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Abstract

We consider the problem of identifying possibly discontinuous doping pro-
files in semiconductor devices from data obtained by stationary voltage-current
maps. In particular we focus on the so-called unipolar case, a system of PDE’s
derived directly from the drift diffusion equations. The related inverse prob-
lem corresponds to an inverse conductivity problem with partial data. Two
distinct approaches for solving the identification problem are presented: a
Landweber-Kaczmarz method and a level set type method. Numerical im-
plementations of both methods show the different effectiveness of these ap-
proaches.

1 Introduction

The starting point of the mathematical model discussed in this paper is the system
of stationary drift diffusion equations (see system (8) in Section 2). This system
of equations, derived more than fifty year ago [28], is the most widely used to
describe semiconductor devices and represents an accurate compromise between
efficient numerical solvability of the mathematical model and realistic description
of the underlying physics [22, 23, 26].

This paper is devoted to the analysis of an identification problem related to a
particular model, the so called unipolar system, derived from the stationary drift
diffusion equations under certain simplifying assumptions on the concentration of
free carriers of positive charges and on the recombination-generation rate. In this
framework, the parameter function to be identified is the doping profile (a parameter
function in a system of PDE’s). This parameter depends on the space variables
only and represents the doping concentration, which gives the performance of the
device. It is produced by diffusion of different materials into the silicon crystal and
by implantation with an ion beam.

In practical experiments there are different types of measurement techniques,
such as Laser-Beam-Induced Current (LBIC) measurements, Capacitance measure-
ments, Current Flow measurements (refer to [11, 12, 13] for the first type and to
[4, 5, 6] for the others). These measurement techniques are related to different
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types of data and lead to different inverse problems for reconstructing the doping
profile. They are the so-called inverse doping profile problems. We shall focus on
reconstruction problems based on data generated by the voltage-current (V-C) map,
i.e., an operator that takes the applied voltage at a specified boundary part (corre-
sponding to a semiconductor contact) into the outflow current density on a different
boundary part (another contact). The two main contributions of this paper consists
of a theoretical identification result for a discretized version and the analysis of a
numerical method (a level set type method) for solving the inverse doping profile
problem in the unipolar case.

The precise implantation of the doping profile is crucial for the desired perfor-
mance of the semiconductor device. As far as applications are concerned, there
is substantial interest in replacing expensive laboratory testing by numerical sim-
ulation and non-destructive testing, in order to minimize manufacturing costs of
semiconductors as well as for quality control. Therefore, the development, as well
as the analysis, of efficient algorithms for inverse doping profile problems are per-
fectly justified from a practical viewpoint.

This paper is organized as follows: In Section 2 we briefly introduce the drift
diffusion equations, formally define the V-C map, and derive the unipolar system
(see system(11)). The latter models the direct problem related to the inverse doping
profile problem analyzed in this paper.
In Section 3 we treat the identification issue for this inverse problem. We do not
have, at present, a theoretical result showing uniqueness in the identification of the
doping profile. However, we do present two lines of reasoning that support the
conjecture of an identifiability result for the doping profile: The first one is based
on recent results due to Bukhgeim and Uhlmann [3] on global uniqueness for the
local Dirichlet-to-Neumann map; The second one concerns a discretized version of
the problem that falls within the scope of tomography in the presence of diffusion
and scattering [16, 17].
In Section 4 a Landweber-Kaczmarz iterative method is proposed to reconstruct the
doping profile function. This corresponds to the simplest idea (a steepest descent
method) for solving the least square formulation the inverse problem. A numerical
implementation of the method is presented. The sensibility of the reconstruction
with respect to the number of sources is investigated.
In Section 5 we use a level set type method to solve the identification problem.
In this approach, a single pair of (voltage, current) data is used. Nevertheless,
the quality of the reconstruction is much better than the one obtained by the
Landweber-Kaczmarz method. An analytical result concerning stability, conver-
gence and well-posedness of this level set method is also presented. Section 6 is
devoted to final comments and conclusions.

2 Inverse doping profile problems

2.1 Drift diffusion equations

The drift diffusion equations are the most widely used model to describe semi-
conductor devices. The mathematical modeling of semiconductor equations has
developed significantly, together with their manufacturing. The basic semiconduc-
tor device equations were first presented, in the level of completeness discussed here,
by W.R. van Roosbroeck in [28]. Since then, it has been subject of intensive math-
ematical and numerical investigation. Recent detailed expositions of the subject of
modeling, analysis and simulation of semiconductor equations can be found, e.g.,
in [22, 23, 26].
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The stationary drift diffusion equations consist of the Poisson equation (1) for
the electrostatic potential V and the continuity equations (2) and (3) for the electron
density n and the hole density p respectively (notice that −∇V is the electric field,
while n and p are the concentration of free carriers of negative charge and positive
charge respectively).

div(ε∇V ) = q(n− p− C) in Ω (1)

divJn = R in Ω (2)

divJp = −R in Ω, (3)

where Jn = µn(∇n− n∇V ) and Jp = −µp(∇p+ p∇V ). A word on notation:

• The domain Ω ⊂ Rd (d = 2, 3) represents the semiconductor device;

• The positive constants ε and q denote the permittivity coefficient and the
elementary charge respectively;

• µn and µp represent the mobilities of electrons and holes respectively;

• Dn and Dp are diffusion coefficients for electrons and holes respectively;

• R = R(n, p, x) denotes the recombination-generation rate, which is typically
a function of the type: R = R(n, p, x)(np−n2

i ), where ni denotes the intrinsic
charge density.

• The function C = C(x) denotes the doping concentration, which is produced
by diffusion of different materials into the silicon crystal and by implantation
with an ion beam.

In many technological applications, the doping profile C is the parameter that
has to be identified. After the manufacturing process of the semiconductor device,
it is often necessary to test whether the doping has been correctly implanted. The
inverse problem we are concerned with is related to a non destructive identification
procedure, based on experiments modeled by the voltage to current operator (see
Subsection 2.2).

In the sequel we discuss the corresponding boundary conditions for system (1)–
(3). The boundary of Ω is assumed to be divided in two nonempty parts: ∂Ω =
∂ΩN ∪ ∂ΩD. On the Dirichlet part of the boundary, ∂ΩD, the following boundary
conditions are prescribed:

V = VD(x) := U(x) + Vbi(x) on ∂ΩD, (4)

n = nD(x) := 1
2

(
C(x) +

√
C(x)2 + 4n2

i

)
on ∂ΩD, (5)

p = pD(x) := 1
2

(
− C(x) +

√
C(x)2 + 4n2

i

)
on ∂ΩD, (6)

where U(x) is the applied potential, (differences in U(x) between different segments
of ∂ΩD correspond to the applied bias between these two contacts), Vbi(x) :=
UT ln(nD(x)/ni) and the constant UT denotes the thermal voltage.

The Neumann part of the boundary ∂ΩN = ∂Ω − ∂ΩD models insulating or
artificial surfaces. Therefore, a zero current flow and a zero electric field in the
normal direction are prescribed, i.e., homogeneous boundary conditions, in terms
of the current densities1 Jn and Jp, are supplied:

∇V · ν = Jn · ν = Jp · ν = 0 on ∂ΩN . (7)

1The densities of the electron and hole current Jn and Jp satisfy the current relations:

Jn = q(Dn∇n− µnn∇V ) , Jp = q(−Dp∇p− µpp∇V ) , in Ω .
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Figure 1: The domain Ω ⊂ R2 represents a P-N diode. The P-region corresponds to the
subregion of Ω, where C < 0. In the N-region C > 0 holds. The curve between these
regions is called p-n junction.

∂ΩN ∂ΩN

∂ΩN Γ1 ⊂ ∂ΩD

Γ0 ⊂ ∂ΩD

N-region (C > 0)

P-region (C < 0)

Using an adequate change of variables (motivated by the Einstein relations:
Dn = UTµn, Dp = UTµp), it is possible to rewrite system (1)–(7) in a more conve-
nient way. Indeed, first we define the Slotboom variables (u, v) by

n(x) = ni exp(V (x)/UT )u(x), p(x) = ni exp(−V (x)/UT ) v(x)

and rescale both the potential and the mobilities: V (x) := V (x)/UT , µ̃n := qUTµn,
µ̃p := qUTµp. Then, we obtain the system

λ2 ∆V = δ2
(
eV u− e−V v

)
− C in Ω (8a)

div Jn = δ4Q(V, u, v, x) (uv − 1) in Ω (8b)

div Jp = −δ4Q(V, u, v, x) (uv − 1) in Ω (8c)

V = VD := U + Vbi on ∂ΩD (8d)

u= uD := e−U on ∂ΩD (8e)

v= vD := eU on ∂ΩD (8f)

∇V · ν = Jn · ν = Jp · ν = 0 on ∂ΩN (8g)

Two dimensionless positive parameters occur, namely ε and δ (see [22, 23] for
the formulas), both small in many practical applications. Existence (in weak sense)
and some uniqueness results for system (8) can be found in [22, 23]. One can
prove, under suitable regularity assumptions on the boundary conditions uD, vD ,
U and on the doping profile C, that system (8) admits a weak solution (V, u, v) in
(H1(Ω)∩L∞(Ω))3 (we refer to [23, Theorem 3.3.16] and [5, Theorem 4.2]). Stronger
existence results in (H2(Ω) ∩ L∞(Ω))3 can be found in [22].

2.2 Derivation of the inverse problem

We start by defining the voltage-current (V-C) map:

ΣC : H3/2(∂ΩD) → L2(Γ1)
U 7→ J · ν|Γ1 = (Jn + Jp) · ν|Γ1 ,

where Γ1 ⊂ ∂ΩD corresponds to the part of the boundary (a contact) where mea-
surements are taken (an example of a very simple semiconductor device, a P-N
diode, is shown in Figure 1). Since the potential can be shifted by a constant,
we shall assume w.l.o.g. that UΓ1 = 0. In practical applications, the function
U ∈ H3/2(∂ΩD) modeling the voltage input in (8) is assumed to be piecewise con-
stant in the contacts.
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In the sequel we review some properties of the operator ΣC . A complete proof
can be found in [5].

Lemma 2.1. The current ΣC(U) ∈ L2(Γ1) is uniquely defined for each voltage
U ∈ H3/2(∂ΩD) in the neighborhood of U ≡ 0, i.e., the operator ΣC is well-defined
in the neighborhood of U ≡ 0. Moreover, ΣC is continuous and continuously Fréchet
differentiable in the neighborhood of U ≡ 0.

The map ΣC takes the applied voltage U into the corresponding current den-
sity. The linearized unipolar case (close to equilibrium) corresponds to the model
obtained from the drift diffusion equations by linearizing the V-C map at U = 0.
This simplification is motivated by the fact that, due to hysteresis effects for the
large applied voltage, the V-C map is single valued only in a neighborhood of U = 0.
The Gateaux derivative of ΣC at U = 0 in direction h ∈ H3/2(∂ΩD) is given by

Σ′C(0)h =
(
µne

Vbi ûν − µpe−Vbi v̂ν
)
|Γ1 ,

where (û, v̂) solve





div (µne
V 0∇û) = Q0(V 0, x)(û+ v̂) in Ω

div (µpe
−V 0∇v̂) = Q0(V 0, x)(û+ v̂) in Ω

û = −h and v̂ = h on ∂ΩD

Jn · ν = Jp · ν = 0 on ∂ΩN

(9)

and V 0 is a solution of the Poisson equation at equilibrium





λ2∆V 0 = eV
0 − e−V 0 − C in Ω

V 0 = Vbi on ∂ΩD
∇V 0 · ν = 0 on ∂ΩN .

(10)

From now on, the following simplifying assumptions are made:
A1) The concentration of holes satisfy p = 0 (or v = 0);
A2) No recombination-generation rate is present, i.e., R = 0 (or Q = 0);
A3) The electron mobility is constant, i.e., µn = 1.

Under those assumptions, the decoupled system (9)-(10) reduces to:





λ2∆V 0 = eV
0 − C in Ω

V 0 = Vbi on ∂ΩD
∇V 0 · ν = 0 on ∂ΩN





div (eV
0∇u) = 0 in Ω

u = U on ∂ΩD
Jn · ν = 0 on ∂ΩN

(11)

(notice that we skipped the ’̂’ in the above notation).
The inverse problem of identifying the doping profile in the linearized unipolar

model (11) corresponds to the identification of C(x) from the map

F : D(F ) ⊂ L2(Ω) → L(H3/2(∂ΩD);H1/2(Γ1))
C 7→ ΛC

where ΛC is the map that takes U into (Jn · ν)|Γ1 , by solving the decoupled system
(11). Notice that ΛC derives from Σ′C(0) if we take into account the simplifying
assumptions A1) and A2).

Since V = Vbi(x) is known at ∂ΩD, the current data Jn · ν = µne
V 0

uν at Γ1

(output) can be directly replaced by the Neumann data uν . Therefore, the inverse
problem can be divided into two distinct steps:

Identification Problem 2.2 (Unipolar Case).
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1) Define γ := eV
0

and identify γ from the DtN map Λγ : U 7→ γuν |Γ1 , where u
solves

div(γ∇u) = 0 in Ω , u = U on ∂ΩD , uν = 0 on ∂ΩN ;

2) Obtain the doping profile C from: C(x) = γ(x)− λ2∆ (ln γ(x)), x ∈ Ω.

The evaluation of C from γ can be explicitely performed (a direct problem) and
is a well posed procedure. The identification issue in Problem 2.2 (1) corresponds to
the electrical impedance tomography in elliptic equations with mixed boundary data.
For the case of the full DtN operator, i.e., Γ1 = ∂ΩD = ∂Ω, this inverse problem
has been intensively analyzed in the literature (see, e.g., [2, 19] for a survey).

The doping profile identification problem in the bipolar case can be formulated
in an analogous way:

Identification Problem 2.3 (Bipolar Case).

1) Define γ := eV
0

and identify γ from the DtN map Φγ : U 7→ (µnγuν −
µpγ

−1vν)|Γ1 , where (u, v) solve the coupled system

div(µnγ∇u) = Q0(u+ v) in Ω , u = −U on ∂ΩD , uν = 0 on ∂ΩN ;

div(µpγ
−1∇v) = Q0(u+ v) in Ω , v = U on ∂ΩD , vν = 0 on ∂ΩN ;

2) Obtain the doping profile C from: C = γ − γ−1 − λ2∆ (ln γ).

3 Inverse doping profile: Identification issue

In this section we consider some theoretical aspects of the inverse doping profile
problem. Despite the encouraging numerical results of Sections 4 and 5, at present,
we do not have a theoretical result showing uniqueness of the doping profile from V-
C data measured on distinct sub-domains of the boundary. We do present, however,
a reasoning that support the conjecture of an identifiability result for the doping
profile. The first one is based on recent results due to Bukhgeim and Uhlmann [3]
on global uniqueness for the local Dirichlet-to-Neumann map. The second one
concerns a discretized version of the problem that falls within the scope of identifying
the potential of a discretized Schrödinger equation using external measurements.
We treat this problem using techniques from the so-called isotropic case of diffuse
tomography [16, 17].

3.1 Global uniqueness approach

In this paper we are considering Ω (the semiconductor) to be 2-dimensional, unless
stated otherwise. Therefore, each current measurement is given by a function of one
space variable defined on Γ1 ⊂ ∂Ω. Obviously, a single measurement is not sufficient
to identify the doping profile C : Ω ⊂ R2 → R. However, adapting some results from
[24], related to electrical impedance tomography, we argue that the knowledge of
the operator F in Subsection 2.2 (full data case) is enough to determine C uniquely.

We argue as follows: Let V 0 be the solution of the Poisson equation at equilib-
rium in (11). Given an input voltage U ∈ H3/2(∂ΩD), the output current can be
identified (after rescaling) with the Neumann data of u at Γ1, i.e., uν |Γ1 = ΛC(U),
where u is the solution of the elliptic equation in (11). From standard results in
elliptic theory, one concludes that for a domain Ω with Lipschitz boundary, there
is a one to one relation between the solutions V 0 ∈ H2(Ω) of the Poisson equation
and the potentials C ∈ L2(Ω). Therefore, it is enough to consider the problem of
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identifying the potential V 0 in (11) or, equivalently, the conductivity γ = eV
0

as
stated in Problem 2.2. The problem of identifying conductivities from the DtN map
was analyzed by Nachman in [24]. The next Lemma corresponds to an adaptation
of his result to Identification Problem 2.2.

Lemma 3.1. Let Ω ⊂ R2 be bounded with Lipschitz boundary. Further, let Γ1 =
∂ΩD = ∂Ω and let C1, C2, be given two doping profiles such that the corresponding
conductivities satisfy

γ1, γ2 ∈ D(F ) := {γ ∈W 2,p(Ω), p > 1; γ+ ≥ γ(x) ≥ γ− > 0 a.e. in Ω} .

Then, the equality Λγ1 = Λγ2 implies C1 = C2.

The result of Nachman mentioned above was recently improved by Astala and
Päivärinta [1], who proved that any L∞ conductivity in two dimensions can be
determined uniquely from the DtN map.

We address yet another identification result (for the inverse doping profile prob-
lem) based on the global uniqueness approach. What concerns uniqueness results
for the DtN operator with partial boundary data, the next lemma corresponds to
the state of the art (see [3]). This time we consider domains Ω ⊂ R3 with regular
boundary and, moreover, ∂Ω = ∂ΩD = Γ0 ∪Γ1, i.e., the contacts where the voltage
is prescribed (Γ0) and where the current is measured (Γ1) overlap.

Lemma 3.2. Let Ω ⊂ Rn, with n ≥ 3, be a bounded domain with C2 boundary.
Further, let ξ ∈ Rn with ‖ξ‖ = 1 and ε > 0 be given. We define

Γ0 := {x ∈ ∂Ω; 〈ν(x), ξ〉 > −ε}, Γ1 := {x ∈ ∂Ω; 〈ν(x), ξ〉 < ε}

where ν(x) is the unit normal vector at x ∈ ∂Ω (notice that Γ0 ∩ Γ1 6= ∅). More-
over, let C1, C2 be doping profiles such that the corresponding conductivities satisfy
γ1, γ2 ∈ C2(Ω) and γj(x) ≥ γ− > 0 a.e. in Ω, j = 1, 2.

Then, the equality Λγ1 = Λγ2 implies C1 = C2.

3.2 The Discrete Schrödinger Equation with Partial DtN
Data

In this section we consider the characterization problem for the Schrödinger oper-
ator potential V given partial information on the Dirichlet-to-Neumann map ΛV

associated to the problem

{ −∆w + V w = 0 in Ω
w
∣∣
∂Ω

= φ
(12)

It is well-known that the change of variables

w = γ1/2u and V = γ−1/2∆γ1/2 (13)

establishes a 1− 1 correspondence between the solutions of (12) and those of

{
div(γ∇u) = 0 in Ω
u
∣∣
∂Ω

= γ−1/2
∣∣
∂Ω
φ

(14)

The Dirichlet-to-Neumann map for (12) is related to that of (14) by

ΛV (φ) = γ−1/2Λγ(γ−1/2φ) +
1

2γ

∂γ

∂n
φ . (15)
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in the semi-conductor modeling.

Figure 2: The discretization and the boundary conditions.

It is clear that the knowledge of the DtN map ΛV for Equation (12) is equivalent
to knowledge of its counterpart Λγ for (14). Furthermore, any restriction of ΛV to
φ supported on a subset Γ0 of the boundary corresponds to the restriction of Λγ
supported on this set Γ0. If we consider current measurements taken in a subset Γ1

contained in ∂Ω, then, at the level of ΛV this means that we will only consider the
information from ΛV on Γ1. Let us call such map ΛV

∣∣
Γ0,Γ1

.

To the best of our knowledge, there is no characterization result of V based on
ΛV
∣∣
(Γ0,Γ1)

when Γ0∩Γ1 = ∅. We explore here the discrete analogue of the Dirichlet-

to-Neumann characterization problem with partial data for the Schrödinger opera-
tor. In this context we consider a discretization Vij = V (xi, yj) of V : Ω → R for

(i, j) ∈ Ω
def
= {(i, j)|1 ≤ i, j ≤ N, i, j ∈ Z}. For a mesh size ∆x = ∆y = ε, the first

equation in (12) is replaced by

uij =
1

4 + ε2Vij
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1) for (i, j) ∈ Ω , (16)

We define wij = 4/(4 + ε2Vij) and consider the set of equations described by

uij −
wij
4

(ui+1,j + ui−1,j + ui,j+1 + ui,j−1) = 0 ,where (i, j) ∈ Ω. (17)

We remark that except for minor modifications, in what follows, we could use
1 ≤ i ≤ N1 and 1 ≤ j ≤ N2. See Figure 2

The system of equations defined by (17) must be supplemented with suitable
boundary conditions. In [16, 17], Dirichlet type boundary conditions were imposed
for ui,j whenever (i, j) ∈ ∂Ω, where ∂Ω is the set of points (i, j) with 0 ≤ i, j ≤ N+1
where either i ∈ {0, N + 1} or j ∈ {0, N + 1}, but not both. See Figure 2. More
precisely, in [16, 17] one imposes the condition

ud = δd ∀d = (i0, j0) ∈ ∂Ω , (18)
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where δd(l)
def
= 1 if d = l and 0 otherwise.

If 0 ≤ wij ≤ 1 for all (i, j) ∈ Ω, then the problem (17) with boundary conditions
(18) has a natural probabilistic interpretation. Namely, uij represents the proba-
bility that a particle undergoing a random walk with absorption will reach the site
d = (i0, j0) given that at each site α = (α1, α2) it has a survival probability wα
for α ∈ Ω. See [16]. We remark that a sufficient condition for wij ∈ (0, 1) is that
Vij > 0. In what follows we will rely heavily on such interpretation and the notation
presented in [16, 17]. In fact, we shall extend some of the results therein so as to
allow for the more general boundary conditions that appear in the identification of
the doping profile. We refer the reader to Figure 2 where the different boundary
conditions are depicted.

The boundary region ∂Ω will be decomposed into two parts, ∂ΩN and ∂ΩD.
On ∂ΩN homogeneous Neumann boundary conditions will be imposed. In this
discretized setting, this means that the values of uα on pixels α ∈ ∂ΩD and on
the adjacent one α′ ∈ ∂Ωi

D coincide. The region ∂ΩD will be further subdivided
into two regions Γ0 and Γ1. On Γ0 we will impose nonhomogeneous Dirichlet data
whereas on Γ1 we impose homogeneous Dirichlet data. The measurements corre-
spond to normal derivatives on Γ1. In other words, uα−uα′ for α ∈ Γ1 and α′ ∈ Γi1
with α′ adjacent to α. Since uα = 0 for α ∈ Γ1 this corresponds to evaluating uα′

for α′ ∈ Γi1.
The first natural question to be addressed is the well posedness of the direct

problem. It is answered by the following:

Proposition 3.3. Given a distribution of values w = (wi,j)1≤i,j≤N ∈ (0, 1)N×N

the system of equations in (17) endowed with the boundary conditions

uα = uα′ for α ∈ ∂ΩN adjacent to α′ ∈ ∂Ωi
N (19)

uβ = δd for β ∈ Γ0 (20)

uγ = 0 elsewhere on ∂Ω , (21)

has a unique solution for each d ∈ Γ0. Furthermore, this solution depends rationally
on the components of the array w.

Proof: Let us notice that we have a (sparse) system of N 2 equations in the
N2 unknowns ((uij)). The equations for the sites (i, j) with 2 ≤ i, j ≤ N − 1
are precisely those given by (17), whereas for the sites α′ = (i, j) ∈ ∂Ωi

N or ∂Ωi
D

require us to use the boundary conditions. The variables uα in the site α adjacent to
α′ ∈ ∂Ωi

N coincides with uα′ . Thus, the corresponding equation has to be modified
accordingly. On the other hand, if α′ ∈ ∂Ωi

D then the value of uα must be δd(α).
In the sites adjacent to the Dirichlet boundary, or in the interior sites, the diagonal
element of the matrix representing the system (17) is 1. On the sites adjacents to
the Neumann boundary the value of wij must be changed to wij/(1− (wij/4)). In
either case, after incorporating the boundary conditions (of mixed Neumann and
Dirichlet type) the matrix representing the problem is strictly diagonally dominant.
Thus the system of equations is solvable and possesses a unique solution, which
depends rationally on the coefficients wij . Q. E. D.

Remark 3.4. The assumption wij ≤ 1 for all i and j is crucial for the above
argument. This is ensured, for example, if Vij > 0 for all i and j, which in turn
can be guaranteed if V (x) is positive.

Remark 3.5. The vanishing Neumann boundary conditions can be recast so as
to preserve the probabilistic interpretation of the problem as follows: Suppose that
(i, j) ∈ ∂Ωi

N is adjacent to (i − 1, j) ∈ ∂ΩN (similar considerations hold at the
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other points (i, j) ∈ ∂Ωi
N). Then, the Equation (17) for this site becomes

uij =
wij

4− wij
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1) = 0 . (22)

Remark 3.6. Since the variable ui−1,j and the coefficient wi,j do not appear in
any other equation in the system, we could reinterpret Equation (22) as

uij =
weff
ij

3
(ui+1,j + ui−1,j + ui,j+1 + ui,j−1) = 0 .

with weff
ij = 3wij/(4 − wij). Notice that weff

ij ∈ (0, 1) if wij ∈ (0, 1). Thus, for all
practical purposes, the equations associated to the Neumann boundary sites could be
replaced by equivalent equations with vanishing Dirichlet boundary conditions.

α

α  = (m,n)
0

d

(a) An example of a path α con-
necting an internal point to a
boundary point d.

d
α 

d

(i,j)

(b) An example of a few mini-
mal length paths connecting an
internal point to the point αd ad-
jacent to a detector d.

Figure 3: The paths.

Remark 3.7. In [16] a crucial role is played by the probabilistic interpretation of
the system of equations (17) in the solution of the inverse problem of the so-called
isotropic diffuse tomography problem. See also [27]. In particular, the following
Feynman-Kac type formula holds for a fixed d ∈ Γ0

umn =
∑

α∈Pd
(m,n)

∏

s∈α
tαs+1
αs ,

where Pd(m,n) denotes the set of all paths connecting the site (m,n) to the boundary
site d, and a path α consists of an ordered set of successively adjacent sites starting
at a neighbor to (m,n) and ending at d, and t

αs+1
αs denotes the transition probability

from the site αs to the site αs+1. Thus, tα1
α0

= wmn/4, · · · .

We now turn our attention to the inverse problem. We define the restricted
(discrete) DtN map ΛwΓ0,Γ1

which sends Dirichlet data supported on Γ0 to Neumann

10



measurements on Γ1. Our next goal is to prove an identification result that is
similar in spirit to the main result of [16]. It implies that in the discrete context,
and under suitable hypothesis on the potential, one can determine such potential in
the interior of a region defined by the current measurement boundary using voltage
to current measurements. The larger the boundary Γ1 in Figure 2.b, the larger
the region where the potential can be uniquely determined from voltage to current
measurements provided the total length of Γ1 is smaller than the size of the side.
More precisely, we have the following:

Theorem 3.8. For a dense open set of values w ∈ (0, 1)N×N , the map ΛwΓ0,Γ1

uniquely determines the values of wij for (i, j) ∈ Ω satisfying 2 ≤ i + j ≤ p′ + 1,
2p′ ≤ N + 1, provided the support of the Dirichlet data contains the points (N +
1, N), · · · , (N + 1, N − p′ + 1) and p′ is smaller than the size of one of the sides of
Γ1.

Proof: The argument follows closely that of [16] by proceeding along the diago-
nals. The p-th diagonal is defined by the sites(i, j) ∈ Ω such that

i+ j = p+ 1 .

For instance, the very first diagonal, associated to p = 1, leads to the equation

V̂11z
d
11 − (zd12 + zd10 + zd01 + zd21) = 0 (23)

where (zdij) denotes the solution of system (17) with boundary conditions (19)–(21),
and Dirichlet data specified as δd for d ∈ Γ0. Furthermore, we shall use the notation

V̂ij
def
= 4/wij . In this simple case, we see that in Equation (23) zd10 = zd01 = 0 and

zd11, z
d
12, z

d
21 are all boundary measurements, and thus we can recover V̂11. The next

diagonal (p = 2) yields for each detector d:

V̂12z
d
12 − (zd13 + zd11 + zd02 + zd22) = 0

V̂21z
d
21 − (zd22 + zd20 + zd11 + zd21) = 0

Here the unknowns are V̂12, V̂21, and zd22. The remaining variables, zd12, zd21, zd13, zd11,
zd20, zd02 are all boundary values or known from the measurements. Upon choosing
two distinct detectors we are led to the system:





V̂12z
d1
12 − (zd1

13 + zd1
11 + zd1

02 + zd1
22) = 0

V̂21z
d1
21 − (zd1

22 + zd1
20 + zd1

11 + zd1
21) = 0

V̂12z
d2
12 − (zd2

13 + zd2
11 + zd2

02 + zd2
22) = 0

V̂21z
d2
21 − (zd2

22 + zd2
20 + zd2

11 + zd2
21) = 0 ,

(24)

where the unknown is (V̂12, V̂21, z
d1

22 , z
d2

22). The system has a unique solution iff its
determinant, which is given by zd1

12z
d2
21 − zd1

21z
d2
12 does not vanish. In this case, as

a byproduct of the solution we also determine zd1
22 and zd2

22 . The latter will be
used in the next step, together with a possible collection of other values of zd22 for
d ∈ {d1, d2, · · · , dmax}. In general, for p ≥ 1, the equations associated to i+j = p+1
and detector d take the form





V̂1,pz
d
1,p − (zd1,p+1 + zd1,p−1 + zd0,p + zd2,p) = 0

V̂2,p−1z
d
2,p−1 − (zd2,p + zd2,p−2 + zd1,p−1 + zd3,p−1) = 0

... =
...

V̂p−1,2z
d
p−1,2 − (zdp−1,3 + zdp−1,1 + zdp−2,2 + zdp,2) = 0

V̂p,1z
d
p,1 − (zdp,2 + zdp,0 + zdp−1,1 + zdp+1,1) = 0

(25)

11



Notice that if we assume that the values of zdi′,j′ have all been determined (or
measured) for i′ + j′ ≤ p+ 1 then the unknowns become

V̂1,p, V̂2,p−1, · · · , V̂p,1 and zd1,p+1, z
d
2,p, · · · , zdp+1,1 .

We now order the detectors d1, d2, · · · , dm, successively from left to right, on the
region Γ0 of Figure 2(b). By detectors we mean positions where the Dirichlet data
is taken to be δd(i, j).

2 The given data consists of the currents in the region
adjacent to Γ1. Since on Γ1 we have u = 0, knowledge of the currents tantamounts
to knowledge of the values of udα for α ∈ {0}× {1, · · · , p′} or α ∈ {1, · · · , p′}× {0}.

We now introduce the following inductive hypothesis:
H1: For a generic (open and dense) set A of the space of unknowns ((V̂ij)) ∈
(1,∞)N×N one can solve the system of equations (25) for the variables zdij with

i + j ≤ p + 2, d ∈ {d1, d2, · · · , dp}, and V̂ij for i + j ≤ p + 1 in terms of the given
data.

In the present context, by data we mean the values of zdij for which any of the
indices i or j belongs to the set {0, 1} and d ∈ {d1, d2, · · · , dp}. The validity of
the induction hypothesis for p = 1 derives from the remark following Equation (23)
above. The inductive step relies on the fact that in order to go from p to p+ 1 we
have to solve a system of equations based on (25) for detectors d1, · · · , dp. This in
turn, is equivalent to showing that the determinant

Dp
def
=

∣∣∣∣∣∣∣∣∣∣∣∣

zd1
1,p zd2

1,p zd3
1,p . . . z

dp−1

1,p z
dp
1,p

zd1
2,p−1 zd2

2,p−1 zd3
2,p−1 . . . z

dp−1

2,p−1 zdp

...
...

...
...

...
...

zd1
p−1,2 zd2

p−1,2 zd3
p−1,2 . . . z

dp−1

p−1,2 z
dp
p−1,2

zd1
p,1 zd2

p,1 zd3
p,1 . . . z

dp−1

p,1 z
dp
p,1

∣∣∣∣∣∣∣∣∣∣∣∣

(26)

does not vanish in the set A. Although the technique we employ here is the very
same used in [16], the crucial difference is that in our case the determinant Dp

consists of detectors on the opposite side from where the measurements are being
taken. More precisely, we show that the analytic function Dp(w) is not identically
zero in a neighborhood of w = 0. Another difference from the situation in [16] is
the fact that we have Neumann type boundary conditions in part of the boundary.
This, however, causes no further difficulty at the light of Remark 3.5.

To complete the proof, it thus remain to show that if we take all values of wij = ρ
and let ρ→ 0, then under the assumption that p ≤ p′, Dp = A(p)ρL(p)+O(ρL(p)+1)
with A(p) 6= 0 and L(p) depending only on geometric parameters associated to the
size of the grid and the location of the detectors and the diagonal p. To prove
this claim, we start by noticing that because of Remark 3.7, when ρ → 0, we have
zdij(ρ) = Ad,pi,j ρ

`(p,i,j)+1 +O(ρ`(p,i,j)+2), where `(p, i, j) is the length of the smallest
path connecting the site (i, j) to the point αd in Γ0 adjacent to the detector d. See

Figure 3(b). Furthermore, Ad,pi,j denotes the number of paths in the region Ω of
minimal length `(p, i, j) connecting (i, j) to αd. If we assume that the coordinates
of αd = (i′, j′) then it is easy to check that `(p, i, j) = |i′− i|+ |j′ − j| and that the
number of such paths is given by

Ad,pi,j =

(
|i′ − i|+ |j′ − j|

|i′ − i|

)
=

(
`(p, i, j)
|i′ − i|

)
=

(
`(p, i, j)
|j′ − j|

)
(27)

A straightforward combinatorial argument gives that A(p) 6= 0 provided 2p′ ≤ N+1.
3

2We recall that in the region Γ0 we control the voltages and by placing such detectors in this
region we are defining a basis for the space of input voltages.

3The hypothesis that 2p′ ≤ N + 1 is crucial, and although it seems it could be relaxed we
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4 The Landweber-Kaczmarz method

In this section we discuss a numerical approach for doping profile identification in
the linearized unipolar case close to equilibrium (see Problem 2.2). As discussed
in Subsection 2.2, the main task in this inverse problem is the identification of the
coefficient γ in the elliptic PDE

div(γ∇u) = 0 in Ω , u = U on ∂ΩD , uν = 0 on ∂ΩN . (28)

The second step in Identification Problem 2.2 can be carried out in a straightforward
way. Thus, we can reduce the inverse doping profile problem in the linearized unipo-
lar case to the problem of identifying γ(x) in (28) from the Dirichlet to Neumann
(DtN) map

Λγ : H3/2(∂ΩD) → H1/2(Γ1)
U 7→ γ uν |Γ1

(29)

Notice that, due to the nature of the boundary conditions related to the practical
experiments, we have to restrict the domain of definition of the DtN operator to
the linear subspace D(Λγ) := {U ∈ H3/2(∂ΩD); U |Γ1 = 0}. Furthermore, the
measurements (Neumann data) are only available at Γ1.

This is the essential difference between the parameter identification problem in
(28) and the inverse problem in electrical impedance tomography, namely the fact
that both Dirichlet and Neumann data are known only at specific parts of the
boundary. For this particular type of DtN operators there are so far no analytical
results concerning identifiability and, to our knowledge, the few numerical results
in the literature are those discussed in [4, 5, 6, 13].

In this section we shall work within the following framework:

• Parameter space: X := L2(Ω);

• Input (fixed): Uj ∈ H3/2(∂ΩD), with Uj |Γ1 = 0, 1 ≤ j ≤ N ;

• Output (data): Y =
{

Λγ(Uj)
}N
j=1
∈
[
L2(Γ1)

]N
=: Y ;

• Parameter to output map: F : D(F ) ⊂ X → Y
γ(x) 7→

{
Λγ(Uj)

}N
j=1

where the domain of definition of the operator F is

D(F ) := {γ ∈ L2(Ω); γ+ ≥ γ(x) ≥ γ− > 0, a.e. in Ω}
(here γ− and γ+ are appropriate constants). We shall denote noisy data by Y δ and
assume that the data error is bounded by ‖Y − Y δ‖ ≤ δ. Thus, we are able to
represent the inverse doping problem in the general form

F (γ) = Y δ . (30)

The next lemma describes some crucial properties of the operator F , that will
be necessary for the analysis of the iterative methods discussed in this paper. Here,
only a sketch of the proof of Lemma 4.1 is given, for details see [5].

Lemma 4.1. Let the voltages {Uj}Nj=1 be chosen in the neighborhood of U ≡ 0. The
parameter-to-output map F defined above is well-defined and Fréchet differentiable
on D(F ).

Proof: The first statement follows from the well-definedness of the V-C map, cf.
Lemma 2.1. The Fréchet differentiability of F follows from the differentiability of
the V-C map (see Lemma 2.1) together with the differentiability of the map that
takes the doping profile C onto the solution (V, u, v) of (8). �
do not have a proof of this fact at the present. We thank C. G. Tamm (IMPA) for enlightening
discussions on this combinatorial exercise.
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A simple and robust iterative method to solve the inverse problem (30) is the
Landweber iteration [7, 8, 10, 18], in which the k-th step is described by

γδk+1 = γδk − F ′(γδk)∗
(
F (γδk)− Y δ

)
.

This iteration is known to generate a regularization method for the inverse problem,
the stopping index playing the rôle of the regularization parameter (for regulariza-
tion theory see, e.g., [8, 9, 10, 29]).

We propose a variation of the Landweber iteration as an alternative to solve the
identification problem (28), namely the Landweber-Kaczmarz method. This method
results from the coupling of the strategies of both the Landweber and the Kaczmarz
iterative methods. The motivation for this choice of strategy lays in the fact that
the data in (30) consists of a vector of measurements {Λγ(Uj)}Nj=1 and the principal
characteristic of the Kaczmarz method is the minimization, at each iteration step,
of a least square functional which takes into account only one component of this
measurement vector.

A detailed analysis of the Landweber-Kaczmarz method can be found in [20].
It is worth mentioning that this method has already been successfully applied to
electrical impedance tomography by Nachman in [24].

To formulate the method, we first need to define the components of the param-
eter to output map: F = {Fj}Nj=1, where

Fj : L2(Ω) ⊃ D(F ) 3 γ 7→ Λγ(Uj) ∈ L2(Γ1) .

Now, setting Y δj := Fj(γδ), 1 ≤ j ≤ N , the Landweber-Kaczmarz iteration can be
written in the form

γδk+1 = γδk −F ′k(γδk)∗
(
Fk(γδk)− Y δk

)
, (31)

for k = 1, 2, . . . , where we adopted the notation

Fk := Fj , Y δk := Y δj , whenever k = iN + j, and

{
i = 0, 1, . . .
j = 1, . . . , N

.

Notice that each step of the Landweber-Kaczmarz method consists of one Landwe-
ber iterative step with respect to the j-th component of the residual in (30). These
Landweber steps are performed in a cyclic way, using the components of the residual
Fj(γ)− Y δj , 1 ≤ j ≤ N , one at a time.

As far as the implementation is concerned, it is enough to describe the general
step of the Landweber iteration. The variational formulation of the iterative step
in (31) reads

〈γk+1 − γk, h〉L2(Ω) = −〈F ′k(γk)h, Fk(γk)− Yk〉L2(Ω) , (32)

where h ∈ H1(Ω) is a test function (to simplify the notation we set δ = 0, i.e.,
Y δk = Yk and γδk = γk).

In order to compute the inner product on the right hand side of (32), we use the
identity:

〈F ′(γ)h, z〉L2(Γ1) =

∫

Ω

h∇G(γ) · ∇Φ(γ) dx, (33)

for z ∈ L2(Γ1), where the H1(Ω)-functions Φ(a) = w1 and G(a) = w2 solve





−∇(a(x)∇w1) = 0, in Ω
w1 = 0, on Γ0

w1 = z, on Γ1

a(x)∂w1/∂ν = 0, on ∂ΩN




−∇(a(x)∇w2) = 0, in Ω

w2 = U, on ∂ΩD
a(x)∂w2/∂ν = 0, on ∂ΩN
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(a) (b) (c)

Figure 4: Picture (a) shows the doping profile to be reconstructed. The initial condition
for the Landweber-Kaczmarz method is shown in picture (b). On picture (c) the problem
data is shown: A typical source U(x) appears as the Dirichlet boundary condition at y = 1
(Γ0 is the upper right edge). The corresponding current is measured at the contact Γ1

(lower left edge), where U(x) is assumed to vanish.

respectively. For details on the derivation of (33) see, e.g., [4].
Therefore, the right hand side of (32) can be evaluated by using (33) with

z = Fk(γk)−Yk. For the concrete numerical test performed in this section, Ω ⊂ R2

is the unit square and the boundary parts are

Γ1 := {(x, 1) ; x ∈ (0, 1)} , Γ0 := Γ1 ∪ {(x, 0) ; x ∈ (0, 1)} , ∂ΩD := Γ0 ∪ Γ1 ,

∂ΩN := {(0, y) ; y ∈ (0, 1)} ∪ {(1, y) ; y ∈ (0, 1)} .
The fixed inputs Uj vanish at Γ1 and are chosen to be piecewise constant functions
on Γ0 = {(x, 0) ; x ∈ (0, 1)}.

Uj(x) :=

{
1, |x− xj | ≤ h
0, else

where the points (xj , 1), j = 1, . . . , N , are uniformly distributed in the segment Γ0.
To generate the problem data, one has to solve the direct problem in (28) for

each input function Uj , j = 1, · · · , N . In order to avoid so-called inverse crimes
(see [8]), these forward problems are solved using an adaptive refined grid (with
approximately 8000 nodal points) while the mixed elliptic boundary value problems,
related to the Landweber-Kaczmarz iteration are solved on uniformly refined grids
(with approximately 2000 nodal points).

We still have to consider an important issue concerning the stability of the
numerical implementation. Due to the choice of Ω, ∂ΩD and ∂ΩN meet at angles
of and π/2. Thus, the solutions of the mixed boundary value problems in the
Landweber-Kaczmarz iteration are not in H2(Ω) (see [15] for details). Due to this
lack of regularity, the implementation turns out to be very unstable. An alternative
to bypass this instability is to make the additional assumption that the doping
profile is known in a thin strip close to ∂ΩD. Therefore, we only have to reconstruct
the values of γ(x) at a subdomain Ω̃ ⊂⊂ Ω. With this extra assumption, the
numerical implementation becomes stable and we are able to (numerically) verify
local convergence of the Landweber-Kaczmarz iteration. It is worth mentioning that
this sort of assumption has been used since the early investigations of the electrical
impedance tomography, in order to ensure extra regularity for both numerical and
analytical approaches (see [25]).

The setup of the problem is shown in figure Figure 4 The doping profile to be
identified is shown in picture (a) – the p-n junction is a straight line. The initial
condition for the Landweber-Kaczmarz method is shown in picture (b), while the
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solution u of the direct problem for a typical source U is shown in picture (c). In
this figure, as well as in the forthcoming ones, Γ1 appears in the lower right part of
the picture and ∂ΩD/Γ1 appears on the top (the origin corresponds to the upper
right corner).

In Figure 5 we show the identification results obtained via the Landweber-
Kaczmarz method using noiseless data and different number of (voltage, current)
pairs, i.e., different values of N : picture (a) one pair; (b) three pairs; (c) nine pairs;
(d) twenty one pairs.

5 A level set type method

In this section we use a level set type method in order to approximate the solution of
Identification Problem 2.2. Two experiments are performed: the first one, for com-
parison purposes, corresponds to the identification problem presented in Section 4
(linear p-n junction with piecewise constant γ); in the second experiment we try to
reconstruct a p-n junction parameterized by an analytic function (see Figure 6).

In what follows, the function spaces X , Y as well as the operators F , Λγ and
also the sets Ω, ∂ΩD, ∂ΩN , Γ1 are the same as in Section 4. We assume, however,
that only one measurement is given, i.e., only one pair of (voltage, current) data is
available for the reconstruction. This assumption corresponds to the choice N = 1
in the definition of the space Y . The corresponding source function U1 is shown at
Figure 4 (c).

In our numerical experiments we use the level set method introduced in [21, 14].
According to this approach, one represents the p-n junction by the zero level set of
a H1-function φ : Ω → R, in such a way that φ(x) > 0 if γ(x) = 2 and φ(x) < 0 if
γ(x) = 1 (see Figure 6). Starting from some initial guess φ0 ∈ H1(Ω), one solves
the Hamilton-Jacobi equation

∂φ

∂t
+ V∇φ = 0 (34)

where V = −v ∇φ
|∇φ|2 and the velocity v solves




α(∆− I)v = δ(φ(t))

|∇φ(t)|

[
F ′(χ(t))∗(F (χ(t)) − Y δ)− α∇·

(
∇P (φ)
|∇P (φ)|

)]
, in Ω

∂v

∂ν
= 0 , on ∂Ω

(35)

Here, α > 0 is a regularization parameter and χ = χ(x, t) is the projection of the
level set function φ(x, t) defined by:

χ(x, t) = P (φ(x, t)) :=

{
2, if φ(x, t) > 0
1, if φ(x, t) < 0

.

In [14, 21] this level set method was used to reconstruct inclusions D ⊂⊂ Ω.
Notice that, in our case, the set D corresponds to the P-region (see Figure 1) and the
condition D ⊂ Ω is not satisfied. This fact, however, does not affect the derivation
of the Hamilton-Jacobi equation (34). Moreover, it does not affect the boundary
conditions for the elliptic problem (35) either.

The family χ(·, t) approximate the doping profile γ(·) as t → ∞. This follows
from the fact that the solution φ(·, t) of (34) converges to the minimum of the
Tikhonov functional

Gα(φ) := ‖F (P (φ))− Y δ‖2Y + 2α|P (φ)|BV + α‖φ− φ0‖2H1(Ω) (36)

as t → ∞, for each regularization parameter α > 0 (see [14, Definition 2.2] for the
precise definition of a minimizer of Gα(φ)).
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(a)

(b)

(c)

(d)

Figure 5: Different runs of the Landweber-Kaczmarz method. Number of available
sources: (a) one, (b) tree, (c) nine, (d) twenty one. The initial condition for all runs
is shown in Figure 4 (b).
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The next lemma corresponds to specific results selected from [14]. It allows a
better understanding of the least-square problem behind the level set formulation
and also analytically substantiates the numerical results presented in the sequel.

Lemma 5.1. Stability, Convergence and Well-Posedness:

(a) Let Y δ = Y (noiseless case), and let φα be a minimizer of Gα. Then, for ev-
ery sequence {αk}k∈N converging to zero, there exists a subsequence {αk(l)}l∈N,
such that {φαk(l)

}l∈N is strongly convergent. Moreover, the limit is a minimal
norm solution of (30).

(b) Let ‖Y δ − Y ‖Y ≤ δ. If α = α(δ) satisfies lim
δ→0

α(δ) = 0 and lim
δ→0

δ2

α(δ) = 0,

then, for a sequence {δk}k∈N converging to 0, the sequence φα(δk) converges
to a minimal norm solution of (30).

(c) For any given φ0 ∈ H1(Ω) the functional Gα attains a minimizer.

We conclude this section presenting two different numerical experiments con-
cerning the Identification Problem 2.2. In the first one, the doping profile to be
identified is the same as in Section 4, i.e., a linear p-n junction (see Figure 6 (a)).
Initially we implement the level set method for the case of exact data. The results
are shown in Figure 7 (plots of the error). Notice that the first picture (top left)
corresponds to the initial guess. In a second run we added 10% random noise to the
exact data and repeated the experiment (see Figure 8). In a second experiment we
try to identify a p-n junction parameterized by an analytical function (see Figure 9).
Exact data is given.

6 Final comments and conclusions

Differently from the Landweber-Kaczmarz method considered in Section 4, the level
set method does not require the assumption that the doping profile is known in some
strip close to ∂ΩD. For this level set approach, only the knowledge of the doping
profile at Γ1 is required in order to obtain a stable performance of the method.
This assumption is in no way restrictive, since we need to know γν at Γ1 in order
to implement the DtN map in (29).

We now comment on the amount of information used in the identification. For
comparison purposes we implemented the Landweber-Kaczmarz method using dif-
ferent quantity of data, i.e., different number of data voltage-current pairs. In one of
the experiments we used a single pair of data. In this case the Landweber-Kaczmarz
method reduces to the classical Landweber iteration.

(a) (b)

Figure 6: Pictures (a), (b) show the doping profiles to be reconstructed in the two different
experiments for the level set method.
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Figure 7: First numerical experiment (linear p-n junction): Evolution of the iteration
error for the level set method and exact data.

Figure 8: First numerical experiment (linear p-n junction): Evolution of the iteration
error for the level set method and data with 10% random noise.

Figure 9: Second numerical experiment (analytical p-n junction): Evolution of the itera-
tion error for the level set method and exact data.
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It is worth noticing that the amount of available data strongly influences the
quality of the reconstruction (see Figure 5). However, no matter how many voltage-
current pairs one uses in the implementation of the Landweber-Kaczmarz method,
it does not allow a proper determination of the p-n junction. We repeated the
implementation up to N = 45. We observed that, after a certain number of pairs,
the quality of the reconstruction does not improve any further.

In [4], a similar experiment to the one shown in Section 4 was presented. How-
ever, the authors used piecewise C1 functions as sources (voltages) and N = 9. The
quality of the reconstruction presented here, as well as in [4], is very poor. A pos-
sible explanation is the fact that the Landweber-Kaczmarz method does not take
into consideration the assumption that the coefficient γ in (28) in the considered
application is a piecewise constant function. This method tries to identify a real
function defined on Ω, which is a much more complicated object than the original
unknown curve (the p-n junction).

The main reason we present the implementation in Section 4 is to compare
with the results obtained via the level set method. Due to the nature of the level
set approach, it incorporates in a natural way the assumption that γ is piecewise
constant in Ω. As a matter of fact, without this assumption the level set method
could not be applied at all. The reconstruction results are much better, although
we use the level set method with N = 1.
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