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Abstract. We study non-hyperbolic repellers of diffeomorphisms derived from
transitive Anosov diffeomorphisms with unstable dimension 2 through a Hopf

bifurcation. Using some recent abstract results about non-uniformly expanding
maps with holes, by ourselves and by Dysman, we show that the Hausdorff
dimension and the limit capacity (box dimension) of the repeller are strictly
less than the dimension of the ambient manifold.

1. Introduction and Statement of Results. In this paper we study the Haus-
dorff dimension of a class of non-hyperbolic repellers constructed by deformation of
globally hyperbolic (Anosov) diffeomorphisms in dimension 3 or higher. A pattern
we have in mind is described in Figure 1. A fixed point p of some Anosov diffeomor-

Figure 1. A Hopf bifurcation

phism goes through a Hopf bifurcation, and becomes an attractor. The complement
Λ of the basin of attraction W s(p) is a repeller for the new diffeomorphism. Does
Λ have zero Lebesgue measure (volume)? Even more, is the Hausdorff dimension
of the repeller strictly less than the dimension of the ambient manifold?

Fractals invariants such as the Hausdorff dimension and limit capacity play an
important role in various areas of Dynamical Systems, and have attracted a great
deal of attention. We refer the reader to Falconer [8], Palis-Takens [15], Pesin [16]
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for an updated panorama of the theory. Computing these fractal invariants is
usually difficult, because they depend on the microscopic structure of the set. Not
surprisingly, most methods require the set to be self-similar, meaning that small
pieces of it look very much like the whole. And self-similarity often arises from the
dynamical system being uniformly hyperbolic (contracting and or expanding) and
conformal, possibly after some dimension reduction.

Neither of these properties holds in the present setting. On the one hand, the
repeller contains an invariant circle that is produced by the Hopf bifurcation, and
so it can never be hyperbolic. On the other hand, conformality being a non-generic
property, these diffeomorphisms are usually not conformal, nor can they be reduced
to conformal maps. Nevertheless, we are able to give a positive answer to the ques-
tions raised above: the Hausdorff dimension and the limit capacity of the repeller
are strictly less than the dimension of the ambient manifold; in particular, Λ has
volume zero.

These conclusions arise from applying to our diffeomorphisms general results of
our own [12] (for Hausdorff dimension) and Dysman [7] (for limit capacity), proved
for an abstract class of systems that we called maps with holes. Actually, we are
able to prove that in the present setting the boundaries of the smoothness domains
of the relevant maps with holes have limit capacity strictly smaller than the ambient
dimension. This allows us to use a relatively simple version of our criterion in [12]
(no need for “extended rectangles”).

An interesting open question is whether the dimension of the repeller converges
the ambient dimension as the map approaches the Hopf bifurcation. Dysman [7]
does prove a similar continuity fact for maps with holes, when the diameter of
the hole goes to zero. However, she requires uniform bounds, for instance on the
expansion rate, that do not hold in our situation, and so those results do not apply
immediately here.

Let us describe precisely the families of diffeomorphisms for which we claim these
results. For the sake of clearness we focus on one such family: our arguments apply,
in particular, to any other one in a C5 neighborhood.

1.1. Diffeomorphisms derived from Anosov. LetM = T
3 be the 3-dimensional

torus. We consider a linear Anosov diffeomorphism G on M having one real eigen-
value λ ∈ (0, 1) and two complex conjugate eigenvalues σe±iα with σ > 3. Assume
kα /∈ 2πZ for k = 1, 2, 3, 4. In cylindrical coordinates (ρ, θ, z) defined close to the
fixed point (0, 0, 0), we have

G(ρ, θ, z) = (σρ, θ + α, λz).

We are going to derive from G a family of diffeomorphisms ĝµ, µ ∈ [−1, 1] going
through a Hopf bifurcation at µ = 0. For this purpose, we consider a C∞ real valued
function Φ(µ,w, z) defined on the unit cube [−1, 1]3 such that, for some C0 > 0 and
some small δ0 > 0,

(C1) Φ(µ, 0, 0) = 1 − µ ≤ Φ(µ,w, z) for all w ≥ 0.
(C2) Φ(µ,w, z) = σ when either w ≥ δ0 or |z| ≥ δ0 .
(C3) 0 < ∂wΦ(µ,w, z) ≤ C0/δ0 when 0 ≤ w < δ0 and |z| < δ0 .
(C4) There exist σ1 ∈ (1, σ) and δ1 ∈ (0, δ0) such that Φ(µ,w, z) > σ1 for all w ≥ δ1

and ∂wΦ(µ,w, z) ≥ ∂wΦ(µ, 0, 0) for all w ∈ [0, δ1].

See Figure 2. We take δ0 > 0 to be small enough so that the domain

{(ρ, θ, z) : ρ2 ≤ δ0 and |z| ≤ δ0}
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Figure 2. Graphic of Φ(µ, ·, z)

is contained in a small open neighborhood V ⊂M of the origin, such that the closure
of V is itself contained in the interior of some rectangle of a Markov partition S for
G. We deform G inside V to obtain a 1-parameter family ĝµ of diffeomorphisms
coinciding with G outside V and whose restriction to V is given, in cylindrical
coordinates, by

ĝµ(ρ, θ, z) = (Φ(µ, ρ2, z)ρ, θ + α, λz). (1)

It is clear that the origin is a fixed point of ĝµ for all µ. We shall see that this fixed
point goes through a Hopf bifurcation at µ = 0: for µ > 0 the fixed point becomes
an attractor.

It follows that any family of diffeomorphisms (gµ)µ close to (ĝµ)µ has a unique
curve of fixed points pµ close to the origin, and these fixed points also go through
a Hopf bifurcation; the Hopf bifurcation parameter µ∗ is close to zero and depends
continuously on the family. Here closeness should be in the C5 topology or higher;
see Marsden-McCracken [14] and Section 2.2. Our first main result is

Theorem A. Let (gµ)µ be a family of diffeomorphisms in a C5-neighborhood of
(ĝµ)µ. For each µ > µ∗ let Λµ be the complement of the basin of attraction W s(pµ)
of the attracting fixed point pµ . Then the limit capacity of this repeller satisfies

c(Λµ) < 3 for all µ > µ∗ close to µ∗.

In particular, the Hausdorff dimension HD(Λµ) < 3 for all µ > µ∗ close to µ∗.

Recall that the Hausdorff dimension of a compact metric space X is the unique
real number HD(X) such that mα(X) = ∞ for any α < HD(X) and mα(X) = 0
for any α > HD(X), where mα is the Hausdorff α-measure:

mα(X) = lim
ε→0

inf

{

∑

U∈U

(diam U)α : U is an open covering of X with

diam U ≤ ε for all U ∈ U
}

.

One always has HD(X) ≤ c(X), where the limit capacity, or box dimension, c(X)
is defined by

c(X) = lim sup
ε→0

log n(X, ε)

| log ε| ,
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where n(X, ε) is the smallest number of ε-balls needed to cover X.
The same arguments give a higher-dimensional version of this theorem, for fami-

lies of diffeomorphisms derived from Anosov diffeomorphisms on the D-dimensional
torus with two-dimensional expanding direction. The conclusion is that the limit
capacity of Λµ is strictly smaller than D for all parameter values immediately after
the bifurcation and, consequently, so is the Hausdorff dimension of Λµ.

We shall see in Section 2.1 that these diffeomorphisms gµ are partially hyperbolic
and admit a global central foliation F c

µ, close to the unstable foliation of the Anosov
diffeomorphism G. Our methods also yield an upper bound for the Hausdorff di-
mension of Λµ intersected with any leaf F c

x of this central foliation.

Theorem B. Let (gµ)µ be a family of diffeomorphisms in a C5-neighborhood of
(ĝµ)µ. Then

c(Λµ ∩ Fc
x) < 2 (and so HD(Λµ ∩ Fc

x) < 2)

for every µ > µ∗ close to µ∗ and every central leaf F c
x.

It is a classical fact that uniformly hyperbolic repellers that do not coincide with
the whole manifold have zero Lebesgue measure, if the map is C2. See Bowen [3,
Theorem 4.11]. It is also well-known that, in fact, their Hausdorff dimension is
smaller than the dimension of the ambient manifold. See Shafikov, Wolf [17] for
recent results on the dimension of hyperbolic sets and their stable and unstable sets.
As we have already mentioned, our repellers Λµ are never hyperbolic, due to the
presence of the invariant circle created in the center-unstable manifold W cu(pµ) of
pµ by the Hopf bifurcation. Indeed, hyperbolic sets of diffeomorphisms are expan-
sive, and there are no expansive homeomorphisms on the circle; see Walters [19,
Theorem 5.27].

Theorems A and B may also be thought of as generalizations of results of Dı́az-
Viana [6], who studied attractors of maps derived from Anosov diffeomorphisms
in 2 dimensions. They exhibited an open set of families (ft)t of diffeomorphisms
of T

2 crossing the boundary of Anosov systems through a saddle-node bifurcation,
such that the Hausdorff dimension of the attractor varies discontinuously at the
parameter of bifurcation. In contrast, they also showed that for other families of
diffeomorphisms of T

2, with a more degenerate bifurcation, the Hausdorff dimension
may depend continuously on the parameter. Their situation is much simpler than
the one here, because the problem can be reduced to dimension 1, by projecting
along an invariant foliation, and also because their attractors are hyperbolic already
immediately after the bifurcation.

Let us mention a few other results in a related context. Carvalho, in [5], consid-
ered a situation similar to ours giving rise to non-hyperbolic attractors Λµ (roughly
speaking, we consider the inverses of her maps), and she proved that there ex-
ists a unique Sinai-Ruelle-Bowen measure supported on Λµ. This was extended by
Bonatti-Viana [2] to a large class of partially hyperbolic attractors. These authors
also observed in [2, Section 6.1] that the attractors in [5] have empty interior. More-
over, strong-unstable leaves are dense in them and, consequently, these attractors
are transitive.

A number of interesting papers on the dimension theory of non-conformal sys-
tems have appeared recently. Let us mention, in particular, Barreira [1], Shafikov-
Wolf [17], and Luzia [13], dealing with hyperbolic systems, and Gelfert [9], where
non-hyperbolic dynamics are also considered.
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2. Preliminaries. In conditions (H1)–(H6) below we summarize a few conse-
quences of hypotheses (C1)–(C4) that suffice for the proofs of Theorems A and
B. Throughout, (gµ)µ is a family of diffeomorphisms sufficiently close to (ĝµ)µ, as
in the statement of the theorems.

2.1. Partial hyperbolicity and invariant foliations. We begin by proving

• The diffeomorphisms gµ are partially hyperbolic for every µ close to zero: there
exists a splitting TM = Ess

µ ⊕Ecu
µ of the tangent bundle, invariant under the

derivative Dgµ, dominated, and such that Ess
µ is uniformly contracting.

Since partial hyperbolicity is an open property, relative to the C1 topology, it is
enough to prove that ĝµ is partially hyperbolic for every small µ. This is done in
the following proposition:

Proposition 2.1. Fix ε > 0 and assume δ0 is small. Then for every µ in a
neighborhood of zero, there exists a Dĝµ-invariant splitting TM = Ess

µ ⊕Ecu
µ of the

tangent bundle, and there exist positive constants Ks , Kc , K such that

(a) Ecu
µ coincides with the (ρ, θ)-plane;

(b) ‖Dĝn
µ |Ess

µ ‖ ≤ Ksλ
n for all n ≥ 1 (uniform contraction);

(c) ‖Dĝn
µ |Ecu

µ ‖ ≤ Kc(σ + ε)n for all n ≥ 1;

(d) ‖Dĝ−n
µ |Ecu

µ ‖ ≤ K(1 − µ)−n for all n ≥ 1;

(e) ‖Dĝ−n
µ |Ecu

µ ‖ ‖Dĝn
µ |Ess

µ ‖ < 1/2 for some n ≥ 1 (domination).

Proof. Up to changing the constants, the conclusions are independent of the choice
of the norm. For simplicity, we consider the Euclidean norm ‖(ρ̇, θ̇, ż)‖2 = ρ̇2 +

ρ2θ̇2 + ż2 (this extends smoothly to the origin). Define the cone field

Ccu
x =

{

(ρ̇, θ̇, ż) ∈ TxM such that |ż| ≤ κ‖(ρ̇, θ̇)‖
}

,

where κ is some small positive constant to be chosen in the sequel, depending only
on λ and Φ. In cylindrical coordinates,

Dĝµ =





Φ + ∂wΦ · 2ρ2 0 ∂zΦ · ρ
0 1 0
0 0 λ



 ,

where Φ and its derivatives are computed at (µ, ρ2, z). Hence,

Dĝµ





ρ̇

θ̇
ż



 =





Φρ̇+ ∂wΦ · 2ρ2ρ̇+ ∂zΦ · ρż
θ̇
λż



 =:





ρ̇1

θ̇1
ż1





for every tangent vector (ρ̇, θ̇, ż). Recall that Φ ≥ 1 − µ and ∂wΦ > 0, by (C1) and
(C3). Moreover, |∂zΦ| is bounded by some constant C, because Φ is C∞. Therefore,
for any tangent vector in Ccu

x we have

|ρ̇1| ≥ (Φ + ∂wΦ · 2ρ2)|ρ̇| − |∂zΦ · ρ||ż| ≥ (1 − µ)|ρ̇| − Cκ‖(ρ̇, θ̇)‖ .
ρ1|θ̇1| = Φρ|θ̇| ≥ (1 − µ)ρ|θ̇|

and so, assuming that µ and κ are sufficiently small,

‖(ρ̇1, θ̇1)‖2 ≥ (1 − µ)2‖(ρ̇, θ̇)‖2 − 2Cκ|ρ̇| ‖(ρ̇, θ̇)‖ ≥ λ2‖(ρ̇, θ̇)‖2.

It follows that
|ż1| = |λż| ≤ λκ‖(ρ̇, θ̇)‖ ≤ κ‖(ρ̇1 , θ̇1)‖

and this proves that the cone field Ccu is positively invariant.
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Consequently, the dual cone field

Css
x =

{

(ρ̇, θ̇, ż) ∈ TxM such that |ż| ≥ κ‖(ρ̇, ż)‖
}

,

is negatively invariant. Let us check that Css is a stable cone field, that is, its
vectors are uniformly expanded by backward iterates. Note that for any vector
(ρ̇, θ̇, ż) ∈ Css

|ż| ≤ ‖(ρ̇, θ̇, ż)‖ ≤ (1 + κ−1)|ż| . (2)

By negative invariance, every Dĝ−n
µ · (ρ̇, θ̇, ż) = ( · · · , · · · , λ−nż) is also in the cone

field. Applying (2) to each of the iterates we get that

‖Dĝ−n
µ · (ρ̇, θ̇, ż)‖ ≥ (1 + κ−1)−1λ−n‖(ρ̇, θ̇, ż)‖

for all n ≥ 1. This shows that the vectors in Css are expanded by negative iterates
of the derivative, with expansion rate λ−1.

Existence of these invariant cone fields implies that Dĝµ admits an invariant
splitting TM = Ecu

µ ⊕ Ess
µ with Ecu

µ ⊂ Ccu and Ess
µ ⊂ Css. In particular, Ess

µ is
uniformly contracting, as claimed in (b). Moreover, we may take Ecu

µ to coincide
with the horizontal (ρ, θ)-direction, as stated in (a) since this is invariant under
every Dĝµ . We are left to prove the bounds in (c) and (d) concerning the behavior
of the derivative along Ecu

µ .
Still in cylindrical coordinates, we have

Dĝµ|Ecu
µ =

(

Φ + ∂wΦ · 2ρ2 0
0 1

)

.

Recall that we consider ‖(ρ̇, θ̇)‖2 = ρ̇2 + ρ2θ̇2 and that ρ1 = Φρ. Using conditions
(C2) and (C3) we find

‖Dĝµ|Ecu
µ ‖ ≤ max{Φ + 2ρ2∂wΦ,Φ} ≤ σ + 2δ20(C0/δ0) ≤ σ + ε, (3)

if δ0 is chosen sufficiently small, and

‖(Dĝµ|Ecu
µ )−1‖ ≤ max{(Φ + 2ρ2∂wΦ)−1,Φ−1} = Φ−1 ≤ (1 − µ)−1. (4)

This implies conclusions (c) and (d). The domination condition (e) is an immediate
consequence of (b) and (d), assuming µ is small.

Now let us define, for each n ≥ 1 and x ∈M ,

an
µ(x) =

∥

∥(Dgn
µ |Ecu

µ (x))−1
∥

∥, bnµ(x) =
∥

∥Dgn
µ |Ess

µ (x)
∥

∥, cnµ(x) =
∥

∥Dgn
µ |Ecu

µ (x)
∥

∥.

We use the notations ân
µ, b̂nµ, ĉnµ when gµ = ĝµ. We are going to prove

• There is n ≥ 1 such that

sup
x∈M

(

an
µ b

n
µ c

n
µ

)

< 1 for all µ close to zero. (5)

Once again, since this is an open property (because the invariant subbundles Ess
µ

and Ecu
µ depend continuously on the map) in the C1 topology, we only need to

prove it for gµ = ĝµ. This is done in

Corollary 2.2. There is n ≥ 1 such that supx∈M

(

ân
µ b̂

n
µ ĉ

n
µ

)

< 1 for every µ close
to zero.
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Proof. From the proposition we have
∥

∥(Dĝn
µ |Ecu

µ )−1
∥

∥ ·
∥

∥Dĝn
µ |Ess

µ

∥

∥ ·
∥

∥Dĝn
µ |Ecu

µ

∥

∥ ≤ K(1 − µ)−nKsλ
nKc(σ + ε)n.

Since G is a linear automorphism, we must have λσ2 = detDG = 1. Hence,
(1 − µ)−1λ(σ + ε) < 1, as long as ε and µ are small enough. Therefore, the
conclusion holds for every n sufficiently large.

Remark 2.3. Since ĝµ coincides with G outside V it expands the center-unstable
bundle Ecu

µ there:
∥

∥(Dĝµ(x)|Ecu
µ (x))−1

∥

∥ ≤ σ−1 for all x ∈M \ V .

Then the same is true for any nearby gµ (reducing σ > 3 slightly, if necessary).

Let us comment on the significance of (5). By Hirsch-Pugh-Shub [10, 11], this
property ensures that across the bifurcation the map gµ has an invariant center-
unstable (or central) foliation F c

µ , whose tangent space Ecu
µ is everywhere contained

in Ccu
µ , and an invariant strong-stable foliation F ss

µ , whose tangent space Ess
µ is

everywhere contained in Css
µ and whose leaves are uniformly contracted by gµ. In

fact, this foliation is of class C1+δ on M :

Corollary 2.4. There exists δ > 0 such that for every µ close to zero, the diffeo-
morphism gµ admits a C1+δ foliation Fss

µ of co-dimension 2, invariant by gµ and
whose tangent bundle is everywhere contained in the cone field Css

µ . Consequently,
the leaves of Fss

µ are uniformly contracted by gµ.

Proof. This is an application of the Invariant Manifold Theorem 4.1 in [11]. Alter-
natively, a direct proof can be given following closely the arguments of Theorem 6.3
of Hirsch-Pugh [10]. We just sketch the main steps. For simplicity we suppose that
n = 1 in Corollary 2.2. Consider the graph transform

Tµ :
(

Ex

)

x
7→

(

Dg−1
µ Egµx

)

x

acting on the space of continuous vector bundles of codimension 2. This operator
preserves the set of subbundles everywhere contained in the strong-stable cone field
Css

µ , and is a contraction on that set, with respect to the uniform norm. It follows
that Ess

µ is the unique fixed point, and it attracts every orbit of Tµ. Using the
fact that Ess

µ is uniformly contracting one shows that it is uniquely integrable: the
integral foliation Fss

µ is dynamically characterized by the property that its leaves
are exponentially contracted by the forward iterates of gµ .

To show that Fss
µ is a C1 foliation and, even more, Ess

µ is a C1 bundle, one uses

the graph transform Tµ : (E, E) 7→ (TµE, T E
µ E) induced by Tµ on the level of 1’st

jets: it satisfies

Tµ

(

E,DE
)

=
(

TµE,D(TµE)
)

(6)

for every C1 bundle E. Property (5) is designed to ensure that Tµ is a contraction
fiberwise: T E

µ is a contraction for every E, with uniform contraction rate. It follows
that Tµ has a unique fixed point (Ess

µ , Ess
µ ). Using relation (6) and the fact that

the fixed point is a global attractor, one deduces that Ess
µ = DEss

µ . Hence, Ess
µ is a

C1 bundle and, in particular, Fss
µ is a C1 foliation. Finally, fixing n ≥ 1 and δ > 0

small enough so that

an
µb

n
µ(cnµ)1+δ < 1

we get that Ess
µ is δ-Hölder and so Ess

µ is a C1+δ bundle.
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Also by [10, 11], the center-unstable foliation is topologically conjugate to the
unstable foliation Fu of G, in the sense that there is a homeomorphism sending
leaves of one to leaves of the other: that is because F c remains normally contracting
throughout the isotopy (one must also check the technical plaque-expansiveness
condition). In particular all the center-unstable leaves are dense in M .

2.2. Hopf bifurcations. Next we prove that any family of diffeomorphisms C5

close to the family (ĝµ)µ satisfies

• There exists a curve (pµ)µ of fixed points of (gµ)µ and there exists µ∗ close
to zero such that pµ is a hyperbolic saddle of gµ for µ < µ∗ , it goes through
a generic Hopf bifurcation at µ = µ∗ , and becomes an attractor for µ > µ∗ ,
remaining all the time inside V .

First, let us recall the notion and some basic facts about Hopf bifurcations. See
also Marsden-McCracken [14]. Let ϕµ : U → R

2 be a C1 one-parameter family of
embeddings of some open subset U of R

2. Assume there exists a curve pµ of fixed
(or periodic) points of each ϕµ , and there exists some parameter value µ∗ such that

(a) Dϕµ(pµ) has complex eigenvalues λ(µ) 6= λ(µ) for all µ close to µ∗;
(b) |λ(µ∗)| = 1 but λ(µ∗)

k 6= 1 for all for k = 1, 2, 3, 4;
(c) the derivative of the norm |λ(µ)| is non-zero at µ = µ∗ .

Depending on whether the derivative is negative or positive, the fixed point pµ

changes from a repeller to an attractor, or from an attractor to a repeller, as the
parameter crosses µ∗ .

Assuming the family ϕµ is of class C5, this bifurcation admits the following
normal form in convenient polar coordinates (see [14]):

ϕµ(ρ, θ) = Fµ(ρ, θ) +O(ρ5) with

Fµ(ρ, θ) =
(

a(µ)ρ+ b1(µ)ρ3, θ + φ(µ) + b2(µ)ρ2
)

,
(7)

where a(µ) and φ(µ) are, respectively, the norm and the argument of λ(µ). Assume,
furthermore, that

(d) the coefficient b1(µ) is non-zero at µ = µ∗ .

Then we say that (ϕµ)µ unfolds a generic Hopf bifurcation at the parameter value
µ = µ∗ . A distinctive feature of this bifurcation is the formation of a ϕµ-invariant
circle C(ϕµ), close to the Fµ-invariant circle

C(Fµ) = {(ρ, θ) : b1(µ)ρ2 = 1 − a(µ)}. (8)

These invariant circles are defined for either µ > µ∗ or µ < µ∗ (close to µ∗) depend-
ing on the signs of da/dµ and b1(µ) at µ = µ∗ .

Now let (ψµ)µ be a family of diffeomorphisms on some manifold, admitting a
smooth family of fixed (or periodic) points pµ and a parameter value µ∗ such that

(i) for µ = µ∗ the derivative Dψµ(pµ) has a pair of complex conjugate eigenvalues
with norm 1, and all the other eigenvalues are all inside or all outside the unit
circle;

(ii) there exists a smooth family Nµ, defined for all µ close to µ∗ , of ψµ-invariant
(central) manifolds through pµ , of dimension 2 and tangent to the eigenspace
associated to the pair of complex eigenvalues in (i);

(iii) the restriction ϕµ = ψµ | Nµ unfolds a generic Hopf bifurcation at the para-
meter µ∗, in the sense of conditions (a)-(d).
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Then we also say that (ψµ)µ unfolds a generic Hopf bifurcation at the parameter µ∗ .
Notice that the fixed point changes from an attractor/repeller to a codimension-
2 saddle, or just the other way around, as µ crosses the bifurcation parameter.
According to the previous comments, as this happens an invariant circle C(ψµ) =
C(ϕµ) is formed inside the central manifold Nµ either for µ > µ∗ or for µ < µ∗ .

Unfolding a generic Hopf bifurcation is an open property in the space of C5 one-
parameter families (the parameter µ∗ depends on the family, of course); see [14].
Thus, in order to justify the statement made at the beginning of this section it is
enough to prove the corresponding fact for the family gµ = ĝµ :

Proposition 2.5. The family of diffeomorphisms (ĝµ)µ unfolds a generic Hopf
bifurcation, with pµ = 0, µ∗ = 0, a(µ) = 1 − µ, b1(µ) > 0 and b2(µ) = 0.

Proof. Take Nµ to be the horizontal (ρ, θ)-plane through the fixed point pµ = 0.
By construction and Proposition 2.1(a) this is a ĝµ-invariant surface. The definition
(1) gives that the restriction ϕµ of ĝµ to Nµ is described in polar coordinates by

ϕµ(ρ, θ) = (Φ(µ, ρ2, 0)ρ, θ + α).

Conditions (i) and (ii) in the definition of Hopf bifurcation are clear from these
remarks, so let us now check ϕµ satisfies conditions (a)-(d). Expanding Φ(µ,w, 0) =
(1 − µ) + b1(µ)w +O(w2) (recall (C1)), we get

ϕµ(ρ, θ) = ((1 − µ)ρ+ b1(µ)ρ3, θ + α) +O(ρ5).

This expression shows that a(µ) = 1 − µ and b2(µ) is identically zero. Moreover,
b1(µ) = ∂wΦ(µ, 0, 0) > 0 by condition (C3). From a(0) = 1 and φ(0) = α we get
that the eigenvalues of Dϕ0(0) are e±iα, and this gives (a). We have assumed that
kα /∈ 2πZ for k = 1, 2, 3, 4 and this corresponds precisely to (b). Condition (c) is
contained in da/dµ = −1, and we already checked that b1(µ) 6= 0, as requested in
(d).

In the next proposition we analyze the local dynamics of fµ = gµ | {z = 0}.
Let us consider the neighborhood V1 = {(ρ, θ) : ρ2 ≤ δ1} of pµ = 0 restricted to
{z = 0}, where δ1 > 0 is as in condition (C4).

Proposition 2.6. For µ close to zero we have

1. fµ is expanding outside V1 : ‖Df−1
µ ‖−1 ≥ σ1

2. b1(µ)ρ2 ≤ 1/1000 for all (ρ, θ) ∈ V1

3. ‖Df−1
µ −DF−1

µ ‖ ≤ b1(µ)ρ2/10 inside V1

4. |detDfµ − detDFµ| ≤ b1(µ)ρ2/100 inside V1

5. and the normal form Fµ satisfies b1(µ) > 2|b2(µ)|.
Proof. Throughout we assume that µ is close enough to zero for the arguments to
go through. By (C2) and (C4), the point pµ has a neighborhood {(ρ, θ, z) : ρ2 ≤
δ1 and |z| ≤ δ0|} ⊂ V outside of which ĝµ expands the center-unstable direction
uniformly:

1. ‖(Dĝµ | Ecu
µ )−1‖−1 > σ1 outside that neighborhood.

Clearly, the same remains true for any small perturbation gµ. Recall that Dfµ =
Dgµ | Ecu

µ . Combining (4) and our choice of σ1 we find that
∥

∥(Dĝµ|Ecu
µ )−1

∥

∥

−1 ≥ Φ(µ, ρ2, z) > σ1

whenever ρ2 ≥ δ1. Clearly, this remains true for any gµ close to ĝµ . This proves
part 1. Taking δ1 sufficiently small from the beginning we get part 2. Parts 3 and
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4 follow directly from the fact that fµ and its normal form differ by O(ρ5). Finally,
part 5 follows from the fact that b1(µ) > 0 and b2(µ) = 0 for every µ.

Note that in this setting the fixed point pµ changes from a saddle (with two
expanding directions) to an attractor, as µ increases past µ∗ = 0. Since b1(µ) > 0
and da/dµ < 0, the invariant circle C(gµ) = C(ϕµ) is defined for µ > µ∗ . Relation
(8) says that C(Fµ) for the normal form Fµ of gµ = ĝµ is the round circle of radius

ρ0 =

(

µ

b1(µ)

)1/2

.

In general, the invariant circle C(gµ) is described by

a(µ)ρ+ b1(µ)ρ3 +O(ρ5) = ρ.

Assuming gµ is close to ĝµ and µ is close to the bifurcation parameter µ∗ , the circle
is close to the origin. Then the third term is negligible, relative to the second one,
and we conclude that C(gµ) is contained in a corona bounded by circles of radii

ρ1 < ρ2 with ρi ≈
(

(1 − a(µ)/b1(µ)
)1/2

for i = 1, 2, where ≈ means equality up to a
factor which can be made arbitrarily close to 1 if gµ is close to ĝµ and µ is close to
the bifurcation parameter. Moreover, 1 − a(µ) ≈ (µ− µ∗), since da/dµ ≈ 1. Thus,

ρi ≈
(

µ− µ∗

b1(µ)

)1/2

for i = 1, 2. (9)

Remark 2.7. Up to reparametrizing the family of diffeomorphisms, we may always
suppose that µ∗ = 0 and a(µ) = 1 − µ, and we do so in what follows.

2.3. Hyperbolic deformation and Markov partitions. For any family (gµ)µ

of diffeomorphisms close to (ĝµ)µ we also check that

• There exists a smooth family (Gµ)µ of Anosov diffeomorphisms of T
3 close to

G and such that gµ = Gµ outside V for all µ.

Proof. Note that when gµ = ĝµ it suffices to consider Gµ = G for all µ. To treat the
general case, consider a C∞ function ω : T

3 → R such that ω = 0 on a neighborhood
of the origin and ω = 1 on the complement of V . Then define

Gµ(x) = G(x) + ω(x)(gµ(x) − ĝµ(x))

(the sum is in the torus). It is clear that Gµ = gµ outside V . Moreover, gµ − ĝµ has
small C1 norm. This means that Gµ is uniformly close to G in the C1 topology,
and so it is an Anosov diffeomorphism.

The main application of this property is to ensure that the maps gµ have (not
necessarily generating) Markov partitions:

• There exists a Markov partition Sµ for gµ such that V is contained in some of
the Markov rectangles and the image of any Markov rectangle intersects less
than η ≤ 1000σ2 Markov rectangles.

Let us recall the notions involved and comment on this property. See also [3]. A
Markov rectangle for an Anosov diffeomorphism f : M → M is a (small) compact
domain Si ⊂ M which coincides with the closure of its interior, and such that for
every x, y ∈ Si the unique point [x, y] in W u

loc(x) ∩W s
loc(y) is also in Si . For each

x ∈ Si let W s
i (x) and W u

i (x) denote the connected components of, respectively,
W s(x) ∩ Si and Wu(x) ∩ Si that contain x.
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Then a Markov partition for f : M → M is a finite covering S of M by Markov
rectangles with pairwise disjoint interiors, such that the following crucial condition
(10) is satisfied:

f(W s
i (x)) ⊂W s

j (f(x)) and f(W u
i (x)) ⊃W u

j (f(x)) (10)

for all x ∈ Si ∩ f−1(Sj). See [3, 18] for a proof that Anosov diffeomorphisms
(and, more generally, hyperbolic basic sets) always admit Markov partitions with
arbitrarily small diameter. Moreover, such partitions are generating : there is at
most one point with any given itinerary relative to the partition.

The stable boundary ∂sSi of a Markov rectangle is the set of points x which
are not interior to W u

i (x), relative to the local unstable manifold. The dual notion
of unstable boundary ∂uSi is defined similarly. Using the definition of Markov
rectangle, and the fact that (x, y) 7→ [x, y] is a continuous map, one easily sees that
∂sSi is a union of stable sets W s

i (z) and ∂uSi is a union of unstable sets W u
i (z).

We denote ∂sS = ∪i∂
sSi and ∂uS = ∪i∂

uSi . The Markov property (10) implies
that f(∂sS) ⊂ ∂sS and f−1(∂uS) ⊂ ∂uS.

Using a Markov partition, we may associate to f a quotient map φ in the space of
all stable leaves W s

i (x), sending each W s
i (x) to the stable leaf W s

j (y) that contains it
(φ may be multivalued at the boundaries of the Markov rectangles). This quotient
map is uniformly expanding and has a Markov property: denoting Ri = {W s

i (x) :
x ∈ Si},

φ(int(Ri)) ∩ int(Rj) 6= ∅ ⇒ φ(Ri) ⊃ Rj . (11)

Going back to our setting, recall that we have fixed some Markov partition S for
the Anosov diffeomorphism G such that the closure of V is contained in the interior
of some Markov rectangle S0 . By construction, every Gµ is C1 close to G. Since
Anosov diffeomorphisms are structurally stable, it follows that the two maps must
be topologically conjugate: there exists some homeomorphism hµ : M → M such
that Gµ ◦ hµ = hµ ◦G. Then we may consider the family

Sµ =
{

Si,µ = hµ(Si) : Si ∈ S
}

and it is a Markov partition for Gµ. Moreover, the conjugacy hµ is C0 close to the
identity if Gµ is close to G.

Assuming (gµ)µ is close enough to (ĝµ)µ we may ensure that the closure of V is
contained in the interior of S0,µ = hµ(S0) for every µ. Since gµ and Gµ coincide
outside V , it follows that gµ(Si,µ) = Gµ(Si,µ) for every i (including i = 0). Observe
also that, since the forward iterates of all points in ∂sSµ under Gµ never pass
through the region V , they coincide with the corresponding iterates under gµ .

Then the same is true for the partially hyperbolic diffeomorphisms gµ just with
strong-stable leaves in the place of stable manifolds. That is because the forward
iterates of the points in ∂s(hµ(Si)) never pass through the perturbation region
V , and so their local strong-stable leaves for gµ coincide with their local stable
manifolds for Gµ. It follows that we may still define a quotient map in the space
of local strong-stable leaves of gµ, and this is still Markov, in the sense of (11): the
domains Ri,µ for the quotient maps of gµ and Gµ coincide, and so do their images
under those quotient maps.

It is in this sense that we say that Sµ is also a Markov partition for our partially
hyperbolic diffeomorphisms gµ . Observe, however, that these Markov partitions
are generally not generating.
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Finally, the statement on the number of Markov rectangles intersecting the image
of any of them is a direct consequence of the construction of Sµ and the correspond-
ing fact for the initial Anosov diffeomorphism G. Let us comment on this property.
Roughly, the “average” number of rectangles intersected by each Markov rectangle
is given by the Jacobian in the unstable/central direction, which for G is σ2. Of
course, there may be oscillations around this average, e.g. if some rectangles are
much bigger than others. The factor 1000, which is certainly not optimal, provides
room for such oscillations.

2.4. Summary. Let us summarize the conclusions of this section. The proofs of
our theorems rely on properties (H1)–(H6) below only.

We are considering one-parameter families gµ : M → M , −1 ≤ µ ≤ 1, of Cr

diffeomorphisms, r ≥ 5, of the 3-dimensional torus such that

(H1) There exists an open set V ⊂M and a continuous family (Gµ)µ of transitive
Anosov diffeomorphisms with

‖DG−1
µ | Eu

µ‖−1 ≥ σ > 3

such that g−1 coincides with G−1, and gµ = Gµ outside V , for all µ. Moreover,
for all µ, the set V is contained in some rectangle of a Markov partition Sµ of
Gµ.

(H2) There exists a curve (pµ)µ of fixed (or periodic) points of (gµ)µ and there
exists µ∗ such that pµ is a hyperbolic saddle of gµ for µ < µ∗, it goes through
a generic Hopf bifurcation at µ = µ∗, and becomes an attractor for µ > µ∗,
remaining all the time inside V .

(H3) The diffeomorphisms gµ are partially hyperbolic, for all µ close to zero: there
exists a splitting TM = Ess

µ ⊕Ecu
µ of the tangent bundle, invariant under the

derivative Dgµ, dominated, and such that Ess
µ is uniformly contracting.

(H4) There is n ≥ 1 such that, for every µ close to zero,

sup
M

∥

∥(Dgn
µ |Ecu

µ )−1
∥

∥ ·
∥

∥Dgn
µ |Ess

µ

∥

∥ ·
∥

∥Dgn
µ |Ecu

µ

∥

∥ < 1 .

(H5) There exists a neighborhood V1 of pµ restricted to W cu
µ (pµ) with fixed radius

and which satisfies conclusions 1–5 of Proposition 2.6.
(H6) The Markov partition Sµ for gµ may be taken such that the maximum number

η of rectangles the image of a rectangle intersects is less than 1000σ2.

3. Proof of Theorems A and B. In this section we prove the main theorems of
this paper. We derive Theorem B from Theorem 1 of [12], Theorem 1 of Dysman [7]
and our key Proposition 3.9. Then we prove Theorem A from Theorem B.

3.1. Maps with holes. The results of [12] and Dysman [7] are for an abstract
model, called maps with holes. We begin by describing this model, and recalling
the precise statements in those previous papers.

Let f : M →M be a map on a d-dimensional Riemannian manifold, d ≥ 1 such
that

(A1) there exist domains R1, . . . , Rm in M , with pairwise disjoint interiors, such
that the restriction of f to each Ri is a C1+ε diffeomorphism onto some
domain Wi that contains R1 ∪ · · · ∪ Rm . Moreover, the difference Hi =
Wi \ (R1∪· · ·∪Rm) has non-empty interior, the inner diameter of Ri is finite,
and the boundaries ∂R1, . . . , ∂Rm have limit capacity less than d.
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By domain we always mean a compact path-connected subset. Figure 3 describes
an example where Hi = H and Wi = W are the same for all i. The repeller of f
in R1 ∪ · · · ∪Rm is the set of points Λ whose forward orbits never fall into the Hi,
that is,

Λ = {x : fn(x) ∈ R1 ∪ · · · ∪Rm for every n ≥ 0}.

PSfrag replacements

H
f−1(H ∩Ri)

Ri

WW

Figure 3. The repeller of a map with holes

The Ri need not be disjoint. The condition on the inner diameter means that
there exists L > 0 such that any two points in Ri may be joined by a piecewise C1

curve inside Ri and with length less than L.

Remark 3.1. It suffices to suppose that every Wi contains the union of the Rj over
some subset of indices j, and the iterates of Ri eventually hit a hole, that is, they
eventually contain some Wk such that Hk = Wk \∪jRj has non-empty interior. See
Remark 1 of [12].

Given n ≥ 1, we call n-cylinder any set of the form

C(α1, . . . , αn) = Rα1
∩ f−1(Rα2

) ∩ · · · ∩ f−n+1(Rαn
)

with α1 , α2 , . . . , αn in {1, . . . ,m}. That is, an n-cylinder consists of all the points
remaining in R1∪· · ·∪Rm , and sharing a given itinerary with respect to the family
{R1, . . . , Rm}, up to time n. Clearly, n-cylinders form a covering of the repeller Λ,
for each n ≥ 1.

For each n ≥ 1 and α1 , α2 , . . . , αn in {1, . . . ,m}, we consider the average least
expansion

φn(α1 , α2 , . . . , αn) =
1

n

n
∑

j=1

inf
x∈Cj

log
∥

∥Df−1
(

f j(x)
)∥

∥

−1
,

where the infimum is over all x in Cj = C(α1 , . . . , αj). Throughout, Df−i(f j(y)) is
to be understood as the inverse of the derivative Df i(f j−i(y)), for any y and j ≥ i.
Note that φn(α1 , α2 , . . . , αn) > c > 0 implies that the derivative Dfn expands
every vector:

‖Df−n(fn(x))‖ ≤
n

∏

j=1

‖Df−1(f j(x))‖ ≤ e−cn for all x in C(α1 , . . . , αn).

Denote by Qn(c) the union of all length-n cylinders C(α1, . . . , αn) such that
φn(α1, . . . , αn) ≤ c. We also assume
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(A2) There exist c > 0 and c1 > 0 such that
∑

C∈Qn(c) Leb(C) ≤ e−c1n for every n

sufficiently large.

Theorem 3.2 (Theorem 1 in [12]). Let f : M → M and Λ be as above, satisfying
(A1) and (A2). Then HD(Λ) < d.

Condition (A2) implies assumption (NU2) of Dysman [7]

(NU2) There exists c1 > 0 such that, for every large n, we have Leb(Bn(c)) ≤ e−c1n,

where Bn(c) is the set of points that belong to some cylinder C(α1, . . . , αn) such
that φj(α1, . . . , αj) ≤ c for all j ∈ {1, . . . , n}. Indeed, this set Bn(c) is contained
in the union of the cylinders C ∈ Qn(c) . Therefore, we have the following stronger
result:

Theorem 3.3 (Theorem 1 in Dysman[7]). Under the assumptions of Theorem 3.2,
we have c(Λ) < d.

3.2. Constructing a map with holes. The first step is to associate to each
diffeomorphism gµ a 2-dimensional map with holes fµ . Let Sµ = {S0 , S1 , . . . , Sm}
be a Markov partition for gµ as in Section 2.3. Recall that, for each x ∈ Si we
denote by W s

i (x) the connected component of W ss(x) ∩ Si that contains x. For
each i ≥ 1, fix a domain Ri,µ ⊂ W c(pµ) that intersects each stable leaf W s

i (x) at
exactly one point. Analogously for i = 0, except that in this case we denote the
domain by R∗

0,µ and we ask that pµ ∈ R∗
0,µ. Let

Wµ = R∗
0,µ ∪R1,µ ∪ · · · ∪Rm,µ .

Note that Wµ needs not be connected. Let Hµ = R∗
0,µ ∩ W s

loc(pµ) and R0,µ =
R∗

0,µ \Hµ . Define πµ : M →Wµ to be the projection along the leaves W s
j (x) inside

each Sj . By Corollary 2.4, πµ is of class C1+δ restricted to each rectangle. Then
define fµ : Wµ →Wµ by

fµ = πµ ◦ gµ .

Note that πµ is multi-valued on the boundaries of the rectangles, and so fµ is also
a multi-valued C1+δ map. This fµ is a map with hole, in the sense of (A1), (A2),
and Remark 3.1, as we are going to explain.

3.3. Checking the Markov and hyperbolicity conditions. Let us check the
Markov condition (A1) for µ > 0 close enough to zero. For simplicity we often
omit reference to the parameter in the subscripts of the Markov rectangles. Take
H0 = Hµ and Hi = ∅ for i ≥ 1. By construction, H0 has non-empty interior.
Since Sµ is a Markov partition, every image fµ(Ri) is a union of domains Rj over
some subset J(i) of indices j. Recall also that the Anosov maps Gµ are transitive,
because they are conjugate to a linear Anosov diffeomorphism. Then, for every
0 ≤ i ≤ m, there exists ` ≥ 0 such that f `

µ(Ri) contains R0. Furthermore H0 =
fµ(R0) \ {R0, . . . , Rm} has non-empty interior. This gives the Markov property, in
the formulation of Remark 3.1.

To complete the verification of condition (A1), it remains to prove that the
Markov rectangles have bounded inner diameter, and the limit capacity of their
boundaries is less than the ambient dimension dimWµ. The first property is dealt
with by Proposition 3.4, and the second one is covered by Proposition 3.5. In both
cases, we give somewhat more general statements, in terms of Markov rectangles of
Anosov diffeomorphisms.



HAUSDORFF DIMENSION FOR NON-HYPERBOLIC REPELLERS 15

Proposition 3.4. Given an Anosov diffeomorphism Φ : M →M with stable index
1, and a generating Markov partition R, there exists L > 0 such that for every x, y
in some Markov rectangle, there exists a piecewise smooth curve γ ⊂ R connecting
x and y with length(γ) < L.

Proof. It is suffices to prove the lemma for the quotient map φ of the Anosov
diffeomorphism in the space of local stable leaves, since the stable leaves are smooth
curves with bounded length. For each j = 0, . . . ,m, fix some point aj ∈ int(Rj).
Moreover, fix any upper bound K > 0 for the inner distances

distin(φ(ar), as),

over all r, s such that φ(ar) and as are in the same rectangle. We are going to prove
that any point in Rj can be joined to aj by a piecewise curve with length less than
L/2, for a convenient L = L(φ,K) > 0. Since R is a generating partition, given
any x ∈ Rj , we have

{x} = Ri0 ∩ φ−1(Ri1) ∩ · · · ∩ φ−k(Rik
) ∩ · · · ,

for some sequence (ik)k in {0, . . . ,m}N. Let x0 = ai0 and for k = 1, 2, . . . denote by
xk the pre-image of aik

by φk in the same connected component of φ−k(Rik
) that

contains x. The fact that φ is a uniformly expanding map implies that the diameters
of these connected components go to zero when k goes to infinity. Therefore, xk

goes to x when k goes to infinity. Moreover, for every j ≥ 0, we have

distin(xj , xj+1) = distin(φ(−j)(aij
), φ(−(j+1))(aij+1

))

≤ ρ−(j+1) distin(φ(aij
), aij+1

) ≤ Kρ−(j+1),

where φ(−n) denotes the appropriate inverse branch of φn and ρ−1 < 1 is the
supremum of ‖Dφ−1‖. Then,

distin(x, x0) ≤
∞
∑

j=0

distin(xj , xj+1) ≤ K

∞
∑

j=0

ρ−(j+1) ≤ L/2,

if L is chosen sufficiently large. This proves the proposition.

Proposition 3.5. Given an Anosov diffeomorphism Φ : M → M and a Markov
partition R for Φ, the limit capacity c(∂uR) of the union of the unstable boundaries
of the Markov rectangles is strictly smaller than the unstable dimension of Φ.

Proof. As in the previous proposition, we may consider the quotient map φ induced
by Φ in the space of local stable leaves, which is a uniformly expanding map. The
Markov partition of Φ gives rise to a Markov partition of φ, that we also denote
by R. Then it suffices to prove that the limit capacity of the union Γ of the
boundaries of these Markov rectangles for this map φ is strictly smaller than the
corresponding ambient dimension (the unstable dimension of Φ). The argument
combines estimates from [3] with the following general fact (Proposition 3.2 of [8]):

Proposition 3.6. The limit capacity of a set Γ ⊂ R
d is given by

c(Γ) = d− lim inf
δ→0

log Leb(Γδ)

log δ

where Γδ is the δ-neighborhood of Γ.
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In view of this proposition, to prove Proposition 3.5 we only have to show that
the lim inf is positive, that is, the volume of the δ-neighborhood of Γ = ∂uR decays,
at least, as fast as a positive power of δ. The first step is the following version of
the volume Lemma 4.3 in [4]:

Lemma 3.7. Given ε > 0 and δ > 0, there exists β = β(ε, δ) > 0 such that for any
x ∈ Γ and any y ∈ B(x, ε, n), we have

Leb(B(y, δ, n)) ≥ β Leb(B(x, ε, n))

for every n ≥ 1.

Proof. By the mean value theorem, there exist η in B(y, δ, n) and ξ in B(x, ε, n)
such that

Leb(B(y, δ, n)) =
Leb(B(φn(y), δ))

|detDφn(η)|
and

Leb(B(x, ε, n)) =
Leb(B(φn(n), ε))

|detDφn(ξ)| .

Since Leb(B(w, δ))/Leb(B(z, ε)) is bounded away from zero, by a constant that
depends only on δ and ε, it is sufficient to show that

|detDφn(η)|
|detDφn(ξ)|

is bounded from infinity. Notice that

φj(B(x, ε, n)) ⊂ B(φj(x), ερj−n) and φj(B(y, δ, n)) ⊂ B(φj(x), (ε+ δ)ρj−n).

Recall that ρ = infimum of ‖Dφ−1‖−1. Therefore, since log |detDφ| is Hölder
continuous,

log
|detDφn(η)|
|detDφn(ξ)| =

n−1
∑

j=0

log
|detDφ(φj(η))|
|detDφ(φj(ξ))| ≤ C

n−1
∑

j=0

dist(φj(η), φj(ξ))ν

≤ C
∞
∑

i=0

(2(ε+ δ)ρ−i)ν < +∞.

This proves the volume lemma.

Let B(Γ, ε, n) represent the dynamical ε-neighborhood of Γ of length n, that is,
the set of points that remain within distance ε from the forward invariant Γ from
time 0 to time n− 1. Using the previous lemma we are going to prove

Lemma 3.8. There exist p ≥ 1 and θ < 1 such that, for every n ≥ 1,

Leb(B(Γ, ε, n+ p)) ≤ θ Leb(B(Γ, ε, n)).

Proof. This is similar to Theorem 4.11 of [3]. Given any ε > 0, let us fix γ > 0 such
that the ball of radius ε around any point z ∈ Γ contains some point w such that
dist(w,Γ) > 4γ. Moreover, let us fix p ≥ 1 such that

φp(B(z, γ)) contains B(φp(z), ε) (12)

for every z ∈ Γ. Now let E be a (4γ, n)-separated subset of Γ: no element of
E belongs to the dynamical 4γ-neighborhood of length n of any other element.
Consequently,

(a) the dynamical 2γ-neighborhoods of length n of the elements of E are pairwise
disjoint.
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Moreover, take E to be maximal: this implies that

(b) the dynamical 2γ-neighborhood of length n of Γ is contained in the union of
the dynamical 6γ-neighborhood of length n of all the elements of E.

Consider any x ∈ E. By (12), we have

φn+p(B(x, γ, n)) = φp(B(φn(x), γ)) ⊃ B(φn+p(x), ε)

and so, there exists y = y(x) ∈ B(x, γ, n) such that dist(φn+p(y),Γ) > 4γ. Fix
δ ∈ (0, γ) such that

dist(z, w) < δ ⇒ dist(φp(z), φp(w)) < 2γ.

Then B(y, δ, n) ⊂ B(x, 2γ, n) and

φn+p(B(y, δ, n)) = φp(B(φn(y), δ)) ⊂ B(φn+p(y), 2γ).

Since dist(φn+p(y),Γ) > 4γ, this implies that B(y, δ, n) is disjoint from B(Γ, 2γ, n+
p). That is, we have show that each B(y, δ, n) is contained in B(Γ, 2γ, n) but is
disjoint from B(Γ, 2γ, n+ p). In view of property (a), the B(y(x), δ, n) are pairwise
disjoint. So, we conclude that

Leb(B(Γ, 2γ, n+ p)) ≤ Leb(B(Γ, 2γ, n)) −
∑

x∈E

Leb(B(y(x), δ, n)).

Using Lemma 3.7, we deduce

Leb(B(Γ, 2γ, n+ p)) ≤ Leb(B(Γ, 2γ, n)) − β
∑

x∈E

Leb(B(x, 6γ, n)),

where β = β(6γ, δ) > 0. Then, using property (b),

Leb(B(Γ, 2γ, n+ p)) ≤ (1 − β) Leb(B(Γ, 2γ, n)),

and this proves the claim, with θ = 1 − β.

Proposition 3.5 is now an easy consequence. Indeed, this last lemma implies that

Leb(B(Γ, ε, n)) ≤ θq Leb(B(Γ, ε, r))

for every n ≥ 1, where q is the largest integer such that n ≥ pq and r = n − pq.
This implies that the volume of the dynamical neighborhoods decays exponentially
fast with the length n:

Leb(B(Γ, ε, n)) ≤ Cθn/p

for a conveniently chosen constant C. On the other hand, Γδ ⊂ B(Γ, ε, n) as long
as

δ(sup ‖Dφ‖)n ≤ ε.

Let ε > 0 be fixed. For each δ > 0, take n largest such that this inequality holds.
Then

Leb(Γδ) ≤ Leb(B(Γ, ε, n)) ≤ C ′δα

where α = − log θ/(p log sup ‖Dφ‖) and C ′ is another convenient constant, inde-
pendent of δ. This gives that

lim inf
δ→0

log Leb(Γδ)

log δ
≥ α > 0

and so the limit capacity of Γ is at most d − α. The proof of Proposition 3.5 is
complete.

The hyperbolicity condition (A2) is contained in the following crucial result:
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Proposition 3.9. For families
(

fµ

)

µ
of maps as above, there exist c0 > 0, µ0 > 0,

n0 ≥ 1, and c1 > 0 such that for every 0 < µ ≤ µ0,

∑

C∈Qµ,n(c0µ)

Leb2(C) ≤ e−c1nµ for all n ≥ n0

where Leb2 represents the normalized Lebesgue measure induced by the Riemannian
metric.

The proof of this proposition is long, and we postpone it to Section 4.

3.4. Proof of Theorems A and B. First we prove Theorem B. Having checked
all the hypotheses, we are in a position to apply Theorems 3.2 and 3.3 to the map
f = fµ constructed previously. We get that, for every small µ > 0, the set of points
in W c

µ that never fall into Hµ has Hausdorff dimension and limit capacity strictly
less than 2. Consequently,

HD(Λµ ∩W c
µ) ≤ c(Λµ ∩W c

µ) < 2.

Now observe that the repeller Λµ is saturated by the stable foliation, that is, it
consists of entire leaves. Recall that the holonomy maps of the stable foliation are
C1+δ and, in particular, Lipschitz. Consequently, they preserve Hausdorff dimen-
sion and limit capacity. It follows that the previous statement remains true for the
intersection of the repeller with any other central leaf:

HD(Λµ ∩ Fc
x) ≤ c(Λµ ∩ Fc

x) < 2 for every x,

as claimed. This completes the proof of Theorem B.

Now we prove Theorem A using Theorem B. Let µ > 0 be small, as previously.
Since c(Λµ ∩Wµ) < 2, given c(Λµ ∩Wµ) < α < 2, there exists ε > 0 such that the
smallest number of ε-balls needed to cover Λµ ∩Wµ satisfies

n(Λµ ∩Wµ, ε) < ε−α.

The fact that the holonomy along leaves of F ss
µ defined in Section 2.1 are C1+δ,

consequently Lipschitz, implies that there exists a constant K ≥ 1 such that for
every Markov rectangle and every x′ ∈ π−1(x) and y′ ∈ π−1(y) with x, y ∈ Rj , we
have dist(x′, y′) ≤ K dist(x, y). Besides the fact that the Markov rectangles have
compact closure and they are finitely many, we get a constant K ′ > 0, depending
only on the metric, such that Λµ can be covered by

n(Λµ ∩Wµ, ε)K
′ε−D+2

D-dimensional ε-balls. Therefore, since α < 2, we have

HD(Λµ) ≤ c(Λµ) = lim sup
ε→0

log n(Λµ, ε)

| log ε|

≤ lim sup
ε→0

log[n(Λµ ∩Wµ, ε)K
′ε−D+2]

| log ε| < D.

The proof of Theorem A is complete.
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4. Central Lyapunov Exponents. We are left to prove Proposition 3.9. The
proof, to be given in Section 4.3, combines estimates of the derivative and Jacobian
of fµ near the bifurcation point pµ (Section 4.1) with a combinatorial analysis of
the visits of orbits to the neighborhood of pµ (Section 4.2).

The intuition behind it is the following. For µ > 0, inside the Markov rectangle
S0 ⊃ V the derivative of gµ may contract the central bundle in some directions,
opposite to what occurs outside S0 , where the derivative always expands the central
bundle uniformly. In principle, an orbit may spend a lot of time in S0 accumulating
contraction along the central bundle, and the time spent outside S0 may not be
sufficient to compensate these contractions. However, for a full Lebesgue measure
subset and every small µ > 0, expansion does prevail, as required by (A2).

Our estimates involve a large number of constants. Rather than having to keep
track of the relations between all those constants, we have chosen to use explicit
values whenever possible. However, these values are usually technical, and not
meant to be optimal.

4.1. Iterates in the non-hyperbolic region. Lemma 4.1 says that fµ is not too
contracting in the central direction, outside a small neighborhood of pµ. Lemma 4.2
asserts that fµ is volume expanding outside Hµ. For simplicity of notation, we
denote Wµ ∩V also as V . Recall that V1 ⊂ V is the neighborhood of pµ introduced
in (H5)–Proposition 2.6.

Lemma 4.1. Let (gµ)µ satisfy properties (H1)–(H6). Then there exists a constant
µ1 > 0 such that for every 0 < µ ≤ µ1 we have Hµ ⊂ V1 and there exists a
neighborhood V2(µ) ⊂ Hµ of pµ such that

(a) log
∥

∥(Dfµ(x))−1
∥

∥

−1 ≥ −33

32
µ+

31

32
b1(µ)ρ2 for every x in V1 .

(b) log
∥

∥(Dfµ(x))−1
∥

∥

−1 ≥ − 3

32
µ for every x outside V2(µ).

Proof. For clearness, we begin by proving (a) in the much simpler case when gµ = ĝµ

is of the form (1). By condition (C4), we have ∂wΦ(µ,w, z) > ∂wΦ(µ, 0, 0) = b1(µ)
for ρ2 ≤ δ1 and so

Φ(µ, ρ2, z) > Φ(µ, 0, z) + b1(µ)ρ2 ≥ (1 − µ) + b1(µ)ρ2

whenever ρ2 ≤ δ1 . Using the elementary fact

log(1 − a+ b) ≥ −33a

32
+

31b

32
if 0 ≤ a, b ≤ 1

32
, (13)

we get that

log
∥

∥(Dĝµ|Ecu
µ )−1

∥

∥

−1 ≥ log Φ(µ, ρ2, z) > log(1 − µ+ b1(µ)ρ2)

≥ −33

32
µ+

31

32
b1(µ)ρ2.

For proving part (a) in the general situation of conditions (H1)–(H6), let
{

∂

∂ρ

∣

∣

∣

∣

(ρ,θ)

,
∂

∂θ

∣

∣

∣

∣

(ρ,θ)

}

,

be the image of the canonical frame in R
2 under the change of coordinates ϕ(ρ, θ) =

(ρ cos θ, ρ sin θ). The frame
{

∂

∂ρ

∣

∣

∣

∣

(ρ,θ)

,
1

ρ

∂

∂θ

∣

∣

∣

∣

(ρ,θ)

}

, (14)
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is orthonormal relative to the Euclidean metric. From the expression of the normal
form (7) (recall Remark 2.7)

Fµ(ρ, θ) =
(

(1 − µ)ρ+ b1(µ)ρ3, θ + φ(µ) + b2(µ)ρ2
)

we obtain

DFµ
∂

∂ρ

∣

∣

∣

∣

(ρ,θ)

=
(

1 − µ+ 3b1(µ)ρ2
) ∂

∂ρ

∣

∣

∣

∣

Fµ(ρ,θ)

+ 2b2(µ)ρ
∂

∂θ

∣

∣

∣

∣

Fµ(ρ,θ)

and

DFµ
∂

∂θ

∣

∣

∣

∣

(ρ,θ)

=
∂

∂θ

∣

∣

∣

∣

Fµ(ρ,θ)

.

Hence, the matrix of DFµ relative to the frame (14) is

DFµ(ρ, θ) =

(

(1 − µ) + 3b1(µ)ρ2 0
2b2(µ)ρ

(

(1 − µ)ρ+ b1(µ)ρ3
)

(1 − µ) + b1(µ)ρ2

)

. (15)

Therefore, the inverse DF−1
µ (ρ, θ) is given by

(

((1 − µ) + 3b1(µ)ρ2)−1 −2b2(µ)ρ2((1 − µ) + 3b1(µ)ρ2)−1

0 ((1 − µ) + b1(µ)ρ2)−1

)

.

It follows that, for every unit vector (u, v) ∈ T(ρ,θ)M ,

‖DF−1
µ (ρ, θ)(u, v)‖ =

=
∥

∥

(

((1 − µ) + 3b1(µ)ρ2)−1(u− 2b2(µ)ρ2v), ((1 − µ) + b1(µ)ρ2)−1v
)∥

∥

≤
∥

∥((1 − µ) + 3b1(µ)ρ2)−1
(

u− 2b2(µ)ρ2v, v
)∥

∥ +

+
∥

∥

(

0, 2b1(µ)ρ2((1 − µ) + b1(µ)ρ2)−1v
)∥

∥

≤ ((1 − µ) + 3b1(µ)ρ2)−1(u2 + v2 − 4b2(µ)ρ2uv + 4b2(µ)2ρ4v2)1/2.

Note that ‖(u, v)‖ = 1 implies |uv| ≤ 1/2. Therefore, using also part (5) of (H5)–
Proposition 2.6, the last factor is bounded above by

(1 + 2|b2(µ)|ρ2 + 4b2(µ)2ρ4)1/2 ≤ 1 + 2|b2(µ)|ρ2 ≤ 1 + b1(µ)ρ2.

Since µ is small, (H5)–Proposition 2.6(2) implies (1 − µ) + 3b1(µ)ρ2 < 2 for every
point (ρ, θ) ∈ V1 . Then, by (H5)–Proposition 2.6(3),

‖Df−1
µ ‖ ≤ ‖DF−1

µ ‖ + b1(µ)ρ2/10

≤ ((1 − µ) + 3b1(µ)ρ2)−1(1 + b1(µ)ρ2) + b1(µ)ρ2/10

≤ ((1 − µ) + 3b1(µ)ρ2)−1(1 + 3b1(µ)ρ2/2).

Using (13) once more, we deduce that

log ‖Df−1
µ ‖−1 ≥ log(1 − µ+ 3b1(µ)ρ2) − log(1 + 3b1(µ)ρ2/2)

≥ −33

32
µ+

31

32
3b1(µ)ρ2 − 3

2
b1(µ)ρ2

≥ −33

32
µ+

31

32
b1(µ)ρ2,

(16)

as claimed in (a).
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Part (b) is an easy consequence. Indeed, recall that ρ0(µ) = (µ/b1(µ))1/2 is the
radius of the Fµ-invariant circle created by the Hopf bifurcation. We define V2(µ)
to be the neighborhood of pµ given in polar coordinates by

{

(ρ, θ) : ρ <

(

127

128

)1/2

ρ0(µ)

}

.

Since fµ is O(ρ5)-close to Fµ, we have that, as long as µ is sufficiently small, the
domain V2(µ) is indeed contained in the disk Hµ bounded by the invariant circle of
fµ, as claimed. For (ρ, θ) /∈ V2(µ) and µ small, we have

b1(µ)ρ2 ≥ 127

128
b1(µ)ρ0(µ)2 =

127

128
µ (17)

and so the inequality (16) gives

log ‖(Dfµ)−1‖−1 ≥ −33

32
µ+

31

32

127

128
µ ≥ − 3

32
µ.

This proves the lemma.

Now we estimate the Jacobian Jac fµ(x) = |detDfµ(x)| of fµ.

Lemma 4.2. For every 0 < µ ≤ µ1 we have log Jac fµ(x) ≥ 2 log σ1 > 0 for every
x outside V1. Moreover,

(a) log Jac fµ(x) ≥ −65

32
µ+

127

32
b1(µ)ρ2 for every x in V1

(b) log Jac fµ(x) ≥ 61

32
µ for every x outside V2(µ).

Proof. The first statement follows directly from ‖Df−1
µ ‖−1 ≥ σ1 > 1, which is

(H5)–Proposition 2.6(1). To proof part (a) we note that the form (15) of DFµ

together with part (4) of (H5)-Proposition 2.6 give

Jac fµ ≥ ((1 − µ) + 3b1(µ)ρ2)((1 − µ) + b1(µ)ρ2) − b1(µ)ρ2/100

≥ 1 − 2µ+ 4(1 − µ)b1(µ)ρ2 − b1(µ)ρ2/100

≥ 1 − 2µ+
510

128
b1(µ)ρ2,

for every 0 < µ ≤ 1/100 and ρ ∈ V1 . Therefore, using the elementary fact that

log(1 − a+ b) ≥ −65a

64
+

999b

1000
for all 0 ≤ a, b ≤ 1

1000
,

we obtain

log Jac fµ ≥ −65

32
µ+

127

32
b1(µ)ρ2.

To prove (b) it suffices to combine this inequality with (17): if x /∈ V2(µ) then

log Jac fµ(x) ≥ −65

32
µ+

127

32

127

128
µ ≥ 61

32
µ.

This proves the lemma.
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Figure 4. Neighborhoods of pµ

4.2. Visits to the non-hyperbolic region. We are going to deduce more global
versions of the estimates in the previous section, that apply to segments of orbits
visiting the non-hyperbolic region several times.

Given integers n ≥ 1, t ≥ 1 and kj , lj , for 1 ≤ j ≤ t, with

k1 + l1 + · · · + kt + lt = n,

we denote as C(k1, l1, . . . , kt, , lt) the set of all extended n-cylinders Cn which spend,
alternately, ki iterates outside R0 and then li iterates inside R0 . More precisely,
Cn = C(α0, . . . , αn−1) is in C(k1, l1, . . . , kt, lt) if and only if αj > 0 whenever j is in
the time intervals

[0, k1), [k1 + l1 , k1 + l1 + k2), . . . , [k1 + · · · + lt−1 , k1 + · · · + lt−1 + kt)

and αj = 0 for all j in the complement. Here k1 ≥ 0 and lt ≥ 0, otherwise all ki

and li are strictly positive. Given 0 ≤ l ≤ n we denote as C(n, l, t) the union of all
C(k1, l1, . . . , kt, lt) with l1 + · · · + lt = l.

Recall that η ≥ 1 is an upper bound for the number of Markov rectangles the
image of any of them can intersect.

Lemma 4.3. For every n, l, t, k1 , l1 , . . . , kt , lt

1. #C(k1 , l1 , . . . , kt , lt) ≤ ηk where k = k1 + · · · + kt = n− l

2. #C(n, l, t) ≤
(

l

t− 1

)(

n− l

t− 1

)

ηk

Proof. Each cylinder Cn = C ′(α0 , . . . , αn−1) is uniquely determined by the se-
quence αj . Given any αj there are at most η admissible values for αj+1 . Moreover,
l symbols are equal to zero if Cn is in C(k1 , l1 , . . . , kt , lt). Thus, there are at most
ηk admissible sequences, as stated in part 1 of the lemma.

To prove part 2 we use the well known fact that, given integers 1 ≤ t ≤ m there
are

(

m− 1

t− 1

)

ways one can decompose m as a sum of t strictly positive integers. In particular,
there are

(

l − 1

t− 1

)

+

(

l − 1

t− 2

)

=

(

l

t− 1

)
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solutions to l1 + · · ·+ lt = l with li ≥ 1 for i < t and lt ≥ 0. Together with a similar
estimate for k1 + · · · + kt = n − l, this gives that C(n, l, t) is formed by not more
than

(

l

t− 1

)(

n− l

t− 1

)

sets C(k1 , l1 , . . . , kt , lt). Together with part 1, this completes the proof of the
lemma.

Lemma 4.4. For every k1 , l1 , . . . , kt , lt and Cn ∈ C(k1 , l1 , . . . , kt , lt) there are
points xi ∈ fk1+l1+···+ki

µ (Cn) ⊂ R′
0 so that

Leb2(Cn) ≤ σ−2(n−l)
t

∏

i=1

Jac f li
µ (xi)

−1,

where 3 < σ ≤ ‖Df−1
µ (x)‖−1 for x outside V .

Proof. Write Cn = C(α0 , . . . , αn−1). If αj > 0 then f j
µ(Cn) is in the hyperbolic

region, where the Jacobian along the central direction is bounded below by σ2. This
happens for n− l values of i and, for each one of them, we have

Leb2(f
j+1
µ (Cn)) ≥ σ2 Leb2(f

j
µ(Cn)). (18)

Now consider j = k1 + l1 + · · · + ki, for each 1 ≤ i ≤ t. Then f j
µ(Cn) is contained

in R′
0 and remains there for li iterates. Hence,

Leb2(f
k1+l1+···+ki+li
µ (Cn)) ≥ Jac f li

µ (xi) Leb2(f
k1+l1+···+ki
µ (Cn)) (19)

for some xi as in the statement. The claim in the lemma follows, multiplying the
inequalities (18) and (19) and taking into account that Leb2(f

n
µ (Cn)) ≤ 1.

The next two lemmas give us estimates about the derivative and the Jacobian in
central direction along an orbit.

Lemma 4.5. For every k1 , l1 , . . . , kt , lt and Cn ∈ C(k1 , l1 , . . . , kt , lt) we have

n
∑

j=1

inf
x∈Cn

log
∥

∥(Dfµ(f j
µ(x)))−1

∥

∥

−1 ≥ − 3

32
lµ− 13

32
t log µ+ (n− l) log σ.

Proof. Given neighborhoods U1 ⊂ U2 of pµ, we say that an orbit segment O crosses
U2 \ U1 if the first iterate is in U1, the last one is outside U2, and all the others
are in U2 \ U1. Let Vµ be the neighborhood of pµ corresponding to ρ = 2ρ0(µ)
in local coordinates (in the context of Lemma 4.1). We are going to consider the
worst possible case, namely, orbits that cross V1 \ Vµ every time they visit R0. The
arguments are valid in general and, in fact, the estimates coming from Lemma 4.1
are better in the other cases. For simplicity of the presentation, let us assume that
every crossing segment spends q0 iterates in R0 \ V , q1 iterates in V \ V1, and qµ
iterates in V1 \ Vµ: this simplification is harmless because these numbers of iterates
may vary by, at most, a fixed finite amount.

For notational simplicity, let us write
∥

∥(Dfµ(f j
µ(x)))−1

∥

∥

−1
= λµ(f j

µ(x)). In each
visit to R0, the orbit crosses each region R0 \ V , V \ V1 and V1 \ Vµ once only. If li
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is the number of iterates of a orbit during a visit to R0, we have

li
∑

j=1

inf
x∈Cn

log
∥

∥(Dfµ(f j
µ(x)))−1

∥

∥

−1
=

li
∑

j=1

inf
x∈Cn

log λµ(f j
µ(x))

≥
q0

∑

j=1

inf
x∈Cn

log λµ(f j
µ(x)) +

q0+q1
∑

j=q0+1

inf
x∈Cn

log λµ(f j
µ(x))+

+

q0+q1+qµ
∑

j=q0+q1+1

inf
x∈Cn

log λµ(f j
µ(x)) +

li
∑

j=q0+q1+qµ+1

inf
x∈Cn

log λµ(f j
µ(x)).

According to Lemma 4.1, we have

li
∑

j=1

inf
x∈Cn

log λµ(f j
µ(x)) ≥ q0 log σ + q1σ1 +

qµ
∑

j=1

(

− 33

32
µ+

31

32
b1(µ)ρ2

j

)

−

− 3

32
µ(li − qµ − q1 − q0)

≥
qµ
∑

j=1

(

− 33

32
µ+

31

32
b1(µ)ρ2

j

)

− 3

32
µli,

where ρj is the ρ-coordinate of f j
µ(x), x ∈ ∂Vµ, in the local system of coordinates.

If ρj is the ρ-coordinate of f j
µ(2ρ0), j ≥ 1, then

ρj+1

ρj
=

(1 − µ)ρj + b1(µ)ρ3
j

ρj
= (1 − µ) + b1(µ)ρ2

j .

Let ρ̂ = f
qµ+1
µ (2ρ0) the ρ-coordinate of the first iterate of 2ρ0 outside V1. The

fact that for µ close to zero ρ0 is close to zero, implies that

ρ1

ρ̂
=

(1 − µ)2ρ0 + b1(µ)(2ρ0)
3

ρ̂
≤ b1(µ)30/32ρ

15/32
0 = µ15/32,

for µ sufficiently small. Hence,

1 =
ρ1

ρ̂

qµ
∏

j=1

ρj+1

ρj
≤ µ15/32

qµ
∏

j=1

(

(1 − µ) + b1(µ)ρ2
j

)

.

Using the elementary fact

log(1 − a+ b) ≤ −31

32
a+

33

32
b for 0 < a, b ≤ 1

32
,

we get, for every µ > 0 sufficiently small,

qµ
∑

j=1

(

− 31

32
µ+

33

32
b1(µ)ρ2

j

)

≥ −15

32
log µ. (20)

We have for every ρ ≥ 2ρ0, b1(µ)ρ2 ≥ 4b1(µ)ρ2
0 = 4µ. Then,

qµ
∑

j=1

(

− 33

32
µ+

31

32
b1(µ)ρ2

j

)

≥ 13

15

qµ
∑

j=1

(

− 31

32
µ+

33

32
b1(µ)ρ2

j

)

≥ −13

32
log µ.
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Hence,
n

∑

j=1

inf
x∈Cn

log
∥

∥(Dfµ(f j
µ(x)))−1

∥

∥

−1
=

=

t
∑

i=1

[ li
∑

j=1

inf
x∈Cn

log λµ(f j
µ(x)) +

ki
∑

j=1

inf
x∈Cn

log λµ(f j
µ(x))

]

≥
t

∑

i=1

( qµ
∑

j=1

(

− 33

32
µ+

31

32
b1(µ)ρ2

j

)

− 3

32
µli + ki log σ

)

≥ −13

32
t log µ− 3

32
µl + (n− l) log σ.

We have assumed λµ(x) ≥ σ outside V . This completes the proof.

4.3. Proof of Proposition 3.9. Let us first give some outline of the proof. In
order to estimate the expression

∑

C∈Qµ,n(c0µ)

Leb2(C)

we have to deal with two opposing effects: the exponential growth of the number of
n-cylinders in Qµ,n versus the exponential decay of the volume of each one of these
cylinders. We have to check that the latter prevails.

For this, we split the family of n-cylinders into subfamilies Qµ,n,l,t with a given
type of trajectory: t visits to R0 adding to a total of l iterates in there. On the one
hand, we use the combinatorial bounds in Lemma 4.3 and the metric estimates in
Lemma 4.4 to obtain some upper bound for the total volume of cylinders in each
Qµ,n,l,t. This is stated in (23) and (24) below. On the other hand, our definition of
Qµ,n(c0µ)

φµ,n(α1, . . . , αn) ≤ c0µ

(recall the statement of A2) means that cylinders in Qµ,n(c0µ) exhibit weak growth
of the derivative, at best. Combining this with Lemma 4.5 and Lemma 4.6, we
deduce that for such cylinders the values of l and t must satisfy certain relations,
depending on µ, that are collected in Lemma 4.7. Using these relations we conclude
that the bound (24) on the total volume of the cylinders in each of the Qµ,n,l,t is
small. This is stated in (25). To complete the proof of the proposition, we only
need to sum this estimate over all l and t. Now we fill the details in this outline.

Lemma 4.6. Given τ > 0, there exists l0 ≥ 1 and κ0 > 0 such that, for every
l ≥ l0 and 0 < κ ≤ κ0,

log

(

l

t

)

≤ l(1 + τ)κ log
1

κ
whenever 0 ≤ t ≤ κl.

Proof. Let l ≥ t ≥ 1 such that t ≤ l/2. By Stirling’s formula,
(

l

t

)

=
l!

t!(l − t)!
≤

√
2πl lle−l(1 + 1/(4l))

(
√

2πt tte−t)(
√

2π(l − t) (l − t)(l−t)e−(l−t))
.

Observe that,
√

2πl√
2πt

√

2π(l − t)
=

[

l

2πt(l − t)

]1/2

≤
[

l

2πt(l − l/2)

]1/2

=
1√
tπ
.
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Then,
(

l

t

)

≤ 1√
tπ

(

1 +
1

4l

)

ll

tt(l − t)l−t
.

Therefore, there exists an integer l0 ≥ 1 such that

1√
tπ

(

1 +
1

4l

)

≤ 1,

for every l ≥ l0 and every 0 < t < l/2. Thus,

(

l

t

)

≤ ll

tt(l − t)l−t
=

(

l

t

)t (

l

l − t

)l−t

=

[

(

l

t

)
t
l
(

l

l − t

)
l−t

l

]l

,

for every l ≥ l0 and every 0 < t < l/2.
Since t ≤ κl is equivalent to

l

t
≥ 1

κ
and

l

l − t
≤ 1

1 − κ
,

and the function x1/x is a increasing function for x close to 1 and it is decreasing
for x large, there exists κ1 > 0 such that

(

l

t

)

≤
[

(

1

κ

)κ (

1

1 − κ

)1−κ
]l

for every 0 < κ ≤ κ1.

Let τ be a positive constant. We define

h(κ) = τκ log
1

κ
− (1 − κ) log

1

1 − κ
.

Then, h(κ) is a smooth function for 0 < κ < 1. Moreover,

lim
κ→0+

h(κ) = lim
κ→1−

h(κ) = 0

and h(κ) vanishes in some point of the interval (0, 1). Furthermore, the derivative
of h(κ) is given by

h′(κ) = τ log
1

κ
+ log

1

1 − κ
− 1 − τ.

Therefore, given any τ > 0 there exists 0 < κ0 = κ0(τ) ≤ κ1 such that h′(τ) > 0,
for every 0 < κ ≤ κ0, that is, h is increasing for every 0 < κ ≤ κ0. Hence h(κ) ≥ 0
in this interval. Thus,

(1 − κ) log
1

1 − κ
≤ τκ log

1

κ
, for every 0 < κ ≤ κ0.

Then,

log

(

l

t

)

≤ l(1 + τ)κ log
1

κ
, for every 0 < κ ≤ κ0.

This proves the lemma.

Fix c0 = 1/256. Recall that Qµ,n(c0µ) is the set of cylinders Cn for which

φµ,n(α1 , . . . , αn) ≤ c0µ.

Split Qµ,n(c0µ) as the disjoint union of all Qµ,n,l,t = Qµ,n(c0µ) ∩ C(n, l, t) over all
l and t. From Lemma 4.5 we have that

n
∑

j=1

inf
x∈Cn

log
∥

∥Df−1
µ (f j

µ(x))
∥

∥

−1 ≥ − 3

32
lµ− 13

32
t log µ+ (n− l) log σ.
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for every Cn ∈ C(n, l, t). The expression on the left hand side coincides with
nφµ,n(α1 , . . . , αn). Thus, a necessary condition for a cylinder Cn ∈ C(n, l, t) to
be in Qµ,n,l,t is

− 3

32
lµ− 13

32
t log µ+ (n− l) log σ ≤ c0µn. (21)

Lemma 4.7. If Cn ∈ Qµ,n,l,t then

1.
n− l

l
≤ 1

8

µ

log σ

2.
t

l
≤ 1

4

µ

− log µ
.

Proof. Throughout the proof we assume that µ is sufficiently small. From (21) we
obtain, noting that t log µ < 0,

− 3

32
lµ+ (n− l) log σ ≤ c0µn .

This inequality implies

n− l

l
≤ (3/32)µ+ c0µ

log σ − c0µ
≤ µ/8

log σ
(≤ 1). (22)

This gives statement 1. Finally, since log σ > 0, the relation (21) also implies

−13

32
t log µ ≤ c0µn+

3

32
lµ .

The inequality (22) implies that n ≤ 2l. It follows that

−13

32
t log µ ≤

(

3

32
+ 2c0

)

lµ ≤ 13

128
lµ

because c0 = 1/256. This gives statement 2.

By part 2 of Lemma 4.7, we only have to consider t ≤ κl with κ = µ/−4 log µ.
Fix τ = 1/1000, for instance, and assume µ is small enough so that κ ≤ κ0 as given
by Lemma 4.6. From Lemmas 4.3 and 4.4 we obtain

log
∑

C∈Qµ,n,l,t

Leb(C) ≤ log

(

l

t− 1

)(

n− l

t− 1

)

( η

σ2

)n−l t
∏

i=1

Jac f li
µ (xi)

−1. (23)

Using Lemmas 4.6 and 4.2 part (b) and the elementary relation
(

m

t

)

≤
m

∑

j=0

(

m

j

)

= 2m for all 0 ≤ t ≤ m,

we obtain

log
∑

C∈Qµ,n,l,t

Leb2(C) ≤

≤ l(1 + τ)κ log
1

κ
+ (n− l) log 2 + (n− l) log

η

σ2
− 61

32
µl.

(24)

Using assumption (H6) and part 1 of Lemma 4.7, we obtain

(n− l) log 2 + (n− l) log
η

σ2
≤ (n− l) log 2000 ≤ 8(n− l) ≤ µl

log σ
≤ µl.
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For the last inequality, recall that σ > 3. Replacing this in the previous inequality,
we get

log
∑

C∈Qµ,n,l,t

Leb2(C) ≤ l(1 + τ)κ log
1

κ
− 29

32
µl.

On the other hand,

1

µ
κ log

1

κ
=

log(−4 log µ)

−4 log µ
− log µ

−4 log µ

converges to 1/4 when µ goes to zero. Therefore, assuming µ is sufficiently small,
we have that the first term in the previous inequality is less than 13/32, say. It
follows that

log
∑

C∈Qµ,n,l,t

Leb2(C) ≤ −1

2
µl ≤ −1

4
µn. (25)

The last inequality uses (22). To complete the proof of the proposition, we need to
sum over all l and t. Since, l ≤ n and t ≤ κl, this sum involves less than κn2 terms.
Hence,

∑

C∈Qµ,n(c0µ)

Leb2(C) ≤ κn2e−µn/4 ≤ e−µn/8

for all n ≥ n0(µ). So, we may take c1 = 1/8. The proof of Proposition 3.9 is
complete.
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