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Abstract

In this paper we consider a family of enlargements of maximal monotone operators in a
reflexive Banach space. Each enlargement, depending on a parameter ¢ > 0, is a continuous
point-to-set mapping E(e,z) whose graph contains the graph of the given operator 7. The
enlargements are also continuous in &, and they coincide with T for £ = 0. The family contains
both a maximal and a minimal enlargement, denoted as T¢ and 7% respectively. We address
the following questions:

a) which are the operators which are not enlarged by T¢, i.e. such that T'(-) = T(e, -) for some
e>07

b) same as (a) but for T°¢ instead of T°.

c) Which operators are fully enlargeable by T, in the sense that for all z and all £ > 0 there
exists § > 0 such that all points whose distance to T'(x) is less than ¢ belong to T%(e, z)?

We prove that the operators not enlarged by T°¢ are precisely the point-to-point affine operators
with skew symmetric linear part; those not enlarged by T'°¢ are the point-to-point and affine
operators, and the operators fully enlarged by T°¢ are those operators T whose Fitzpatrick
function is continuous in its second argument at pairs belonging to the graph of T'.

Keywords: Maximal monotone operators, enlargements.
1991 AMS identification numbers: 46N10, 47H05.

1 Introduction

Let X be a Banach space and X* its topological dual. A point-to-set mapping A : X =% X* is outer
semicontinuous (in the sense of Kuratowski-Painlevé), if and only if v € T'(z) whenever z is the
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limit of a sequence {z,} C X and u is the limit of a sequence {u,} C X*, satisfying u, € A(z,)
for all n. Outer semicontinuity of A is equivalent to closedness of its graph Gph(A) := {(z,v) €
X x X*:v € A(z)}. A is inner semicontinuous (also in the Kuratowski-Painlevé’s sense), if and
only if whenever z € X is the limit of a sequence {z,} C X and u belongs to A(z), there exists a
sequence {u,} C X*, convergent to u, such that u, € A(z,) for all n. A is continuous when it is
both inner and outer semicontinuous.

It is well known that a maximal monotone point-to-set operator T : X = X* is always outer
semicontinuous, because maximality implies closedness of the graph. On the other hand, maximal
monotone operators fail in general to be inner semicontinuous, and hence continuous. This fact
suggests the convenience of embedding a point-to-set maximal monotone operator T in a family
of operators with larger graphs, of the form F : Ry x X = X*, such that T'(z) C E(e,z) for all
z € X and all ¢ > 0, and E(g,-) has better continuity properties than T for ¢ > 0. Assuming
that E is also continuous in its first argument, and that E(0,z) = T'(z) for all z € X, E(e,-) will
be, for € small, a good approximation of T', better behaved than it. Such an F is said to be an
enlargement of T'. A particular choice of E, denoted as T¢(e, ) (when the operator being enlarged
is itself denoted as T'), was introduced in [2], with the following definition:

T¢(e,z) ={veX*: (z—y,v—u) > —cV (y,u) € Gph(T)}, (1)

where Gph(T) = {(y,u) € X x X* : u € T(y)}. It follows from the maximal monotonicity of T
that 7'(0,-) = T'(-). It is also immediate that T'(e1,z) C T(e2,z) whenever 1 < e5.

The enlargement T was successfully used for developing inexact versions of the proximal point
method with nonquadratic regularizations (see [2]), extensions of Korpelevich method for solving
variational inequalities with point-to-set operators (see [7]), bundle-type methods for finding zeroes
of point-to-set maximal monotone operators (see [4]), and for introducing less demanding error
criteria in classical proximal point methods (see [11]). It has also been used for theoretical, rather
than algorithmical purposes, e.g. for defining a new concept of extended sum of monotone operators
(see [9]).

The enlargement T is indeed continuous in z for all fixed € > 0. In fact it is jointly continuous
in € and z in the set Ry x int(D(T)), where R, is the strictly positive halfline and int(D(T))
denotes the interior of the domain D(T') of T', which is itself defined as D(T) = {z € X : T(z) # 0}.

Furthermore, a so called transportation formula holds, saying that if u belongs to T'(y) and
v belongs to T'(z), then, for all @ € [0,1], av + (1 — a)u belongs to T¢(e,az + (1 — a)y), with
e = 2a(l — a){y — z,u — v). This formula allows for effective construction of points in T(e, )
given suitable elements in the image through T of points close to . The formula can be improved
by starting with points in 7'(§, z) and T'(n,y) instead of T'(z) and T'(y). The improved result says
that, for all a € [0,1], all 6,7 > 0, all z,y € D(T), all v € T¢(d,z) and all u € T¢(n,y), the point
av + (1 — a)u belongs to T¢(e,ax + (1 — a)y), with e = ad + (1 — a)n + 2a(l — a)(y — z,u — v).
These results were proved in [3] for the case of Hilbert spaces, and extended to Banach spaces in
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The transportation formula turns out to be a key property in several of the applications men-
tioned above. This fact led to the idea of studying enlargements from a more abstract point of
view, i.e. considering all enlargements which satisfy certain selected properties. This was done in
[12], where the family of enlargements E(7") of a maximal monotone operator 7' is defined in the
following way:

Definition 1. Given T : X = X*, an enlargement E : Ry x X = X* belongs to the family E(T)
if and only if

i) T(x) C E(e,z) for alle >0 and all z € X,
it) For allx € X, E(e1,z) C E(e2,x) whenever €1 < eg,

i1i) The transportation formula holds, i.e. for all o € [0,1], all 6,m > 0, all z,y € D(T), all
v € E(d,z) and all u € E(n,y), the point av + (1 — a)y belongs to E(e,az + (1 — a)y), with
e=ad+ (1 —a)p+2a(l —a){ly —z,u—v).

It has been proved in [12] that the enlargement 7 defined by (1) is the largest member of the
family E(T), in the sense that Gph(E) C Gph(7T*) for all E € E(T).

The enlargements in E(T") share many of the properties of 7, including its continuity. In fact,
it has also been proved in [12] if T: X =2 X* is a maximal monotone operator and E belongs to
E(T') then F is continuous in Ry} X int(D(T)).

We will also be interested in enlargements with closed graphs. Let E.(T') the set of enlargements
E € E(T') such that Gph(T) is closed. It is immediate that 7" belongs to E.(T), and is in fact the
largest enlargement in E. (7). The family E.(T) has also a smallest element, namely the enlargement
T%¢ defined as

Tse(g,a:) = ﬁEEE:(T)E1(5,‘/E)' (2)

From now on, B(z, p) will denote the closed ball with center at z and radius p.
In this paper we address the following questions:

a) Which are the operators which are non-enlargeable by T¢, in the sense that T¢(e,z) = T'(x)
for all z € D(T') and some & > 07

b) Which are the operators which are non-enlargeable by T*¢, with a meaning similar to the one

in (a)?

c) Which are the operators which are fully enlargeable by T€, in the sense that for all z € D(T)
and all ¢ > 0 there exists § > 0 (depending in general on z and ¢), such that T'(xz)+ B(0,d) C
T¢(e,x)?

d) Which are the operators which are fully enlargeable by T*¢, with a meaning similar to the one
in (c)?



The relevance of these questions is rather obvious. In connection with (a) and (b), if an operator
T is non-enlargeable in the announced sense, then the approximation effect attempted by the
embedding of T" in T (or T*¢) is not attained at all (i.e. we are approximating 7" by itself, which is
rather superfluous). It is true that this will happen only when 7T itself is rather well behaved, but,
if the algorithms based upon the enlargements are indeed effective, one should expect that non-
enlargeable operators will be simple enough, so that problems involving them (e.g. finding their
zeroes), are such that no iterative numerical methods of the kind mentioned above are necessary
for their solution.

On the other hand, fully enlargeable operators are those for which the enlargements under
consideration work better: the enlargement is such that any point close enough to the set T'(z)
will belong to T¢(e,z) (or T%¢(e,z)), for a suitable . In order for these enlargements to be
“robust” enough, it is desirable that the class of fully enlargeable operators be quite comprehensive,
containing all operators whose behavior, in some specific sense, is good enough.

We will give rather satisfactory answers to the first three of these questions. In connection
with (a), we will prove that the class of maximal monotone operators whose domain has nonempty
interior and which are non-enlargeable by T consists precisely of those which are point-to-point in
the whole space X, affine (i.e. of the form T'(z) = Lz + z, for some linear L : X — X* and some
fixed z € X*), and skew-symmetric (i.e. such that L + L* = 0, where L* is the adjoint operator
of L). Similarly, we will answer (b) by establishing that the maximal monotone operators whose
domain have nonempty interior and which are non-enlargeable by T%¢ are precisely the affine ones.
These operators are indeed rather simple, for the purposes considered in the previous paragraph.
These results will be presented in Section 2.

In order to announce our results related to (c¢) above, we need some additional machinery. We
start with the Fitzpatrick function associated to a maximal monotone operator, introduced in [6].
Given a maximal monotone operator T : X = X*, the Fitzpatrick function ¢ : X x X* — RU{oco}
is defined as

or(z,v) = (z,v) + sup (x —y,u —v). (3)
(y,u)EGPh(T)

We also need the following definition.

Definition 2. A monotone operator T is said to be strictly *°monotone (to be read as “strictly
monotone at infinity”) if and only if there exists ¢ : Ry — Ry such that liminfy_,p(t)/t > 0 and

{z —y,0 —u) > @(||z —yll) for all (z,v), (y,u) € Gph(T).

We will answer question (c) by giving a characterization of those maximal monotone operators
which are fully enlargeable by T: they are precisely those operators such that ¢r(z,-) is continuous
at any point v belonging to T'(z), with ¢, as in (3). Also, we have a characterization of those
operators which are fully enlarged by 7° in a uniform way, in the sense that the radius § such
that T'(z) + B(0,0) C T¢(e,z) depends on ¢ but not on z: the class of these operators coincides
precisely with the class of maximal monotone operators which are strictly “monotone. This class
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can also be characterized in terms of local Lipschitz continuity of the function fr(z,v) 1= ¢r(z,v)—
(z,v). Again, this class of operators is comprehensive enough so as to ensure the robustness of the
enlargement 7¢. These results will be presented in Section 3.

We do not have yet satisfactory answers to question (d), which is left as an open problem,
deserving further study.

2 On non-enlargeable operators

We will say that a maximal monotone operator T' is non-enlargeable by an enlargement F € E(T')
if there exists € > 0 such that E(e,z) = T'(z) for all z € X (we will see later on that when T is
non-enlargeable by E then the equality above holds indeed for all ¢ > 0). In this section we study
the class of maximal monotone operators which are non-enlargeable by either T or T¢.

We will proceed in three stages, which will be dealt with in the next three subsections: first
we will establish that affine operators with skew-symmetric linear part are non-enlargeable by T°¢,
then we will prove that all affine operators are non-enlargeable by 7%, and finally we will see that
operators whose domain has nonempty interior and which are non-enlargeable by any E € E(T)
are affine (in all cases, it is understood that all the operators under consideration are maximal
monotone).

2.1 Affine operators with skew-symmetric linear part are non-enlargeable by
Te

We start with some definitions. Let X be a reflexive Banach space and L : X — X* a linear
operator. The adjoint operator L* : X — X* is defined by (Lz,z') = (z, L*z') for all z,z’ € X.
The operator L is said to be

e positive semidefinite when (Lz,z) > 0 for all z € X,
o skew-symmetric when L + L* = 0.

We also remind that the range R(A) of a point-to-set mapping A : X = X* is defined as
Uzex A(IE)
We need now a couple of introductory technical results.

Lemma 1. Let X be a reflerive Banach space. Consider a positive semidefinite linear operator
S : X — X* with closed range R(S). For a fized uw € X*, define ¥ : X — R as ¢(y) :=
1/2(Sy,y) — (u,y). Then

i) if u & R(S), then argminxy = () and infx ¢ = —oo.
ii) If u € R(S), then ) # argminxy = S~ 1(u) := {z € X : S(z) = u}.



Proof. i) Since u ¢ R(S) and R(S) is closed and convex, there exists y # 0, y € X** = X such
that (g,u) = 1 and (g,Sy) < 0 for all y € X. Since S is positive semidefinite, it holds that
(9,87) = 0. Then ¥(A\y) := (1/2)A2(Sy,3) — AM(u,§) = — A, which tends to —oo when A 1 co. Thus,
argminy 1 = () and infx 1) = —oo.

ii) Observe that argminxvy = {z : V¢)(z) = 0} = {z : S(2) = u} = S~ (u). This set is nonempty,
since u € R(S). O

Next, we explicitly compute the enlargement T for the case in which T is affine.

Proposition 1. Let X be a reflexive Banach space and T : X — X* a mazimal monotone operator
of the form T(z) = Lz + z, where L is linear (and hence positive semidefinite, by monotonicity of
T) and z € X*. Then

Te,z) ={Lx+z+ (L+ L )w: (L + L*)w,w) < 2¢}. (4)
Proof. Call V(g,z) the right hand side of (4). We prove first that
TC(e,x) C V(e,z). (5)

Write an element w € T°(e,z) as w = Lz + z + u, for some v € X*. We must prove that there
exists some w such that (L + L*)w = u and ((L 4+ L*)w,w) < 2e. The definition of 7 implies that
for all y € X, it holds that

—e<(w—(Ly+2),z—-y) = (Lz-y),z-y) +{uz-y).
Rearranging the expression above, we get that
—e < (1/20((L + L") (y — =),y — ) — (u,y — ) = P(y — ),

with 7 as in Lemma 1. Since 1 is bounded below, we get that u € R(L + L*) and argminx1 =
z + (L + L*)"'u. Thus, for every Z € z + (L + L*)~u we have —e < 9(z — z) < 9(z' — ) for all
z' € X. In other words,

—e < (1/2)((L + L") (Z — 2),Z — =) — (u, —(1/2){(L + L*)(% — x),Z — x),

—T) =
using the fact that (L+ L*)(Z —x) = u. Thus, (L+ L*)(Z —x),Z — z) < 2¢, and hence there exists
W := (Z — z) such that u = (L + L*)w with ((L + L*)w,w) < 2e. We have proved that (5) holds.
We proceed to prove the converse inclusion.
Take v = Lz + z + (L + L*)w € V (e, z). We must prove that u belongs to T¢(e, z), i.e. that

—e <{z—y,w—T(y)) (6)
for all y € X. Note that

(z—y,w—-T(y) ={z -y, L+ 2+ (L+L)w— (Ly - 2)) = (z —y,L(z —y) + (L + L")w)
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= Sl =yt (L4 D)@ =y +w) = (D + L)w,u). (7)

It follows easily from the monotonicity of T'(x) = Lz + z that the first term in the rightmost
expression in (7) is nonnegative. The second term is greater than or equal to —e, as a consequence
of the definition of V(e,x), since w € V(e,z). Hence, (6) holds for all y € X, i.e. u belongs to
T¢(e,z). It follows that V(e,z) C T¢(e, z), completing the proof. O

An immediate consequence of Proposition 1 is the characterization of those linear operators T
which cannot be actually enlarged by 7.

Corollary 1. Let X be a reflexive Banach space, and T : X — X* be defined as T(z) = Lz + z,
with z € X* and L : X — X* linear. Then the following statements are equivalent:

i) L is skew-symmetric.
it) T¢(e,x) = T(x) for every € > 0.
iii) T¢(g,z) = T(z) for some € > 0.

Proof. The fact that (i) implies (ii) follows from Proposition 1. Since (ii) implies (iii) trivially,
it suffices to prove that (iii) implies (i). Assume that (iii) holds. The operator S := L + L* is
self-adjoint, and positive semidefinite by maximal monotonicity of 7. Under these circumstances,
it is well known that if (Sz,z) = 0 then z = 0. We claim that Sz = 0 for all z € X. Otherwise,
there exists w ¢ Ker(S), so that (Sw,w) > 0. Let w := ﬁw. Then, Sw # 0 and

(Sw,w) < 2. (8)

In view of (8) and Proposition 1, T'(z) + Sw belongs to T¢(&, z), in contradiction with (iii), which
states that the unique element of T¢(¢,z) is T'(z). It follows that L + L* = 0 and (i) holds. O
2.2 Affine operators are non-enlargeable by 7°*¢

We will compute next T%¢ for an affine operator 7T'.

Proposition 2. Let X be a reflexive Banach space, and T : X — X* be defined as T'(x) = Lz + z,
with z € X* and L : X — X* linear. Then T*¢(e,x) = T(z) for all € > 0.



Proof. For & > 0, consider the enlargement E(e,z) defined as E(e,z) = T(x) for all z € X. We
claim that E belongs to E(T). Items (i) and (ii) in Definition 1 are trivially satisfied, so that it
suffices to check (iii). Note that in this case we have E(d,z) = Lz + z, E(n,y) = Ly + z for all
d,n > 0 and all z,y € X, so that the statement in (iii) reduces to

a(Lz+2)+ (1 —a)( Ly + 2) = L(az + (1 — a)y) + 2,

which follows immediately from the linearity of L. Thus, E belongs to E.(T). Since E(e,z) =
T(z) C E(e,z) for all e > 0 and all z € X as a consequence of Definition 1(i), we conclude that

E(e,z) = Nger, () E(e, 1) = T*(e, 2)

for all ¢ > 0 and all z € X, which gives the result. U

2.3 Most non-enlargeable operators are affine

In order to complete our analysis of non-enlargeable operators, it remains to be proved that if T is
non-enlargeable by an arbitrary E € E(T') and int(D(T')) # 0 then T is point-to-point and affine.
We start by showing that if E(g,-) = T'(-) for some &€ > 0, then E(e, ) = T'(-) for all € > 0.

Lemma 2. Let E € E(T). If there ezists € > 0 such that E(g,z) = T(z) for all z € D(T), then
the same property holds for every € > 0.

Proof. Take z € D(T') and define
e(z) :=sup{e > 0: E(e,z) =T(x)}.

By assumption, £(z) > & > 0. Observe that Definition 1(ii) implies that E(n,z) = T'(z) for all
n < &(z). The conclusion of the lemma clearly holds if e(z) = oo for every z € D(T). Suppose
that there exists z € D(T') for which e(z) < co. Fix ¢ > ¢(x). By definition of ¢(z), we can find
w € E(e,z) such that w ¢ T'(z). Consider v :=argmin{|jv — w|| : v € T(z)} and take a € (0,1)
such that 0 < ae < e(z). By Definition 1(iii) we have that

7 :=aw+ (1-a)v € E(ag,z) = T(x).

Note that ||7" — w| = (1 — a)||v — w|| < ||# — w||, which contradicts the definition of . Hence,
g(z) = oo for every z € D(T) and the lemma is proved. O

In order to continue, we need several results from the theory of maximal monotone operators.
First, we recall the definition of normalizing operator. Given a convex set C' C X, the normalizing
operator N¢o : X = X*, defined as

{veX*: (vy—2z)<0VyeC} ifzeC

0 otherwise,

Ne(z) = { 9)



is maximal monotone, because it is in fact the subdifferential of the convex function Io : X —
R U {0}, defined as Io(z) =0 if z € C, Io(x) = oo otherwise.
We start with the following three results, established in [10].

Theorem 1. Let X be a Banach space with dual X*, and T : X = X* a monotone operator, such
that int(D(T)) # 0.

i) int(D(T)) is a nonempty convex set whose closure is D(T).

i) if D(T) = X, then D(T) = X.

Theorem 2. Let X be a Banach space with dual X*. If T : X = X* is maximal monotone, then
T is locally bounded at any point z € int(D(T)).

Theorem 3. Let X be a Banach space with dual X*, and T : X = X* a monotone operator. If T
is mazimal and int(D(T)) # O then, for all z in the set D(T') \ int(D(T)),

a) there exists a nonzero w € Np(r)(z), with Npr) as defined in (9),
b) T(2) + Np(r)(2) C T(2),
¢) T is not locally bounded at z.

The following result establishes demi-outer semicontinuity of maximal monotone operators. We
start with the pertinent definitions.

Definition 3.  a) A sequence {(z",v™)} C X x X* demi-converges to (z,v) if one of the situa-
tions below holds:

i) w-lim, 2" = ¢ and s-lim, v" = v, or

i) s-limy, 2" = = and w*-lim, v™ = v,
where s-lim,, w-lim, and w*-lim, refer to limits of sequences in the strong, the weak
and the weak® topology respectively.

b) A subset W C X x X* is demi-closed if it contains all limits of demi-converging sequences

{(zn,vn)} CW.

¢) A point-to-set mapping A : X = X* is demi-outer semicontinuous if its graph is demi-closed,
i.e. whenever {z,} converges weakly (respectively strongly) to =, {v,} converges strongly
(respectively weakly*) to v, and vy, € T(zy) for all n, it holds that v € T(z).

Proposition 3. If X is a Banach space and T : X = X* is a mazimal monotone operator, then
T is demi-outer semicontinuous.

Proof. See Proposition 4.3 in [12]. O



Now, we present a result on continuity of marginal functions constructed from point-to-set
mappings. In connection with item (b), we mention that the introduction of the topology 7T is due
to the following reason: the natural setting for the result is that of metric spaces. However, in our
application of this result, we will take Y = X* with the weak™ topology, under which X* is not a
metric space.

Proposition 4. Let X and Y be metric spaces and F : X = Y a point-to-set mapping. Given
f:Gph(F) = R, define g: X - RU {oo} as g(z) := supycp(y) f(z,y). Take z € D(F).

a) If F' is inner semicontinuous at  and f is lower semicontinuous at every (z,y) € {z} x F(z),
then g is lower semicontinuous at .

b) If Y is T -locally compact with respect to some topology T, F is T -outer semicontinuous and
locally bounded at z and f is upper semicontinuous at any (z,y) € {z} x F(x) with respect
to T, then g is upper semicontinuous at x.

Proof. a) See Theorem 1.4.16 in [1].
b) In order to prove that g is upper semicontinuous at z, we must prove that for all sequence {z, }
converging to z, it holds that

g(z) > limsup, g(zy). (10)

Assume that the inequality above does not hold, and so there exists v € R such that

g(z) < v < limsup,,¢(z,) = infsup g(z). (11)
n k>n

It follows from (11) that for all n there exists k, > n and z, € X such that

g(w) <7 < g(z,)- (12)

We conclude from (12) and the definition of g that for all n € N there exists yi, € F(xg,) verifying

9(w) <y < f(Tky» Ykn)- (13)

Since F' is locally bounded at z, there exist a neighborhood V of z and a radius p > 0 such that
F(V) C B(0,p). Take 7 € N such that z, belongs to V for all n > 7. Thus, for all n > 7, we have
kn > 7, and henceforth zx, € V, yielding =i, € V for n > 7. Therefore yi, € B(0, p) for all n > 7.
Since Y is T-locally compact, we assume without loss of generality (i.e. refining {yy, } if needed)
that {yg, } is T-convergent to some y € B(0, p). Since F is T-outer semicontinuous, it follows that
y € F(z). Using this fact, upper semicontinuity of f and (13), we get

flzy) <glz) <7< limjsupf(wknj,yknj) < f(z,y),

which is a contradiction, so that (10) holds. O
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We continue with a result which relates single-valuedness with inner semicontinuity, whose proof
requires the previous two propositions.

Proposition 5. Let T : X = X* be a mazimal monotone operator such that int(D(T)) # 0. Then
i) T is not inner semicontinuous at any boundary point of D(T).
it) T(x) is a singleton if and only if T is inner semicontinuous at z.

Proof. i) Let z € D(T) be a boundary point of D(T'). Theorem 3(a) implies that there exists a
nonzero element w € Np(ry(z). Therefore,

D(T)Cc{z€ X : (w,z) < (w,z)}. (14)

By Theorem 1(i), int(D(7T)) is a nonempty convex set and, taking interiors in both sides of (14),
we get

int(D(T)) C{z € X : (w,z) < (w,z)}. (15)

Fix y € int(D(T)). By (15), there exists a < 0 such that (w,y — z) < a. Suppose now that T’
is inner semicontinuous at z and fix u € T'(z). Since T'(z) + Np(r)(z) C T'(z) by Theorem 3(b),
we conclude that v + w € T'(x). Define now z,, := (1 — 1/n)xz + (1/n)y. Clearly, lim, 00 , = x.
Since z belongs to D(T) and y belongs to int(D(T")), z, belongs to int(D(T')) for all n (see e.g.
Theorem 2.23(b) in [13]). By inner semicontinuity of T" at z, there exists a sequence {v,, } such that
vy, € T'(zy,) for all n and {v,} converges weakly* to u + w € T'(z). Therefore,

0 < (v — 0 —7) = = (00 — 0,y — 2)

1 1
= _<Un - (’U,+UJ),y—.Z‘> +_<way_$>7
n n

so that
0<(vp — (utw)y—1z)+({wy—2). (16)

Taking now limits for n — oo in (16) and using the fact that {v,} converges weakly* to u + w, we
get 0 < (w,y — z) < a < 0, a contradiction, which implies that 7 is not inner semicontinuous at
any point z in the boundary of D(T).

ii) Assume first that T'(z) is a singleton. Note that z € int(D(T")) by Theorem 3(c), so that there
exists p > 0 such that T'(B(z, p)) is contained in a weakly* compact set B*. Let {z,} C D(T') be a
sequence converging to z. Without loss of generality, we can assume that {z,} C B(z,p). Take a
sequence {v, } C X* such that v, € T(z,) for all n. Since {z,} C B(z,p), it holds that {v,} C B*.
By Bourbaki-Alaoglu’s Theorem (see e.g. [8], Vol. I, p. 248), {v,} has weak* accumulation points.
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Since T' is demi-closed by Proposition 3, all such accumulation points belong to T'(x). Using now
the fact that T'(z) is a singleton, we conclude that {v,} has a unique weak* accumulation point,
which must be T'(z). This proves the inner-semicontinuity of 7'.

Conversely, assume that 7T is inner semicontinuous at x, and suppose that there exist v, vo €
T(z), with w := v; —v2 # 0. By definition of the norm in X*, there exists z € X such that ||z]] =1
and (w,z) > [|w||/2 > 0. Define now g : D(T) — RU {oc} as g(y) := sup,epy,(u,2). We claim
that g is continuous at z. In order to prove this claim, we wil use Proposition 4(a) and (b), with
Y := X*, T the weak* topology, F' := T and f :Gph(T) — R defined as f(y,u) := (u, z). It is easy
to check that f is strong-weak® continuous at every point (z,v) € {z} x T'(z). Since T is inner
semicontinuous at z, we can apply Proposition 4(a) for concluding that g is lower semicontinuous
at z. Now we observe that, as a consequence of Theorem 2, T is locally bounded at x because,
since T' is inner semicontinuous at z, by item (i) of this proposition z cannot be a boundary point
of D(T'), and hence z € int(D(T)). We are within the hypotheses Proposition 4(b), which implies
upper-semicontinuity of g. Therefore, the claim holds and g is continuous at z. Since T is locally
bounded at z, there exists p > 0 such that T'(B(z,p)) is contained in a weak* compact set. Take
t € (—p,p), so that T(z + tz) C T(B(z,p)). For all u € T(x + tz) and all v € T'(z) we have that

0<(u—w,(z+tz) —z) =t{u—0v,z). (17)

Using (17) for a fixed t =: s € (—p,0) and v = vy € T'(x), we get (ve,2z) > (u,z). Since this
inequality holds for every u € T'(z + sz) we obtain

(v2,2) > g(z + s52). (18)
Using again (17) for a fixed t =: s’ € (0,p) and v = v € T(z), we get
(v1,2) < (u,2) < g(z + §'2). (19)

By (18), (19) and continuity of g at z, we have

0=_Jim glo+5'2) — gl +52) > 01,2 — (12,2) = {w, 2) > Dol >
s10 s']0 9
a contradiction, which implies that 7T'(x) is a singleton. ]

Next we prove that maximal monotone point-to-point operators 7' : X — X* have open domains
and are continuous.

Proposition 6. Let X be a Banach space and T : X — X* a point-to-point monotone operator
such that int(D(T)) # 0. If T is mazimal, then D(T) is open and T is continuous with respect to
the strong topology in X and the weak* topology in X* at every point of D(T).

12



Proof. Assume that there exists a point € D(T') which is at the boundary of D(T'). Then T'(z)
is unbounded by Theorem 3(c), contradicting the fact that 7' is point-to-point. Therefore, D(T) C
int(D(T)) and hence D(T) is open. Fix z € D(T). Since T is point-to-point, continuity of T' at
is equivalent to inner-semicontinuity of T at z, which follows from Proposition 5(ii) and the fact
that T'(x) is a singleton. O

We continue with a technical lemma, which gives sufficient conditions for a maximal monotone
operator to be affine.

Lemma 3. i) Let X and Y be vector spaces. If G : X —'Y satisfies
Glaz + (1 — a)y) = aG(z) + (1 — a)G(y) (20)

for all z,y € X and all o € [0,1], then the same property holds for all « € R. In this case, G is
affine, i.e., there exists a linear function L : X —'Y and an elementy € Y such that G(-) = L(-)+y.
ii) Let T : X — X* be a mazimal monotone point-to-point operator such that int(D(T)) # 0. If

T(ox + (1 - a)y) = oT(z) + (1 = )T(y),
for all z,y € D(T) and all a € [0,1], then T is affine and D(T) = X.

Proof. i) For « € R, z,y € X, define Z := azx + (1 —a)y. If @ > 1, then z = (1/a)Z + (1 — (1/))y.
Since 1/a € [0,1], the assumption on G implies that G(z) = (1/a)G(Z) + (1 — (1/a))G(y). This
readily implies G(Z) = aG(z) + (1 — a)G(y). Therefore, (20) holds for all @ > 0. Assume now
that @ < 0. In this case y = (a/(a — 1))z + (1/(1 — «))Z. Since this is an affine combination with
nonnegative coefficients, the first part of the proof yields G(y) = (a/(a—1))G(z)+ (1/(1—a))G(Z),
which readily implies G(Z) = aG(z) + (1 — a)G(y). We have proved that G is affine, and hence
G(z) — G(0) is linear, so that the last statement of item (i) holds for L(z) := G(z) — G(0) and
g := G(0). The proof of (i) is complete.

ii) Note that Proposition 6 implies that D(T') is open. Without loss of generality, we can assume that
0 € D(T). Otherwise, take a fixed ¢ € D(T') and consider Tj := T(- + z9). The operator Tj also
satisfies the assumption on affine combinations, and its domain is the (open) set {y—zo : y € D(T)}.
It is also clear that D(Tp) = X if and ounly if D(T) = X. Thus, we can suppose that 0 € D(T).
Since D(T) is open, for every = € X there exists A > 0 such that Az € D(T). Define T : X — X*
as

T@ﬁ:%TQ@+(1—§)T@) (21)

We claim that

a) T(z) is well defined and nonempty for every z € X,
b) T =T in D(T),
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c) T is monotone.

We proceed to prove the claim. For proving (a), we start by showing that 7', as defined in (21),
does not depend on A. Suppose that A\, A’ > 0 are both such that Az, Nz € D(T). Without loss of
generality, assume that 0 < A < A\. Then XNz = Az + (1 — )‘7’)0 Since )‘7’ € (0,1) we can apply
the hypotheses on 7" to get

i) = Xra) + (1-X) 0

which implies that
1 1 1 1
-T 1—=)7(0)= =T\ 1—-— T
5 (Az) + ( )\) (0) N (Nz) + ( /\,> (0),

and hence T(x) is well defined. Nonemptiness of T(x) follows easily from the definition, since
Az,0 € D(T). This gives D(T) = X. Assertion (b) follows by taking A = 1 in (21). By (a), this

choice of A does not change the value of T. For proving (c), we claim first that T is affine. Indeed,
since D(T") = X, this fact will follow from item (i) if we show that for all A € [0, 1], it holds that

Tz + (1 —Ny) = AT(z) + (1 — NT(y)

for all z,y € X. Take n > 0 small enough to ensure that nz,ny and n(Az + (1 — AN)y) € D(T).
Then,

T+ (1= A) =T (a1 - )

1 1
= 5T(n/\:v + (1= Ny) + (1 - 5) 7(0)
A

1—A 1
= ET(WE) + TT(WJ) + (1 - 5) T(0)

.\ [%T(nx) + (1 _ %) T(O)] (1= [% T(ny) + (1 _ %) T(O)]

= XT(2) + (1 - NT(y),

using the definition of T in the second and the last equality, and the hypothesis on T' in the
third one. Thus, T is affine by item (ii). In this case, monotonicity of T is equivalent to positive
semidefiniteness of the linear part L := T'(-) — T(0) of 7. In other words, we must prove that
(Lz,z) > 0 for all z € X. Take z € X and A > 0 such that Az € D(T). Then

(Lz,z) = (1/A)(L(\z), Az) = (1/3*)(T(Az) — T(0), Az)
= (1/3){T(Az) — T(0), Az) > 0,

using (b) in the third equality and monotonicity of T" in the inequality. Hence, T is monotone and
therefore T = T'. This implies that T is affine and D(T') = D(T) = X. O
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Now we are able to prove that if T cannot be enlarged, then it must be affine.

Theorem 4. Let X be a reflexive Banach space and T : X = X* a mazimal monotone operator
such that int(D(T)) # 0. If there exist E € E(T) and € > 0 such that

E(e,-) =T(), (22)
then
a) D(T) =X, and
b) there ezists a linear function L : X — X* and an element z € X* such that T(-) = L(-) + z.

Proof. We claim that (22) implies that D(7T') is open. Indeed, by Proposition 5(ii) and (22), T'(z)
is a singleton for all z, and hence Proposition 6 yields the claim.

For proving (a), assume for the sake of contradiction that D(T) € X. If (D(T)) = X, then by
Theorem 1(ii), it holds that D(7") = X. Hence we can assume that (D(T)) € X. Take z,y € D(T)
and « € [0, 1]. By Definition 1(iii), we have

oT(z) + (1 — a)T(y) € E(é, %),

where ¢ := a(1 — a)(T'(z) — T(y),z — y) and £ := az + (1 — a)y. By Lemma 2, we get that
E(¢,%) = T(z), and since T is point-to-point, it holds that

ol (z)+ (1 —a)T(y) =T(2).
We conclude from Lemma 3(ii) that 7" is affine and D(T') = X. This proves (a) and (b). O
Finally, we combine the results of Theorem 4 with Corollary 1 and Proposition 2.
Corollary 2. Let T : X = X* be mazimal monotone.

i) If T is affine with skew-symmetric linear part (i.e. T(z) = Lz+z for all z, where L : X — X*
is linear and skew-symmetric, and z belongs to X*), then T is non-enlargeable by T°.

it) If T is affine, then T is non-enlargeable by T*¢.

4ii) If int(D(T)) # 0 and T is non-enlargeable by T¢, then D(T) = X, and T is point-to-point
and affine with skew-symmetric linear part.

w) If int(D(T)) # 0 and T is non-enlargeable by T5¢ then D(T) = X, and T is point-to-point
and affine.

Proof. i) Follows from Corollary 1.

ii) Follows from Proposition 2.
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iii) Since then enlargement T¢ belongs to E(T"), we get from Theorem 4 that D(T) = X and that
T is point-to-point and affine. Using now Corollary 1, we conclude that the linear part of T’
is skew-symmetric.

iv) Again, since T%¢ € E(T'), we get from Theorem 4 that D(T) = X and that T is point-to-point
and affine.
U

Remark. The condition int(D(T)) # 0 is necessary for Theorem 4 to hold. Consider the following
example: X = R" 0 # a € R"” and T = Ny, where V := {y € R | (a,y) = 0} and Ny is the
normalizing operator of V, as defined by (9). It is clear that 7" is not affine, since its domain is not
the whole space and it is nowhere point-to-point. Namely,

Vi={la|AeR if 1%
T(z) = {Ma| X € R} ifzxe /
0 otherwise.

We claim that T¢(e,-) = T'(-) for all ¢ > 0. For z ¢ V this equality follows from the fact that
V = D(T) Cc D(T(e,-)) C (D(T)) = V. In this case both mappings have empty value at z.
Suppose now that there exists x € V and € > 0 such that T¢(e,:) ¢ T(-). Then there exists
b € T(e,z) such that b ¢ V. In this case, b = ta + w for some t € R and 0 # w € V. Since
b€ T¢(e,x), for y =z + 2ew/|w|> € V we have

—e< <b - )\G,.’IZ - y) = 2<(t - )\)0/ + w, —Ew/|w|2) = —2¢,

which is a contradiction, establishing the claim.

3 On fully enlargeable operators

We start with the formal definition of full enlargeability.

Definition 4. Let T : X = X™* be a maximal monotone operator and consider an element E €
E(T).

i) The enlargement E fully enlarges T at the point z € D(T) if and only if for all ¢ > 0 there
exists 6 = 0(x,€) such that T(z) + B(0,6) C E(e,x).

i1) E is a full enlargement of T when property (i) holds for all z € D(T).

i1i) Given a full enlargement E of T, E is a uniformly full enlargement of T' when the radius 6
of the ball in (i) does not depend on x, i.e., when for all € > 0 there exists § = 6(e) such that
T(z) + B(0,0) C E(e,z) for every x € D(T).
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We present next a characterization of those operators 7' which are fully enlarged by 7. Define
Br:X x X* > RU{o0} as

IBT('T’U) = ¢T($’U) - <‘7"’U>’ (23)

with ¢ as defined in (3). Also, given w € X* and U C X*, we will denote as d(w,U) the metric
distance from w to U, i.e. d(w,U) = infyep ||u — w]|.

Theorem 5. Let T : X = X* be a maximal monotone operator. Then the following statements
are equivalent.

a) T is a full enlargement of T.
b) The Fitzpatrick function ¢r(x,-) is continuous at every u € T'(z), uniformly in T(z).
¢) For every e > 0 and every x € D(T) there exist p = p(e,z) > 0 and a = a(e,z) > 0 such that
(v—u,z—y)>alz -y (24)
for all v € T(z) and all (y,u) € Gph(T) such that ||z — y| > p.

Proof. Assume that (a) holds. It follows easily from the definitions of Sy and 7 that, given
z € D(T), w belongs to T¢(e,z) if and only if 0 < Br(z,w) < e. In particular, given x € D(T),
it holds that Br(z,w’) = 0 if and only if w' € T¢(0,z) = T(z). In view of (23), continuity of
¢r(z,-) is equivalent to continuity of Sr(z,-). Thus, we proceed to prove continuity of Sr(z,-) on
the set T'(z). Fix ¢ > 0 and consider § > 0 as given by Definition 4(i). Take w € X* such that
d(w,T(z)) < d. The latter inequality yields the existence of some u € T'(x) such that

w=u+(w—u) € T(z)+ B(0,0) C Te,x),

using Definition 4(i) in the inclusion. Therefore, |G (z,w) — Br(z,v)| = pr(z,w) — 0 < € for all
v € T(z). Since d only depends on z and ¢, (b) holds.

Assume now that (b) holds, and suppose that (c) is not true for some € > 0 and some z € D(T).
By (b), Br(Z,-) is uniformly continuous on the set T'(z), and hence for every v € T(z) there exists
§ > 0 such that

Br(z,w) <&, (25)

for all w € X* such that d(w,T(z)) < §. The assumption on & and Z entails that given any pair
(a, p) it is posible to find v € T'(Z) and (y,u) in Gph(T') such that ||Z — y|| > p but the inequality
in (24) does not hold. Taking « := §/2 and p := n € N, we conclude that there exist v, € T(Z)
and (yn,un) € Gph(T) such that ||y, — Z|| > n and

_ 5
<'Un — Up, T _yn> < 5 ||-’L'_yn|| .
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Take now z, € X* such that ||z,|| =1 and ||z — Ynll (2, T — yn) = 1, and define wy, = v, — 62y,
Then d(wy,,T(Z)) < § and, by uniform continuity of Br(Z,-), we have that S (Z,w,) < &. In other
words, w, belongs to T°(&,z), which gives

—&< <wn_um~i_yn> = <wn_'Unaj_yn>+<'un_unaj_yn>

T _ _— 0, 0, 0
= 5112~ yall + (n — i, — 9} < =517~ gl + 5 17— vall = =5 |17 — gall < ~Zn. (26)

Since n € N can be made arbitrary large, (26) leads to contradiction, which proves (c).

Assume now that (c) holds. Fix € > 0 and x € D(T'), and consider p, a > 0 as given by (24). We
claim that T'(z) + B(0,0) C T¢(e,z) for § := min{e/p, a}. Indeed, take w = v + z, with v € T'(z)
and z € B(0,0). Then, for all (y,u) € Gph(T), we have

(w—uz—y)=(z,z—y)+{v-uz—-y) > —|zllllz -yl + (v-u,z—y) (27)

We consider now two cases.
Case 1. y € B(z,p). We get from (27)

(w—u,z—y) > =zl p+ (v —uw,z—y) > —lzllp = —b6p > —,

which implies that w € T¢(e, z) in this case.
Case 2. y € B(z,p). From (27) and assumption (c) we get

(w—u,z—y) > -[zlllz -yl +allz -yl = (a =)z —yl| > 0> —e,
which also yields w € T¢(e, ). Therefore T is a full enlargement of T" at z. O
Next we characterize operators T' for which 7 is a uniformly full enlargement.

Theorem 6. Let T : X = X* be a maximal monotone operator. Then the following statements
are equivalent.

a) T is strictly ®°monotone, as in Definition 2.

b) The function B(z,-), as defined in (23), is locally Lipschitz around T (z), with a local Lipschitz
constant which does not depend on x.

c) T€ is a uniformly full enlargement of T.

Proof. Assume that (a) holds. Since T is strictly ®monotone, there exists a function ¢ as in
Definition 2, and hence there exist constants M > 0 and 7 > 0 such that ¢(t)/t > r for all t > M.
Fix z € D(T), and take w € X* such that d(w,T(z)) < § := r/2. For each v € T(z) we have

|ﬁT(xaw) _/BT(IaU” :,BT(IL',U)) = sup (u—'w,:v—z)
(2,u)€EGph(T)
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= sup {(u—v,z—2)+(v—w,z—2)}
(2,u)€Gph(T)

< sup {=p(lz = z2[]) + (v —w,z = 2)}
(2,u)€Gph(T)

< s oz <<v—w, oz >_so(llx_—z||))
(z,u)€Gph(T) ||;[; Z“ Hl_ ZH

(o elle =)
< o] (1o - wil - £4fz==0) (28)

(z,u)eGph ||£E - Z”

Using the facts that ||[v — w|| < § = r/2 and Im(¢) C Ry, and the assumption on M,r, we get
that ||v — w|| — o(||z — 2||)/||z — 2|| < 0 when ||z — z|| > M. Since the supremum in the righmost
expression of (28) is nonnegative, because we can take z := z € D(T'), such supremum is attained
at some z such that ||z — z|| < M. Therefore, since Im(p) C Ry,

r —Z
Br(,w) — Br(a,v)| < sup |u—zu0w—ww—ﬂlj—@)SAﬂw—wm
(2,u)€Gph(T),|lo—z||<M |z — 2|

and hence (b) holds.
Assume now that (b) holds. Fix z € D(T') and € > 0. We know that there exists L, > 0, with
0 independent of z, such that, whenever w € X* is such that d(w,T(x)) < J, we have

|81 (2, w) = Br(z,v)| = pr(z,w) < Lijv — wl, (29)

for all v € T(x). Define § := min{(1/2)4, g/L}. We claim that T'z + B(0,6) C T¢(e, ). Indeed,
take w = u + z, with u € Tz and z € B(0,d). Since § < §, we can use (29) for w and u € Tz,
yielding

Br(z,w) < L||lu —w|| < Li < ¢,

which gives w € T¢(e,z). Hence T is a uniformly full enlargement of 7' and (c) holds.

Assume now that 7 is a uniformly full enlargement of 7. Take ¢ = 1 and z € D(T"). Then
there exists § > 0, not depending on z, such that T'(z) + B(0, ) C T°(1,z). Take (y,u) € Gph(T)
with z #  and let z € X* be such that ||z|| = 1 and ||z — y|| " (2,2 —y) = 1. Define also z := —dz.
Then z € B(0,) and hence, for all v € T'(z) we have

—-1<{(vt2)—uz—y)=@v-—uz-y) + (2,2 -y) =({v—uz—y) —dllz -yl
which can be rewritten as

(v —w,z—y) >dllz—yl -1, (30)
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for all (y,u), (z,v) € Gph(T'). Define now the function ¢ : Ry — R, as ¢(t) := max{0,d¢ — 1}.
From (30) and monotonicity of T', we get

(v —u,z —y) 2 max{0,dlz —yl| = 1} = ¢([lz — yl)-

Note that ¢(t) > 0 for all ¢t and that liminf; ,,p(t)/t = 6 > 0. We conclude that T is strictly
*°monotone. O

Corollary 3. If T is a uniformly full enlargement of T, then the Fitzpatrick function ¢p(z,-) is
locally Lispchitz on the set T'(x) (but for ¢ the Lipschitz constant depends on z, at variance with
the case of Br).

Proof. Since fr(z,-) is locally Lipschitz on T'(z) by Theorem 6 and ¢r(z,-) = fr(z,-) + (z,-), we
get the result, because (z,-) is obviously Lipschitz continuous on the whole space with constant
L=|zx|. O

When T is strictly “monotone, and the Fenchel conjugate ¢* of ¢ is available, it is possible to
obtain a more explicit expression for the radius § in Definition 2, in which case we can effectively
construct points in T%(e,z) \ T'(z). We need a preliminary lemma. We recall that, for a general
f:R = R, f*is defined as f*(s) = sup,cr{st — f(¢)}. Since we are dealing with a function ¢
whose domain is Ry, it is natural to consider ¢*(s) = supycg, {st — ¢(?)}-

Lemma 4. Take ¢ : Ry — Ry such that liminft_,oo@ > 0. Then

i) limsup,_,o+¢*(s) < 0.
ii) If additionally ¢(0) = 0 then lim,_,p+ ¢©*(s) = ¢*(0) = 0.

Proof. i) Otherwise, there exists a sequence {sy} C R;; and a constant 8 > 0 such that s, \, 0
and p*(sg) > 6 > 0 for all k. By definition of ¢*, the latter expression yields the existence of a
sequence {tx} C Ry such that sgty — ¢(tx) > 6/2 for all k. We claim that {¢;} is unbounded.
Otherwise, there exists ¢ such that t; < ¢ for all k. Then

0< 9/2 < sptp — (p(tk) < sptp < Skt_. (31)

Since the rightmost expression in (31) tends to zero as k — oo, (31) entails a contradiction, and
hence {t;} is unbounded, i.e. there exists a subsequence {t;, } C {tx} such that limj_,., t;, = +o0.
In view of the first two inequalities in (31),

L.
0<9/2§tik (81,9—@),
i

implying that s;, > ¢(t;,)/ti, > 0 for all k. Combining this inequality with the fact that
limy_,00 55, = 0, we get limy_,o0 (5, )/t;, = 0, contradicting the fact that limsup;.cp(t)/t > 0.
Hence limsup,_,o+¢*(s) < 0.
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ii) If ©(0) = 0, then

©*(s) = sup{st — p(t)} > 50— p(0) = —p(0) = 0, (32)
>0

for all s > 0. Using (32) and (i), we get 0 > limsup,_,o+¢*(s) > 0, so that lim,_,y+ ¢*(s) = 0. On
the other hand, 0 = —¢(0) < sup;>o{—¢(t)} = ¢*(0) = sup;>{—¢(t)} < 0 because ¢(t) > 0 for
all ¢ > 0. We conclude that ¢*(0) = 0. O

Now we obtain a specific expression for §, in terms of ¢*.

Proposition 7. If T is strictly “°monotone then T(z) + B(0,6) C T¢(e,x) for any 6 > 0 such that
@*(8) <e.

Proof. Note that the function ¢ in the definition of strictly “monotone satisfies ¢(0) = 0. Indeed,
for all (v,z) € Gph(T') we have

0=(—-v2z-2)20¢(lz-z]) =¢0) 2 0.

Thus Lemma 4(ii) applies, and hence lim,_,y+ ¢*(s) = 0. Therefore, for all € > 0 there exists § > 0
such that ¢*(§) < e. Take w € T(z) + B(0,0), so that w = v + z with v € T(z) and ||z|| < J. For
all (y,u) € Gph(T') we have

(w—uz—y)=v-uz-y) +(zz—-y) = e(lz-yl) - lzllz -yl
zp(lle —yll) —dlle —yll = = (0 lz —yll — ez —yl))
> —sup (0t — p(t)) = —¢™(8) = —,
>0
which yields w € T¢(e, ). O
We present next some examples in which ¢ can be explicitly computed.
Example 1. Let T be strictly ®°monotone with ¢(t) = at”, with o > 0 and v > 1. Then ¢*(s) =

€ )1—%.

(v — 1)(%)7%1, so that we can take § = a'y(ﬁ

Example 2. Let T be strictly °monotone with ¢(t) = at, with o > 0. Then

(p*(s):{ 0 ifs<a,

oo if s> aq,
so that we can take § = «

Next, we study conditions upon which some relevant maximal monotone operators are strictly
*monotone, and hence uniformly fully enlargeable.
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Proposition 8. Let X be a Hilbert space and C C X a closed and convez set. Let Po: X — X be
the orthogonal projection onto C, and take T : X — X defined as T(z) = x — Po(z). T is strictly
®monotone if and only if C is bounded. In this situation, the function ¢ in Definition 2 can be
taken as

0 if ¢ < 4p,
wlt) = { (1/2)82 ift > 42, (33)

where p is any positive constant such that C C B(0, p).
Proof. If z,y € D(T) are such that ||z — y|| < 4p, then
(T(z) = T(y),z —y) 2 0=e(|z —yl),

by monotonicity. Assume now that ||z — y|| > 4p. Note that this inequality can be equivalently
written as ||z — y||? — 2p ||z — y|| > (1/2)||z — y||*. Using the fact that |Pc(z) — Po(y)|| < 2p we get

(Tz —Ty,z —y) =]z —y|* = (Pc(z) - Pe(y),z — y)
> |lz = ylI* = [|1Pc(2) = Pe@)llllz — yll > llz = 9l = 20|z — y]| > (1/2)]|z - %,
and therefore we can take ¢ as in (33). It can be checked that

w | 4ps if s < 8p,
() = { (1/2)s% if s > 8p,

so that d can be taken as

5= f—p if € < 32p2,
" | V2¢ otherwise.

In order to prove the converse statement, assume that C' is unbounded. Fix Z € C' and an un-
bounded sequence {z,} C C. If T were strictly “°monotone, we would have

o(I1Z = zull) <(T(Z) = T(20), % — 2n) = |T — 20l|* — (Pc(Z) — Po(2n), T — 2n)
=1z = znll* = |z — 2l” =0,
implying that liminf, ,c@(||Z — 2z ]])/||Z — 2zx|| < 0 in contradiction with liminf; ,.@(t)/t > 0. O

Proposition 9. Let X be a Banach space and C C X a closed and convez set. If No : X = X* is
the normalizing operator of C, as in (9), then T is strictly ®°monotone if and only if C is bounded.
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Proof. Assume first that C' is a bounded set. In view of Theorem 6, for proving that N¢ is strictly
®monotone it suffices to show that 7 is a uniformly full enlargement of T'. Let p > 0 be such that
C C B(0,p) and take ¢ > 0, z € D(T'). We claim that T'(z) + B(0,d) C T¢(e,z) with § = ¢/(2p).
Take w = v + z, with v € T'(z) and ||z|| < ¢. Then, for all y € C and u € N¢c(y) we have

(w =@ —y) = (v —u,z =) + (5,0 — y) > —||2]| | — yl| > —20p > e,

using the fact that ||z — y|| < 2p.

Suppose now that C' is unbounded. Fix Z € C and an unbounded sequence {z,} C C. If T were
strictly ®“monotone, we would have, since 0 € N¢(z) forallz € C, p(||Z — 2z,]|) < (0-0,Z—2,) =0,
implying that liminf,,_, ¢ (||Z — 2, |)/||Z — 2n|| < 0, in contradiction with liminf; ,.¢(t)/t > 0. O

Remark. Consider T as in the previous example with C = B(0, p) and the operator T defined
as T'(x) = 0 for all z € C. Note that T and 7' conicide in the interior of B(0,p). However, for
z € B(0, p) we have B(0,8) C T(z) + B(0,8) C T¢(e,z) whenever § = /(2p), while T¢(e, z) = {0}
for all x € X. Hence, knowledge of the values of T' in an arbitrarily large neighborhood of a point
x is not enough for computing 7¢(e,z) for any € > 0. In other words, the determination of 7T
requires a “global” knowledge of T'.
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