GLOBAL WELL-POSEDNESS FOR A NLS-KDV SYSTEM ON T

C. MATHEUS

ABSTRACT. We prove that the Cauchy problem of the Schriodinger - Korteweg - deVries
(NLS-KdV) system on T is globally well-posed for initial data (uo,vo) below the energy
space H' x H'. More precisely, we show that the non-resonant NLS-KdV is globally well-
posed for initial data (uo,vo) € H*(T) x H°(T) with s > 11/13 and the resonant NLS-KdV
is globally well-posed for initial data (uo,vo) € H*(T) x H*(T) with s > 19/21. The idea of
the proof of this theorem is to apply the I-method of Colliander, Keel, Staffilani, Takaoka
and Tao in order to improve the results of Arbieto, Corcho and Matheus concerning the
global well-posedness of the NLS-KdV on T in the energy space H' x H'.

1. INTRODUCTION
We consider the Cauchy problem of the Schrodinger-Korteweg-deVries system

i0u + 02u = auv + Blulu,
(1.1) O + O3v + £0,(v?) = v0,(|ul?),
U(CE,O) :uo(l'), ’U(.’E,O) :UO(CE)’ teR.

The Schrodinger-Korteweg-deVries (NLS-KdV) system naturally appears in fluid mechan-
ics and plasma physics as a model of interaction between a short-wave u = u(z,t) and a
long-wave v = v(z, t).

In this paper we are interested in global solutions of the NLS-KdV system for rough initial
data. Before stating our main results, let us recall some of the recent theorems of local and
global well-posedness theory of the Cauchy problem (1.1).

For continuous spatial variable (i.e., z € R), Corcho and Linares [5] recently proved that
the NLS-KdV system is locally well-posed for initial data (ug,vo) € H*¥(R) x H*(R) with
kE>0,s>-3/4 and

o k—1<s<2k—-1/2ifk<1/2,

e k—-1<s<k+1/2ifk>1/2
Furthermore, they were able to prove the global well-posedness of the NLS-KdV system in
the energy H' x H' using three conserved quantities discovered by M. Tsutsumi [7], whenever
ay > 0.

Also, Pecher [6] improved this global well-posedness result by an application of the I-
method of Colliander, Keel, Stafillani, Takaoka and Tao (for instance, see [3]) combined with
some refined bilinear estimates. In particular, Pecher proved that, if oy > 0, the NLS-KdV
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system is globally well-posed for initial data (ug,vy) € H® x H® with s > 3/5 in the resonant
case f =0 and s > 2/3 in the non-resonant case 3 # 0.

On the other hand, in the periodic setting (i.e., z € T), Arbieto, Corcho and Matheus [1]
proved the local well-posedness of the NLS-KdV system for initial data (ug,vo) € H* x H®
with 0 < s <4k—1and —1/2 < k—s < 3/2. Also, using the same three conserved quantities
discovered by M. Tsutsumi, one obtains the global well-posedness of NLS-KdV on T in the
energy space H' x H' whenever ary > 0.

Motivated by this scenario, we combine the new bilinear estimates of Arbieto, Corcho and
Matheus [1] with the I-method of Tao and his collaborators to prove the following result

Theorem 1.1. The NLS-KdV system (1.1) on T is globally well-posed for initial data (ug,vy) €
H?*(T) x H*(T) with s > 11/13 in the non-resonant case 3 # 0 and s > 8/9 in the resonant
case B =0, whenever ary > 0.

The paper is organized as follows. In the section 2, we discuss the preliminaries for the
proof of the theorem 1.1: Bourgain spaces and its properties, linear estimates, standard
estimates for the non-linear terms |u|?u and 8, (v?), the bilinear estimates of Arbieto, Corcho
and Matheus [1] for the coupling terms uv and 0, (|u|?), the I-operator and its properties. In
the section 3, we apply the results of the section 2 to get a variant of the local well-posedness
result of [1]. In the section 4, we recall some conserved quantities of (1.1) and its modification
by the introduction of the I-operator; moreover, we prove that two of these modified energies
are almost conserved. Finally, in the section 5, we combine the almost conservation results
in section 4 with the local well-posedness result in section 3 to conclude the proof of the
theorem 1.1.

2. PRELIMINARIES

A sucessful procedure to solve some dispersive equations (such as the nonlinear Schrodinger
and KdV equations) is to use the Picard’s fixed point method in the following spaces:

1/2
£l x0 == (/Z(n)%(T+n2)2b|f(nﬁ)ld7)

neZ
= U (=) f s

1/2
gllyse := (/E(W% - n3>2”|§(n,7)ld7)

nez
= V(=) fll gt ®,m2)

where (-) := 14| .|, U(t) = €% and V(t) = e "%. These spaces are called Bourgain spaces.
Also, we introduce the restriction in time norms

I fllxeecry == inf [[fllxes and  |lgllysscry == inf [[gllyse
fli=f glr=g
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where I is a time interval.

The interaction of the Picard method has been based around the spaces Y*/2. Because
we are interested in the continuity of the flow associated to (1.1) and the Y"*/2 norm do not
control the L{°H? norm, we modify the Bourgain spaces as follows:

lullxx o= llullxrao + ) a0, 7) |2 and  follys = [ollyaire + [{n)°0(n, 7) 22 £y
and, given a time interval I, we consider the restriction in time of the X* and Y* norms

lull xery == _inf J[allxx and Jjollysq = _inf [[5]y-
=

ulr=

Furthermore, the mapping properties of U(t) and V' (¢) naturally leads one to consider the
companion spaces

(n)*a(n,T)
(T +n?)

(n)*3(n,7)
(r =)

In the sequel, 9 denotes a non-negative smooth bump function supported on [—2,2] with
1 =1 on [—1,1] and 1;(t) := (t/0) for any é > 0.
Next, we recall some properties of the Bourgain spaces:

Lemma 2.1. X%%/8([0,1]),Y%'/3([0,1]) ¢ LX(T x [0,1]). More precisely,
9@ Fllzs, S 1 flxoss  and |[9()glla, S llgllyoass-
Proof. See [2]. O

lullzx == llull xe-12 + and  ||o|lws == ||vllys-1/2 +

L2LL L2LL

Another basic property of these spaces are their stability under time localization:

Lemma 2.2. Let X*2, = {f: (r — h(€))(€)*|f(r,€)| € L}. Then,
3, < S,

(WO xes,  Son Wfllee,

for any s,b € R. Moreover, if —1/2 < b < b < 1/2, then for any 0 < T < 1, we have

b—b'
Wr@Fllxcewr  Soro T F xne, -

Proof. First of all, note that (1 — 79 — h(f))b <p (10)IPl{(7 — h(€))?, from which we obtain
et so S AT o ab -
I Lo, 5o o) lgs
Using that 9(t) = [ P (7o)€t dry, we conclude

s, , %o ([ Il ) 17l

She)
Since 1) is smooth with compact support, the first estimate follows.

Next we prove the second estimate. By conjugation we may assume s = 0 and, by com-
position it suffices to treat the cases 0 < b < bor < ¥ < b < 0. By duality, we may take
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0 < b < b. Finally, by interpolation with the trivial case b’ = b, we may consider ' = 0.
This reduces matters to show that

b
[$r®fllze S TS oo,

for 0 < b < 1/2. Partitioning the frequency spaces into the cases (7 — h(£)) > 1/T and
(t — h(€) <1/T, we see that in the former case we’ll have

, <Tb
||f||Xg=0 o ||f||X0b e

and the desired estimate follows because the multiplication by % is a bounded operation in
Bourgain’s spaces. In the latter case, by Plancherel and Cauchy-Schwarz

I7@lsz SITOOh < | 1ol

/ (r — h(E)|F(r,€)Par) 2

Sp TV =T 2| fll o0

) TR
Lg

Integrating this against 17 concludes the proof of the lemma. O

Also, we have the following duality relationship between X* (resp., Y*) and Z* (resp.,
W#):

Lemma 2.3. We have
\ / x[o,l](t)ﬂm,t)g(w,t)dzdt\ < 1711 llgll s

and

[ 0001z 0ate Oasat]| 5 11l
for any s and any f,g on T x R.

Proof. See [4, p. 182-183] (note that, although this result is stated only for the spaces Y*
and W*, the same proof adapts for the spaces X* and Z*). O

Now, we recall some linear estimates related to the semigroups U(¢) and V(¢):

Lemma 2.4 (Linear estimates). It holds

o [@OU-uollze IIUOIIHk and ||9(#)V (#)vollws S ||vo||Hs
o lyr(t) [y Ut = )P ()t | xx S I Flzx and lr(t) fy V(E = )G Iy S IIG]lws-

Proof. See [3], [4] or [1]. O

Furthermore, we have the following well-known multiinear estimates for the cubic term
|u|?u of the nonlinear Schrédinger equation and the nonlinear term 9, (v?) of the KdV equa-
tion:

Lemma 2.5. w7+ S lull o g [0l g ol g Jor amy > 0.

Proof. See [2] and [1]. O
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Lemma 2.6. [0, (v02)llwe S orllyoall, oy + lloall o Ioally g Jor any s > =172, if

vy = v1(x,t) and vo = ve(x,t) are z-periodic functions having zero x-mean for all t.
Proof. See [2], [3] and [1]. O

Next, we revisit the bilinear estimates of mixed Schrédinger-Airy type of Arbieto, Corcho
and Matheus [1] for the coupling terms uv and 9;(|u|?) of the NLS-KdV system.

1 whenever s >0 and k —s < 3/2.

Lemma 2.7. [|uv]+ < lull g lloll oy + lull oy lloll .y

Lemma 2.8. [0 (@) lwe S l[utll xeas [uzllxnsss + utll ezl e whenever 145 <
4k and k — s > —1/2.

Remark 2.1. Although the lemmas 2.7 and 2.8 are not stated as above in [1], it is not hard
to obtain them from the calculations of Arbieto, Corcho and Matheus.

Finally, we introduce the I-operator: let m(£) be a smooth non-negative symbol on R
which equals 1 for |¢| < 1 and equals |¢|~! for |¢| > 2. For any N > 1 and o € R, denote by
I3 the spatial Fourier multiplier

7@ -mn(%) 7o

For latter use, we recall the following general interpolation lemma:

Lemma 2.9 (Lemma 12.1 of [4]). Let a9 > 0 and n > 1. Suppose Z,X1,Xs,..., X, are
translation-invariant Banach spaces and T is a translation invariant n-linear operator such
that

n
IET (s -y un)llz S TT 18wl x;
=1
for alluy,...,uy and 0 < a < agy. Then,
n
IR T (w1, un)llz S ] I Ruslx;
j=1
for alluy,...,up, 0 < a<ay and N > 1. Here the implicit constant is independent of N.

After these preliminaries, we can proceed to the next section where a variant of the local
well-posedness of Arbieto, Corcho and Matheus is obtained.

In the sequel we take N > 1 a large integer and denote by I the operator I = I}V_s for a
given s € R.

3. A VARIANT LOCAL WELL-POSEDNESS RESULT

This section is devoted to the proof of the following proposition:
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Proposition 3.1. For any (ug,vo) € H*(T)x H*(T) with [pvo = 0 and s > 1/3, the periodic
NLS-KdV system (1.1) has a unique local-in-time solution on the time interval [0, d] for some
6 <1 and

16 _

(IHuollx1 + [[Hwollyr) =, if B#0,
3.1 6 ~
(1) {(||IU0||X1 + [[Tvolly1) %7, if B =0.

Moreover, we have ||Tul|x1 + || Iv|y1 S [ Tuollx1 + |[Lvolly1-
Proof. We apply the I-operator to the NLS-KdV system (1.1) so that

iTug + Tugy = o (uv) + BI(|ul?u),
Ty + Tvggs + T(vvg) = yI(|u?) s,
IU(O) = I’u,o, I’U(O) = I’Uo.

To solve this equation, we seek for some fixed point of the integral maps

O (ITu, Iv) := U(t)Tup — i/o U(t —t"{al (u(t)v(t) + BI(lu()u(t))}dt,

Oy(Iu, Iv) := V(t)Ivg — /0 V(t — Y {I(o(t)vg(t)) — yI(|u(t)|?)s }dt.

The interpolation lemma 2.9 applied to the linear and multilinear estimates in the lem-
mas 2.4, 2.5, 2.6, 2.7 and 2.8 yields, in view of the lemma 2.2,

1 3_
121 (Tu, Iv) [ x1 < [Huoll e + e85~ [[Tullx1 [ o]y + B657 || Tul[%,
1_ 1_
1@2(Tu, Iv)llyr < [[Tvoll g + 85~ [ Twll + 7057 | Tul%s.
In particular, these integrals maps are contractions provided that 3§ %_(HI ug || g1+ Tvo || g1 )? <

1 and 55_(||Iu0||H1 + |[Tvo||g1) < 1. This completes the proof of the proposition 3.1. O

4. MODIFIED ENERGIES

Consider the following three quantities:

(4.) M(u) = Jjullzz,
(42) L{a,0) == allo}: + 27 [ S(umz)ds,
43) Bl =ay [oudo ol + Slolie - 5 [oido+ 5L [ jultda,

In the sequel, we suppose a-y > 0. Note that

(4.4) |L(u, )| S 0ll72 + Mllug]r:
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and
(4.5) 072 S L] + Mljug| z2.

Also, the Gagliardo-Nirenberg and Young inequalities implies

5
(4.6) lugll7> + lvzllze S|E|+|L[5 + M® +1
and

5
(4.7) |E| S llusll72 + llvallz2 + L2 + M® +1

In particular, combining the bounds (4.4) and (4.7),

10
(4.8) |B| S llualZe + llvall72 + ol 5> + M + 1.

Moreover, from the bounds (4.5) and (4.6),

(4.9) 0|22 S |L| + M|EM? 4 M® +1

and hence

(4.10) 3 + [Joll3n S 1B+ LY + M8 +1
d

EL(Iu,I'U) = QQ/I’U(I’UI’UI — I(vvg))dz + 2a7/IU(I(|u|2) — |Tu|?) dz

(4.11) +4a7%/Iﬂz(IuIv — I(uwv))dz +4ﬂ’Y§R/((Iu)2IU— I(u?0)) Tu,do

= ZLJ"

j=1
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(4.12)

%E(Iu,lfu) = a/(I(v'um) — Ivlvg)Ivg,dz + % /(IU)Q(I(U%) — Ivlvg)dx +

+2698 [ 1(ulPw), ~ (0P T s

+ a’y/ |Tu*(TvIvy — I(vvg))ds + on/(|1u|2 — I(|u]?) IvIvydz
+ay / Toga(|Tuf? — I(uf?))pdz — 207 / Tug(I(av) — Talv)pds
+ar? / (I([ul2) = |Tuf2)o|Tul2dz + 20293 / ToTu(I(@v — Ialv))dz
+ 26293 / Tu(I@)(I(julu) — (Iu)2 1) ds

~ 2087 / ToTu(I(|u?a) — Tu(IT))2ds — 20673 / (Tu)2Ta(I(wv) — Talv)dz

4.1. Estimates for the modified L-functional.

Proposition 4.1. Let (u,v) be a solution of (1.1) on the time interval [0,0]. Then, for any
N>1ands>1/2,

|L(Tu(6), Iv(9)) — L(Iu(0), [v(0))| S

(4.13)
N‘1+55_(||Iu||X1,1/2 + H|ly1s2) + N‘2+5%_||Iu||§(1,1/2.

Proof. Integrating (4.11) with respect to ¢t € [0,6], it follows that we have to bound the
(integral over [0, ] of the) four terms on the right hand side. To simplify the computations,
we assume that the Fourier transform of the functions are non-negative and we ignore the
appearance of complex conjugates (since they are irrelevant in our subsequent arguments).
Also, we make a dyadic decomposition of the frequencies |n;|] ~ N; in many places. In
particular, it will be important to get extra factors Nﬁ?i everywhere in order to sum the
dyadic blocks.
We begin with the estimate of f05 L. Tt is sufficient to show that

é m(n n9) —miny)min
/0 ‘ ( 1+m(27)z1)m(512;) ) 01(n1, t)|n2lva(ng, t)03(n3, 1) S

ni+n2+nz=0

(4.14) o
N7 [ lvilly e
j=1
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o |ni| < |ng| ~ |ns|, |n2| 2 N. In this case, note that

m(ni1+n2)—m(n1
{ m(ni1)m(na

ym(m) | < |VT;;<’;33"1\ <M, if [y < N, and
mn2)‘5 %)/ , if |n1| > N.

m(ni+n2)—m(ny
m(n1)m(ns

\_,uuv

Hence, using the lemmas 2.1 and 2.2 we obtain

I/ Ll s ||'v1||L4||('vz) Izsllvs > S N=2+64- maxl_lll'vzlly1 1/2

if |n1| < N, and

(W 2 N
| L1| ) ¥ anznyn/z N5 anvznym

o |n2| < |n1| ~ |ns|, [n1| 2 N. This case is similar to the previous one.
e |n1| ~ |n2| 2 N. The multiplier is bounded by

m(ny + ne) — m(ni)m(ne) Ny 1=
e a5 ()

In particular, using the lemmas 2.1 and 2.2,

é N 1-
1
[ o0s(F) Wluleoslulels s 86 maXananm

Now, we estimate fod Ls. Our task is to prove that

6 —
/ 2. m(n1 + ng) — m(n1)m(na) ‘|m + no|y (1, t) Uz (ng, )53 (ns, t) <
(4 15) 0 ni+n2+n3=0 m(n1)m(n2)

19
N=H620 [Jua | a2 lluzll o2 lvsllysayo

e |n2| < |n1| ~ |n3| 2 N. We estimate the multiplier by

m(ny + ng) — m(ny)m(ng) Np Ly

Thus, using L2,L2, L1, Holder inequality and the lemmas 2.1 and 2.2

5 1
Ny \?2 1 19
[ s t(B2) et Horllsalual xosrloalyo

SN a3 NSl naallua xaz o3y ase.

e |ni| < |na| ~ |n3|. This case is similar to the previous one.
e |n1| ~ |n2| 2 N. Estimating the multiplier by

s (8)
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we conclude

) 1-
N 1
[ras () oot Tl ol sl

S N5 NO ual ez uzll gz o3 lly .

Next, let us compute fo(s Ls. We claim that

/0 5 m(ny1 + ng) — m(ni)m(ns) @i (n1, 1) 53 (na, t) 03| T3 (ns, )

ni+nz2+nz= 0 m(nl)m(nQ)

(4.16)
< N85 |lug [ 1,072 ol y raso sl 12
o |n2| < |n1| ~ |ns|, |[n1| 2 N. The multiplier is bounded by

{ m(n1+n2)—m(m ))m na)| < |Vm<"1>"2| < 22 if [no| < N, and

m(ni)m(na m(ny) ~ Ny’

minstnp)mln Jmina) | < (M) i | > N,

m(ni1)m(ns)

So, it is not hard to see that

4
/ Ly S N 216%8 Niaelluall o [vally sz Jusl /e
0

e |ni| < |ng| ~ |ns|, |n2| 2 N. This case is completely similar to the previous one.
e |ni| ~ |n2| 2 N. Since the multiplier is bounded by Na/N, we get

5
/L35N 24531~ Nl | xense o2 lly e |ua ]| xo.se-
0

Finally, it remains to estimate the contribution of f05 Ly. It suffices to see that

/ Z ‘m(m + nzm-l(-n’fz:;) (nQ)(nl()n3 m(n3) ‘|n4| H u;(n;,t) <

ni+nz2+ng+ngs=0

(4.17)

N6~ H llujll 1/
i=1

e Ni, Ny, N3 > N. Since the multiplier verifies

‘m(m + ng + ng) — m(ni)m(ng)m(ns) ‘ < (&&&) 3
m(n1)m(ng)m(ns) ~“\N NN ’

the application of L% L4tL4 L%, Hélder inequality and the lemmas 2.1, 2.2 yields

é 1_ 4 4
N1 N2 N3 42 -3 _
L : < N353 ND : :
/0 4 ~J ( N N N N1N2N3 H ||u]||X111/2 ~Y max H ||u]||X1’1/2




GLOBAL SOLUTIONS FOR THE PERIODIC NLS-KDV SYSTEM 11

(2)?).

N[

e N; ~ Ny 2 N and N3, Ny < Ny, No. Here the multiplier is bounded by (% %)
Hence,

5 1 1_ 4
N1 Ny N3 2 (52 2+ 0—
/0 Ly < (N N) <<W) )WHHWHXl 12 SN 5 Nmaxl_Il”uj”Xl’l/z'

e N; ~ Ny 2 N and Ny, N3 < Np, Ny. In this case we have the following estimates for
the multiplier

|Vm( 2’27; -I-n3)| < N2—|—1N3’ if ]\]’2’1\]'3 < N
m(nl + no + TL3) - m(nl)m(HQ)m(n3) ‘ < ( )
)7

7 if N2 > Na
2 ), if N3 > N.
the situations No, N3 < N, Ny > N or

N - Mlb—l

L N»

m(ny)m(ng)m(n NN

(n1)m(n2)m(ns) (2

NN

Therefore, it is not hard to see that, in any of
N3 > N, we have

4
/0 La< N 2th N maXHnuJqu e,

e Ny ~ Ny~ Ny 2 N and N3 K Nl, Ny, Ny. Here we have the following bound

5 1
N1N2 N3 62
/0L45(NN) <(W) e Hnu,nxu/z

At this point, clearly the bounds (4.14), (4.15), (4.16) and (4.17) concludes the proof of
the proposition 4.1. O

4.2. Estimates for the modified E-functional.

Proposition 4.2. Let (u,v) be a solution of (1.1) on the time interval [0, 6] such that [yv =
0. Then, for any N > 1, s > 1/2,

|E(Tu(8), Tv(6)) — E(Iu(0), Iv(0))| S
(4.18) (N*H(sé* F N 3eR 4 N*%hs%*) (1 Tullxt + || Tv]ly1)® +
N7V 62 ([Tl xr + [[Tvllyr)* + N2 62 | Tul /4 (1Tull %0 + | Tolly)-

Proof. Again we integrate (4.12) with respect to ¢ € [0, 4], decompose the frequencies into
dyadic blocks, etc., so that our objective is to bound the (integral over [0,d] of the) E; for
each j=1,...,12.

For the expression fols E4, apply the lemma 2.3. We obtain

4
\/ Bl S vz |ly-1[[TvTve — I(vvg)[[wr S [[Tvlly [Tvlvg — I(vvz)|lws
0
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Writing the definition of the norm W, it suffices to prove the bound

n1 + ng m(ny)m(ng) ~
— /Z m{nm( )Ul(m,ﬁ) ng 93(n2, T2) +
7'3 - n3 5 (n2) 12
n3,73
(4.19) (n1 + n2 m(ni)m(ng) - .
/Z m{n)m( )111(711,71) ny U3(n2, T2) S
(13 —n3) (n2) 12,1k,
_1+(55_||’l)1||y1,1/2||’UQ||Y1,1/2.
3
Recall that the dispersion relation ) 7; — ng’ = —3n1nong implies that, since ninsng # 0, if
j=1

we put L; := |1; — n§’| and Lyayx = max{L;;j = 1,2, 3}, then Lyax 2 (n1)(n2)(n3).

o |n2| ~ |n3| 2 N, |n1| < |ng|. The multiplier is bounded by

m(n1 + ng) — m(nl)m(nQ)‘ < N;, 11f In1| < N,
m(n1)m(nz) ~ ()7, if | > N

Thus, if |73 — 13| = Lmax, we have

% /Z s m (fgi)m(w)ﬁ(”l’ﬁ) na 92(n2, 72)

(13 —n3) L2

n3,73
%;m;ﬁllvlllyl [(v2)allps, S N™ 657 NG o [y o2 lly e, if ] < N,
2 3
(8)" 8 Il @2alzs, S N385 Mool g oall - i | = .
and

(13 — n3 /Z (n1+ nz (g;)m(m)ﬁ(m,n) na B3 (na, )

L2 L1

n3 73
M———Tﬂmymmnﬂ<N*WsM@MMMMMMW%ﬂmKN
< J ey
~ 2
(3)" Mg ol oelay S N F 05 Nl g el g 3 sl > V.
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If either |71 — n}| = Lyax or |72 — n3| = Lyax, we have

T3 = "3 o
N1 #r - loilloy 1 llvell o1 < N—1+5%_N0— H'UIHYI 172 ||vally 12, if [0y < N,
(NlNN) M yhz Fellyly ~ e , | )
MVINs 1 sd- U
(N;> N? (N1N2N3)% d8 ”UlHYI’% ||’U2||Y1,% ,S 63 N, aX||U1||Y1 1 ||'02||Y1 i if |'n/1| > N.
and
/Z ’I’L1 + ’fl2 (?’Ll)m(nQ),&\l(nth) ) 6\2(71'257-2)
(r3 —n3) m(nz) Lag iy
N N. 98~
ﬁmﬁ—lnmn ; ||1)2|| 1 SN™ 1+66 NOax||U1||Y1 12]|v2|ly1,1/2, if [n1| < N,
2 Tt ND, !
(8)" 3ol ol S N H008 Nlll g ol i ol 2 .

e |ni| ~ |n2| 2 N. Estimating the multiplier by

m(ny + ne) — m(ni)m(ne) =
1 +m(2n1)m(n2; : ‘ < (Nl) ’

we have that, if |73 — n3| = Lax,

(n1 4+ n2) — m(ni)m(ng) . .
1 /Z : 2 m{n)mi 2)'01(711,71) ng 02(ng, T2) +
(t3 —n3)2 (ng) i,
(n1 +n2 m(ni)m(ne) . .
/Z mlm )’Ul(nl,ﬁ) ng 02(n2,T2)
(13 — nj (ng) 2,11,

M\ N 5% N\ Ny 53~
Silw rv T\ = ( ol oelly g
(N1N3N3)2 V1 (N1 NyN3) 2~ N1

SN2 Nl g sl
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and, if either |7'1 —n3| = Lyax or |72 — 13| = Liyax,

(n1+n m(ni)m(ng) . .
T /Z ' 2 m{n1)m{ 2)’Ul(nl,ﬁ) ng 02(ng, T2) +
(t3 —n3)? (ng) -
(n1 4+ n2) — m(ni)m(ng) . .
/Z : 2 mln 2)711(774,7'1) n2 UQ(TLQ,TQ)
(T3 —n3 (ng) 12 1,

N 1= N3 (5%7 N, 1= N3 6%7
< (X (N L Y
N (N1 N,N3)2 N1 N (N1 NoN3)z— N1

SNEas Noalloall oy el -

For the expression fo FE,, it suffices to prove that

| /‘5 Z m(ng + ng) — m(ng)m(ng) .

)05 )03 t o Nl <
0 m(n3)m(ns) 01(n1, £)02(n2; t)03(n3, ) g 0a(na, 1)]

(4.20) 4
2
N—2t§3— H lvjlly1,1/2-
=1
Since at least two of the N; are 2 N, we can assume that Ny > Ny > N3 and N; 2 N.
Hence,

4
[ns
0

1— _
(%) N1N2N3 H vjllyra2 SN 2+53 NOaX Hl lvjllyrisz, if [ng| ~ [na| Z N,
J_

2
) %—Nﬁm H [villy e S N=2H637 N9 _Hl [0;lly1.1/2, if |n3] < |nal, In3| < Nna| 2 N,
]_

1
(%) &2 m H [l 13 SNT 2465 N, H [0jll 1,35 1f 3] < |nal, [n3| = N, [na| 2 N

\

Next, we estimate the contribution of fo E5. We claim that

[ 50 mlnan) S s )t s, 0 sl s, &

N~ gam H [ujll x1a72-

j=1

(4.21)

o |ni| ~ |ng| ~ |n3| ~ |n4| 2 N. Since the multiplier satisfies

m(ningng) — m(ni)m(ng)m(ns) < (Nl)g

m(ni)m(ng)m(ng) N
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we obtain

15

5 3
Ni\z2 Ny l_ 2
[ 25 (%) vt H||u]||Xu/z<N *540 maXHnanXu/z

e Exactly two frequencies are 2> N. We consider the most difficult case |n4| 2 N, |n1| ~

|na| and |nal, |ng| < |n1], |n4|. The multiplier is estimated by

m(ninang) — m(ni)m(ng)m(nsz)

NQNLIN?’, if |n2|, |n3| S N.

Thus,

4
/ By SN 1+52*N31aXH sl 1172

e Exactly three frequencies are > N. The most difficult case is |ni| ~ |ng| ~

and |ng| < |n1|, |n2|, |n4|. Here the multiplier is bounded by

e e = (V) ()

Hence,

() (B)F if g = N,
m{ny)m(ng)m(ns) SN(3)7) (%)7, if [ns| > N,

lng| 2 N

5 l
Ny N, N; Ny 1 el
/0E3<(NN) (%) s Hnu]nxn/zw 5 aXHnuJHW

The contribution of fO‘s FE4 is controlled if we are able to show that

J Z m(ny + ne) — m(ni)m(ne) .

0 m(n1)m(ns)

2
- T _
N~1T§1 H||Uj||X1,1/2||’Uj||y1,1/2-
j=1

(4.22)

We crudely bound the multiplier by
|m(n1 + n2) —m(n1)m(no) 1< <Nn’1ax>1_
m(n1)m(na) ~\ N '

The most difficult case is [ng| > N. We have two possibilities:

e Exactly two frequencies are > N. We can assume N3 < No. In particular,

7

01(n1,t) |no| U2(ne, t)uz(ns, t)us(na, t) S

) 1-
Nimax 012
[Es(f=) s Hnujnxllnvjnyll SNt maXHnuJHXllnv]nYl
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e At least three frequencies are 2 N. In this case,
[ B v, H il gr gl -

The expression foa Ej5 is controlled if we are able to prove

J Z m(ny + ne) — m(ni)m(ne)

0 m(n1)m(ns)

2
_ T _
N 1+(512 H||Uj||X1,1/2||Uj||y1,1/2.
=1

u1(ny, t)ug(ng, t)03(ns, t) |na| va(na,t) S

(4.23)

This follows directly from the previous analysis for (4.22).
For the term f05 FEg, we apply the lemma 2.3 to obtain

4
/0 Es S 1(I)aally-1l([Tul® = I(lul®)allwr S ITvlly[[(Hul* = I(jul®))ollws-

So, the definition of the W' norm means that we have to prove

e ) S ) G, )T+
n3,73
4.24 (n1 + ng) — m(ny)m(ne) - -
(4.24) 1 In3 |/Z : 2 m{n)m{ 2)u1(n1,71)uz(n2,72) S
<73 ek ("2) L3, L1,

(Vs 4 NS il e
Note that ) 7; = 0 and ) n; = 0. In particular, we obtain the dispersion relation
T3 —n%—km—kn%—l—n +n% = —n%—l—n%—i—n%.
e [n1| 2 N, |ngo| < |n1|. Denoting by Ly := |1y + n2|, Le := |7» + n3| and Ls := |13 — nj|,

the dispersion relation says that in the present situation Lmay := max{L;} > Nj. Since
the multiplier is bounded by

m(ny + ng) — m(nl)m(%)‘ S {%”11);“ S %2’ if [ns| <N,

m(n1)m(ns) (%) , if |ng| > N,
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we deduce that

il [ 3 G e )|+
T3 —MN3)? L3grs
il [ e B )| S
T3 T N3)? L2,LL,
N32 55

e lualle S N3 68 Nl e fual e
3

T 1-
o |n1| ~|n2| 2 N, |n3|> > |ny/|?. In the present case the multiplier is bounded by (&)
and the dispersion relation says that Lyay > Nj. Thus,

n +n m(ni)m(ng) —
1| 3|/Z - 2 m{n)m( Q)Ul(nlaTl)UQ(n2,7'2) +
<7'3—77/3 (n2) L2
n3,73
(n1 4+ n2) — m(ni)m(ng) —
1| 3|/Z - 2 ( m( 2)U1(n1,T1)U2(n2,T2) <
NZ (N\' 65
N; (W) o Tl € N73008 Ntz ol e
3

e [n1| ~ |ng] 2 N and |n3|® < |ng|2. Here the dispersion relation does not give useful

1
information about Lmax. Since the multiplier is estimated by (%2)2, we obtain the
crude bound

(n1 + nz m(ni)m(ng) —
1| 3|/Z i )m( )U1(n1,Tl)U2(n2,TZ) +
< T3 — n3 (n2) 12
n3,73
n1 + ’ng m{ny)mng) —
(i)} |n3|/z m{nJm( )ul(nlaTl)UQ(nZaTZ) S
<7-3 B n3 (n2) L7, L,

3

N L
N3 (N2) NN, = lutll xrazlluzl xi2 SN iTSEN max”ul“Xl 12]|uell 1,172

Next, the desired bound related to f06 E follows from

[ 30 |t ) S mI) i, 06 Ol

Nl IIU1||X1,1/2||v2||y1,1/2IIU3llxl,1/z

(4.25)
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e |n1| < |ng| = N. The multiplier is < (|ng|/N)Y/? so that

) )
1 — ~ —
| B s 5 [ 3 It mali o Dl 25 Ol T 1) <

_1o19_
N7102 a2 vz lly /o lusl /2

e |n1| ~ |n2| 2 N. The multiplier is < |ng|/N. Hence,

)
_ 19
/ Er S N71631 |[un || a0 llyael|usl e
0

e |n1| = N, |ng| < N. The multiplier is again < Na/N, so that it can be estimated as
above.

Now we turn to the term fO‘s FEg. The objective is to show that

mn +n n
(4.26) / ‘ 1 2 (;Q; ‘|n1+"2|H“J nj,t) S N7~ H||“J||X11/2
j=1

e At least three frequencies are 2 N. We can assume |ni| > |ng|. The multiplier is
bounded by Npax/N so that

1 4
02 _
/ ES ~ N N2N3N4 H“u,]”Xl 1/2 <N 2+5 NI?IHXH||UJ||X1:1/2
i=1

e Exactly two frequencies are > N. Without loss of generality, we suppose |n1| ~ |ng| 2 N
and |n3|, |n4| < N. Since the multiplier satisfies

‘m(nl + n2) — m(ni)m(n2) ‘ < (Nmax>1_ ’

m(ni)m(ng) N

we get the bound

5 1— 1_
N, 52
By S| —= | | S N3 | |

The contribution of fO‘s FEy is estimated if we prove that

/ ‘m ny + ng m(n1)m(ns) ‘ﬂ\

1(’”’1, t)'&\?(n@a t)ag(nfia t)ﬁ:l(nﬁla t) 5
(nz)

N 2t§1- ||U1||X1 12]|v2|lyraselfusl x/z lvallyase-

(4.27)



GLOBAL SOLUTIONS FOR THE PERIODIC NLS-KDV SYSTEM 19

This follows since at least two frequencies are 2 N and the multiplier is always bounded by
(Nmax/N)'~, so that

’ Ninax \ '
R (T) sl ozl usllzaloalze <

Nmax = (5Z 3 <
) s ettty S

7
N7265 [lua |l a2 lvally e lusll xias2 [oally e

Now, we treat the term fOJ Fp. It is sufficient to prove

6
/Z m(ng + ns + ng) (7::)( () m(ne) ‘H“A nit) <

m(na)m j=1

(4.28) ]
N253 I lluglixe
j=1

However, this follows easily from the facts that the multiplier is bounded by (Nyax/N)%/2, at
least two frequencies are > N, say |ng, | > |ng,| > N, the Strichartz bound X%%/8 C L* and

the inclusion! X3F C L. Indeed, if we combine these informations, it is not hard to get

/5E S ( maxf 1 5 : ﬁ” lx1 S N8N | | [l
2 (2 1 2 « Us 1

For the expression fo E11, we use again that the multiplier is bounded by (Npax/N)3/2,
at least two frequencies are 2 N (say |n;,| > |ni,| 2 N), the Strichartz bounds in lemma 2.1

and the inclusions X %+, Yot c L2 to obtain

/ Y (n1 +n2 + n3) — m(n1)m(na)m(ns) ‘ ﬁ @j(nj, t)05(ns, t) S

m(n1)m(nz)m(ns) i

3
Nmax)§ 1 02~
4.29 Uil x1||vs||ly1 5
wm  (Mm s e L e sl

4
_ 1_
N6 [T llugllx floslya-

i=1

The analysis of fOJ FE5 is similar to the foé FE4q1. This completes the proof of the proposi-
tion 4.2. ]

!This inclusion is an easy consequence of Sobolev embedding.
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5. GLOBAL WELL-POSEDNESS BELOW THE ENERGY SPACE

In this section we combine the variant local well-posedness result in proposition 3.1 with
the two almost conservation results in the propositions 4.1 and 4.2 to prove the theorem 1.1.

Remark 5.1. Note that the spatial mean [;v(t,z)dz is preserved during the evolution (1.1).
Thus, we can assume that the initial data vo has zero-mean, since otherwise we make the
change w = v — fT vodz at the expense of two harmless linear terms (namely, ufT vodzr and

0zv [pv0).
The definition of the I-operator implies that the initial data satisfies || Tuo||%;: + [[Tvol|%: S

N2(1=5) and [ Tug||3 2+ Tvol|22. < 1. By the estimates (4.4) and (4.8), we get that |L(Tug, Tvp)| S
N'=% and |E(Tug, Tvg)| < N2(1—9).

Also, any bound for L(Iu, Iv) and E(Iu, Iv) of the form |L(Iu, Iv)| < N'"% and |E(Iu, Iv)| <
N2(1=9) implies that | Tull2, < M, ||Iv]2, S N and |[Tul3: + [ To]3: S N2(1=s),

Given a time T, if we can uniformly bound the H'-norms of the solution at times ¢ = §,
t = 24, etc., the local existence result in proposition 3.1 says that the solution can be extended
up to any time interval where such a uniform bound holds. On the other hand, given a time
T, if we can interact 76! times the local existence result, the solution exists in the time

interval [0,7T]. So, in view of the propositions 4.1 and 4.2, it suffices to show

(5.1) (N 1tgze— N3(-s) 4 N—2+53- N41-s))pg—1 < Nl

and
(5.2)

(V71887 4+ N73FaRm 4 NTEF RN 4 NN 4 N0

Sl

S
N2(1*S)
At this point, we recall that the proposition 3.1 says that § ~ N5 jf B # 0 and
6 ~ N-8(0-5)— if 3 = (. Hence,
e 3 # 0. The condition (5.1) holds for
5 16

—1+ ﬁ?u —5)+3(1—-s)<(1—s), ie ,s>19/28
and
116 .
24 53(1 —s)+4(1—-s)<(1—y¢), ie ,s>11/1T;
Similarly, the condition (5.2) is satisfied if
516
1+ E?(l —5)+3(1—s) <2(1-3¢), ie ,s>40/49;
2 516

-3 + E?(l —5)+3(1—-s)<2(1-3¢), ie ,s>11/13;
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3 716
-3 + g?(1 —8)+3(1—s)<2(1—3s), ie ,s>25/34;
116 .
—1+ 5?(1 —s)+4(1—-s)<2(1—3¢), ie ,s>11/14

and

11
_2+§?6(1 —5)+6(1—s)<2(1-s), ie ,s>T7/10.

Thus, we conclude that the non-resonant NLS-KdV system is globally well-posed for
any s > 11/13.

e 3 =0. The condition (5.1) is fulfilled when
Lt 281 - 9) £3(1 - 5) < (1 - s), fe 5> 8/11
and
o4 %8(1 _ ) +4(1—s) < (1—s), ie. s> 5/T;
Similarly, the condition (5.2) is verified for

1+ 28(1 —s)+3(1—-s)<2(1—-s), ie ,s>20/23;
2 5 .
-3 + 68(1 —8)+3(1—5)<2(1—2s), ie ,s>8/9;
3 7 .
-3 + §8(1 —8)+3(1—5)<2(1-2s), ie. ,s>13/16;

-1+ %8(1 —8)+4(1—5)<2(1—2¢), ie. ,5>5/6
and
24 8(1— )+ 6(1 ) <2AL—s), e 5> 34
Hence, we obtain that the resonant NLS-KdV system is globally well-posed for any
s > 8/9.
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