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Abstract

We prove existence of maximal entropy measures for an open set of
non-expanding local diffeomorphisms on a compact Riemannian manifold.
In this context the topological entropy coincides with the logarithm of the
degree, and these maximizing measures are eigenmeasures of the transfer
operator. When the map is topologically mixing, the maximizing measure
is unique and positive on every open set.

1 Introduction

In its most basic form, the variational principle states that the topological en-
tropy of a continuous transformation on a compact space coincides with the
supremum of the entropies of the probability measures invariant under the trans-
formation. We call maximizing measure any invariant probability for which the
supremum is attained. Existence and uniqueness of such measures has been
investigated by many authors, in a wide variety of situations. However, the
global picture is still very much incomplete.

In this paper we contribute a simple sufficient condition for existence and
uniqueness, applicable to a large class of transformations. Some examples we
have in mind are the non-uniformly expanding local diffeomorphisms of Alves,
Bonatti, Viana [ABV00], which exhibit only positive Lyapunov exponents at
“most” points. But our hypothesis, formulated in (1) below, is a condition of
the type that Buzzi [Buz99, Buz00] introduced and called entropy-expansivity:
we only ask that the derivative do not expand k-dimensional volume too much,
for all k less than the dimension of the ambient manifold. We show that this
implies existence and, if the transformation is topologically mixing, uniqueness
of the maximizing measure.

2 Statement of main result

Let f : Md → Md be a C1 local diffeomorphism on a compact d-dimensional
Riemannian manifold. Let p ≥ 1 be the degree of f , that is, the number #f−1(x)
∗This work was partially supported by Pronex, CNPq, Fapeal, and Faperj, Brazil.
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of preimages of any point x ∈M . Define

Ck(f) = max
x∈M

‖ΛkDf(x)‖,

where Λk represents the kth exterior product. We assume that f satisfies

max
1≤k≤d−1

logCk(f) < log p. (1)

We say that f : M → M is topologically mixing if given any open set U there
exists N ∈ N such that fN (U) = M . We are going to prove the following

Theorem A. Assume f satisfies (1). Then htop(f) = log p, and any maximal
eigenmeasure µ of the transfer operator L is a maximizing measure. In partic-
ular, there exists some maximizing measure for f . If f is topologically mixing
then the maximizing measure is unique and positive on open sets.

The Ruelle-Perron-Frobenius transfer operator of f : M →M is the bounded
linear operator L : C(M) → C(M) defined on the space C(M) of continuous
functions g : M → R by

Lg(x) =
∑

y:f(y)=x

g(y).

Observe that this is a positive operator. Its dual L∗ :M(M)→M(M) acts on
the space of Borel measures of M , by∫

g dL∗ν =
∫
Lg dν,

preserving the cone of positive measures, and the subset of probability measures.
It is easy to see that the spectra of L and L∗ are contained in the closed

disk of radius p. We call maximal eigenmeasure any probability measure µ that
satisfies

L∗µ = p µ.

It is well-known that maximal eigenmeasures do exist. A quick proof goes as
follows. Define G :M1 →M1 on the space of probabilities M1 on M by

G(ν) =
1
p
L∗ν.

Then G is continuous relative to the weak∗ topology on M1. Since M1 is a
convex compact space, we may use the Tychonoff-Schauder theorem to conclude
that there exists some probability µ such G(µ) = µ. In other words, µ is a
maximal eigenmeasure. Observe also that µ is invariant for f . In fact, for every
continuous function g we have that L(g ◦ f)(x) = pg(x) and∫

(g ◦ f)dµ =
1
p

∫
(g ◦ f) dL∗µ =

1
p

∫
L(g ◦ f) dµ =

∫
g dµ.
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The paper is organized as follows. In Section 3 we prove that, under our
assumptions, any measure with large entropy has only positive Lyapunov expo-
nents. In Section 5 we prove that measures with positive Lyapunov exponents
admits generating partitions with small diameter. This conclusion uses the no-
tion of hyperbolic times, that we recall in Section 4. On its turn, it is used in
Section 6 to show that the entropy of such measures is given by a simple formula
involving the Jacobian. Using this formula, we prove in Section 7 that the topo-
logical entropy is log p and is attained by any maximal eigenmeasure. Finally,
in Section 8 we prove that the maximal measure is unique if the transformation
is topologically mixing.

Acknowledgements. We are thankful to Vı́tor Araújo for a conversation
that helped clarify the arguments in the last section.

3 Measures with large entropy

By Oseledets [Os68], if µ is an f -invariant probability measure then for µ-almost
every point x ∈M there is k = k(x) ≥ 1, a filtration

TxM = F 1
x ⊃ · · · ⊃ F kx ⊃ F k+1(x) = {0},

and numbers λ̂1(x) > λ̂2(x) > · · · > λ̂k(x) such Df(x)F ix = F if(x) and

λ̂i = lim
n→∞

1
n

log ‖Dfn(x)v‖

for every v ∈ F ix\F i+1
x and i = 1, . . . , k. The numbers λ̂i(x) are called Lyapunov

exponents of f at the point x. The multiplicity of λi(x) is dimF ix − dimF i+1
x .

We also write the Lyapunov exponents as

λ1(x) ≥ λ2(x) ≥ · · · ≥ λd(x),

where each number is repeated according to the corresponding multiplicity.
Then the integrated Lyapunov exponents are the averages

λi(µ) =
∫
λi(x) dµ(x), for i = 1, . . . , d.

Given a vector space V and a number k ≥ 1, the kth exterior power of
V is the vector space of all alternate k-linear forms defined on the dual of V .
We always take V to be finite-dimensional, and then the exterior product ΛkV
admits an alternative description, as the linear space spanned by the wedge
products v1 ∧ · · · ∧ vk of vectors v1, v2, . . . , vk in V . Assuming V comes with an
inner product, we can endow ΛkV with a inner product such that ‖v1∧· · ·∧vk‖
is just the volume of the k-dimensional parallelepiped determined by the vectors
v1, v2, . . . , vk in V .

A linear isomorphism A : V → W induces another, ΛkA : ΛkV → ΛkW ,
through

ΛkA(v1 ∧ · · · ∧ vk) = Av1 ∧ · · · ∧Avk.
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When V = W , the eigenvalues of ΛkA are just the products of k distinct eigen-
values of A (where an eigenvalue with multiplicity m is counted as m “distinct”
eigenvalues). Correspondingly, there is a simple relation between the Lyapunov
spectra of ΛkDf and Df : the Lyapunov exponents of ΛkDf are the sums of
k distinct Lyapunov exponents of Df , with the same convention as before con-
cerning multiplicities. Thus,

λi1(x) + λi2(x) + · · ·+ λik(x) ≤ logCk(f)

for any 1 ≤ i1 < i2 < · · · < ik ≤ d, and our hypothesis (1) implies that these
sums are strictly smaller than log p, for all k < d.

Lemma 3.1. If µ is an invariant probability with some integrated Lyapunov
exponent less than

c(f) = log p− max
1≤k<d

logCk(f), (2)

then hµ(f) < log p.

Proof. Let µ be an invariant probability, and suppose
∫
λd(x)dµ < c(f). As we

have just seen, (1) implies that
∑

1≤i≤k λi(x) ≤ logCk(f) for all 1 ≤ k < d.
Then, using the Ruelle inequality [Rue78],

hµ(f) ≤
∫ ∑

i:λi(x)>0

λi(x) dµ < c(f) + max
1≤k<d

logCk(f) ≤ log p.

This proves the lemma.

4 Hyperbolic times

For the next step we need the notion of hyperbolic times, introduced by Alves
et al [Alv00, ABV00]. Given c > 0, we say that n ∈ N is a c-hyperbolic time for
x ∈M if

j−1∏
k=0

‖Df(fn−k(x))−1‖ ≤ e−2cj for every 1 ≤ j ≤ n.

In what follows we fix c = c(f)/10 and speak, simply, of hyperbolic times. We
say that f has positive density of hyperbolic times for x if the set Hx of integers
which are hyperbolic times of f for x satisfies

lim inf
n

1
n

#(Hx ∩ [1, n]) > 0. (3)

We quote a few basic properties from [ABV00] (alternatively, see [Ol03]):

Lemma 4.1. If a point x satisfies

lim sup
n→∞

1
n

n−1∑
i=0

log ‖Df(f i(y))−1‖ < −4c < 0,

then f has positive density of hyperbolic times for x.
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In fact, the density, that is, the lim inf in (3), is bounded below by some
positive constant that depends only on f (and our choice of c).

Lemma 4.2. There exists δ0 > 0, depending only on f and c, such that given
any hyperbolic time n ≥ 1 for a point x ∈ M , and given any 1 ≤ j ≤ n, the
inverse branch f−jx,n of f j that sends fn(x) to fn−j(x) is defined on the whole
ball of radius δ0 around fn(x), and satisfies

d(f−jx,n(z), f−jx,n(w)) ≤ e−jcd(z, w)

for every z, w in that ball.

In view of Lemma 3.1, the next lemma applies to any invariant measure µ
with hµ(f) ≥ log p.

Lemma 4.3. Given an invariant ergodic measure µ whose Lyapunov exponents
are all bigger than 8c, there exists N ∈ N such that fN has positive density of
hyperbolic times for µ-almost every point.

Proof. Since all Lyapunov exponents of µ are greater than 8c, for almost every
x ∈M there exists n0(x) ≥ 1 such that

‖Dfn(x)w‖ ≥ e6cn‖w‖, for all w ∈ TxM and n ≥ n0(x).

In other words,

‖Dfn(x)−1‖ ≤ e−6cn, for every n ≥ n0(x).

Define αn = µ({x : n0(x) > n}). Since f is a local diffeomorphism, we may also
fix a constant K > 0 such ‖Df(x)−1‖ ≤ K for all x ∈M . Then∫

M

log ‖Dfn(x)−1‖dµ ≤ −6cn+Knαn = −(6c+Kαn)n.

Since αn goes to zero when n goes to infinity, by choosing N big enough we
ensure that ∫

M

1
N

log ‖DfN (x)−1‖dµ < −4c < 0.

Then, since µ is ergodic,

lim
n→∞

1
n

n−1∑
i=0

1
N

log ‖DfN (fNi(y))−1‖ =
∫
M

1
N

log ‖DfN (x)−1‖dµ < −4c.

This means that we may apply Lemma 4.1 to conclude.

According to the remark following Lemma 4.1, we even have that the density
of hyperbolic times is bounded below by some positive constant that depends
only on fN (and our choice of c).
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Lemma 4.4. Let B ⊂ M , θ > 0, and g : M → M be a local diffeomorphism
such that g has density > 2θ of hyperbolic times for every x ∈ B. Then, given
any probability measure ν on B and any m ≥ 1, there exists n > m such that

ν
(
{x ∈ B : n is a hyperbolic time of g for x}

)
> θ.

Proof. Define H to be the set of pairs (x, n) ∈ B×N such that n is a hyperbolic
time for x. For each k ≥ 1, let χk be the normalized counting measure on the
time interval [m+ 1,m+ k]. The hypothesis implies that, given any x ∈ B, we
have

χk
(
H ∩ ({x} × N)

)
> 2θ

for every sufficiently large k. Fix k ≥ 1 large enough so that this holds for
a subset C of points x ∈ B with ν(C) > 1/2. Then, by Fubini’s theorem,
(ν × χk)(H) > 2θ, and this implies that

ν
(
H ∩ (B × {n})) > θ

for some n ∈ [m+ 1,m+ k]. This gives the conclusion of the lemma.

5 Generating partitions

In all that follows the constant δ0 > 0 is fixed as given by Lemma 4.2. Given a
partition α of M , we define

αn =
n−1∨
j=0

f−j(α) for each n ≥ 1.

Lemma 5.1. If µ is an invariant measure such that all its Lyapunov exponents
are bigger than 8c, and α is a partition with diameter less than δ0, for µ-
almost every x ∈ M , the diameter of αn(x) goes to zero when n goes to ∞.
In particular, α is an f-generating partition with respect to µ.

Proof. By Lemma 4.3 there exists N ≥ 1 such that fN has positive density of
hyperbolic times for µ-almost every point. Define

γk =
k−1∨
j=0

f−jN (α) for each k ≥ 1.

By Lemma 4.2, if k is a hyperbolic time of fN for x then diam γk(x) ≤ e−cn. In
particular, since the sets γk(x) are non-increasing with k, the diameter of γk(x)
goes to zero when k →∞. Since αkN (x) ⊂ γk(x) and the sequence diamαn(x)
is non-increasing, this immediatelly gives that the diameter of αn(x) goes to
zero when n goes to infinity, for µ-almost every x ∈M .

The rest of the argument is very standard. It goes as follows. To prove
that α is a generating partition for f with respect to µ, it suffices to show that,
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given any measurable set E and any ε > 0, there exists n ≥ 1 and elements Ain,
i = 1, . . . ,m(n) of αn such that

µ
( m⋃
i=1

Ain∆E
)
< ε.

Consider compact setsK1 ⊂ A andK2 ⊂ Ac such that µ(K1∆A) and µ(K2∆Ac)
are both less than ε/4. Fix n ≥ 1 large enough so that diamαn(x) is smaller
than the distance from K1 to K2 outside a set of points x with measure less
than ε/4. Let Ain, i = 1, . . . ,m(n) be the sets αn(x) that intersect K1. Then,
they are all disjoint from K2, and so µ(

⋃
iA

i
n∆E) is bounded above by

µ(E \
⋃
i

Ain) + µ(
⋃
i

Ain \ E) ≤ µ(E \K1) + µ(Ec \K2) + ε/4 ≤ ε.

This completes the proof.

6 Rokhlin’s formula

The Jacobian of a measure µ with respect to f is the (essentially unique) function
Jµf satisfying

µ(f(A)) =
∫
A

Jµfdµ.

for any measurable set A such that f |A is injective. In other words, the Jacobian
is defined by Jµf = d(f∗µ)/dµ. Jacobians do exist in this context, because f
is finite-to-one (countable-to-one would suffice). Using the definition, one can
verify that Jµfn(x) =

∏n−1
i=0 Jµf(f i(x)) is a Jacobian for each fn.

Let f : M → M be a measurable transformation, µ be an invariant proba-
bility. Suppose there exists a finite or countable partition α of M such that

(a) f is locally injective, meaning that it is injective on every atom of α;

(b) α is f -generating with respect to µ, in the sense that diamαn(x)→ 0 for
µ-almost every x.

Proposition 6.1. If µ is an invariant measure satisfying (a) and (b) as above,
then

hµ(f) =
∫

log Jµf dµ,

where Jµf denotes any Jacobian of f relative to µ.

Let α∞ =
∨∞
j=0 f

−j(α). Denote β∞ =
∨∞
j=1 f

−j(α) and βn =
∨n
j=1 f

−j(α)
for each n ≥ 1. Notice that β∞(x) = f−1(α∞(f(x))). The hypothesis that α is
generating implies that α∞(x) = {x}, and so

β∞(x) = {f−1(f(x))} for µ-almost all x ∈M. (4)

7



The conditional expectation of a function ϕ : M → R relative to a partition
γ is the essentially unique γ-measurable function Eµ(ϕ | γ) such that∫

B

Eµ(ϕ | γ) dµ =
∫
B

ϕdµ (5)

for every γ-measurable set B.

Lemma 6.2. Eµ(ϕ | β∞)(x) =
∑
y∈β∞(x)

1
Jµf(y)ϕ(y) for µ-almost every x.

Proof. It is clear that the function on the right hand side is β∞-measurable. Let
B be any β∞-measurable set, that is, any measurable set that consists of entire
atoms of β∞. By (4), there exists a measurable set C such that B = f−1(C).
Then, since µ is invariant,∫

B

∑
y∈β∞(x)

1
Jµf(y)

ϕ(y) dµ(x) =
∫
C

∑
y∈f−1(z)

1
Jµf(y)

ϕ(y) dµ(z)

=
∑
A∈α

∫
CA

1
Jµf(yA)

ϕ(yA) dµ(z),

where CA = f(B ∩A) and yA = (f | A)−1(z). Since every f | A is injective, we
may use the definition of the Jacobian to rewrite the latter expression as∑

A∈α

∫
B∩A

ϕ(y) dµ(y) =
∫
B

ϕdµ.

This proves (5) and the lemma.

For ∗ ∈ N ∪ {∞}, define the conditional entropy (Definition 4.8 in [Wa82])

Hµ(α | β∗) =
∫ ∑

A∈α
−Eµ(χA | β∗) logEµ(χA | β∗) dµ. (6)

Lemma 6.3.

1. Hµ(α | βn) =
∑
A∈α

∑
B∈βn −µ(A ∩B) log µ(A∩B)

µ(B) for n ∈ N.

2. Hµ(α | β∞) =
∫

log Jµf dµ.

Proof. For n ∈ N, the partition βn is countable, and so

Eµ(χA | βn)(x) =
1

µ(βn(x))

∫
βn(x)

χA dµ =
µ(A ∩ βn(x))
µ(βn(x))

for every A ∈ α. It follows that

Hµ(α | βn) =
∑
A∈α

∑
B∈βn

∫
B

−µ(A ∩ βn(x))
µ(βn(x))

log
µ(A ∩ βn(x))
µ(βn(x))

dµ(x).
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This gives the first statement. Next, Lemma 6.2 says that

Eµ(χA | β∞) = ψA ◦ f, where ψA(z) =
∑

y∈f−1(z)

1
Jµf(y)

χA(y).

Notice that if z ∈ f(A) then ψA(z) = 1/Jµf(yA), where yA = (f | A)−1(z), and
if z /∈ f(A) then ψA(z) = 0. Therefore,

Hµ(α | β∞) =
∫ ∑

A∈α
−ψA(z) logψA(z) dµ(z)

=
∑
A∈α

∫
f(A)

1
Jµf(yA)

log Jµf(yA) dµ(z).

Using the definition of Jacobian, and the assumption that f is injective on A,
this gives

Hµ(α | β∞) =
∑
A∈α

∫
A

log Jµf(y) dµ(y) =
∫

log Jµf(y) dµ(y),

as claimed.

Proof of Proposition 6.1. Since the partition α is generating, hµ(f) = hµ(f, α).
Then,

hµ(f, α) = lim
n
Hµ(α | βn) = Hµ(α | β∞),

by Theorem 4.14 of [Wa82]. Combined with the second part of Lemma 6.3, this
gives hµ(f) =

∫
log Jµf dµ, as claimed.

7 Existence

Here we prove that every maximal eigenmeasure is a maximizing measure. The
first step is

Lemma 7.1. If µ is a maximal eigenmeasure then Jµf is constant equal to p.

Proof. Let A be any measurable set such that f |A is injective. Take a sequence
{gn} ∈ C(M) such that gn → χA at µ-almost every point and sup |gn| ≤ 2 for
all n. By definition,

Lgn(x) =
∑

f(y)=x

gn(y).

The last expression converges to χf(A)(x) at µ-almost every point. Hence, by
the dominated convergence theorem,∫

p gn dµ =
∫
gn d(L∗µ) =

∫
Lgn dµ→ µ(f(A)).
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Since the left hand side also converges to
∫
A
pdµ, we conclude that

µ(f(A)) =
∫
A

pdµ,

which proves the lemma.

Lemma 7.2. If µ is a maximal eigenmeasure then hµ(f) ≥ log p.

Proof. We define the dynamical ball Bε(n, x) by

Bε(n, x) = {y ∈M ; d(f i(x), f i(y)) < ε, for i = 0, . . . , n− 1}.

If ε small enough so that fn|Bε(n,x) is injective, then:

1 = µ(M) ≥ µ(fn(Bε(n, x))) = pnµ(Bε(n, x)).

In particular, we may conclude that

− lim sup(1/n) logµ(Bε(n, x)) ≥ log p

for every n and ε small. By the Brin-Katok local entropy formula (see [Mañ87])

hµ(f) = −
∫

lim
ε→0

lim
n→∞

1
n

logµ(Bε(n, x)) dµ(x) ≥ log p.

This proves the lemma.

Corollary 7.3. Every maximal eigenmeasure µ has entropy equal to log p.

Proof. By Lemma 7.2, the entropy is at least log p. Then, we may apply
Lemma 3.1 to conclude that all Lyapunov exponents of µ are positive. It
follows, by Lemma 5.1, that µ admits generating partitions with small di-
ameter. Hence, we may apply Proposition 6.1 and Lemma 7.1, to find that
hµ(f) =

∫
log Jµdµ = log p.

Lemma 7.4. The topological entropy htop(f) = log p. Moreover, if η is any
ergodic maximizing measure then the Jacobian Jηf is constant equal to p.

Proof. Consider any probability η such hη(f) ≥ log p. By Lemma 3.1 all Lya-
punov exponents of η are bigger than c(f). Then, by Lemma 5.1, there exist
generating partitions with arbitrarily small diameter. This ensures we may
apply Proposition 6.1 to η. We get that

hη(f) =
∫

log Jηf dη.

Let us write gη = 1/(Jηf). The assumption that η is invariant means that∑
f(y)=x

gη(y) = 1
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for η-almost every x ∈M . From the previous equality, we find

0 ≤ hη(f)− log p =
∫

log
p−1

gη
dη =

∫ ∑
f(y)=x

gη(y) log
p−1

gη(y)
dη, (7)

where the last equality uses gη = 1/Jηf . Now, we use the following elementary
fact from Calculus:

Lemma 7.5. Let pi, xi, i = 1, 2, . . . , n be positive real numbers such
∑n
i=1 pi =

1. Then
∑n
i=1 pi log xi ≤ log(

∑n
i=1 pixi) and the equality holds if and only if

the xi are all equal.

Taking pi = gη(y) and xi = p−1/gη(y), we obtain∑
f(y)=x

gη(y) log
p−1

gη(y)
≤ log

( ∑
f(y)=x

gη(y)
p−1

gη(y)
)

= log
( ∑
f(y)=x

p−1
)

= 0

at η-almost every point. Since the integral is non-negative, by (7), the equality
must hold η-almost everywhere, and hη(f)− log p = 0. Since η is arbitrary, this
proves that log p = htop(f).

¿From the last part of Lemma 7.5, we get that the values of log p−1/gη(y)
are the same for all y ∈ f−1(x). In other words, for η-almost every x ∈M there
exists a number c(x) such that p−1/gη(y) = c(x) for every y ∈ f−1(x). Then

1
c(x)

=
∑

y∈f−1(x)

p−1

c(x)
=

∑
y∈f−1(x)

gη(y) = 1

for η-almost every x. This means, precisely, that Jηf(y) = p for every y on the
pre-image of a full η-measure set.

8 Uniqueness

In this section we assume f is topologically mixing, and conclude that the max-
imizing measure is unique and supported on the whole ambient M . It suffices
to consider ergodic measures, because the ergodic components of maximizing
measures are also maximizing measures.

Lemma 8.1. Any ergodic maximizing measure µ is supported on the whole M .

Proof. Suppose µ(U) = 0 for some non-empty open set U . By the mixing
assumption, there exists N ≥ 1 such fN (U) = M . Partitioning U into subsets
U1, . . . , Uk such that ever fN |Uj is injective, we get that

µ(fN (Uj)) =
∫
Uj

Jµf
N dµ = 0

for j = 1, . . . , k. Recall Lemma 7.4. This implies that M = µ((fN (U)) = 0,
which is a contradiction.
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This has the following useful consequence: given any δ > 0 there exist
b = b(δ) > 0 such that

µ(B(x, δ)) ≥ b for all x ∈M. (8)

Indeed, if there were points such that the balls of radius δ around them have
arbitrarily small measures then, considering an accumulation point, one would
get a ball with zero measure, and that would contradict Lemma 8.1.

Now let µ1 and µ2 be any two ergodic maximizing measures. Our goal is to
prove that the two measures coincide. As a first step we prove that they are
equivalent. For this, we fix any (finite) partition P of M into subsets P such
that P has non-empty interior, and the boundary ∂P has zero measure for both
µ1 and µ2. Fixing δ > 0 small so that every P ∈ P contains some ball of radius
δ, and applying (8) to both measures, we conclude that there exists B > 0 such
that

µ1(P ) ≤ Bµ2(P ) and µ2(P ) ≤ Bµ1(P ) for all P ∈ P. (9)

Now let g be an inverse branch of any iterate fn, n ≥ 1. Using Lemma 7.4, we
get that µi(P ) = pnµi(g(P )) for i = 1, 2. It follows that (9) remains valid for
the images g(P ):

µ1(g(P )) ≤ Bµ2(g(P )) and µ2(g(P )) ≤ Bµ1(g(P )) (10)

for every P ∈ P and every inverse branch g of fn, for any n ≥ 1. We denote by
Q the family of all such images g(P ).

Lemma 8.2. Given any measurable set E ⊂ M and any ε > 0 there exists a
family E of pairwise disjoint elements of Q such that

µi
(
E \

⋃
E
g(P )

)
= 0 and µi

(⋃
E
g(P ) \ E

)
≤ ε for i = 1, 2.

Proof. By Lemma 3.1, all Lyapunov exponents of µi are larger than c(f). Hence,
by Lemma 4.3 and the remark following it, there exists N ≥ 1 and θ > 0 such
that µi-almost every point has density > 2θ of hyperbolic times.

Let U1 be an open set and K1 be a compact set such that K1 ⊂ E ⊂ U1 and
µi(U1 \ E) ≤ ε for i = 1, 2 and µi(K1) ≥ (1/2)µ(E). Using Lemma 4.4 with
B = K1 and ν = µi/µi(K1), we may find n1 ≥ 1 such that e−cn1 < d(K1, U

c
1 )

and the subset L1 of points x ∈ K1 for which n1 is a hyperbolic time satisfies
µi(L1) ≥ θµi(K1) ≥ (θ/2)µi(E). Let E1 the family of all g(P ) that intersect
L1, with P ∈ P and g an inverse branch of fn1 . Notice that the elements of E1
are pairwise disjoint, because the elements of P are pairwise disjoint. Moreover,
by Lemma 4.2, their diameter is less than e−cn1 . Thus, the union E1 of all the
elements of E1 is contained in U1. By construction, it satisfies

µi(E1 ∩ E) ≥ µi(L1) ≥ θµi(K1) ≥ (θ/2)µi(E).

Next, consider the open set U2 = U1 \E1 and let K2 ⊂ E \E1 be a compact
set such that µi(K2) ≥ (1/2)µi(E \ E1). Observe µi(E1 \ E1) = 0 because the

12



boundaries of the atoms of P have zero measure and that is preserved by the
inverse branches, since µi is invariant. Reasoning as before, we may find n2 > n1

such that e−cn2 < d(K2, U
c
2 ) and a set L2 ⊂ K2 such that µi(L2) ≥ θµi(K2)

and n2 is a hyperbolic time for every x ∈ L2. Denote by E2 the family of
inverse images g(P ) that intersect L2, with P ∈ P and g an inverse branch of
fn2 . As before, the elements of E2 are pairwise disjoint, and their diameters
are smaller than e−cn2 . The latter ensures that their union E2 is contained in
U2. Consequently, the elements of the union E1 ∪ E2 are also pairwise disjoint.
Moreover,

µi
(
E2 ∩ [E \ E1]

)
≥ µi(L2) ≥ θµi(K2) ≥ (θ/2)µi(E \ E1).

Repeating this procedure, we construct families Ek, k ≥ 1 of elements of Q
such that their elements are all pairwise disjoint and contained in U1, and

µi
(
Ek+1 ∩ [E \ (E1 ∪ · · · ∪ Ek)]

)
≥ (θ/2)µi

(
E \ (E1 ∪ · · · ∪ Ek)

)
(11)

for all k ≥ 1, where Ej = ∪Ejg(P ). Thus, µi
(⋃∞

k=1Ek \ E
)
≤ µi(U1 \ E) ≤ ε

for i = 1, 2, and (11) implies that

µi(E \
∞⋃
k=1

Ek) = 0.

This completes the proof of the lemma, with E =
⋃∞
k=1 Ek.

Remark 8.3. The lemma remains true if one asks that µi
(
E \

⋃
E g(P )

)
= 0

for both i = 1, 2. This follows from a variation of the previous construction,
considering each one of the two measures alternately: for each k ≥ 1 consider
i ≡ k mod 2; then ask that µi(Kk) ≥ (1/2)µi(E \ [E1 ∪ · · · ∪ Ek]), and choose
nk such that µi(Lk) ≥ θµ(Kk). The same kind of argument applies with any
number of probability measures µ1, . . . , µr. These extensions will not be used
here.

Combining (10) with Lemma 8.2, we get that, for any measurable set E ⊂M ,

µ1(E) ≤ ε+
∑
E
µ1(g(P )) ≤ ε+B

∑
E
µ2(g(P )) = ε+Bµ2(E).

As ε > 0 is arbitrary, we get that µ1(E) ≤ Bµ2(E). A symmetric argument gives
that µ2(E) ≤ Bµ1(E) for any measurable set E. This implies that µ1 = hµ2

where the Radon-Nikodym derivative h satisfies B−1 ≤ h ≤ B. Since µ1 and
µ2 are invariant measures,

µ1 = f∗µ1 = (h ◦ f)f∗µ2 = (h ◦ f)µ2.

As the Radon-Nikodym derivative is essentially unique, we get that h = h ◦ f
at µ2-almost every point. By ergodicity, it follows that h is constant almost
everywhere. Since the µi are both probabilities, we get that h = 1 and so
µ1 = µ2. This proves uniqueness of the maximizing measure.
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