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ABSTRACT. We shall prove that C1-robustly expansive codimension-one homoclinic classes are
hyperbolic.

1. INTRODUCTION

Let M be a d-dimensional manifold and Diff1 � M � be the set of C1 diffeomorphisms f on M
endowed with the C1 topology. Let p be a hyperbolic periodic point of f and H

�
p � be its homo-

clinic class. The diffeomorphism f is α-expansive in H
�
p � if dist

�
f n � x ��� f n � y ����� α for all n � ZZ,

with x � y � H
�
p � , implies x � y. It is well known that hyperbolicity implies α-expansiveness for

some α 	 0. But expansiveness alone does not guarantee hyperbolicity, even when one is dealing
with a codimension one expansive homoclinic class, as can be seen in [PPV, Section 2]. We note
that there are even examples of expansive codimension one homoclinic classes such all of its
periodic orbits are hyperbolic that are not hyperbolic.

To see this consider a Smale horse-shoe H in a plane and Λ a non trivial minimal subset of H.
In a complementary direction multiply H by a non uniform contraction λ

�
w � , depending on the

distance from w to Λ, and in such way that λ
�
w �
� 1 for w � Λ. The resulting homoclinic class

is expansive, has all periodic points hyperbolic but it is not hyperbolic.
Then we assume that expansiveness holds in a C1-neighborhood of the homoclinic class, that

is, for all diffeomorphism g C1 near f the homoclinic class H
�
pg � of the continuation pg of p

is α-expansive. In [PPV] it was proved that robustly expansive homoclinic classes of a three
dimensional manifold are generically hyperbolic. We generalize this result in two ways. First we
drop the assumption dim

�
M ��� 3 and get that robustly expansive codimension-one homoclinic

classes have a codimension-one dominated splitting. Second we prove that robustly expansive
codimension-one homoclinic classes with a dominated splitting are hyperbolic.

To announce our results in a precise way let us introduce some notations and definitions.
The homoclinic class H

�
p � of a hyperbolic periodic point p of f � Diff1 � M � is the closure of

all transverse intersections of the stable manifold W s � p � with the unstable manifold W u � p � of p.
The homoclinic class H

�
p � has a dominated splitting if TH � p 
 M splits into a continuous D f -

invariant direct sum E � F and there are c 	 0, 0 � λ � 1 such that for all x � H
�
p � it holds

�
D f n � E

�
x � ��� D f � n � F

�
f n � x ��� � � cλn

for all n � 0.
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We say that H
�
p � is a codimension-one homoclinic class if dimW u � p � � 1 or dimW s � p � � 1.

Our first result is the following

Theorem A. Robustly expansive codimension-one homoclinic classes have a codimension-one
dominated splitting E � F.

To obtain the corresponding to Theorem A in [PPV, Section 4] we assumed some kind of
generic hypotheses that we remove here.

Our next result is:

Theorem B. Robustly expansive homoclinic classes with a codimension-one dominated splitting
are hyperbolic.

To prove the corresponding to Theorem B in [PPV, Section 5] we profit from the density of C2

diffeomorphisms in the C1 topology proving that the dominated splitting for a C2 diffeomorphism
near the original one is hyperbolic. If in addition the homoclinic class is germ expansive it is
proved in [SV] that H

�
p � is hyperbolic (any codimension).

Next we sketch the proof of the results. To prove Theorem A we follow the same steps as the
ones in [PPV, Section 4], dropping the generic assumptions assumed there.

The main step to obtain Theorem B is to prove that center unstable manifolds for all point x
in the homoclinic class H

�
p � are true unstable manifolds, that is, center unstable manifolds are

dynamically defined (see definition 3.4 below). To achieve this it is enough to get this property
for periodic points homoclinically related to p. For this we use a result, Proposition 3.5, that
controls the behavior of periodic points homoclinically related to p. Once this is settled, under
the hypothesis that the dominated splitting E � F is not hyperbolic, the fact that center unstable
manifolds are dinamically defined allows us to obtain a hyperbolic periodic point q with arbitrar-
ily large period as near H

�
p � as we wish, and with arbitrarily small rate of contraction along the

E-direction, see [PPV]. Then we prove that such hyperbolic periodic points are in fact in H
�
p � ,

contradicting uniform E-contraction in the period for periodic points in H
�
p � . As in [Ma2] this

implies that the sub-bundle F is uniformly expanding, and then E � F is hyperbolic.

2. PROOF OF THEOREM A

As already said the proof of Theorem A follows the same steps as the ones in [PPV, Section 4].
Here we shall only indicate the modifications needed to achieve the proof in the codimension-one
case, and leave the details for the reader.

We say that a hyperbolic periodic point q � H
�
p � is homoclinically related to p if

W s � q � � W u � p ���� /0 and W u � q � � W s � p ���� /0 �
where W j � q � , j � s � u, stands for the stable (unstable) manifold of q. Denote by Hr

�
p � the

points homoclinically related to p. Then Hr
�
p � is dense in H

�
p � . So, it suffices to construct the

dominated splitting for periodic points in Hr
�
p � .

Step 1. We prove that there is δ 	 0 such that if q � Hr
�
p � with period π

�
q � and λ is a contract-

ing eigenvalue of D f π � q 
 � q � then �λ � � �
1 � δ � π � q 
 . Similarly, if µ is an expanding eigenvalue of

D f π � q 
 � q � then � µ � 	 �
1 � δ � π � q 
 .
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The proof of these statements are analogous to the proof of Propositions 4.3, 4.4 and 4.6 of
[PPV]. Indeed, as we are dealing with periodic points in Hr

�
p � we can use transitions matrices

to achieve the results in the codimension-one case exactly like in the three dimensional case.
Step 2. Next we prove that there are γ̄ 	 0 and m0 	 0 such that for q � Hr

�
p � with period

π
�
q ��	 m0 it holds that � �

E
�
q � � F �

q ����	 γ̄ �
where

� �
E
�
q ��� F �

q � � stands for the angle between E
�
q � and F

�
q � .

The proof of this statement goes like that of [PPV, Proposition 4.9].
Using that f is expansive in H

�
p � we obtain that there are only a finite number of periodic

points with period bounded by m0. Therefore, there is γ 	 0 such that for all q � Hr
�
p � we have� �

E
�
q � � F �

q ����	 γ �
Step 3 The previous steps allow to prove [PPV, Lemma 4.12] in the codimension-one case,

that is, we get

Lemma 2.1. There are a C1 neighborhood V of f , K � 2, 0 � λ � 1 such that for all g � V for
all q � Hr

�
pg � with period π

�
q � it holds that

�
Dg � π � q 
 � F

�
q � � � K and

�
Dg � π � q 
 n � F

�
q � � � Kλπ � q 
 n �

�
Dgπ � q 
 � E

�
q � � � K and

�
Dgπ � q 
 n � E

�
q � � � Kλπ � q 
 n �

Step 4. With the help of Lemma 2.1 we prove the existence of the dominated splitting as in
[PPV, Theorem 4.13]. This result has also been obtained in [SV] for any codimension with a
different proof. On the other hand, the proof given in [SV] does not prove Lemma 2.1.

3. PROOF OF THEOREM B

Throughout we assume that H
�
p � is robustly expansive with α as a constant of expansivity

and that H
�
p � has a codimension-one dominated splitting TH � p 
 � E � F with dim

�
F � � 1 and

such that for all x � H
�
p � ,

(1)
�
D f n � E

�
x � ��� D f � n � F

�
f n � x � � � � C λn �

Taking a power of f instead of f itself we may assume (and do) that C � 1.
Let us assume that the local manifold W σ

ε
�
x � � σ � s � u is an embedded topological k-disk,

k � 1. Let Γ be the family of all parameterized continuous arcs γ : � 0 � 1 ��� W σ
ε
�
x � joining x with

the boundary of W σ
ε
�
x � .

Definition 3.1. The size of W σ
ε
�
x � is defined as inf � diam

�
γ � � γ � Γ � .

It is known that there is a neighborhood V of H
�
p � such that if O

�
x �	� V then (1) holds for x.

Here O
�
x � stands for the orbit of x. We call V an admissible neighborhood of H

�
p � , see [Ma1].

The proof of the following lemma can be found, for instance, in [Ma1].

Lemma 3.1. Assume that H
�
p � has a dominated splitting E � F and let x � M such that O

�
x �
�

V . There is ε 	 0 such that the local center unstable manifold W cu
ε
�
x � is defined and is transverse
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to E, the local center stable manifold W cs
ε
�
x � is defined and is transverse to F. Such manifolds

are of class C1. Moreover, there is δ 	 0 such that

if y � W cs
ε
�
x � and dist

�
f j � x � � f j � y � � δ � 0 � j � n � then f j � y ��� W cs

ε
�
f j � x ��� � 0 � j � n �

If y � W cu
ε
�
x � and dist

�
f � j � x � � f � j � y ��� δ � 0 � j � n � then f � j � y ��� W cs

ε
�
f � j � x ��� � 0 � j � n �

For ε 	 0 small, the ε-local unstable manifold of a hyperbolic periodic point q, W u
ε
�
q � , is

an arc tangent to F containing q in its interior. This arc is separated by q into two connected
components W ��� uε

�
q � and W � � uε

�
q � that, with the point q added, we shall call (local unstable)

branches of W u
ε
�
q � .

Set Hr for the subset of H
�
p � of hyperbolic periodic points homoclinically related to p. If

q � Hr we write q � p.

Lemma 3.2. Given q � Hr there is k � ZZ and δ0 	 0 such that if W ��� uε
�
q � � H

�
p � �� /0 then

diam
�
W ��� uε

�
f k � � q �����
� δ0. A similar result holds for W � � uε

�
q � if W � � uε

�
q � � H

�
p � �� /0.

Proof. Assume in what follows that H
�
p � has points in, say, W ��� uε

�
q � . Then there is a Cantor set

of points y � W ��� uε
�
q � belonging to H

�
p � because, by [PM, λ-Lemma], W s � p � accumulates on

W s � q � and W u � p � accumulates on W u � q � . Backward iterations of these points by f approach the
orbit of q.

Backward iterates of points in H
�
p � � W ��� uε

�
q � rest at a distance less than ε from the orbit

of q. Therefore, by expansiveness, forward iterates must separate. Hence there is a first k 	 0
such that diam

�
f k � 1 � W ��� uε

�
q ��� � ε � Thus diam

�
f j � W ��� uε

�
q � � � ε for 0 � j � k and therefore

f j � W ��� uε
�
q ���	� W ��� uε

�
f j � q ��� .

This proves the lemma with δ � δ0 defined as δ0 � min � δ � diam
�
f � 1 � X ����� δ and diam

�
X � �

ε � where X is any subset of M.
�

Let us reduce δ0 	 0 if it were necessary to have that if dist
�
y � H �

p ��� � δ0, y � M, then y � V ,
an admissible neighbourhood of H

�
p � .

Lemma 3.3. Let q � Hr. If W � � uε
�
q � � H

�
p � � /0 then either there is k � ZZ such that

diam
�
W � � uε

�
f k ��� q � ��� � δ0

or there is a periodic point q � which is an end-point of W � � uε
�
q � , of the same period as that of q,

such that dist
�
f j � q � � f j � q � � ��� ε, for all j � ZZ.

Proof. If diam
�
W � � uε

�
q ��� � δ0 then we will have the end-point q � (q � �� q) of W � � uε

�
q � contained

in V and therefore Cl
�
W � � u

�
q ��� is tangent to CF for all the iterates by f . Here Cl

�
A � stands for

the closure of A. It follows that q � is periodic of the same period of q or of the double of the
period of q, depending on the sign of the expanding eigenvalue of D f τ

q . But if this eigenvalue
were negative we would have that H

�
p � would have points different from q in both branches of

W u
ε
�
q � . Hence the period of q � is the same of that of q, finishing the proof of Lemma 3.3

�

An analogous result holds if W ��� u
�
q � � H

�
p ��� /0.

Next we announce a result by Pliss [Pl1, Pl2] that we shall use later. A nice proof of this may
be found in [Al, Lemma 2.11].
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Definition 3.2. We say that a pair of points
�
x � f n � x ��� contained in H

�
p � , n 	 0, is a γ-string,

0 � γ � 1, if
n

∏
j � 1

�
D f � E

�
f j � x � � � γn �

We say that
�
x � f n � x ��� is a uniform γ-string if

�
x � f k � x ��� is a γ-string for all 0 � k � n �

Lemma 3.4. Let 0 � γ1 � γ2 � 1 and
�
x � f n � x ��� be a γ1-string. There exist a positive integer

N � N
�
γ1 � γ2 � f � , c � c

�
γ1 � γ2 � f � 	 0 such that if n � N then there exist numbers

0 � n1 � n2 � ����� � nl � n

such that
�
f nr

�
x � � f n � x ��� are uniform γ2-strings for all r � 1 � 2 � � � � � l, with l � cn. That is,

j

∏
i � nr

�
D f � E

�
f i � x � � � γ j � nr

2 ; r � 1 � 2 � � � � � l; nr � j � n �
The numbers ni in Lemma 3.4 are called γ2-hyperbolic times for x � E. Analogously, replacing

D f n � E by D f � n � F in the inequality above we define hyperbolic times for x � F .

Definition 3.3. Given 0 � γ � 1and 0 � N � n we say that
�
x � f n � x ��� is an

�
N � γ � -obstruction if�

f m � x � � f n � x ��� is not a γ-string for all n � N � m � n.

3.1. Dynamically defined center unstable manifolds.

Definition 3.4. We say that the local center unstable manifold W cu
ε
�
x � is dinamically defined if

it is part of the local unstable manifold of x, i.e.: given ε 	 0 there exists ε � 	 0 such that ε � � 0
when ε � 0 and for all y � W cu

ε
�
x � we have that dist

�
f n � x ��� f n � y ����� ε � for all n � 0.

A similar definition can be given for local center stable manifolds.

Proposition 3.5. Let M be a compact manifold, f : M � M a C1-diffeomorphism and Λ � M
a compact f -invariant subset with a dominated splitting E � F, dim

�
F � � 1. Then there exist

γ 	 0, ε � ε
�
γ � 	 0 and 0 � λ1 � 1 such that for all hyperbolic periodic point q � Λ with

dim
�
W u � q � � � 1 we have that there is m � m

�
q ��� 0 such that

(1) For all n � 0 we have
�
D f n � E

�
f m � q ��� � � λn

1.
(2) W cs

ε
�
f m � q ���	� W s

ε
�
f m � q ��� .

(3) f � n � W cu
ε
�
f m � q ��� �	� W cu

γ
�
f � n � m � q � � � n � 0 �

Proof. Let us denote by Λ1 the set of all q � Λ, q hyperbolic periodic point, dim
�
W u � q ��� � 1. We

assume that (1) holds. For the λ given in (1) consider 0 � λ �
�

λ � λ1 � 1. Then, for q � Λ1
we have that

either
�
D f � π � q 
 � F

�
q � � � λπ � q 


1 or
�
D f π � q 
 � E

�
q � � � λπ � q 


1 �
Assuming that

�
D f π � q 
 � E

�
q � � � λπ � q 


1 the proof that given q � Λ1 there is k such that for
all n � 0

�
D f n � E

�
f k � q ��� � � λn

1 follows from Lemma 3.4 provided that the period π
�
q � of q is

greater than the constant N
� �

λ � λ1 � given by that Lemma.
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The proof that if we have that
�
D f n � E

�
q � � � λn

1 for all n � 0 then there is γ 	 0 such that
W cs

γ
�
q � � W s

γ
�
q � is contained in [SV, Lemma 5.2] taking into account that, by [Ma3, Lemma II.5]

we may replace
�
D f n � E

�
q � � � λn

1 by ∏n
j � 1

�
D f � E

�
f j � q � � � Cλn

2 with C 	 0 � 0 � λ1 � λ2 � 1.
Next we prove (3):

Given γ 	 0 and q a hyperbolic periodic point let us define

ε
�
q � � sup � ε 	 0 : f � n � W cu

ε
�
q ���	� W cu

γ
�
f � n � q ��� � n � 0 �
�

and ε
�
O
�
q ��� as

ε
�
O
�
q � ��� sup � ε � f j � q ��� : j � 1 � � � � � π � q � � �

It is enough to prove that inf � ε � O �
q ��� : q � Λ1 � 	 0.

Since q is hyperbolic we have that ε
�
q ��	 0 and so ε

�
O
�
q ��� 	 0. Arguing by contradiction let us

suppose that there is a sequence � pk � of points in Λ1 such that ε
�
O
�
pk � � � 0 as k � ∞. Suppose

without loss of generality that ε
�
O
�
pk ��� � ε

�
pk � . Since

f � n � W cu
ε � pk 


�
pk ���	� W cu

ε � f � n � pk 
 

�
f � n � pk ��� �

n � 0

and we may assume that ε
�
pk ��� γ, we have that there are t 	 0 and mt 	 π

�
pk � such that setting

δt � ε
�
pk � � t we get f � j � W cu

δt

�
pk � ��� � W cu

γ
�
f � j � pk ��� for 0 � j � mt and there exists a branch

of W cu
γ
�
f � mt

�
pk ����� � pk � that coincides with a branch of f � mt

�
W cu

δt

�
pk ����� .

Let us set qk � f � mt
�
pk � and lk to the branch of W cu

γ
�
qk ��� � pk � coinciding with the corresponding

of f � mt
�
W cu

δt

�
pk ����� . Hence we obtain that f π � pk 
 � lk � � lk. This implies that

�
D f � n � F

�
f n � z ��� � �

λn
1 for all n � 0, for all z � lk. Otherwise we will have that f � n � f n � lk � ��� lk. Therefore we have

that
�
D f n � E

�
z � � � λn

1 for all n � 0 for all z � lk. Then for z � lk we have W cs
γ
�
z �	� W s

γ
�
z � . Thus

the stable manifold W s � lk � of lk has volume bounded away from zero. Since for k �� k � we have
that W s � lk � � W s � lk � � � /0 and M has finite volume we have arrived to a contradiction. This proves
(3).

To finish the proof of the proposition we have to find q such that both (1) and (3) hold at the
same time for it. Assume than that (1) holds for q. Hence (2) holds too. If it were the case that
ε
�
q � � ε

�
γ � then from (3) we are done. Otherwise define

m � min � 0 � n � π
�
q � : ε

�
f � n � q ����� ε

�
γ � ; and ε

�
f � n � q ����� ε

�
f � j � q � � � 0 � j � n � �

Then it is easy to see that (1), (2) and 3) are verified for f � m � q � . �

Corollary 3.6. Let � pk � be a sequence of hyperbolic periodic points, pk � p converging to x and
verifying Proposition 3.5. Then given 0 � λ1 � λ2 and n1, a λ1-hyperbolic time for x, there is
k0 	 0 such that for all k � k0 we have n1 is a λ2-hyperbolic time for pk.

Proof. Since n1 is a λ1-hyperbolic time for x � E we have

n � 1

∏
n1

�
D f � E

�
f j � x ��� � � λn � n1

1
�

n � n1 �
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Let I � inf � � D f � E
�
y � � � y � H

�
p � � . If the corollary does hold, we would have a sub-sequence

that for simplicity we still denote by pk such that for all k 	 0, there is mk such that
mk � 1

∏
j � n1

�
D f � E

�
f j � pk ���

� 	 λmk � n1
2 �

Then

λmk � n1 �
mk � 1

∏
j � n1

�
D f � E

�
f j � pk ���

� � ∏mk � 1
j � 0

�
D f � E

�
f j � pk � �

�

∏n1 � 1
j � 0

�
D f � E

�
f j
�
pk ���

� � λmk
1

In1
�

implying that

(2) � λ2

λ1

� mk ��� λ2

I

� n1 �
k �

Since pk � x as k � ∞ we obtain mk � ∞, and so, equation (2) leads to a contradiction. �

Next we complement the proposition above establishing another properties for the center un-
stable manifolds of periodic points homoclinically related to p.

Proposition 3.7. There is γ 	 0 such that for all q � p

W cu
ε � γ 


�
q � � W u

ε � γ 

�
q � �

where ε
�
γ � is given by Proposition 3.5.

Proof. Given q � p, its enough to prove that � � f � n � W cu
ε � γ 


�
q � � � 0 as n � ∞. The proof goes by

contradiction. If it were not true, by Lemma 3.3 there would exist sequences γk � 0, and periodic
points pk � p �k with p �k at the boundary of a branch of W cu

γk

�
pk � such that p �k is either a sink or a

saddle-node, and moreover, dist
�
pk � p �k � � 0 as k � ∞. Let z be a limit point of both pk and p �k.

Then, by (1) we have �
D f n � E

�
z � � � λn � �

n � 0 �
Then, W s

ε
�
z � is well defined and we set zk � W cu

γk

�
pk � � W s

ε
�
z � for all k.

Pick pk1 � pk � pk2 such that pk � p �k are both in the region between W s
ε
�
pk1 � and W s

ε
�
pk2 � and set

zk1 � W cu
γk

�
pk � � W s

ε
�
pk1 � and zk2 � W cu

γk

�
pk � � W s

ε
�
pk2 � .

Let us suppose first that p �k is a sink for all k. We set � p �k � zki � for the segment contained in
W cu

γk

�
pk � connecting zki and p �k.

Assume that pk
�� � p �k � zk1 � . If � p �k � zk1 � does not contain any periodic point then since zk1 �

W cu
γk

�
pk � � W s

ε
�
pk1 � , we obtain that f n � zk1 � � O

�
p �k � , contradicting that zk1 � W s

ε
�
pk1 � . Thus

there is a periodic point p̃k such that p̃k �
�
p �k � zk1 � . Ordering the segment � p �k � zk1 � from p �k to zk1

we claim that if we pick p̃k as the supremum of the periodic points at
�
p �k � zk1 � then p̃k � H

�
p � . To

see this we observe that since p �k is a sink and p̃k is sufficiently near p �k then W cs
ε
�
p̃k � � W s

ε
�
p̃k � .

Thus W s
ε
�
p̃k � � W u

ε
�
pk1 ���� /0 and W u

ε
�
p̃k � � W s

ε
�
pk1 ���� /0 for some small ε 	 0. This implies that

p̃k � H
�
p � . By construction p̃k �� pk.

Since dist
�
f n � p̃k � � f n � pk ��� � γ

�
ε � for all n we arrive to a contradiction with expansiveness of

f � H
�
p � .
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We arrive to the same result if p �k is a saddle-node. This finishes the proof. �

Definition 3.5. A point x � H
�
p � is a border point if there exists a neighborhood N of x, home-

omorphic to a ball, such that N � W cs
ε
�
x � has two connected components and there is only one

component of N � W cs
ε
�
x � with x in its boundary and containing points of H

�
p � accumulating on

x.

Given x � H
�
p � , since dim

�
F � � 1, we may define the branches W ��� cu

ε
�
x � and W � � cu

ε
�
x � of

W cu
ε
�
x � as before.

Lemma 3.8. Assume that x � H
�
p � is such that � � f n � W cu � �ε

�
x ����� � δ0 for all n � 0. Then x is a

border point of H
�
p � .

Proof. Denote I � W ��� cu
ε

�
x � and assume that � � f n � I ��� � δ0 for all n. Then, using (1) we obtain

that there is ε 	 0 such that every w � I has a local stable manifold W s
ε
�
w � .

Now we prove that x is a border point of H
�
p � . Indeed, since � � f n � I ���
� δ0 for all n we obtain

that dist
�
f n � y � � f n � x ��� � δ0 for all n � 0 and y � I. Assume that there is y � H

�
p � � I. Then there

is z � W s � p � � W u � p � with dist
�
z � y ��� ε, and we conclude, on account of the domination, that

(3) dist
�
f n � z � � f n � x ����� 2δ0 � �

n � 0 �
As z � W s � p � we have dist

�
f n � z � � p � � 0 as n � ∞, and this together (3) give dist

�
f n � x ��� p � � 2δ0

for n � n0. Thus x � W s � p � and since p is hyperbolic, by the λ-lemma we obtain � � f m � I ����	 δ0
for some m 	 0, a contradiction. This proves the lemma.

�

Theorem 3.9. For all x � H
�
p � , W cu

ε
�
x � is dynamically defined.

Let δ0 	 0 and V be an admissible neighborhood of H
�
p � . Theorem 3.9 is a consequence of

the following

Lemma 3.10. There is ν 	 0 such that for all periodic point q � p it holds that � � W � � uε
�
q ��� � ν.

Proof. Assume that the thesis does not hold. Then there is a sequence of periodic points qk

homoclinically related to p such that either W ��� uε
�
qk � or W � � uε

�
qk � has length less than 1 � k.

Assume that this happens to W ��� uε
�
qk � . Then, since qk is periodic, there is mk 	 0 such that

� � f � mk
�
W ��� uε

�
qk ����� � ε and so f � mk

�
W ��� uε

�
qk ��� � W ��� uε

�
f � mk

�
qk ��� . Set f � mk

�
qk ��� pk and note

that mk � ∞ as k � ∞. By Propositions 3.5 and 3.7 we can assume

(4) W cu
ε
�
pk �
� W u

ε
�
pk � � W cs

ε
�
pk �
� W s

ε
�
pk � and

j � n

∏
j � 1

�
D f � E

�
f j � pk ���

� � λn � � n � 0 �
Taking into account that H

�
p � is compact, let us assume that x � limk � ∞ pk. Moreover, taking

subsequences we may also assume that W � � uε
�
pk � converge to arcs I � � I �

�
x � with x at their

common boundary. Next we prove that I � is contained in W cu
ε
�
x � . Indeed,if this were not the

case, there would exist n0 	 0 and y � I � such that dist
�
f � n0

�
x � � f � n0

�
y ��� � ϕ 	 ε. Let k 	

0 be so great that yk � W u � �ε
�
pk � is so close to y that dist

�
f � j � y � � f � j � yk � � �

�
ϕ � ε � � 3 and
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dist
�
f � j � x � � f � j � pk ��� �

�
ϕ � ε � � 3 for all j � 0 � 1 � � � � � n0. Then dist

�
f � n0

�
yk � � f � n0

�
pk ��� 	 ε

which is absurd. Thus we may write W ��� uε
�
x � instead of I � . The same holds for I � and we write

W � � uε
�
x ��� I � .

Since for all j � � 0 � mk � we obtain that � � f j � W ��� uε
�
pk ��� � � ε and mk � ∞ when k � ∞ we see

that � � f n � W ��� uε
�
x ����� � ε for all n � 0.

To conclude the proof we need the following result that we shall prove later. Recall that ω
�
x �

is the set of points w � M such that
�

n j � � ∞ such that f n j
�
x � � w as j � ∞.

Theorem 3.11. If there is x � H
�
p � such that � � f n � W ��� cu

ε
�
x � � � δ0 for all n � 0 then ω

�
x � is a

periodic orbit.

Returning to the proof of Lemma 3.10, on account of the above theorem, we have that x �
W s � q � for some q � H

�
p � , q periodic. Taking a positive iterate by f of x we may assume that

x � W s
ε
�
q � .

Moreover, since W ��� uε
�
pk � has length bounded away from zero and the angle between the sub-

bundles E and F is bounded away from zero, we claim that W ��� uε
�
pk � � W s

ε
�
q � �� /0. Indeed, to

prove this observe that since � � f n � W ��� uε
�
x ����� � ε for all n � 0 then, from (1), we get that W cs

ε
�
x � is

a true stable manifold. Therefore we also have local stable manifolds for all point y � I
�
x � . Take

r 	 0 small such that W s
ε
�
x � locally separates the ball at x with radius r, B

�
x � r � . Then in the region

of B
�
x � r ��� W s

ε
�
x � containing I

�
x � we cannot have points of the sequence pk accumulating in x.

Otherwise, since for points in that region their local center stable manifolds are local stable ones,
we will have points y � I

�
x ��� � x � belonging to H

�
p � . Just take y � W s

ε
�
pk0 �

�
I
�
x � for a suitable

k0 and then using that W ��� uε
�
pk � � I

�
x � , in the Hausdorff sense, we will obtain y � H

�
p � . But if

y � I
�
x � we have shown that for all n � ZZ we have that dist

�
f n � x � � f n � y ����� ε. But this contradicts

that f � H
�
p � is expansive if ε is less than an expansivity constant of f � H

�
p � . Therefore the points

pk accumulate x from the opposite region of that containing I
�
x � and eventually W ��� uε

�
pk � will

cut W s
ε
�
x �
� W s

ε
�
q � . Since pk � p it follows that W u � p � cuts W s

ε
�
q � , proving the claim.

If q is hyperbolic, by Hayashi’s Connecting Lemma we may C1-perturb f obtaining a diffeo-
morphism g so that W s � pg � � W u � qg � �� /0 and still having W u � pg � � W s � qg ���� /0.

Since periodic points homoclinically related to pg cannot have a weak expanding eigenvalue,
see [PPV, Section 4], the same is true for qg, and therefore for q. As x � W s � q � � I

�
x � , by the

λ-lemma, there is n0 such that � � f n � I � x ����� � ε for all n � n0. Thus our assumption that there is
a sequence � qk � of periodic points homoclinically related to p such that the � � W ��� uε

�
qk � � � 1 � k

leads to a contradiction.
Hence there exists ν 	 0 such that � � W u � �

�
p � ��� � ν for all periodic point p � homoclinically

related to p, finishing the proof of Lemma 3.10 in this case.
If q is not hyperbolic then, by [Fr, Lemma 1.1], we may perturb D fq

� F to obtain hyperbolicity
of q without loosing the intersection between W ��� uε

�
pk � and W s

ε
�
q � and still having pk accumu-

lating in W s
ε
�
q � . So, q is still a point of the homoclinic class (of the perturbed diffeomorphism)

and we can reason as above to achieve the same result. �

Next we extend Lemma 3.10 for all x � H
�
p � .
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Proposition 3.12. For all x � H
�
p � we have that W u

ε
�
x � is a non-trivial set and both branches of

W u
ε
�
x � have length greater than ν 	 0.

Proof. Let x � H
�
p � . Since periodic points homoclinically related with p are dense in H

�
p � we

have pk homoclinically related with p such that, pk � x. Taking a converging subsequence, in
the Hausdorff sense, of W ��� uε

�
pk � and W � � uε

�
pk � , we conclude that W ��� cu

ε
�
x � and W � � cu

ε
�
x � are

defined. As both W ��� uε
�
pk � and W � � uε

�
pk � are tangent to F and locally separated by W cs

ε
�
pk � we

have that W ��� cu
ε

�
x � �� W � � cu

ε
�
x � . Moreover, both branches are tangent to F and have length greater

than ν since this holds for W � � uε
�
pk � . We also have � � f � n � W � � cu

ε
�
x � ��� � ε because W � � cu � pk �

converges to W � � cu � x � . Hence, W � � cu
ε

�
x � are in fact part of the local unstable manifold of x.�

Lemma 3.13. For all x � H
�
p � we have that W cu

ε
�
x � is dynamically defined, i. e.,

� � f � n � W � � cu
ε

�
x ����� � � � �

n � ∞
0 �

Proof. If it were the case that

� � f � n � W ��� cu
ε

�
x �������� 0 when n � � ∞

for all x � H
�
p � then there would exist x � H

�
p � , nk � � ∞, and ρ 	 0 such that

� � f � nk
�
W ��� cu

ε
�
x � ��� � ρ �

By compactness of H
�
p � we may assume that

z � lim
k � � ∞

f � nk
�
x � and I

�
z � � lim

k � � ∞
f � nk

�
W ��� cu

ε
�
x ��� �

the last limit in the Hausdorff metric for compact subspaces of M. Thus, from the construction
of I

�
z � , we have that for all n � 0 it holds

(5) ρ � � � f n � I � z ��� � � ε �
Moreover I

�
z � is tangent to F , part of W cu

ε
�
z � and therefore an ε � E-interval, following [PS].

Since I
�
z � � W cu

ε
�
z � and W cu

ξ
�
y � is a one-dimensional submanifold for all small ξ 	 0 we have

that I
�
z ��� W ��� cu

ξ
�
z � for some small ξ. Therefore, for all n � 0 we have that � � f n � I � z ����� is

bounded away from zero.
As in [PS, Section 3.2, Proposition 3.1] we obtain that ω

�
z � is a periodic orbit or a periodic

circle tangent to F . (Although in [PS] it is assumed that f is C2 this is not used in that part of the
proof of [PS, Proposition 3.1].) As a robustly expansive homoclinic class cannot have a periodic
circle nor a Cantor set in H

�
p � included in a periodic circle tangent to F , we conclude that ω

�
z � is

a periodic orbit. Using this fact together (5) we arrive to a contradiction reasoning as in Lemma
3.10.

�

Let ν 	 0 be given in Proposition 3.12.

Lemma 3.14. For all 0 � ξ � ν we have that there is m0 � m0
�
ξ � 	 0 such that for all x � H

�
p �

� � f n � W u � �ξ
�
x ������� ν for all n � m0.
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Proof. Given 0 � ξ � ν, arguing as in the proof of Lemma 3.10 we may see that given x � H
�
p �

there exists m0
�
x � ξ � 	 0 such that

� � f m0 � x � ξ 
 � j � W ��� uξ
�
x � ����� ε � j � 1 � � � � � m0

�
x � ξ � but � � f m0

�
W ��� uξ

�
x ������	 ε �

Let ξ � c � 	 0 be so that f m0 � x � ξ 

�
W ��� uc �

�
x ��� � W ��� uε

�
f m0 � x � ξ 


�
x ��� . Hence � � W ��� uε

�
f m0 � x � ξ 


�
x ����� 	 ν.

For n � m0
�
x � ξ � � 1 either f n � W ��� uc �

�
x � �
� W ��� uε

�
f n � x � � or � � f n � W ��� uc �

�
x ����� 	 ε. In the first case

� � f n � W ��� uc �
�
x ����� 	 ν by Proposition 3.12. In the second case we certainly have � � f n � W ��� uc �

�
x �����
	

ν too. In this later case we choose 0 � c � ��� c � such that f n � W ��� uc � �
�
x ��� � W ��� uε

�
f n � x ��� . By

induction in n � m0
�
x � ξ � we conclude that � � f n � W ��� uξ

�
x ��� ��	 ν for all n � m0

�
x � ξ � .

By compactness of H
�
p � there exists a common m0 for all x � H

�
p � . This ends the proof.

�

3.2. Proof of Theorem 3.11. The proof of Theorem 3.11 will be done in several steps. We shall
assume in this sub-section that x � H

�
p � is such that � � f n � W ��� cu

ε
�
x ��� � δ0 for all n � 0, where

δ0 is such that the δ0-neighborhood of H
�
p � is admissible.

Lemma 3.15. There is ε 	 0 small such that W cs
ε
�
x �
� W s

ε
�
x � .

Proof. Let pk be as in Lemma 3.10. By (4)

j � n

∏
j � 1

�
D f � E

�
f j � pk �

� � λn � �
n � 0 �

Since pk � x the same holds for x. Thus W cs
ε
�
x �
� W s

ε
�
x � . �

Pick some γ � IR such that 0 �
�

λ � γ � 1 and let 0 � n1 � ����� � nl � ����� be the maximal
sequence of hyperbolic times for D f � E along O �

�
x � associated to that choice of γ. Thus we

have that
n

∏
j � ni

�
D f � E

�
f j � x ��� � � γn � ni for n � ni �

Lemma 3.16. Assume that there exists L 	 0 such that for all i we have ni � 1 � ni � L . Then
E � ω

�
x � is a uniformly contracting sub-bundle.

Proof. Let z � ω
�
x � . Then we have that there exists nr � � ∞ such that f nr

�
x � � z. By the

definition of δ0 we know that if dist
�
y � z ��� δ0 then
�
D f � E

�
z � ��

D f � E
�
y � � � 1 � c �

For r 	 0 large enough let Jr 	 0 be such that dist
�
f j � z ��� f j � f nr

�
x � ��� � δ0 for all j � � � Jr � Jr � .

Then Jr � � ∞ when r � � ∞. Let K � sup � � D fy
�

: y � M � . For a given r let i � i
�
r � be such

that ni � nr � ni � 1. Then ni � 1 � nr � L and therefore

n � 1

∏
j � 0

�
D f � E

�
f j � z ��� � � �

1 � c � n
n � 1

∏
j � 0

�
D f � E

�
f nr � j � x ��� � �
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� �
1 � c � nKni � 1 � nr

� n � 1 � ni � 1 � nr 

∏
j � 0

�
D f � E

�
f ni � 1 � j � x ��� � �

� � � 1 � c � K � ni � 1 � nr � � 1 � c � � λ2 � n � 1 � ni � 1 � nr �
� � 1 � c � K � Lλn � 1 � L

3
�

n � Jr �
Since Jr � � ∞ we conclude that E � ω

�
x � is uniformly contracting.

�

Lemma 3.17. Let E � ω
�
x � be uniformly contracting and assume that � � f n � W ��� cu

ε
�
x ������ 0 when

n � � ∞ . Then ω
�
x � is a periodic orbit.

Proof. If we have that � � f n � W ��� cu
ε

�
x � � �� 0, as in the proof of [PS, Proposition 3.1] we may

conclude, on account of (1), that there is a subsequence f n j
�
W ��� cu

ε
�
x � � converging to an arc L

tangent to F . We remark that the hypothesis of f being of class C2 is not necessary for this part of
the proof given in [PS, Proposition 3.1]. Moreover, again by the domination property (equation
(1)) and the boundedness of the lengths of the forward iterates of W ��� cu

ε
�
x � , if y � L then W s

ε
�
y �

has uniform size. Thus, as W s
ε
�
y � is tangent to E, W s

ε
�
L ��� �

y � LW s
ε
�
y � is a neighborhood of L.

As in [PS, page 989] we may conclude that ω
�
x � is either a periodic orbit or ω

�
x � is contained in

a C1 simple closed curve C invariant by f m, some m, which attracts a neighborhood of itself.
If f were C2 we would conclude, as in [PS] that ω

�
x � would be a periodic orbit or ω

�
x � is the

whole curve C . As we do not assume that f is C2 we proceed in a different way to get directly
that ω

�
x � is a periodic orbit. The proof goes by contradiction. Assume that ω

�
x � is not a periodic

orbit. We already know that ω
�
x � � C . By the attracting properties of C , derived from (1), it

follows that any point in a neighbourhood of C is asymptotic to C . But x � H
�
p � and therefore

its omega-limit set is in H
�
p � . Take z � H

�
p � a point such that its forward and backward orbit

is dense in H
�
p � . There is a residual set of such points in H

�
p � . Then z has to visit C because

ω
�
x �	� C . But as C attracts a neighborhood of itself we have that z � C and therefore H

�
p � � C .

In particular p � C and the C1-curve C which is tangent to F and transverse to E, has to self-
accumulate (for instance) in p in the disk W s

ε
�
p � tangent to E. But this is not possible and we

finish the proof of Lemma 3.17.
�

From now on we assume that E � ω
�
x � a uniformly contracting sub-bundle and

� � f n � W ��� cu
ε

�
x ����� � 0 � n � � ∞ �

As a consequence of Propositions 3.5 and 3.7 together with the fact that the angle between E
and F is uniformly bounded away from 0 we obtain that for all k big enough

(6) W u � pk � � W s
ε
�
x ��� � zk � and W s � pk � � W u

ε
�
x �
� � yk � �

Claim 3.1. zk � yk � H
�
p � .

Proof. Fix k1 and consider the intersections zk1 � k � W u
ε
�
pk1 �

�
W s

ε
�
pk � . Then zk1 � k � zk1 as k � ∞.

As zk1 � k � H
�
p � we conclude that zk1 � H

�
p � . In the same way we prove that yk � H

�
p � . �

If there are subsequences yki and yk j of yk with yki � W ��� cu � x � for all i and yk j � W � � cu � x � for
all j we have by Lemma 3.2 that

(7) � � f n � W � � cu
ε

�
x ������ 0 as n � ∞ �
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By construction, either � � f n � W ��� cu
ε

�
x ��� � ε for all n � 0 or � � f n � W � � cu

ε
�
x ��� � ε for all n � 0.

Thus (7) leads to a contradiction. Assume then that yk � W � � cu
ε

�
x � for all k.

Let I0 � � x � y � be the segment tangent to F containing W ��� cu
ε

�
x � maximal with respect to

� for all I �0 � I0 we have � � f n � I �0 ����� δ0 for all n � 0.

Then � � f n � I0 ��� � δ0 for all n � 0 and � � f n � I0 ��� � 0. Indeed, if � � f n � I0 � � �� 0, Lemma 3.17
implies that ω

�
x � is a periodic orbit and we are done. Moreover, for all J � I0 we have � � f n � J ��� ��

0, for otherwise we would also have that ω
�
x � is a periodic orbit.

For each j � 0 consider the maximal interval I j tangent to F such that I j � f j � W ��� cu
ε

�
x � � and

for all I �j � I j we have � � f n � I �j ��� � δ0 for all n � 0. Note that f
�
I j �
� I j � 1 for all j.

Lemma 3.18. Fixed δ � δ0
� 2 there is j0 such that for all j � j0 it holds � � f n � I j ��� � δ for all

n � 0 or ω
�
x � is a periodic orbit.

Proof. The proof goes by contradiction. If the conclusion does not hold as for all j � 	 j we have
that f j � � j � I j �
� I j � we would have the volume vol

�
Wcs

ε
�
Ij ��� 	 ν0 for some ν0 	 0. This implies

that W cs
ε
�
I j ��� � W cs

ε
�
I j � � � �� /0 for some j � 	 j. And this implies that ω

�
x � is a periodic orbit.

�

Then we can assume that � � f n � I j ��� � δ for all n � 0, for all j.

Lemma 3.19. Let W ��� uε
�
pk � � W s

ε
�
I0 ��� β̃k. Then β̃k is an arc tangent to F. Let us pick an arc

βk, βk � β̃k tangent to F joining zk to a point yk � W cs
ε
�
y � , where y is the end point of I0 different

from x. Then βk � W ��� uε � δ
�
pk � or ω

�
x � is a periodic orbit.

Proof. If it were not true, there would exist a subsequence of � pk � , that we still denote � pk � such
that for some mk we would have � � f � mk

�
βk ��� 	 δ but � � f � n � βk ��� � δ for all 0 � n � mk. Note

that mk � ∞ as k � ∞ because � � f � n � I0 ��� goes to zero as n � ∞. By equation (1) we have that

(8)
0

∏
j � � mk

�
D f � E

�
f j � yk ���

���
D f � 1 � F

�
f j � 1 � yk ���

� � λmk � 1 �
Pick λ1 such that 0 �

�
λ � λ1 � 1 and let N

� �
λ � λ1 � , c

� �
λ � λ1 � be the numbers given in Lemma

3.4. Then, for mk 	 N there exists a hyperbolic time from � nk to 0 for E. For from (8) we have
that either

0

∏
j � � mk

�
D f � E

�
f j � yk ���

� �
�

λ
mk � 1

or
0

∏
j � � mk

�
D f � 1 � F

�
f j � 1 � yk � �

� �
�

λ
mk � 1 �

But the last possibility cannot hold. Otherwise we will have a hyperbolic time for F which will
contradict that � � f � mk

�
βk ����	 δ. Thus we have that

(9)
0

∏
j � � mk

�
D f � E

�
f j � yk ���

� �
�

λ
mk � 1

which implies the existence of a hyperbolic time � nk for E. We have that � mk � � nk �
� mk � N, otherwise we will have a hyperbolic time for F between � mk and � nk, and this again
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contradicts that � � f � mk
�
βk � ��	 δ. On the other hand, since yk � W s

ε
�
I0 � , we have that

(10)
n

∏
j � 0

�
D f � E

�
f j � yk ���

� � λn � 1 � �
n � 0 �

Therefore, equations (9) and (10) imply that the ε-stable manifold of f � mk
�
βk � has volume

bounded away from zero. As this holds for all k sufficiently large we eventually have that there
exist k � k � , k �� k � such that

W s
ε
�
f � mk

�
βk � � � W s

ε
�
f � mk � � βk � � ���� /0 �

This implies that ω
�
x � is a periodic orbit. So, if ω

�
x � is not a periodic orbit then βk � W ��� uε � δ

�
pk � .�

Remark 3.20. (1) Lemma 3.19 implies that if ω
�
x � is not a periodic orbit then

W ��� uε � δ
�
pk � � W cs

ε
�
y � �� /0 �

(2) Since � � f n � βk ���	� 0 as n � ∞ we obtain from Lemma 3.2 that the arc βk cannot have
points in H

�
p � different from its end points.

(3) Since zk � H
�
p � and we cannot have points in βk

�
H
�
p � different from its end points we

obtain that W u � pk � crosses W s
ε
�
I0 � . To see that it suffices to pick f π � pk 
 � zk � where π

�
pk �

is the period of pk.

Let yk � zk be, as above, the end points of βk. Our next target is to prove that yk � H
�
p � . For

this we orient W ��� u
�
pk � from pk and, as we have noted in remark 3.20 we have that there are no

points of H
�
p � � βk different from its end points and there are points w � H

�
p � � W ��� u

�
pk � with

w 	 yk in the ordering established. Denote by wk � inf � w � H
�
p � � W ��� u

�
pk � � w 	 yk � . Since

H
�
p � is closed we have that wk � H

�
p � .

Lemma 3.21. wk � yk.

Proof. By definition we have wk � yk. Assume, by contradiction, that wk 	 yk. Then � zk � wk � �� zk � yk � � βk.
Assume that � � f n � � zk � wk � ��� � δ0 for all n � 0. Since � � f n � � yk � wk � ��� �� 0 we can choose

a sub-sequence n j � ∞ such that � � f n j
� � yk � wk � ��� 	 δ for all j, for some 0 � δ � δ0. Let

z � lim j � ∞ f n j
�
yk � . As � � f n � � zk � yk � � � � 0 we also have that z � lim j � ∞ f n j

�
zk � which implies

that z � H
�
p � . Since δ � � � f n j

� � yk � wk � ��� � δ0 we have that f n j
� � yk � wk � � � V

�
H
�
p ��� , for all j,

where V
�
H
�
p ��� is an admissible neighborhood of H

�
p � . This implies that W s

ε
�
f n j

�
zk ��� is well

defined for all j. Then, for j 	 j � sufficiently big W s
ε
�
f n j

�
zk ��� � f n j � � � zk � wk ������ /0. On the other

hand, by Corollary 3.6, for infinitely many points pk � we have W s
ε
�
f n j

�
pk � ��� � W s

ε
�
f n j

�
x ��� and

this implies that W s
ε
�
f n j

�
zk ��� � f n j � � � zk � wk ��� � H

�
p � . Hence, the definition of wk implies that

W s
ε
�
f n j

�
zk ��� � f n j � � � zk � yk ��� � /0 and so W s

ε
�
f n j

�
zk ��� � f n j � � � yk � wk ��� �� /0, implying that there is

u � H
�
p � � f n j � � � yk � wk ��� , leading to a contradiction with the definition of wk.

If � � f n � � zk � wk � ����	 δ0 for some n � 0 then we pick wk � n 
 � � yk � wk � so that � � f n � � zk � wk � n 
 � �����
δ0 and repeat the same argument replacing wk by wk � n 
 .

�
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Since I0 � � x � y � and yk � y we get

Corollary 3.22. y � H
�
p � .

Returning to the proof of Theorem 3.11, and keeping the previous notation, take 2
�
ε � δ ��� α,

where α is the expansiveness constant for f � H
�
p � . Then, since zk � yk � W u

ε � δ
�
pk � we obtain

(11) dist
�
f n � zk � � f n � yk � ��� � � f n � � zk � yk � ����� 2

�
ε � δ � � α

�
n � 0 �

On the other hand, since zk � W s
ε
�
x � and yk � W s

ε
�
y � we have that

dist
�
f n � zk ��� f n � yk ��� �(12)

dist
�
f n � zk � � f n � x � � � dist

�
f n � x � � f n � y ��� � dist

�
f n � y � � f n � yk � ��� ε � δ � ε � α

�
n � 0 �

Equations (11) and (12) give

dist
�
f n � zk � � f n � yk ��� � α

�
n � ZZ �

contradicting the expansiveness of f � � H �
p � .

All together finishes the proof of Theorem 3.11.
�

4. PROOF OF HYPERBOLICITY OF H
�
p � .

In this section we prove that
�
E � F � � H

�
p � is hyperbolic. For this, we shall prove first that E

is uniformly contracting, and this is done following Mañé’s proof of [Ma2, Theorem I.4].

Lemma 4.1. There exist c 	 0, a positive integer m, and a dense subset D of H
�
p � such that for

x � D we have

liminf
n � � ∞

1
n

n

∑
j � 1

log
�
D f m � E

�
f � jm � x ��� � � � c �

Proof. We have that Per
�
f � � H

�
p � is dense in H

�
p � . By Lemma 2.1 we have for any periodic

point q � H
�
p � � Per

�
f � :

(13)
�
D f τn � Es � q 


� � Kλτn � � n � 0 �
Here τ is the period of q and K 	 0, 0 � λ � 1 are independent of the particular periodic point
in H

�
p � . Moreover by [Ma3, Lemma II.5] there exists m 	 0, C 	 0, and µ, 0 � λ � µ � 1 such

that

(14)

�
τ � m �
∏
j � 1

�
D f m

f jm � q 
 � Es
� � Cµ

�
τ � m � �

whenever (13) holds. Here � τ � m � is the greatest integer less or equal than τ � m.
Combining (13) and (14) and taking logarithms we get

(15)
1

� τ � m �
�
τ � m �
∑
j � 1

log
�
D f m � E

�
f jm � q ��� � � logC

� τ � m � � logµ �
Since f � H

�
p � is expansive, the number of periodic points of bounded period is finite. Then,

letting D be the set of periodic points of period sufficiently greater than m we have that D is
dense in H

�
p � . Equation (15) together with the fact that 0 � µ � 1 imply the result.

�
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Lemma 4.1 ensures that for x � D , ∏n
j � 1

�
D f m � E

�
f � jm � x � � � converges to 0 exponentially

fast. Since if f : H
�
p � � H

�
p � is expansive then the same is true for f m, we may assume (and

do) that m � 1 in Lemma 4.1.

Let γ0 be such that 0 � e � c � γ0 � 1 where c 	 0 is given by Lemma 4.1. It follows that for
all x � D there are infinitely many values of n satisfying

n

∏
j � 1

�
D f � E

�
f j � x ��� � � γn

0 �
Take γ1 � γ2 � γ3 � γ4 such that

0 � γ0 � γ1 � γ2 � γ3 � γ4 � 1 �
Let N0 � N

�
γ3 � γ4 � be given by Lemma 3.4.

Lemma 4.2. If E �H � p 
 is not a contracting bundle then for all ε 	 0 there exist a compact invariant
set Λ

�
ε � � H

�
p � and N � N

�
ε � such that every x � Λ

�
ε � has the following property: there exist

x0 arbitrarily near x, n0 � 0 and y � Λ
�
ε � such that dist

�
f n0

�
x0 � � y � � ε,

�
y � f n � y � � is an

�
N0 � γ2 � -

obstruction for all n � N � N
�
ε � and if n0 	 0 then

�
x0 � f n0

�
x0 ��� is a uniform γ4-string. Moreover,

Λ
�
ε � is the closure of its interior.

Proof. See [Ma2, Lemmas II.6 and II.7].
�

Fix 0 � γ � γ0 and let γ1 � γ2 � γ3 � γ4 be as in Lemma 4.2. Choose k0 � �
0 � 1 � such that γ � k2

0γ1

and k � 1
0 γ4 � 1, i.e., 1 	 k0 	 max � γ4 ��� γ � γ1 � .

Proposition 4.3. If E is not contracting, for all ε 	 0 there exist sequences � xi � � Λ
�
ε � 4 � , (Λ

�
ε �

as in Lemma 4.2) and ni 	 0 such that
(a) dist

�
f ni

�
xi � � xi � 1 � � ε

(b)
�
xi � f ni

�
xi ��� is a uniform γ4-string but if i is even

�
xi � f ni

�
xi ��� is not a γ1-string.

(c) If K � min � � D f � E
�
x � � ;x � H

�
p � � then γni

1 Kni � 1 � �
k0γ1 � ni � ni � 1 for all even i.

(d) There exist odd numbers k � l; k 	 l such that dist
�
xl � xk � � ε � 2.

Proof. See [Ma2, page 179] for the proof of (a), (b), (c). Item (d) follows from compactness.�

Corollary 4.4. Given ε 	 0 there are a sequence x1 � x2 � � � � � xk and uniform γ4-strings
�
xi � f ni

�
xi � �

that are not γ1-strings, so that dist
�
xi � xi � 1 � � ε and dist

�
f nk

�
xk � � x1 � � ε for all 1 � i � � k � 1.

Let as find ε0 	 0 such that the cones defining the dominated splitting in H
�
p � can be extended

to V the ε0-neighborhood of H
�
p � .

Lemma 4.5. Let us assume that
�
x � f n � x ��� is a uniform γ string, 0 � γ � 1, n 	 0, x � H

�
p � .

Then there are δ 	 0, ε 	 0 and η 	 0 such that if for some constant c 	 0, diam
�
f n � W σ � uc

�
x �����
�

2η for n 	 n0 but diam
�
f j � W u � σc

�
x ��� � � ε; j � 0 � � � � � n � 1 then diam

�
f n � W σ � cu

c
�
y ����� � ν, for all

y � W cs
δ
�
x � , σ � � � � .

(Roughly speaking, if D f contracts in E
�
f j � x � � ; j � 1 � � � � � n and in addition f j � W u � σc

�
x � �

growths in diameter in n iterates then the local center-unstable manifold of points in W cs
δ
�
x �

have to have the same property.)
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Proof. Let 1 	 γ1 and let ε1 	 0, ε1 � ε0 be so small that if
�
z � f n � z ��� is a uniform γ string then

dist
�
f j � z � � f j � y ��� � γ j

1dist
�
z � y � for some 1 	 γ2 	 γ1 and for all y � W cs

ε1

�
z � . Let ε � η be such that

η � ε � 2 � ε � ε1
� 8 and if dist

�
z � w ��� ε1 � 2η then

(16)
�
1 � d � �

�
D f � E � w 


�
�
D f � E � z 


� � �
1 � d � and

�
1 � d � �

�
D f � F � w 


�
�
D f � F � z 


� � �
1 � d � �

We choose d 	 0 such that γ2 �
�
1 � d � γ1 � 1 and also choose δ � η � 2. Arguing by contradic-

tion assume that for some y � W cs
δ
�
x � and moreover that for all j � 0 � 1 � � � � � n � 1 we have that

diam
�
f j � W cu � σc

�
y ������� 2ε and diam

�
f n � W cu � σc

�
y ����� � η. Hence dist

�
f j � x � � f j � y � ����� 2ε � δ for all

j � 0 � � � � � n and all y � � W cu � σc
�
y � . Thus there exists d 	 0 such that if (16) holds then

�
y � � f n � y � � �

is a uniform γ1 string and therefore dist
�
f j � z � � � f j � y � � � γ j

2δ for all z � � W cs
δ
�
y � � . Moreover by

(1), for all x � � W cu � σc
�
x � there is y � � W cu � σc

�
y � such that x � � W cs

δ
�
y � � . Then,

dist
�
f n � x ��� f n � x � ��� �

dist
�
f n � x � � f n � y ��� � dist

�
f n � y � � f n � y � ��� � dist

�
f n � y � � � f n � x � ����� δγn

2 � η � δγn
2 � 2η

contradicting the hypothesis.
On the other hand, if for some 0 � j � n we have that diam

�
f j � W cu � σc

�
y ��� � 	 2ε, choosing J

the minimum positive integer with such property, we have, taking a point y � � W cu � σc
�
y � such

that dist
�
f h � y � � f h � y � ��� � 2ε, 0 � h � J and dist

�
f J � y ��� f J � y � ���
� 2ε, and taking x � � W u � σc

�
x � as

above, that
dist

�
f J � x � � f J � x � � � dist

�
f J � y � � f J � y � ��� �

� � dist
�
f J � y ��� f J � x ��� � dist

�
f J � y � � � f J � x � ��� � 	 2

�
ε � δ � 	 ε �

Thus contradicting our assumption about W u � σc
�
x � �

The following proposition is similar to a lemma proved in [Li] (see also [Ma2]). The proof
there uses that D f �F is uniformly expanding. We, instead, use that the diameter of the unstable
manifolds are uniformly bounded away from zero (Proposition 3.12) which is the main result
obtained assuming Theorem 3.11.

Proposition 4.6. Given δ 	 0, 0 � γ � 1 and
�
xi � f ni

�
xi ��� a sequence of uniform γ-strings in

H
�
p � , i � 1 � � � � k, then there exist µ � µ

�
γ � δ � 	 0 and N0 	 0 such that if dist

�
xi � xi � 1 � � µ and

dist
�
f nk

�
xk � � x1 � � µ for all i � 1 � 2 � � � � � k � 1 and n1 � n2 � ����� � nk � N0 then there exists a

periodic point q of f with period N � n1 � n2 � ����� � nk such that dist
�
f n � q � � f n � x1 ��� � δ for

all 0 � n � n1 and setting Ni � n1 � ����� � ni dist
�
f Ni � n � q � � f n � xi � 1 ��� � δ for all 0 � n � ni � 1,

1 � i � k � 1.

Proof. Let us first assume k � 1. Let x � H
�
p � and W cs

ε
�
x � be the local invariant manifold given

by the dominated splitting which is an embedded disk transverse to F . It is proved in [PS2] that
for any ε 	 0 there is r � r

�
ε � 	 0 such that the size of W cs

ε
�
x � (see Definition 3.1), size

�
W cs

ε
�
x � � �

r. Moreover, if x � x1 then the fact that D f �E contracts n1 iterates implies that W cs
ε
�
x1 � behaves

as a stable manifold for that iterates. That is, there is γ1, γ � γ1 � 1 such that for j � 0 � 1 � � � � � n1,
if y � W cs

ε
�
x1 � then dist

�
f j � x1 � � f j � y ��� γ j

1ε. As usual we choose ε 	 0 such that ε � α � 2, where
α 	 0 is a constant of expansiveness. On the other hand, by Proposition 3.12, it holds that there
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is η 	 0 such that diam
�
W u � σε

�
x1 � � � 2η where σ � � � � indicates anyone of the separatrices of

W u
ε
�
x1 � . Let us consider local center-unstable manifolds of the points x � D1 � W cs

ε
�
x1 � where D1

is a 2-disk centered in x1. These center-unstable manifolds are coherent with the local unstable
manifolds of points of H

�
p � � W cs

ε
�
x1 � . By Lemma 3.14 for all c0 	 0 there exists N0 	 0 such

that diam
�
f n � W u

c
�
y ��� 	 2η for all y � H

�
p � , c � c0 and n � N0. Hence, by Lemma 4.5 we have

that diam
�
f n1

�
W cu � σc

�
x ������� η because diam

�
f n1

�
W u � σc

�
x1 ������� 2η.

Let B1 be a cylinder centered in x1 given by B1 � �
x � D1Ux where Ux � W cu

ε
�
x � has diameter

η and is centered in x. Let C1 � B1 be defined by

C1 � �
x � D1

�
W cu

c
�
x ��� �

Take µ 	 0 small enough such that when dist
�
f n1

�
x1 � � x1 � � µ then f n1

�
W cs

ε
�
x1 ��� is contained in

the interior of B1 and moreover W cu
ε
�
x � cuts W cs

ε
�
y � whenever dist

�
x � y �
� µ with x � y � V . Hence

f n1
�
C1 � intersects C1 and any point in the boundary of C1 is not fixed by f n1 . Therefore, by a

standard argument of index theory, see [Do], there exist a fixed point q of f n1 in C1
�

f n1
�
C1 � .

That is, q is a periodic point of f . Observe that since q � V there is z in W cu
ε
�
q � � f n1

�
D1 � . More-

over, the distance between f � j � z � and f � j � q � is bounded by ε for all 0 � j � the period of q. On
the other hand dist

�
f � j � z � � f n1 � j � x1 ��� � diam

�
γn1 � j

1 r � where γn1 � j
1 r � diam

�
f n1 � j � D1 ��� . There-

fore dist
�
f j � q ��� f j � x1 ��� � ε � r for all j � � 1 � � 2 � � � � � n1. Choosing r � ε � δ � 2 we conclude

that the orbit of q δ-shadows the orbit of x1 for all j � 1 � 2 � � � � n1, proving Proposition 4.6 when
k � 1.

For k � 2 we proceed as follows. Take a small disk D2 � W cs
ε
�
x2 � and B1 as in the previous case

and set B2 � �
x � D2

�
W cu � x ��� and C2 � �

x � D2W
cu
β
�
x � , where β is such that diam

�
f n2

�
W cu

β
�
x ��� � 	

η. Find µ 	 0 such that dist
�
f n1

�
x1 � � x2 � � µ and dist

�
f n2

�
x2 � � x1 � � µ imply f n1

�
D1 � � int

�
B2 �

and f n2
�
D2 �
� int

�
B1 � , where int

�
A � stands for the interior of A.

Then f n2
�
f n1

�
C1 � � C2 � is a small cylinder that cuts C1 and no point of the boundary of C1

�
f � n1

�
C2 � is fixed by f n1 � n2 � � C1 � F � n1 � C2 
 
 . Hence, arguing as before, there is a fixed point q of

f n1 � n2 and reasoning as in the case k � 1 we conclude the proof for k � 2.
The general case follows by induction.

�

Lemma 4.7. Let γ0 � γ1 � γ2 � γ3 � γ4 � 1 be as in Lemma 4.2. Moreover let 0 � γ � γ0 and
take 0 � k0 � 1 such that γ � k2

0γ1 and k � 1
0 γ4 � 1. Then the periodic point q given by Lemma 4.6

satisfies

γN �
N

∏
n � 1

�
D f � E

�
f n � q ��� � � �

k � 1
0 γ4 � N �

Proof. The proof is given in detail in [Ma2, Section II], pages 179-181 (the reader should be
aware that in Mañé’s article our γ3 is denoted γ̄2 and γ4 is denoted by γ3).

�

Proposition 4.8. We may construct q given in Proposition 4.6 such that q � H
�
p � .

Proof. By Proposition 4.7 if δ 	 0 is small enough we ensure that D fq
� E

�
q � contracts in a rate

similar to that of D fx j
� E

�
x j � , j � 1 � 2 � � � � � k if dist

�
f j � q ��� f j � x j ��� � δ for all j � 0 � � � � � N, in the
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local center-stable manifold of q. More precisely we have

γN �
N

∏
n � 1

�
D f � E

�
f n � q � � � �

And for all j � � 1 � N � we have

j

∏
n � 1

�
D f � E

�
f n � q ��� � � �

k � 1
0 γ4 � j �

As q is periodic of period N this implies that its center-stable manifold is a stable manifold, of
size about the same of that of the center-stable manifold of x j. Hence the local unstable manifold
of a periodic point q � � H

�
p � close to x1 intersects the local stable manifold of q. Therefore

W u � p � accumulates in W u � q � or there would exist, by [PS, Lemma 3.3.1] another periodic point
q̂ in the unstable separatrix of W cu

ε
�
q � cutting W cs

ε
�
q � � and between q and w � W cu

ε
�
q � � W cs

ε
�
q � � .

Let Q be the periodic point closest to H
�
p � , in the linear ordering from q to w. Then W u

ε
�
Q �

is accumulated by W u � q � � and therefore also by W u � p � . If we have that for some j � 1 � � � � � k,
i � 0 � � � � � n j, W cs

ε
�
f i � x j ��� is a true stable manifold then we are done. For in that case W s � p �

would accumulate in W s � Q � and W u � p � in W u � Q � respectively and we obtain that Q � H
�
p � ,

concluding the proof of Proposition 4.8.
As we cannot assume that, we have to proceed in a different way. Choose Vl

�
H
�
p � � , l � 1, a

sequence of admissible neighborhoods of H
�
p � such that

Cl
�
Vl � 1

�
H
�
p �����	� Vl

�
H
�
p ��� and

�
l � 1 Vl

�
H
�
p ��� � H

�
p � �

For any Vl
�
H
�
p ��� we may find ql , like the point Q as above, such that ql shadows the pseudo-

orbit given by a sequence
�
x j � f n j

�
x j ��� � j � 1 � � � � � kl of uniform γ4-strings that are not γ-strings as

in Proposition 4.3. Take an accumulation point x of � ql � . If there is a subsequence � qlh � of � ql �
such that the periods of qlh are uniformly bounded then x � H

�
p � � Per

�
f � and x is the desired

periodic point. Otherwise the periods of ql are unbounded and x � H
�
p � is a uniform γ4-string

for all n � 0. Therefore by arguments similar to those used in [PS, Corollary 3.3] we obtain a
stable manifold for x that the unstable manifold of ql will cut for l � l0. Thus ql is homoclinically
related with p completing the proof.

�

Proof of Theorem B
By Propositions 4.6, 4.8, and Lemma 4.7, if E is not a contracting sub-bundle there exists

q � H
�
p � � Per

�
f � such that D fq contracts in E rather weakly in the period contradicting Lemma

2.1. Therefore E is a uniform contracting bundle. This in turn implies, using the arguments of
[Ma3, section II], that F is a uniform expanding bundle. Thus E � F is a hyperbolic splitting.
This implies that the same is true for g C1- close to f .

�
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