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Vortex interaction, chaos and quantum probabilities
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The motion of a single vortex is able to originate chaos in the quantum trajectories defined in
Bohm’s interpretation of quantum mechanics. In this Letter, we show that this is also the case in
the general situation, in which many interacting vortices exist. This result gives support to recent
attempts in which Born’s probability rule is derived in terms of an irreversible time evolution to

equilibrium, rather than being postulated.
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Despite the impressive success of quantum mechanics
along the past century, Born’s probability rule: p = [t)|?,
one basic cornerstone in its standard formulation, still
remains a postulate.

Due to its relevance, this fundamental issue have been
revisited in the last years [1l, 12, 8], in an effort to make
probability an emergent phenomenon [M]. Notice, for
example, that basic ingredients in the decoherence pro-
gramme, such as reduced density matrix, are based on
Born’s rule. In this respect, Zurek [1] introduced en-
vironment assisted invariance (“envariance), a causality
related symmetry of quantum entangled systems, to de-
rive Born’s rule. Wallace and Deutsch [2] reported an-
other approach based on classical decision theory in the
context of Everett many worlds interpretation. Another
interesting point of view is that of Valentini and West-
man [3], who argued, using the (also causal) de Broglie-
Bohm (dBB) [d] quantum formalism [f], that probabili-
ties have a dynamical origin, holding a status similar to
that of thermal probabilities in ordinary statistical me-
chanics. Indeed, the standard distribution is obtained
as the time evolution towards the equilibrium of initial
non—equilibrium states, p # [1|?, this taking place with
a (exponential) decrease in the associated coarse—grained
H—function. Underlying to this argument is the assump-
tion that there is an effective chaotic dynamics in the
dBB trajectories, something that should not be taken for
granted. Unfortunately, most published results along this
line are rather inconclusive. However, very recently sin-
gularities in the wave function giving rise to vortices, have
been proven to play a prominent role in the problem. In
Ref. 11, the case of a single vortex was considered, arriving
at the conclusion that the motion of an isolated vortex is
enough to originate chaos in Bohmian trajectories. How-
ever, nothing is known about the picture emerging in the
general situation, in which many vortices exist. For this
case, in addition to the vortex dynamics, a great deal
of interaction should be expected, for example through
a mechanism of creation/annihilation of pairs with op-
posite circulations. In this respect, Frisk [€] conjectured

the importance of the number of nodes inducing mixing
behavior in dBB trajectories. In view of the paramount
importance of the problem under discussion, a deep un-
derstanding of this issue, similar to that in statistical
mechanics, is highly desirable.

In this Letter, we address the question of the com-
plexity of Bohmian trajectories by presenting a system-
atic numerical study in which we show that the chaotic
regime, due to the dynamics and interactions of the ex-
isting vortices, is the general rule in dBB trajectories
even in the absence of nonlinear terms in the physical
potential. This gives rise to a noticeable complexity that
can be quantified in terms of common indicators, such
as Lyapunov exponents. As an added bonus, the use of
such indicator allow to explore some differences existing
with the classical case.

In the dBB theory [d] the state of the system is de-
scribed by a pilot wave function, customarily expressed
in polar form, ¥(r,t) = R(r,t) *5®Y (% = 1 throughout
the paper), and the position of the particles, r [d]. The
dynamical evolution of this two quantities is given by the
time—dependent Schrodinger equation and the guidance
equation, respectively:
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where m is the mass of the particle. Quantum trajecto-
ries, which make of dBB a true theory of quantum mo-
tion [10], can be obtained by numerical integration of this
equation. The velocity field (), guiding these trajecto-
ries, presents singularities giving rise to vortices in the
associated probability fluid. This occur only at points
where the wave functions vanishes (isolated points in 2—
dof systems, lines in 3—dof systems, etc.) and the phase S
is singular. Moreover, and due to the single-valuedness of
the wave function, the circulation, I', around a circuit, C,
encircling a vortex must be quantized [L1,, [19] according
to

(1)

F:m%f-dr:%VS-dr:%m, (2)
c c



where n is a integer. This implies that the velocity must
diverge at the vortex [13, [14].

The aim of our work is to study the behavior of the
quantum trajectories of a system in the general situation
in which a large number of interacting vortices exists.
One of the simplest systems where this problem can be
set up is the 2—dof rectangular billiard whose classical dy-
namics are integrable. In this way, any observed complex-
ity is only due to quantum effects, without any contribu-
tion of chaos coming from forces derived a physical po-
tential. The dimensions of the rectangle are taken so that
the smallest side is equal to 1, and the total area amounts
to A = 1+ 7/2, so that the corresponding eigenfunc-
tions are ¢n, n, (2,y) = (2/AY?)sin(n,7z) sin(nymy/A),
with wave numbers k = (2mE)'/? = m(n2 + n2/A?)'/2.
The initial pilot wave is constructed as a linear combi-
nation, ¥(z,y) = Zﬁfwny CngnyPrg.n, (T,y), of N such
eigenfunctions with random coefficients. We will system-
atically vary this function by considering increasing val-
ues of the wave number mean value, (k), and N. For this
purpose, the eigenstates entering into the linear combina-
tion, giving initially the pilot wave function, are selected
in the following way. At any given value of the energy,
a “central” state is determined by choosing the nearest
integers, n, = n,, fulfilling the energy condition; the rest
of intervening states are then chosen as the N — 1 states
which are closest in energy to the central one.

To gauge the complexity of our system we take, sim-
ilarly to what it is well established in the usual chaos
theory, the Lyapunov exponent of the quantum trajec-
tories, \, statistically averaged over many initial random
conditions. The corresponding results for A, as a function
of (k) for different values of N, are shown in Fig. [l As
can be seen, \ grows systematically both with (k) and N,
showing a mean tendency which is approximately linear
after a threshold at (k)¢, ~ 30. To check that this conclu-
sion is not an artifact of the way in which the initial wave
function (i.e. the coefficients entering in the linear com-
bination) has been chosen, we have repeated the same
calculation using a different averaging procedure for the
Lyapunov function. In this second calculation we change
not only the initial position of each quantum trajectory
in the averaging ensemble, but we also change randomly
the coefficients in the corresponding initial pilot wave.
This double average defines a new mean wave number
that will be denoted by (k). The results are shown in
Fig. M(b), where it is seen that they follow a behavior
totally equivalent to that obtained in the previous case
[curves in the part (a) of the figure]. This fact indicates
that our conclusion is robust. Making it quantitative, the
final increasing linear tendency of the mean Lyapunov
exponent is given by the expression: A = 0.15N (k).

Following Frisk [§] let us try now to explain these re-
sults in terms of the number of vortices existing in the
system. This is a sensible assumption, since it is at these
points where the complexity in the quantum trajectories
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FIG. 1: Averaged Lyapunov exponent as a function of the
mean wavenumber for quantum trajectories on a rectangular
billiard of smallest side length equal to 1 and area 1+ 7/2.
The initial pilot wave function is taken as a linear combination
of N rectangle eigenfunctions, being N=3 (open circles), 5
(full circles), 11 (open squares), 20 (full squares), 30 (open
triangles). In (a) the average is carried out over 50 randomly
selected initial conditions, while in (b) the coefficients of the
initial pilot wave function were also varied.

is originated [d]. This is, however, not a straightforward
task, since the number of vortices associated to each pilot
wave function varies with time, significantly fluctuating
around the mean value, by creation and annihilation of
pairs of vortices with opposite circulations. Taking this
into account, we compute the time average of the number
of vortices (with circulation in a given sense), N,, as a
numerical indicator characterizing the collective effect of
the vortices.

The corresponding results, obtained for the same con-
ditions of Fig. [(a), are shown in Fig. Bl As can be
seen the mean number of vortices grows quadratically
with (k), but it is completely independent of N, being
the same at a given energy, regardless of the number
of eigenfunctions contributing to the pilot wave func-
tion used in the computation of the quantum trajectories.
This numerical calculation clearly indicates, contrary to
Frisk expectations, that the number of vortices alone is
not enough to explain complexity found generically in
Bohmian trajectories. Furthermore, the result in Fig.
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FIG. 2: Time average of the number of vortices with a

given sense of the circulation for the different cases shown in
Fig. M(a). Full line corresponds to the analytical expression
NPax — (A/47?)k? — [(1 4+ A)/2r]k, giving a rough estimate
of the maximum number of vortices fitting in our billiard (see
text for details).

can be understood by considering the following rough
estimate of the maximum possible number of vortices
that can fill our billiard. Assuming that the minimum
area in configuration space required for the existence of
a vortex is given by the magnitude of the squared de
Broglie wavelenght, A% 5 = 472 /(k)?, and taking into ac-
count the boundary effects at the walls, the maximum
number of vortices in the billiard should be given by
Npax = (A/4n?)(k)? — [(1 + A)/27)(k), expression that
agrees perfectly well with the computed data, as shown
by the full line in Fig.

Since N, is not enough to explain the behavior of A
in Fig. [(a), let us try now the second momentum of the
corresponding temporal distribution. Notice that this is
equivalent to assume that the origin of the complexity
of quantum trajectories is, in the general case, the in-
teraction responsible for the vortex creation/annihilation
mechanism. The results are plotted in Fig. Bl where it
can been seen the time average of the mean root devia-
tion on the number of vortices, &, grows monotonically
with k& and decreases with NN, i.e. the more complicated
the function is the smallest dispersion is found. More-
over, this scaling dependence can be formulated in quan-
titative terms as: 7@ = 0.035(k)2N~1/2. The quadratical
dependence on k is obvious, since it is a consequence
of the functional form exhibited by N,, and accord-
ingly the mean root deviation can be also expressed as:
7 = 0.54N,N~'/2. What it is interesting, is that & con-
tains an additional inverse dependence on N. This re-
sult, if examined carefully (as will be discussed below),
is in agreement with the systematic behavior previously
found for the quantum trajectories Lyapunov exponent
in Fig. [[(a). Finally, by putting these two components
together, the complexity of quantum trajectories as quan-
tified by the averaged Lyapunov parameter can be solely
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FIG. 3: Time average of the mean root deviation on the num-
ber of vortices with a given sense of the circulation for the
different cases shown in Fig. [(a).

expressed in terms of vortex properties, in the following
way: A = 0.17Ni/252.

Now, let us rationalize the behavior found for 7 as a
function of V. Fluctuations in the number of vortices, as
a result of pair annihilations, leave areas of the billiard
depopulated from them. The existence of these areas
decreases the value of the mean Lyapunov exponent, A,
since, according to the results in Ref.[q, in these areas the
complexity in the dynamics of the quantum trajectories
is smaller. The corresponding flux of the quantum fluid
is more laminar in those regions, only getting turbulent
close to the remaining vortices. The argument can be
made quantitative by performing the following calcula-
tion. At the same times used to compute the averages
presented in Fig. [[(a) and with the same wave functions
we calculate the position of the corresponding vortices.
We then put a fine grid in configuration space and mark
differently the squares with and without at least a vortex
inside them. From this matrix we compute, at each value
of (k), the size of the largest compact region without any
vortex, a. Finally, the areas of these vortex—free regions
are averaged along trajectories and with respect to initial
positions. Now, we take the inverse of this quantity to
get a magnitude with the same dependence on the com-
plexity as X. The results are shown in Fig. @l As can be
seen, 1/a@ increases linearly with (k) for each value of N,
and also it keep the same dependence with N as found
in Fig. M(a) for . In this way, our calculations numer-
ically proof that there are two mechanisms originating
chaos in this problem. The first one has a local character
and corresponds to the randomization effect due to mov-
ing vortices on the quantum trajectories [1], while the
second global one is the appearance of vortex—{ree areas
due to annihilation of pairs with opposite circulations.

In order to close this discussion, it should be remarked
that other calculations have been performed in order to
rule out the possibility that others effects are relevant in
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FIG. 4: Area of the largest compact vortex free region in the
rectangular billiard corresponding to the different cases shown

in Fig. [M(a).

the behavior of the complexity of quantum trajectories.
In particular, the most obvious ones are the kinematical
magnitudes. The most straightforward check is to study
the velocity and acceleration distributions of the vortices.
They can be calculated from the expression

V:L.rx(wxw)7 3)
2mi |w - r|?
where w = V¢[r(t)] [13]. Our results clearly indicate
that neither of them shows any obvious systematic, as
it happens with the correlation found by us between the
Lyapunov exponent and the number of vortices.

Finally, another interesting point to discuss here is the
classical limit of our results. The results in Fig. [ indi-
cate that the averaged Lyapunov exponent do not seem
to vanish as (k) — oo. This means that in this semi-
classical limit, the effect of vortices inducing chaos and
complexity in the quantum trajectories, do not disap-
pear. The behavior is not, however, unexpected since it
has also been found in similar problems. For example,
in Ref. [15] it was shown that the non-local character
of the Bohmian trajectories (avoiding crossing, for ex-
ample) survives when the quantum effects, represented
by the quantum potential @), were made to disappear by
increasing the mass of the incident particle in a realis-
tic model for rainbow diffraction in atom-surface scat-
tering. The quantum trajectories simply mimicked the
classical distributions without ever reaching strictly the
classical limit. Also, Bowman [16] pointed out that the
Bohmian classical limit can only be achieved by combina-
tion of narrow packets, mixing states, and environment
decoherence. Certainly, further calculations, considering
much higher values of (k), are needed in order to fully
confirm our results and clarify this issue.

Summarizing, in this Letter we have numerically shown
that chaos is the generic scenario for quantum trajecto-

ries, in the situation in which many interacting vortices
exists. In this way the picture started with Ref. [1, in
which the effect of only one vortex was studied, is com-
pleted. Moreover, we have quantified this assertion with
the aid of the Lyapunov exponent as a numerical indi-
cator of complexity. Our results show that the behavior
of this quantity depends on the number of vortices of
the pilot wave function, and only the first two momenta
of the corresponding distribution are required to explain
it satisfactorily. This result is interesting, since it shows
the interplay between the quantum phase, which appears
in the guiding equation ([l), and quantum probabilities,
these being the two components in which the wave func-
tion is separated in the Bohmian formulation of quantum
mechanics.
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