 2, taking the point pτ in the interior of Σn

τ where uτ attains its
minimum, we obtain from (36) and (38) that

euτ >
−Hκ2 + κ

√
κ2 + τ 2(1−H2)

(1−H)(κ2 + τ 2)
. (39)

From vτ = (1/τ)(1− e−uτ ) we have

inf
Ω
vτ =

1

τ
(1− e−uτ ).

Using (39) it follows that
inf
Ω
vτ > α(τ) = β(τ)/τ,

where

β(τ) =
κ
√
κ2 + τ 2(1−H2)− κ2 + (H − 1)τ 2

−Hκ2 + κ
√
κ2 + τ 2(1−H2)

.

Clearly β(0) = β′(0) = 0, and the proof that J is closed finishes as in Theorem 2.
It remains to see that J is open. In that sense observe by (35) that f = euτ Θτ < 0

satisfies
Lf = −neuτ (H + Θτ ).

It follows from (36) and (37) that Lf ≥ 0, and this concludes the proof.
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