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Abstract. The aim of these notes is to discuss Batyrev’s theorem on the
structure of the cone of nef curves (or its dual cone, the cone of pseudo-effective
divisors) on terminal threefolds. We point out a problem in Batyrev’s original
proof, and explain a way of fixing it. In order to complete Batyrev’s proof, we
rely on boundedness of terminal Fano threefolds. For this reason, as it stands,
this proof does not generalize to the log terminal case, as it has been claimed
in previous papers.

In [Bat92] Batyrev studied the cone of pseudo-effective divisors on Q-factorial
terminal threefolds and its dual cone, the cone of nef curves. Given a uniruled
Q-factorial terminal threefold X , and an ample divisor H on X , he showed that
the effective threshold of H (see Definition 1.5 below) is a rational number. Using
similar arguments, Fujita generalized this result to log terminal pairs (X, ∆), with
dim X = 3 (see [Fuj96]). In [Bat92], using the rationality of the effective threshold
and the minimal model program, Batyrev obtained a structure theorem for the cone
of nef curves on Q-factorial terminal threefolds. We point out a problem in his proof
of the structure theorem. Then we review the argument and use boundedness of
terminal Fano threefolds to finish proof. Because of the use of this boundedness
result, as it stands, this proof does not generalize to the log terminal case, as it was
claimed in [KMMT00] and [Xie05].

In section 1 we recall the main definitions and results of the minimal model
program. In section 2 we explain Batyrev’s proof of the rationality of the effective
threshold. We choose to work in great generality. We consider log terminal pairs
(X, ∆), with dim X = n. Then we assume the log minimal model program in
dimension n, and obtain the rationality of the log effective threshold. In section 3
we explain the problem in Batyrev’s proof of the structure theorem for the cone of
nef curves. In section 4 we provide a complete proof of this theorem (generalized
to the case of terminal pairs).

We work over some fixed algebraically closed field of characteristic zero.

1. Cone of curves and divisors and the Minimal Model Program

In this section we define some special cones associated to a projective variety X ,
and recall the main results of the log minimal model program. We refer to [KM98]
and [KMM87] for a detailed introduction and proofs.

1.1. Cones of Curves and Divisors. Let X be a projective variety of any di-
mension.

Definition 1.1. Let N1(X) denote the R-vector space of 1-cycles on X with real
coefficients modulo numerical equivalence. Set N 1(X) = NS(X)⊗R, where NS(X)
is the Néron-Severi group of X . Intersection number of divisors and curves defines
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a perfect pairing between these two vector spaces. The vector spaces N1(X) and
N1(X) are finitely generated, and their dimension is denoted by ρ(X), the Picard
Number of X .

The cone of curves of X , NE1(X), is defined to be the closure in N1(X) of the
cone generated by the classes of irreducible curves on X . Its dual cone, Λnef (X) ⊂
N1(X), is the closed cone generated by the classes of nef divisors on X . It is called
the nef cone of X .

Similarly, we define the cone of pseudo-effective divisors of X , Λeff (X), to be
the closure in N1(X) of the cone generated by the classes of effective divisors on
X . Its dual cone is denoted by NM1(X) ⊂ N1(X), and is called the cone of nef
curves of X .

Definition 1.2. A Q-divisor D on X is said to be big if h0(X,OX(kD)) ≥ c.kdim(X)

for some c > 0 and k � 0.

Remark 1.3. By Kleiman’s ampleness criterion (see [Kle66]), a Q-divisor D on X is
ample if and only if D is in the interior of Λnef (X). Therefore Λnef (X) ⊂ Λeff (X),

and NM1(X) ⊂ NE1(X).
Kodaira’s lemma asserts that a Q-divisor D is big if and only if D = H + E

for some ample Q-divisor H and some effective Q-divisor E. As a consequence, we
have that D is big if and only if D is in the interior of Λeff (X).

Definition 1.4. An extremal face F of a cone N ⊂ Rn is a subcone of N satisfying:

u, v ∈ N and u + v ∈ F ⇒ u, v ∈ F.

A 1-dimensional extremal face R of N is called an extremal ray.
Let D be a real function on N . We write

ND≥0 = {z ∈ N |D(z) ≥ 0},

and similarly for ND=0, ND≤0, etc.
A D-negative extremal face is an extremal face F ⊂ N such that F \{0} ⊂ ND<0.

Definition 1.5. Let X be a projective variety, and let ∆ be a boundary divisor
on X . Let H be a nef and big Q-Cartier divisor on X , so that H ∈ Λnef (X) ∩
Int(Λeff (X)). The nef log threshold of H is defined by

τ(X, ∆, H) = sup{t ∈ Q|H + t(KX + ∆) is nef}.

The effective log threshold of H is defined by

σ(X, ∆, H) = sup{t ∈ Q|H + t(KX + ∆) is effective}.

When there is no ambiguity we write τ(H) and σ(H) for τ(X, ∆, H) and σ(X, ∆, H)
respectively.

Remark 1.6. In [Fuj96] Fujita defined the log Kodaira Energy κε(X, ∆, H). This
is related to the effective log threshold σ(X, ∆, H) by the formula

σ(X, ∆, H) = −
1

κε(X, ∆, H)
.
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1.2. Log Terminal Pairs. Let (X, ∆) be a log pair, i.e., X is a normal variety,
and ∆ is a Q-divisor such that KX + ∆ is Q-Cartier.

Definition 1.7. Let f : V → X be a proper birational morphism from a non-
singular variety V . Let Ei denote the irreducible components of the exceptional
divisor for f , and write f−1

∗ ∆ for the strict tranform of ∆. Then there are uniquely
determined rational numbers a(Ei, X, ∆) such that

KV + f−1
∗ ∆ = f∗(KX + ∆) +

∑

Ei

a(Ei, X, ∆)Ei.

We call a(Ei, X, ∆) the discrepancy of (X, ∆) at Ei.
We say that (X, ∆) is log terminal if

(1) KX + ∆ is Q-Cartier.
(2) There exists a projective birational morphism f : V → X from a nonsingu-

lar variety V with exceptional divisors Ei, such that
∑

Ei +f−1
∗ ∆ is simple

normal crossing, and a(Ei, X, ∆) > −1 for every Ei.

Remark 1.8. In [Kol92] and [KMM87], the Cone Theorem is established for di-
visorial log terminal (dlt), and weakly log terminal (wlt) pairs respectively. The
dlt and wlt conditons are equivalent, but they are stronger than log terminal in
general. However, if X is Q-factorial, i.e., any divisor on X is Q-Cartier, then the
three notions coincide. In the next sections we shall assume Q-factoriality of X ,
and refer to (X, ∆) simply as a log terminal pair.

1.3. The (K +∆)-Minimal Model Program. Let (X, ∆) be a log terminal pair,
where X is a Q-factorial projective variety, and ∆ is a boundary Q-divisor. The
(K+∆)-Minimal Model Program ((K+∆)-MMP for short) consists of an inductive
sequence of divisorial contractions and log flips ϕi : Xi 99K Xi+1, each associated
to a (KXi

+ ∆i)-negative extremal ray:
We start with (X0, ∆0) = (X, ∆). Given (Xi, ∆i), and assuming KXi

+ ∆i is
not nef, we pick a (KXi

+ ∆i)-negative extremal ray Ri. By the Cone Theorem
(Theorem 1.12 below), the contraction of Ri, fi : Xi → Yi, exists. (The contraction
of Ri is the unique morphism ϕ : Xi → Yi such that ϕ∗OXi

= OYi
, and, for any

curve C ⊂ Xi, ϕ(C) is a point if and only if [C] ∈ Ri.) Assuming that dim(Yi) =
dim(Xi), we have that either fi is a divisorial contraction (i.e. the exceptional locus
of fi is a prime divisor), or the exceptional locus of fi has codimension ≥ 2 in Xi.

In the first case we put ϕi = fi, Xi+1 = Yi, and ∆i+1 = ϕi∗∆i.
In the second case, Yi is not Q-factorial (in fact KYi

+ fi∗∆i is not Q-Cartier).
We then assume:

Conjecture 1.9 (Flip Conjecture). Let Xi, Yi and fi be as in the above discussion.

(1) There exists a unique birational map ϕi, and contraction f+
i

ϕi : Xi 99K X+
i

fi ↘ ↙ f+
i

Yi

such that X+
i is Q-factorial, KX

+

i

+ϕi∗∆i is f+
i -ample, and the exceptional

locus of f+
i has codimension ≥ 2 in X+

i . We call f+
i : X+

i → Yi (or the
map ϕi itself) a (K + ∆)-flip, or more generaly, a log flip.

(2) There is no infinite sequence of (K + ∆)-flips.
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We then put Xi+1 = X+
i , and ∆i+1 = ϕi∗∆i.

The fact that divisorial contractions decrease the Picard number, and the termi-
nation assumption for log flips imply that this process must stop. This means that
at some point we reach one of the following situations:

(1) KXn
+ ∆n is nef. In this case we say that Xn is a (K + ∆)-minimal model.

(2) The contraction of Rn, fn : Xn → Yn, is a (K + ∆)-Mori fiber space. This
means that Yn is a normal projective variety with dim(Yn) < dim(Xn),
ρ(Yn) = ρ(Xn) − 1, and −(KXn

+ ∆n) is fn-ample. In this case −KXn
is

also fn-ample, and thus fn : Xn → Yn is a Q-Fano fibration. This implies
that Xn, and hence also X , is uniruled.

We end this section with some established theorems of the log MMP.

Theorem 1.10 (Rationality Theorem). Let (X, ∆) be a projective dlt pair. Assume
KX +∆ is not nef, and let H be a nef and big Q-Cartier divisor. Then τ(X, ∆, H)
is a rational number. �

The Rationality Theorem gives us a Q-Cartier divisor H + τ(H)(KX + ∆) sup-
porting a (KX + ∆)-negative extremal face. The next theorem implies that such
extremal face can be contracted.

Theorem 1.11 (Basepoint-free Theorem). Let (X, ∆) be a projective dlt pair. Let
D be a nef divisor such that aD − (KX + ∆) is nef and big for some a > 0. Then
|mD| is basepoint-free for m � 0. �

The Rationality Theorem and the Basepoint-free Theorem together give the
following structure theorem for NE1(X).

Theorem 1.12 (Cone Theorem). Let (X, ∆) be a projective dlt pair. Then:

(1) For any ε > 0, and any ample divisor A on X, there are finitely many
rational curves C1, . . . , Cr ⊂ X such that 0 < −(KX + ∆) ·Ci ≤ 2 dim(X),
and

NE(X) = NE(X)(KX+∆+εA)≥0 +
∑

R≥0[Ci].

(2) There are countably many rational curves Ci ⊂ X such that 0 < −(KX +
∆) · Ci ≤ 2 dim(X), and

NE(X) = NE(X)(KX+∆)≥0 +
∑

R≥0[Ci].

(3) Let F ⊂ NE(X) be a (KX + ∆)-negative extremal face. Then the contrac-
tion of F exists and is unique. �

In the next section we shall use the relative version of the log MMP. The state-
ments of the results are very similar to the ones above, and we do not include them
here in order to keep the notation light. We refer to [KM98] and [KMM87] for the
log MMP in the relative setting.

2. The rationality of σ(X, ∆, H)

Let (X, ∆) be a log terminal pair, where X is a Q-factorial projective variety.
Let H be a nef and big Q-divisor on X , so that H ∈ Λnef (X) ∩ Int(Λeff (X)).

Assume that (KX +∆) /∈ Λeff (X). In this case both τ(X, ∆, H) and σ(X, ∆, H)
are finite. By the Rationality Theorem, τ(X, ∆, H) ∈ Q. In this section we shall
rework the argument in [Bat92] and [Fuj96], and, assuming the log minimal model
program, prove the following.
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Theorem 2.1. Let X be a Q-factorial projective variety and ∆ a boundary divi-
sor such that (X, ∆) is log terminal. Assume the log minimal model program and
suppose that (KX + ∆) /∈ Λeff (X). Then σ(X, ∆, H) ∈ Q.

The idea of the proof of Theorem 2.1 is to run the (K + ∆)-minimal model
program “oriented” by H : when contracting a (KX + ∆)-negative extremal ray,
we require that it is supported on H + τ(H)(KX + ∆). At each step (X, ∆, H)
is replaced with (X ′, ∆′, H ′), where ϕ : (X, ∆) 99K (X ′, ∆′) is either a divisorial
contraction or a log flip, ∆′ = ϕ∗∆, and H ′ = ϕ∗H . In either case σ(X ′, ∆′, H ′) =
σ(X, ∆, H). Eventualy we reach a triple (X ′′, ∆′′, H ′′) for which σ(X ′′, ∆′′, H ′′) =
τ(X ′′, ∆′′, H ′′). The result then follows from the Rationality Theorem.

Clearly τ(X, ∆, H) ≤ σ(X, ∆, H), and the next proposition says when equality
holds.

Proposition 2.2. Let (X, ∆) be a projective dlt pair. Assume (KX + ∆) /∈
Λeff (X). Let H be a Q-Cartier divisor on X such that H + t(KX + ∆) is nef
and big for some non negative t ∈ Q. Then τ(X, ∆, H) = σ(X, ∆, H) if and only
if, for m � 0, the linear system |m(H + τ(H)(KX + ∆))| induces a contraction
X → S, with dim(S) < dim(X).

Proof. Since (KX + ∆) /∈ Λeff (X), we have that τ(X, ∆, H) ≤ σ(X, ∆, H) < ∞
By the Cone Theorem, |m(H + τ(H)(KX + ∆))| defines a contraction X → S
onto a normal variety for m � 0. We have that τ(X, ∆, H) = σ(X, ∆, H) if and
only if H + τ(H)(KX + ∆) ∈ ∂Λeff (X). By Remark 1.3, this is the case if and
only if H + τ(H)(KX + ∆) is not big, which is equivalent to the condition that
dim(S) < dim(X). �

Remark 2.3. If (KX + ∆) ∈ Λeff (X), then it is possible that τ(X, ∆, H) =
σ(X, ∆, H) = +∞ (this happens if and only if KX + ∆ is nef). In this case, for
m � 0, |m(KX + ∆)| may or may not define a fibration, depending on whether or
not (KX + ∆) ∈ ∂Λeff (X).

Process 2.4 (Running the (K + ∆)-MMP oriented by H).
Let (X, ∆) be a log terminal pair, where X is a Q-factorial projective veriety.
Assume that (KX + ∆) /∈ Λeff (X). Let H be a nef and big Q-divisor on X . From
now on we always assume the flip conjecture. If τ(X, ∆, H) < σ(X, ∆, H), the Cone
Theorem and Proposition 2.2 together imply that, for m � 0, |m(H + τ(H)(KX +
∆))| induces a birational contraction f : X → Y . There is an ample Q-divisor AY

on Y such that f∗AY ∼ H + τ(H)(KX + ∆).
If f : X → Y is the contraction of a single extremal ray, then we replace

(X, ∆, H) either with (Y, f∗∆, f∗H), in the case when f is a divisorial contraction, or
with (X+, ϕ∗∆, ϕ∗H), in the case when f is a small contraction and ϕ : X 99K X+

is the corresponding flip. In the general case, however, f may contract a higher
dimensional extremal face, so we run the log MMP relative to f : X → Y (per-
forming a sequence of log flips and divisorial contractions) until we reach a relative
log minimal model f1 : X1 → Y ,

ϕ1 : X 99K X1 .

f ↓ ↓ f1

Y Y
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Figure 1. Log MMP oriented by H

The divisor H1 = ϕ1∗H is still big. It is not necessarily nef. However, H1 +
τ(X, ∆, H)(KX1

+ ∆1) = f∗
1 AY is nef and big. Therefore τ(X1, ∆1, H1) and

σ(X1, ∆1, H1) are well defined. We shall prove that σ(X1, ∆1, H1) = σ(X, ∆, H).
Consider a step in the (K + ∆)-MMP relative to f,

ρ : V 99K W .

fV ↓ ↓ fW

Y Y

Let HV and HW be the strict transforms of H in V and W respectively, and
similarly for ∆V and ∆W . Either ρ is a divisorial contraction or a log flip. We
consider these two cases separately.

Case 1: Suppose ρ : V → W is a divisorial contraction, and let E ⊂ V be the
exceptional divisor. We have that

HV + τ(H)(KV + ∆V ) ∼ f∗
V AY ∼ ρ∗f∗

W AY ∼ ρ∗(HW + τ(H)(KW + ∆W )).

Let R ⊂ NE1(V ) be the (KV + ∆V )-negative extremal ray contracted by ρ.
Notice that R lies on the hyperplane defined by HV + τ(X, ∆, H)(KV + ∆V ) (and
hence τ(V, ∆V , HV ) = τ(X, ∆, H)). Since (KV +∆V )·R < 0, we get that HV ·R > 0.
This implies that ρ∗HW = HV + aE for some positive rational number a.

Let t ≥ τ(H) = τ(X, ∆, H) ≥ 0. Then

HV + t(KV + ∆V ) − ρ∗(HW + t(KW + ∆W )) =
(

1 −
t

τ(H)

)

(HV − ρ∗HW )

=
( t

τ(H)
− 1

)

aE.

Since ( t
τ(H) − 1)a ≥ 0, and E is ρ-exceptional, we get that

H0(V, m(HV +t(KV + ∆V ))) ∼=

∼= H0(V, mρ∗(HW + t(KW + ∆W )) + m
( t

τ(H)
− 1

)

aE)

∼= H0(W, m(HW + t(KW + ∆W ))).
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Hence HV +t(KV +∆V ) is big if and only if HW +t(KW +∆W ) is big. Remark 1.3
then implies that σ(V, KV , HV ) = σ(W, KW , HW ).

Case 2: Suppose ρ : V 99K W is a log flip. Then ρ is an isomorphism in
codimension 1, and HV + t(KV +∆V ) = ρ∗(HW + t(KW +∆W )). So HV + t(KV +
∆V ) is pseudo-effective if and only if so is HW + t(KW + ∆W ).

We have proved that σ(X1, ∆1, H1) = σ(X, ∆, H).
If τ(X1, ∆1, H1) < σ(X1, ∆1, H1), then we repeat the process with (X, ∆, H)

replaced by (X1, ∆1, H1). By the termination assumption for log flips, and the fact
that divisorial contractions decrease the Picard number, this process must stop.
That means that eventually we reach a triple (Xn, ∆n, Hn) for which

τ(Xn, ∆n, Hn) = σ(Xn, ∆n, Hn) < ∞.

By Proposition 2.2, for m � 0, the linear system |m(Hn + τ(Hn)(KXn
+ ∆n))|

induces a contraction g : Xn → S, with dim(S) < dim(Xn).
Now we run the log-MMP relative to g : Xn → S (performing a sequence of

flips and divisorial contractions). At the end we get either a Mori fiber space
Xn+1 → Z, Z → S, with dim(Z) < dim(Xn+1), or a relative minimal model
X ′

n+1 → S. We claim that the latter does not occur. Indeed if f ′ : X ′
n+1 → S

is a relative (K + ∆)-minimal model, then (KX′

n+1
+ ∆′

n+1) is f ′-nef. Moreover

H ′
n+1 + τ(Hn)(KX′

n+1
+ ∆′

n+1) is numerically trivial on the general fiber F of f ′.

Hence H ′
n+1 is semi-negative on F , contradicting the fact that H ′

n+1 is big (here
we are using the assumption that dim(S) < dim(Xn+1), and hence dim(F ) > 0).

To summarize, let (X, ∆) be a log terminal pair, where X is a Q-factorial projec-
tive variety, and (KX +∆) /∈ Λeff (X). Then there is a sequence of birational maps
ϕi : (Xi−1, ∆i−1) 99K (Xi, ∆i), each of which is a log flip or a divisorial contraction
in the (K + ∆)-MMP, and a Mori fibration f : Xn → Z such that −(KXn

+ ∆n) is
f -ample:

X 99K X1 99K X2 99K . . . 99K Xn−1 99KXn.

↓ f

Z

Moreover, denoting by Hi the strict transform of H in Xi, we have σ(X, ∆, H) =
σ(Xi, ∆i, Hi), 1 ≤ i ≤ n, and σ(Xn, ∆n, Hn) = τ(Xn, ∆n, Hn) ∈ Q. This proves
Theorem 2.1.

3. Numerical Pullback of Curves

Let X be an n-dimensional projective Q-factorial terminal variety, and ∆ a
boundary divisor such that (X, ∆) is log terminal. For any nef and big Q-divisor
H on X , Process 2.4 yields a birational map ϕ : X 99K X ′ and a Mori fibration f :
X ′ → S such that τ(X ′, ∆′, H ′) = σ(X ′, ∆′, H ′) = σ(X, ∆, H), where ∆′ = ϕ∗∆,
and H ′ = ϕ∗H . By Miyaoka and Mori’s numerical criterion for uniruledness (see
[MM86]), we can choose a covering family of rational curves C ′ lying on fibers of f
so that the (−KX′)-degree of its members is bounded by 2n. Then we would like
to pull back to X a general curve from the family C ′. There is a problem when
X ′ is singular and all curves from C ′ meet the singular locus of X ′. In this case,
taking the strict transform of the curves is not enough, and we have to consider
their numerical pullback, which we define next.
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Definition 3.1. Let ϕ : X 99K Z be a birational map between Q-factorial projec-
tive varieties, and assume it is surjective in codimension 1.

Taking pullback of divisors on Z defines an injective linear map ϕ1∗ : N1(Z) →
N1(X). Taking pushforward of divisors on X defines a surjective linear map ϕ∗ :
N1(X) → N1(Z). The composition ϕ∗ ◦ ϕ1∗ is the identity on N1(Z).

We shall define an injective linear map ϕ∗
1 : N1(Z) → N1(X). Choose dual

basis {zi} ⊂ N1(Z) and {li} ⊂ N1(Z) (so that zi · lj = δij). Consider the subset
{αi = ϕ1∗zi} ⊂ N1(X). Extend it to a basis of N1(X) by adding the classes of the
exceptional divisors for ϕ, βj = [Ej ]. Let {mi, nj} be a basis for N1(X) dual to
{αi, βj}, i.e.,

αi · mj = δij , βi · mj = 0 = αi · nj , βi · nj = δij .

Define ϕ∗
1 : N1(Z) → N1(X) by putting ϕ∗

1(li) = mi.

Remark 3.2. It is easy to check that the map ϕ∗
1 is in fact injective, and it is the

unique linear map satisfying the following conditions.

(1) If z ∈ N1(Z) and l ∈ N1(Z), then ϕ1∗(z) · ϕ∗
1(l) = z · l.

(2) If β ∈ kerϕ∗ and m ∈ im ϕ∗
1, then β · m = 0.

Now let C ′ be a general curve in the family C ′, and let C = ϕ∗
1[C

′]. There are
classes β, β′ ∈ kerϕ∗ such that [H + σ(KX + ∆)] = ϕ1∗[H ′ + σ(KX′ + ∆′)] + β
and [KX ] = ϕ1∗[KX′ ] + β′ in N1(X), where σ = σ(X, ∆, H) = σ(X ′, ∆′, H ′) =
τ(X ′, ∆′, H ′). Properties (1) and (2) above imply the following.

(1) (H + σ(KX + ∆)) · C = (H ′ + σ(KX′ + ∆′)) · C ′ = 0, and
(2) −KX · C = −KX′ · C ′ ≤ 2n.

Loosely speaking Batyrev’s theorem states that, when dim(X) = 3 and (X, ∆)
is terminal, such pullback classes generate the half cone of NM1(X) where KX +∆
is negative. More precisely:

Theorem 3.3. Let X be a Q-factorial threefold and ∆ a boundary divisor such
that (X, ∆) is terminal. Then

(a) For any ε > 0, and any ample divisor A on X, there are finitely many classes
of curves C1, . . . , Cr ∈ N1(X) such that

(1) 0 < −KX · Ci ≤ 6,
(2) There is a Mori fiber space fi : Xi → Si, which can be obtained from X by

running the (K + ∆)-MMP, such that Ci is the pullback class of a rational
curve lying on a general fiber of fi, and

(3) NE1(X)(KX+∆+εA)≥0 + NM1(X) = NE1(X)(KX+∆+εA)≥0 +
∑

R≥0Ci.

(b) There are countably many classes of curves Ci ∈ N1(X) such that

(1) 0 < −KX · Ci ≤ 6,
(2) There is a Mori fiber space fi : Xi → Si, which can be obtained from X by

running the (K + ∆)-MMP, such that Ci is the pullback class of a rational
curve lying on a general fiber of fi, and

(3) NE1(X)(KX+∆)≥0 + NM1(X) = NE1(X)(KX+∆)≥0 +
∑

R≥0Ci.

Remark 3.4. The rays R≥0Ci above are called coextremal rays.

Part (b) follows from part (a). In order to prove part (a), we need to show that,
for any compact set B ⊂ N1(X)(KX+∆)<0, there are only finitely many Ci ∈ B
satisfying (2) above. Batyrev achieves this by claiming that the pullback classes of



THE CONE OF EFFECTIVE DIVISORS OF LOG VARIETIES AFTER BATYREV 9

rational curves lying on general fibers of Mori fiber spaces are integral (he explicitly
assumes this throughout [Bat92]). This is not always true though, as the next
example shows.

Example 3.5. Let Y be the cone over the Veronese surface. Then Y is a Q-factorial
terminal Fano threefold of Picard number 1. Let π : X → Y be the blowup of the
vertex of the cone, and let E ∼= P2 be the exceptional divisor. Let l ⊂ Y be a
ruling of the cone. A simple computation shows that π∗

1 l = l̃ + 1
2e, where l̃ is the

strict transform of l and e is a curve on E corresponding to a line on P2 under the
isomorphism E ∼= P2.

One way to fix this problem is the following. We fix a basis mi for N1(X)Q.
For each Mori fiber space f : X ′ → S that can be obtained from X by running
the log MMP, we fix a covering family of rational curves C ′ lying on fibers of f .
We also require that −KX′ · C ′ ≤ 6 for C ′ a general member in this family. We
can write the numerical pullback of C ′ as C =

∑

aimi, where the ai’s are suitable
rational numbers. Then all we need to do is to find some universal bound on the
denominators of the ai’s.

Another possibility is to find some universal constant N satisfying the following
condition. For any Q-factorial terminal Fano threefold X ′ of Picard number 1, there
exists a curve C ′ ⊂ X ′ obtained as the intersection of 2 very ample divisors on X ′

and such that −KX′ · C ′ ≤ N . Then, for every Mori fiber space f : X ′ → S that
can be obtained from X by running the log MMP, we can take the strict transform
of a curve C ′ on a general fiber of X ′ → S avoiding the indeterminancy locus of
X ′

99K X and such that KX′ · C ′ ≤ N . This strict transform is of course integral
and coincides with the numerical pullback of C ′.

These two possible strategies are morally the same, and in the next section we
work out the latter.

4. Proof of Theorem 3.3

Let X be a Q-factorial threefold and ∆ a boundary divisor such that (X, ∆) is
terminal. First notice that if there exists a nef curve C ⊂ X such that (KX+∆)·C <
0, then (KX + ∆) /∈ Λeff (X), and we are back to the setting of section 2.

We will need the following result.

Lemma 4.1. There exists a constant N such that the following holds. If X is a
projective Q-factorial terminal Fano threefold of Picard number 1, and B ⊂ X is a
subset of codimension at least 2, then there exists a proper curve C ⊂ X \ B such
that −KX · C ≤ N .

Proof. By [Kaw92], Q-factorial terminal Fano threefolds of Picard number 1 form
a bounded family. In particular, there exist universal constants M and D such that
the following holds. For any Q-factorial terminal Fano threefold X of Picard number
1, −MKX is very ample and (−KX)3 ≤ D. (An explicit bound for M is given in
[Kol93].) Let B ⊂ X be a subset of codimension at least 2. By intersecting 2 general
members of the linear system | −MKX |, we obtain a proper curve C ⊂ X \B such
that −KX · C = −KX · M2(−KX)2 ≤ M2D =: N . �

Let N be as in Lemma 4.1. Given ε and A as in Theorem 3.3(a), there are finitely
many classes of integral curves C ∈ N1(X) such that 0 < −(KX + ∆) ·C ≤ N , and
[C] /∈ NE1(X)(KX+∆+εA)≥0. Indeed, all such curves satisfy A · C < N/ε.



10 CAROLINA ARAUJO

Pick such classes Ci for which there exists a Mori fiber space fi : Xi → Si

obtained from X by running the (K + ∆)-MMP, so that Ci is the pull back class
of a curve lying on a general fiber of fi and avoiding the indeterminancy locus of
Xi 99K X . Now set

W = NE1(X)(KX+∆+εA)≥0 +
∑

R≥0Ci.

We prove that W = NE1(X)(KX+∆+εA)≥0 + NM1(X). (A standard argu-
ment about cones in Rn shows that both these cones are closed.) Clearly W ⊂
NE1(X)(KX+∆+εA)≥0 + NM1(X). Suppose they are different. Then, since these

are both convex cones, there exists an element D ∈ N 1(X) such that:

(1) D · z0 = 0 for some z0 ∈ (NE1(X)(KX+∆+εA)≥0 + NM1(X)) \ {0}.

(2) D · z ≥ 0 for every z ∈ NE1(X)(KX+∆+εA)≥0 + NM1(X).
(3) D · z > 0 for every z ∈ W \ 0.

Claim 4.2. There exists an ample R-divisor H of the form D − a(KX + ∆) with
a ∈ R, a > 0.

Proof. We need to prove that Int(Λnef (X))∩ Int(R≥0[D] + R≥0[−(KX + ∆)]) 6= ∅.
Assume otherwise. Then there exists an element l ∈ NE1(X) \ {0} such that
D · l ≤ 0 and −(KX + ∆) · l ≤ 0. The last inequality implies that l ∈ W \ {0}, but
this contradicts the choice of D above. �

Let H = D − a(KX + ∆) be as in the claim. Then σ(X, ∆, H) = a, and
H + σ(H)(KX + ∆) = D. (See Figure 2).

PSfrag replacements

W

H⊥

(KX + ∆ + εA)⊥

D⊥

z0

+

+

+

−

−

−

Figure 2. Finding the ample R-divisor H

Choose a sequence of ample Q-divisors Hi on X such that limi→∞ Hi = H .
Then limi→∞ σ(Hi) = σ(H) = a. For each i, Process 2.4 yields a birational map
ϕi : X 99K Xi and a Mori fibration fi : Xi → Si such that (Hi + σ(Hi)(KX +
∆)) · (ϕi)

∗
1(li) = 0, where li is the class of a curve on a general fiber of fi. We

note that the general fiber of fi is a terminal Fano variety of dimension ≤ 3. So,
by Lemma 4.1, we can take li to be the class of an integral curve avoiding the
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indeterminancy locus of Xi 99K X and such that

0 < −(KXi
+ ∆i) · li = −(KX + ∆) · (ϕi)

∗
1(li)

≤ −KX · (ϕi)
∗
1(li)

= −KXi
· li ≤ N.

Hence (ϕi)
∗
1(li) ∈ W , and the intersection numbers H · (ϕi)

∗
1(li) are all bounded by

some positive constant c. Since there are finitely many integral classes of curves of
H-degree bounded by c, some class (ϕi0)

∗
1(li0) must appear infinitely many times

in the sequence {(ϕi)
∗
1(li)}. Thus

D · (ϕi0 )
∗
1(li0) = lim

i→∞
[(Hi + σ(Hi)(KX + ∆)) · (ϕi)

∗
1(li)] = 0,

contradicting the choice of D above. Hence W = NE1(X)(KX+∆+εA)≥0+NM1(X).
To conclude the proof we just need to observe the following. Let ϕi : X 99K Xi,

fi : Xi → Si and li ∈ N1(Xi) be as above. By Miyaoka and Mori’s numerical
criterion for uniruledness, we can find a rational curves mi lying on a general fiber
of fi such that 0 ≤ −KX · (ϕi)

∗
1(mi) ≤ 6. Moreover R≥0(ϕi)

∗
1(mi) = R≥0(ϕi)

∗
1(li).

Remark 4.3. If (X, ∆) is log terminal, then the argument above shows that

NE1(X)(KX+∆)≥0 + NM1(X) = NE1(X)(KX+∆)≥0 +
∑

R≥0Ci,

where the Ci are pullback classes of curves on fibers of Mori fiber spaces obtained
from X by running the (K + ∆)-MMP. However, this proof does NOT show that
the part of the cone where KX + ∆ is negative is a locally finite polyhedral cone,
as it was claimed in [KMMT00] and [Xie05].
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