A BERNSTEIN-TYPE THEOREM FOR RIEMANNIAN MANIFOLDS WITH A KILLING FIELD

LUIS J. ALÍAS, MARCOS DAJCZER, AND JAIME RIPOLL

Abstract

The classical Bernstein theorem asserts that any complete minimal surface in Euclidean space \mathbb{R}^{3} that can be written as the graph of a function on \mathbb{R}^{2} must be a plane. In this paper, we extend Bernstein's result to complete minimal surfaces in (maybe non complete) ambient spaces of non-negative Ricci curvature carrying a Killing field. This is done under the assumption that the sign of the angle function between a global Gauss map and the Killing field remains unchanged along the surface. In fact, our main result only requires the presence of a homothetic Killing field.

1. Introduction

The classical Bernstein theorem asserts that any complete minimal surface in Euclidean space \mathbb{R}^{3} that can be written as the graph of a function on \mathbb{R}^{2} must be a plane. H. Rosenberg observed in [16] that the following extension holds:

> Any entire minimal graph in $\mathbb{M}^{2} \times \mathbb{R}$ over a complete two-dimensional Riemannian manifold \mathbb{M}^{2} with nonnegative Gaussian curvature is a totally geodesic surface.

According to his reasoning this follows since such a graph is necessarily stable, and a well-known result of Schoen [19] proves that a complete stable minimal surface in any three-dimensional Riemannian manifold with non-negative Ricci curvature must be totally geodesic

If \mathbb{M}^{2} is complete there is an abundance of complete totally geodesic surfaces in $\mathbb{M}^{2} \times \mathbb{R}$. First, there are the slices $\mathbb{M}^{2} \times\{t\}$ for any $t \in \mathbb{R}$ that are stable. Then, there are the cylinders $\{\gamma\} \times \mathbb{R}$ for any complete geodesic γ in \mathbb{M}^{2} and, as seen below, depending on γ these may or may not be stable. Slices are (entire) graphs over \mathbb{M}^{2} and cylinders certainly not. But surfaces in both classes share the property that the

[^0]angle function between the Gauss map and the (Killing) vector field $T=\partial / \partial t$ does not change sign.

In this paper, we further extend Bernstein's result to complete minimal surfaces in (maybe non complete) ambient spaces of non-negative Ricci curvature carrying a Killing field. This is done under the assumption that the sign of the angle function between a global Gauss map and the Killing field remains unchanged along the surface. In fact, our main result only requires the presence of a homothetic Killing field.

Recall that a vector field T on a Riemannian manifold \mathbb{N} is called a conformal Killing field if the Lie derivative of the metric tensor $\langle\rangle=$, $\langle,\rangle_{\mathbb{N}}$ with respect to T satisfies $\mathcal{L}_{T}\langle\rangle=,2 \phi\langle$,$\rangle for some function$ $\phi \in \mathcal{C}^{\infty}(\mathbb{N})$. Equivalently, for any $U, V \in T \mathbb{N}$ we have that

$$
\left\langle\bar{\nabla}_{U} T, V\right\rangle+\left\langle\bar{\nabla}_{V} T, U\right\rangle=2 \phi\langle U, V\rangle,
$$

where $\bar{\nabla}$ denotes the Levi-Civita connection in \mathbb{N}^{3}. Then T is called a homothetic Killing field if the function ϕ is constant, and just a Killing field whenever that constant vanishes.

In the following and main result in this paper, let \mathbb{N}^{3} denote a threedimensional (maybe non complete) Riemannian manifold endowed with a homothetic Killing field T. Then $\Sigma=\Sigma^{2}$ is assumed to be a twosided minimal surface in \mathbb{N}^{3}. The latter condition means that there is a globally defined unit normal vector field η and, therefore, the function $\Theta \in \mathcal{C}^{\infty}(\Sigma)$ given by

$$
\Theta(p)=\langle\eta(p), T(p)\rangle
$$

is also globally defined. In the sequel, we denote by $K_{\mathbb{N}}$ and $\operatorname{Ric}_{\mathbb{N}}$ the sectional and Ricci curvature of \mathbb{N}^{3}, respectively.
Theorem 1. Let Σ be a two sided complete minimal surface in \mathbb{N}^{3} such that the function Θ does not change sign. Then either Σ is invariant by the one-parameter subgroup of homotheties generated by T or it is stable. In the latter case, we have:
a) If $\operatorname{Ric}_{\mathbb{N}} \geq 0$ then Σ is totally geodesic.
b) If $K_{\mathbb{N}} \geq 0$ then also Θ is constant and $\operatorname{Ric}_{\mathbb{N}}(\eta)=0$ everywhere.

In the preceding result the surface Σ may be invariant by T and, simultaneously, stable. For instance, in [17, Theorem 1.1] it was shown that a properly embedded totally geodesic surface of the form $\gamma \times \mathbb{R}$ in a Riemannian product $\mathbb{M}^{2} \times \mathbb{R}$ with \mathbb{M}^{2} compact is stable only if γ is a simply closed stable geodesic.

Theorem 1 can be applied to warped product manifolds $\mathbb{N}^{3}=\mathbb{I} \times{ }_{t} \mathbb{M}^{2}$, where \mathbb{I} is an open interval in $\mathbb{R}_{+}=(0,+\infty)$ and \mathbb{N}^{3} is endowed with the Riemannian metric

$$
\langle,\rangle_{\mathbb{N}}=\pi_{\mathbb{I}}^{*}\left(d t^{2}\right)+t^{2} \pi_{\mathbb{M}}^{*}\left(\langle,\rangle_{\mathbb{M}}\right) .
$$

Here $\pi_{\mathbb{I}}$ and $\pi_{\mathbb{M}}$ denote the projection onto the first and second factor of \mathbb{N}^{3}, respectively. It is easy to see that $t \partial / \partial t$ is a homothetic Killing field, as required by our Theorem 1 . Moreover, the condition $\operatorname{Ric}_{\mathbb{N}} \geq 0$ in this case becomes $K_{\mathbb{M}} \geq 1$.

Any positive function $u \in \mathcal{C}^{\infty}(\Omega)$ defined on a domain $\Omega \subset \mathbb{M}^{2}$ determines a radial graph $G(u)$ over Ω in $\mathbb{R}_{+} \times_{t} \mathbb{M}^{2}$ given by $p \in$ $\Omega \mapsto(u(p), p)$. In particular, we have the following consequence of Theorem 1.

Corollary 2. Let Σ be a complete minimal radial graph in $\mathbb{N}^{3}=\mathbb{R}_{+} \times_{t}$ \mathbb{M}^{2} over a domain $\Omega \subset \mathbb{M}^{2}$. If $K_{\mathbb{M}} \geq 1$ then Σ is totally geodesic.

In particular, the only complete minimal radial graphs over a domain in \mathbb{S}^{2} in \mathbb{R}^{3} are the planes defined over an open hemisphere of the sphere. This Bernstein type result for radial graphs in \mathbb{R}^{3} also follows from the results in [15].

Theorem 1 can also be applied to warped product manifolds $\mathbb{N}^{3}=$ $\mathbb{M}^{2} \times_{\varrho} \mathbb{R}$, that is, the product manifold $\mathbb{M}^{2} \times \mathbb{R}$ endowed with the Riemannian metric

$$
\langle,\rangle_{\mathbb{N}}=\pi_{\mathbb{M}}^{*}\left(\langle,\rangle_{\mathbb{M}}\right)+\varrho^{2} \pi_{\mathbb{R}}^{*}\left(d t^{2}\right)
$$

where $\varrho \in \mathcal{C}^{\infty}(\mathbb{M})$. In this case $T=\partial / \partial t$ is a Killing field in \mathbb{N}^{3}, and the condition $\operatorname{Ric}_{\mathbb{N}} \geq 0$ is simply $K_{\mathbb{M}} \geq 0$.

It is a standard fact that $\mathbb{N}^{3}=\mathbb{M}^{2} \times_{\varrho} \mathbb{R}$ is complete if and only if \mathbb{M}^{2} is complete. If \mathbb{N}^{3} is complete and $K_{\mathbb{N}} \geq 0$, then ϱ must be constant. This is because $K_{\mathbb{M}} \geq 0$ and

$$
\operatorname{Ric}_{\mathbb{N}}(T, T)=-\varrho \Delta_{\mathbb{M} \varrho} \geq 0,
$$

where $\Delta_{\mathbb{M}}$ is the Laplacian on \mathbb{M}^{2}. Thus ϱ is a positive superharmonic function on \mathbb{M}^{2}. Since \mathbb{M}^{2} is complete and $K_{\mathbb{M}} \geq 0$, then \mathbb{M}^{2} is parabolic and hence ϱ is constant.

In the following result, by a cylinder in $\mathbb{N}^{3}=\mathbb{M}^{2} \times_{\varrho} \mathbb{R}$ over a unit speed curve $\gamma: \mathbb{R} \rightarrow \mathbb{M}^{2}$ we mean the equivariant surface in $\mathbb{M}^{2} \times_{\varrho} \mathbb{R}$ obtained by acting on γ the one-parameter subgroup of vertical translations. A cylinder is minimal if $k_{g}=\varrho \partial \varrho / \partial \nu$, where $k_{g}=\left\langle\nabla_{\gamma^{\prime}} \gamma^{\prime}, \nu\right\rangle$ is the geodesic curvature of γ and ν the unit normal field to γ in \mathbb{M}^{2}. In particular, a cylinder is totally geodesic if and only if γ is a geodesic and $\partial \varrho / \partial \nu=0$.

Corollary 3. Let Σ be a two sided complete minimal surface in $\mathbb{N}^{3}=$ $\mathbb{M}^{2} \times_{\varrho} \mathbb{R}$, where \mathbb{M}^{2} is not necessarily complete. Assume that $K_{\mathbb{N}} \geq 0$ and that Θ does not change sign. Then, either
(i) Σ is a minimal cylinder, or
(ii) Σ is totally geodesic and ϱ is constant. Moreover, if $K_{\mathbb{M}}(q)>$ 0 at a point $q \in \pi_{\mathbb{M}}(\Sigma)$, then Σ is a slice over a necessarily complete \mathbb{M}^{2}.

If $\mathbb{M}^{2}=\mathbb{R}^{2}$ and $\varrho=1$ (i.e., $\mathbb{N}^{3}=\mathbb{R}^{3}$) then any affine plane other than a horizontal or vertical one is an example of a totally geodesic surface with constant Θ that is neither a cylinder nor a slice. Moreover, the assumption $K_{\mathbb{M}} \geq 0$ is necessary since in $\mathbb{N}^{3}=\mathbb{H}^{2} \times \mathbb{R}$ there exist non-trivial entire minimal graphs (see [7] or [13]).

A given function $u \in \mathcal{C}^{\infty}(\mathbb{M})$ determines an entire (normal geodesic) graph Γ_{u} over \mathbb{M}^{2} in $\mathbb{M}^{2} \times \mathbb{R}$ given by

$$
p \in \mathbb{M}^{2} \mapsto \Gamma_{u}(p)=(p, u(p)) .
$$

In the special case of entire minimal graphs, the following result is slightly more general than Rosenberg's in [16]. Its proof makes use of a beautiful argument due to Salavessa [18] that shows that an entire constant mean curvature graph over \mathbb{M}^{2} must be necessarily minimal if the Cheeger constant of \mathbb{M}^{2} vanishes.

Theorem 4. Let \mathbb{M}^{2} be a complete surface with Gauss curvature $K_{\mathbb{M}} \geq$ 0.
(i) Any entire constant mean curvature graph in $\mathbb{M}^{2} \times \mathbb{R}$ is totally geodesic.
(ii) If, in addition, $K_{\mathbb{M}}(q)>0$ at some point $q \in \mathbb{M}^{2}$ then the graph is a slice.

In the special case of $\mathbb{N}^{3}=\mathbb{M}^{2} \times \mathbb{R}$, we give a proof of Corollary 3 by a direct elementary argument; see Proposition 7 below. The proof builds on an idea taken from Chern's proof [6] of classical Bernstein theorem, and is not only interesting by itself but also allows to prove the following half-space result for minimal graphs.

Theorem 5. Let \mathbb{M}^{2} be a complete surface satisfying

$$
\int_{\mathbb{M}} K_{\mathbb{M}}^{-} d A_{\mathbb{M}}<+\infty, \quad \text { where } \quad K_{\mathbb{M}}^{-}(q)=\max \left\{-K_{\mathbb{M}}(q), 0\right\}
$$

Then any entire minimal graph in a half-space $\mathbb{M}^{2} \times[0,+\infty)$ is a slice.
The authors would like to heartily thank Bennett Palmer and Harold Rosenberg for useful comments during the preparation of this paper.

2. Proofs and further results

Before giving the proof of Theorem 1 we need to extend Proposition 1 in [10].

Proposition 6. Let \mathbb{N}^{n+1} be a $(n+1)$-dimensional Riemannian manifold endowed with a conformal Killing field T. For a two-sided hypersurface Σ^{n} in \mathbb{N}^{n+1} the Laplacian of $\Theta \in \mathcal{C}^{\infty}(\Sigma)$ given by $\Theta=\langle\eta, T\rangle$ is

$$
\Delta \Theta=-n\langle\nabla H, T\rangle-\left(\|A\|^{2}+\operatorname{Ric}_{\mathbb{N}}(\eta)\right) \Theta-n(H \phi+\partial \phi / \partial \eta) .
$$

Here ∇H is the gradient of the mean curvature function H with respect to a unit normal vector field η and $\|A\|$ the norm of the second fundamental form of Σ^{n}.

Proof: Set $T=T^{\top}+\Theta \eta$, where ()$^{\top}$ denotes the tangential component of a vector field in $T \mathbb{N}$ along Σ^{n}. Being T conformal, we have

$$
X(\Theta)=-\left\langle A X, T^{\top}\right\rangle-\left\langle\bar{\nabla}_{\eta} T, X\right\rangle
$$

for any $X \in T \Sigma$. It follows that

$$
\begin{equation*}
\nabla \Theta=-A T^{\top}+\left(\bar{\nabla}_{\eta} T\right)^{\top} . \tag{1}
\end{equation*}
$$

The Codazzi equation for Σ^{n} is

$$
\begin{equation*}
\left(\nabla_{X} A\right) Y=\left(\nabla_{Y} A\right) X-\left(R_{\mathbb{N}}(X, Y) \eta\right)^{\top} \tag{2}
\end{equation*}
$$

where $R_{\mathbb{N}}$ is the curvature tensor of \mathbb{N}^{n+1}. From (2) for $Y=T^{\top}$ and

$$
\begin{equation*}
\nabla_{X} T^{\top}=\left(\bar{\nabla}_{X} T\right)^{\top}+\Theta A X \tag{3}
\end{equation*}
$$

we easily obtain that

$$
\operatorname{div}\left(A T^{\top}\right)=\operatorname{tr}\left(\nabla_{T^{\top}} A\right)+n H \phi+\Theta\|A\|^{2}-\operatorname{Ric}_{\mathbb{N}}\left(T^{\top}, \eta\right)
$$

where div denotes the divergence on Σ^{n}. Using that the trace commutes with the covariant derivative, we have

$$
\begin{equation*}
\operatorname{div}\left(A T^{\top}\right)=n\langle\nabla H, T\rangle+n H \phi+\Theta\|A\|^{2}-\operatorname{Ric}_{\mathbb{N}}\left(T^{\top}, \eta\right) \tag{4}
\end{equation*}
$$

On the other hand, a straightforward computation yields

$$
\begin{equation*}
\operatorname{Ric}_{\mathbb{N}}(T, \eta)=\operatorname{div}\left(\left(\bar{\nabla}_{\eta} T\right)^{\top}\right)-n \partial \phi / \partial \eta \tag{5}
\end{equation*}
$$

and the result follows from (1), (4) and (5).
We are now in condition to prove our main result.
Proof of Theorem 1. Choose the orientation of η such that $\Theta \geq 0$. Then Θ is a Jacobi field since the Jacobi operator $J=\Delta+\|A\|^{2}+\operatorname{Ric}_{\mathbb{N}}$ satisfies

$$
\begin{equation*}
J \Theta=\Delta \Theta+\left(\|A\|^{2}+\operatorname{Ric}_{\mathbb{N}}(\eta)\right) \Theta=0 \tag{6}
\end{equation*}
$$

by Proposition 6. Suppose that $\Theta\left(p_{0}\right)=0$ at some point $p_{0} \in \Sigma$. For a sufficiently small neighborhood U of p_{0} the first eigenvalue for the Dirichlet problem of J satisfies $\lambda_{1}(J)>0$ on U. Therefore, by Theorem 1 in [9] there exists a positive solution g of $J g=0$ on U. Setting $\Theta=\alpha g$, then $\alpha \geq 0$ and it follows from $J \Theta=0$ that $\operatorname{div}\left(g^{2} \nabla \alpha\right)=0$
on U. The maximum principle applies to this equation since it is of divergence form. Thus, α attains its minimum at an interior point of U. Then α, and hence Θ, must vanish. We conclude that either $\Theta=0$ or $\Theta>0$ on Σ.

If $\Theta=0$ the surface is invariant by the one parameter subgroup of homotheties generated by T. Otherwise Θ is a positive Jacobi field, and the surface is stable by a well-known result due to Fischer-Colbrie and Schoen [9, Corollary 1]. For the sake of completeness we give the following standard argument that proves this fact in our case. An arbitrary function ψ with compact support on Σ can be written as $\psi=\varphi \Theta$ where φ has compact support. From $J \Theta=0$ we have

$$
J \psi=\Theta \Delta \varphi+2\langle\nabla \varphi, \nabla \Theta\rangle
$$

and

$$
\psi J \psi=\Theta^{2} \varphi \Delta \varphi+\frac{1}{2}\left\langle\nabla \varphi^{2}, \nabla \Theta^{2}\right\rangle=\operatorname{div}\left(\Theta^{2} \varphi \nabla \varphi\right)-\Theta^{2}\|\nabla \varphi\|^{2}
$$

Thus

$$
-\int_{\Sigma} \psi J \psi d A_{\Sigma}=\int_{\Sigma} \Theta^{2}\|\nabla \varphi\|^{2} d A_{\Sigma} \geq 0
$$

and the surface is stable.
If the surface is stable and the Ricci curvature satisfies $\operatorname{Ric}_{\mathbb{N}} \geq 0$, then a result of Schoen [19] implies that Σ is totally geodesic. Moreover, if $K_{\mathbb{N}} \geq 0$, then Σ is totally geodesic and, from the Gauss equation, has non-negative Gauss curvature. By a classical result by Ahlfors [1] and Blanc-Fiala-Huber [8] a complete surface of non-negative Gaussian curvature is parabolic in the sense that any non-negative superharmonic function on the surface must be constant. Then, it follows from (6) that Θ is constant, and hence, $\operatorname{Ric}_{\mathbb{N}}(\eta)=0$ unless $\Theta=0$.
Proof of Corollary 3. It is a standard fact that the covariant derivative in \mathbb{N}^{3} satisfies

$$
\begin{equation*}
\bar{\nabla}_{Z} T=\varrho^{-1}\langle\nabla \varrho, Z\rangle T \quad \text { and } \quad \bar{\nabla}_{T} T=-\varrho \bar{\nabla} \varrho, \tag{7}
\end{equation*}
$$

where $Z \in T \mathbb{M}$ and $\bar{\nabla} \varrho$ denotes the gradient of ϱ as a function in \mathbb{N}^{3}. Hence $\bar{\nabla} \varrho$ is the lift of the gradient of ϱ in \mathbb{M}^{2}. In particular, it follows easily that $T=\partial / \partial t$ is a Killing field in \mathbb{N}^{3}.

Theorem 1 applies, and thus either Σ is a minimal cylinder or Σ is totally geodesic. In the latter case, we have that Θ is a nonzero constant and $\operatorname{Ric}_{\mathbb{N}}(\eta)=0$ everywhere. We prove now that in the latter case $\rho=$ constant. Given any $Y \in T \Sigma$, we set

$$
Y=Z+\varrho^{-2}\langle Y, T\rangle T,
$$

where $Z \in T \mathbb{M}$. We have,

$$
Y(\Theta)=\left\langle\eta, \bar{\nabla}_{Y} T\right\rangle=\varrho^{-1}(\Theta\langle\bar{\nabla} \varrho, Y\rangle-\langle T, Y\rangle\langle\bar{\nabla} \varrho, \eta\rangle) .
$$

Thus the gradient $\nabla \Theta$ of Θ along Σ is

$$
\nabla \Theta=\varrho^{-1}(\Theta \bar{\nabla} \varrho-\langle\bar{\nabla} \varrho, \eta\rangle T) .
$$

In particular,

$$
\|\nabla \Theta\|^{2}=\varrho^{-2}\left(\Theta^{2}\|\bar{\nabla} \varrho\|^{2}+\varrho^{2}\langle\bar{\nabla} \varrho, \eta\rangle^{2}\right) .
$$

Since Θ is constant and does not vanish it follows that ϱ is constant. Therefore, if at some point $K_{\mathbb{M}}\left(p_{0}\right)>0$, then $\operatorname{Ric}_{\mathbb{N}}\left(\eta\left(p_{0}\right)\right)=0$ is possible only if $\Theta=1$.
Proof of Theorem 4. Recall that the differential equation for the mean curvature function H is

$$
\begin{equation*}
\operatorname{div}_{\mathbb{M}}\left(\frac{D u}{\sqrt{1+\|D u\|^{2}}}\right)=2 H \tag{8}
\end{equation*}
$$

where $D u$ denotes the gradient of $u \in \mathcal{C}^{\infty}(\mathbb{M})$ and $\operatorname{div}_{\mathbb{M}}$ the divergence on \mathbb{M}^{2}.

It suffices to show that $H=0$ and the proof follows from Corollary 3. If \mathbb{M}^{2} is compact this is a consequence of the divergence theorem applied to (8). In the non-compact case, we first argue that its Cheeger constant $\mathfrak{h}(\mathbb{M})$ vanishes. Recall that

$$
\mathfrak{h}(\mathbb{M})=\inf _{D} \frac{\operatorname{length}(\partial D)}{\operatorname{area}(D)}
$$

where $D \subset \mathbb{M}^{2}$ is any compact domain with smooth boundary. Let $B_{p}(r) \subset \mathbb{M}^{2}$ denote the geodesic disk of center p and radius r. Since $K_{\mathbb{M}} \geq 0$ we know from Theorem 1.1 of [5] that the first eigenvalue of the Dirichlet problem on $B_{p}(r)$ satisfies

$$
\lambda_{1}\left(B_{p}(r)\right) \leq \frac{c}{r^{2}}, \quad 0<r<+\infty,
$$

for a positive constant c. On the other hand, by a result of Cheeger [4] (cf. Theorem 3 p. 95 in [3]) we have that $\lambda_{1}\left(B_{p}(r)\right) \geq \mathfrak{h}^{2}\left(B_{p}(r)\right) / 4$. We obtain that

$$
\mathfrak{h}^{2}(\mathbb{M}) \leq \mathfrak{h}^{2}\left(B_{p}(r)\right) \leq 4 \lambda_{1}\left(B_{p}(r)\right) \leq \frac{4 c}{r^{2}}
$$

for any $0<r<+\infty$, and hence $\mathfrak{h}(\mathbb{M})=0$.
To conclude the proof we use an argument due to Salavessa [18] to show that if \mathbb{M}^{2} satisfies that $\mathfrak{h}(\mathbb{M})=0$ then any entire graph in $\mathbb{M}^{2} \times \mathbb{R}$ with constant mean curvature H is necessarily minimal. If $u \in \mathcal{C}^{\infty}(\mathbb{M})$ determines an arbitrary entire graph in $\mathbb{M}^{2} \times \mathbb{R}$, then integrating (8)
over a compact domain $D \subset \mathbb{M}^{2}$ and using the divergence theorem we have
$2 \min _{D} H$ area $(D) \leq 2 \int_{D} H d A_{\mathbb{M}}=\oint_{\partial D} \frac{\langle D u, \nu\rangle}{\sqrt{1+\|D u\|^{2}}} d s \leq \operatorname{length}(\partial D)$ and, similarly,

$$
2 \max _{D} H \text { area }(D) \geq- \text { length }(\partial D) .
$$

Therefore, for any compact domain $D \subset \mathbb{M}^{2}$, we have

$$
\inf _{\mathbb{M}} H \leq \frac{1}{2} \frac{\text { length }(\partial D)}{\operatorname{area}(D)} \quad \text { and } \quad \sup _{\mathbb{M}} H \geq-\frac{1}{2} \frac{\text { length }(\partial D)}{\operatorname{area}(D)}
$$

and hence,

$$
\inf _{\mathbb{M}} H \leq \frac{1}{2} \mathfrak{h}(\mathbb{M}) \quad \text { and } \quad \sup _{\mathbb{M}} H \geq-\frac{1}{2} \mathfrak{h}(\mathbb{M})
$$

In particular, when $\mathfrak{h}(\mathbb{M})=0$ we obtain

$$
\inf _{\mathbb{M}} H \leq 0 \leq \sup _{\mathbb{M}} H
$$

and if H is constant we conclude that it must vanish.
The second statement in Theorem 4 says that globally defined solutions of (8) over \mathbb{M}^{2} for constant H exist only for $H=0$, and that they are the constant functions. The latter is no longer true if \mathbb{M}^{2} is flat since non-horizontal planes in $\mathbb{R}^{3}=\mathbb{R}^{2} \times \mathbb{R}$ correspond to non-constant linear solutions.

For Riemannian products $\mathbb{M}^{2} \times \mathbb{R}$ the following result generalizes Rosenberg's referred at the beginning of the paper. In the sequel, by the height function h of an immersed surface Σ in $\mathbb{M}^{2} \times \mathbb{R}$ we mean the projection $h: \Sigma \rightarrow \mathbb{R}$ onto the second factor. Observe that $\nabla h=T^{\top}$ and that $\|\nabla h\|^{2}=1-\Theta^{2}$. Besides, since T is parallel in $\mathbb{M}^{2} \times \mathbb{R}$ we also have from (3) that $\nabla_{X} \nabla h=\Theta A X$, and hence

$$
\begin{equation*}
\Delta h=2 H \Theta . \tag{9}
\end{equation*}
$$

Proposition 7. Let Σ be a two-sided complete minimal surface in $\mathbb{M}^{2} \times$ \mathbb{R}. Assume that Θ does not change sign.
(i) If $K_{\mathbb{M}} \geq 0$ along $\pi_{\mathbb{M}}(\Sigma)$ then Σ is totally geodesic.
(ii) If, in addition, $K_{\mathbb{M}}(q)>0$ at some point $q \in \pi_{\mathbb{M}}(\Sigma)$ then either Σ is a cylinder over a complete geodesic of \mathbb{M}^{2}, or \mathbb{M}^{2} is necessarily complete and Σ is a slice.

Proof: We choose η such that $\Theta \geq 0$. Since the surface is minimal, we have

$$
A^{2}=\frac{1}{2}\|A\|^{2} I
$$

where I stands for the identity map on $T \Sigma$. Then using (1) we obtain

$$
\|\nabla \Theta\|^{2}=\frac{1}{2}\|A\|^{2}\left(1-\Theta^{2}\right)
$$

Therefore,

$$
\begin{equation*}
\Delta \log (1+\Theta)=\frac{\Delta \Theta}{1+\Theta}-\frac{\|\nabla \Theta\|^{2}}{(1+\Theta)^{2}}=-\frac{1}{2}\|A\|^{2}-\Theta(1-\Theta) K_{\mathbb{M}}(\pi) \tag{10}
\end{equation*}
$$

On the other hand, the Gauss equation gives

$$
K_{\Sigma}=\bar{K}_{\Sigma}+\operatorname{det} A
$$

where K_{Σ} denotes the Gauss curvature of $\left(\Sigma, d s^{2}\right)$ and \bar{K}_{Σ} the sectional curvature in $\mathbb{M}^{2} \times \mathbb{R}$ of the plane tangent to Σ. The latter is given by

$$
\bar{K}_{\Sigma}=K_{\mathbb{M}}(\pi)\left(1-\left\|T^{\top}\right\|^{2}\right)=\Theta^{2} K_{\mathbb{M}}(\pi) .
$$

Thus, the Gauss equation becomes

$$
K_{\Sigma}=\Theta^{2} K_{\mathbb{M}}(\pi)-\frac{1}{2}\|A\|^{2},
$$

and (10) reduces to

$$
\begin{equation*}
\Delta \log (1+\Theta)=K_{\Sigma}-\Theta K_{\mathbb{M}}(\pi) \tag{11}
\end{equation*}
$$

Next we introduce on Σ the complete metric $d \tilde{s}^{2}=(1+\Theta)^{2} d s^{2}$. It is a standard fact that the Gauss curvature \tilde{K} of $\left(\Sigma, d \tilde{s}^{2}\right)$ is given by

$$
\begin{equation*}
(1+\Theta)^{2} \tilde{K}=K_{\Sigma}-\Delta \log (1+\Theta) \tag{12}
\end{equation*}
$$

We conclude from (11) and (12) that

$$
\begin{equation*}
\tilde{K}=\frac{\Theta}{(1+\Theta)^{2}} K_{\mathbb{M}}(\pi) \tag{13}
\end{equation*}
$$

In particular, if $K_{\mathbb{M}} \geq 0$ on $\pi(\Sigma)$ then $\tilde{K} \geq 0$ on Σ. From a classical result by Ahlfors [1] and Blanc-Fiala-Huber [8] a complete surface of non-negative Gaussian curvature is parabolic in the sense that any non-negative superharmonic function on the surface must be constant. Since superharmonic is preserved under a conformal change of metric, then $\left(\Sigma, d \tilde{s}^{2}\right)$ and $\left(\Sigma, d s^{2}\right)$ are both parabolic.

We have that $\log (1+\Theta) \geq 0$, and from (10) we know that

$$
\Delta \log (1+\Theta)=-\frac{1}{2}\|A\|^{2}-\Theta(1-\Theta) K_{\mathbb{M}}(\pi) \leq 0
$$

Then $\Theta=\Theta_{0}$ is constant, $\|A\|=0$ and $\Theta_{0}\left(1-\Theta_{0}\right) K_{\mathbb{M}}(\pi)=0$. It follows that the surface is totally geodesic and, if $K_{\mathbb{M}}>0$ somewhere on $\pi(\Sigma)$, then either $\Theta_{0}=0$ or $\Theta_{0}=1$. The case $\Theta_{0}=0$ means that T is tangent to the surface and, then, the surface must be a cylinder
over a complete geodesic of \mathbb{M}^{2}. If $\Theta_{0}=1$, then $\nabla h=0$ and it follows that the surface is a slice over a necessarily complete \mathbb{M}^{2}.

If Σ is compact a stronger version of Corollary 3 holds true without assumptions neither on the immersion nor on the Gauss curvature of \mathbb{M}^{2}. In fact, if Σ is a compact minimal surface in $\mathbb{M}^{2} \times \mathbb{R}$, then \mathbb{M}^{2} is necessarily compact and Σ a slice since its height function must be harmonic on Σ, and thus constant.
Proof of Theorem 5. As before, we orient the graph Γ_{u} of u such that $\Theta>0$. If $d s^{2}$ denotes the complete metric on \mathbb{M}^{2} induced by Γ_{u}, then (13) becomes

$$
\tilde{K}=\frac{\Theta}{(1+\Theta)^{2}} K_{\mathbb{M}},
$$

where \tilde{K} is the Gauss curvature of the complete conformal metric $d \tilde{s}^{2}=$ $(1+\Theta)^{2} d s^{2}$. Observe that the area elements of $d s^{2}$ and $d \tilde{s}^{2}$ are related by $d \tilde{A}=(1+\Theta)^{2} d A$. Since $\Theta>0$, we have

$$
\begin{equation*}
\tilde{K}^{-} d \tilde{A}=\Theta K_{\mathbb{M}}^{-} d A \tag{14}
\end{equation*}
$$

On the other hand, from

$$
\eta=\frac{1}{\sqrt{1+\|D u\|^{2}}}(T-D u)
$$

we obtain that

$$
\Theta=\frac{1}{\sqrt{1+\|D u\|^{2}}}
$$

Since $d A=\sqrt{1+\|D u\|^{2}} d A_{\mathbb{M}}$, then (14) becomes $\tilde{K}^{-} d \tilde{A}=K_{\mathbb{M}}^{-} d A_{\mathbb{M}}$. Therefore,

$$
\int_{\mathbb{M}} \tilde{K}^{-} d \tilde{A}<+\infty
$$

Then, the classical result of Huber [8, Theorem 15] (see Section 10 in [11]), implies that $\left(\mathbb{M}^{2}, d \tilde{s}^{2}\right)$ is parabolic. Hence, also $\left(\mathbb{M}^{2}, d s^{2}\right)$ is parabolic. Since the height function u is harmonic on $\left(\mathbb{M}^{2}, d s^{2}\right)$ it must be constant.

The following result relates to Theorem 4 in the introduction.
Proposition 8. Let \mathbb{M}^{2} be a complete surface that satisfies

$$
\int_{\mathbb{M}} K_{\mathbb{M}}^{-} d A_{\mathbb{M}}<+\infty, \quad \text { where } \quad K_{\mathbb{M}}^{-}(q)=\max \left\{-K_{\mathbb{M}}(q), 0\right\}
$$

Then, any entire graph Γ_{u} contained in a slab $\mathbb{M}^{2} \times[a, b],-\infty<a \leq$ $b<+\infty$, with constant mean curvature and Gauss curvature bounded from below is a slice.

Proof: Since we are dealing with graphs we may take $\Theta>0$. In what follows we see u as a function along Γ_{u}. We do not assume that the mean curvature H is constant yet. Since u and the Gauss curvature of Γ_{u} are both bounded from below, by Omori's lemma [14] there exists a sequence of points $\left\{q_{j}\right\} \in \Gamma_{u}$ such that

$$
\lim _{j \rightarrow \infty} u\left(q_{j}\right)=\inf _{\Gamma} u, \quad\left\|\nabla u\left(q_{j}\right)\right\|<1 / j \quad \text { and } \quad \Delta u\left(q_{j}\right)>-1 / j .
$$

Thus by (1) we have

$$
\left\|\nabla u\left(q_{j}\right)\right\|^{2}=1-\Theta^{2}\left(q_{j}\right)<1 / j^{2} .
$$

This implies that $\lim _{j \rightarrow+\infty} \Theta\left(q_{j}\right)=1$, and using (9) that

$$
\Delta u\left(q_{j}\right)=2 H\left(q_{j}\right) \Theta\left(q_{j}\right)>-1 / j
$$

Hence, $\lim _{j \rightarrow+\infty} H\left(q_{j}\right) \geq 0$. Similarly, since u is also bounded from above there is a sequence of points such that $\lim _{j \rightarrow+\infty} H\left(p_{j}\right) \leq 0$. Thus,

$$
\inf _{\Gamma} H \leq \lim _{j \rightarrow+\infty} H\left(p_{j}\right) \leq 0 \leq \lim _{j \rightarrow+\infty} H\left(q_{j}\right) \leq \sup _{\Gamma} H
$$

In particular, if H is constant we obtain that Γ_{u} must be minimal, and the proof follows from Theorem 5.

After the statement of Theorem 1 we observed that a cylinder may not be stable. The following example shows that, in fact, the index may be infinity.

Example 9. Take a cylinder $\mathbb{S}^{1} \times \mathbb{R}$ in $\mathbb{S}^{2} \times \mathbb{R}$ over an equator of the unit round sphere \mathbb{S}^{2}. The Jacobi operator is $J=\Delta+1$, where Δ is the Laplacian operator on the cylinder. Since the subsets $\Omega_{r}=\mathbb{S}^{1} \times(-r, r)$ with $r>0$ form an exhaustion of $\mathbb{S}^{1} \times \mathbb{R}$ by bounded domains with compact closure, we can compute

$$
\operatorname{Ind}\left(\mathbb{S}^{1} \times \mathbb{R}\right)=\lim _{r \rightarrow \infty} \operatorname{Ind}\left(\Omega_{r}\right)
$$

For $k=1,2, \ldots$ the functions

$$
\phi_{r, k}(x, t)= \begin{cases}\cos \frac{\pi k t}{2 r}, & \text { if } k \text { is odd } \\ \sin \frac{\pi k t}{2 r}, & \text { if } k \text { is even }\end{cases}
$$

satisfy

$$
\Delta \phi_{r, k}+\frac{\pi^{2} k^{2}}{4 r^{2}} \phi_{r, k}=0
$$

on Ω_{r} and $\phi_{r, k}=0$ on $\partial \Omega_{r}$; that is, they are linearly independent eigenfunctions for the Dirichlet eigenvalue problem of the Laplacian on Ω_{r}. Thus

$$
J \phi_{r, k}+\left(\frac{\pi^{2} k^{2}}{4 r^{2}}-1\right) \phi_{r, k}=0
$$

and therefore

$$
\lambda_{r, k}=\frac{\pi^{2} k^{2}}{4 r^{2}}-1
$$

is an eigenvalue for the Dirichlet problem of J on Ω_{r} for every $k \geq 1$. Finally, for every $r>\pi / 2$ we have that $\lambda_{r, k}<0$ if $1 \leq k<2 r / \pi$, which implies that $\operatorname{Ind}\left(\Omega_{r}\right) \geq[2 r / \pi]$, and, in particular, we conclude that $\operatorname{Ind}\left(\mathbb{S}^{1} \times \mathbb{R}\right)=+\infty$.

Acknowledgements

This paper was finished while the first author was visiting the Institut des Hautes Études Scientifiques (IHÉS) in Bures-sur-Yvette, France. He thanks IHÉS for its hospitality and support.

References

[1] L.V. Ahlfors, Sur le type d'une surface de Riemann. C.R. Acad. Sc. Paris 201 (1935), 30-32.
[2] L.J. Alías \& M. Dajczer, Constant mean curvature hypersurfaces in warped product spaces. To appear in Proc. Edinb. Math. Soc.
[3] I. Chavel, "Eigenvalues in Riemannian Geometry", Academic Press, New York, 1984.
[4] J. Cheeger, A lower bound for the smaller eigenvalue of the Laplacian. Problems in Analysis, pp. 195-199, Princeton Univ. Press, Princeton. New Jersey, 1970.
[5] S.Y. Cheng, Eigenvalue comparison theorems and its geometric applications. Math. Z. 143 (1975), 289-297.
[6] S.S. Chern, Simple proofs of two theorems in minimal surfaces. Enseign. Math. II. Sr. 15 (1969), 53-61.
[7] D.M. Duc \& N.V. Hieu, Graphs with prescribed mean curvature on Poincare disk. Bull. London Math. Soc. 27 (1995), 353-358.
[8] A. Huber, On subharmonic functions and differential geometry in the large. Comment. Math. Helv. 32 (1957), 13-72.
[9] D. Fischer-Colbrie \& R. Schoen, The structure of complete stable minimal surfaces in 3-manifolds of nonnegative scalar curvature. Comm. Pure Appl. Math. 33 (1980), 199-211.
[10] S. Fornari \& J. Ripoll, Killing fields, mean curvature, translations maps, Illinois J. of Math. 48 (2004), 1385-1403.
[11] P. Li, Curvature and function theory on Riemannian manifolds. Surveys in differential geometry, 375-432, Surv. Differ. Geom., VII, Int. Press, Somerville, MA, 2000.
[12] S. Montiel, Unicity of constant mean curvature hypersurfaces in Riemannian manifolds. Indiana Univ. Math. J. 48 (1999), 711-748.
[13] B. Nelli \& H. Rosenberg, Minimal surfaces in $\mathbb{H}^{2} \times \mathbb{R}$. Bull. Braz. Math. Soc. 33 (2002), 263-292.
[14] H. Omori, Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan, 19 (1967), 205-214.
[15] H. Rosenberg, Hypersurfaces of constant curvature in space forms. Bull. Sci. Math. 117 (1993), 211-239.
[16] H. Rosenberg, Minimal surfaces in $\mathbb{M}^{2} \times \mathbb{R}$. Illinois J. Math. 46 (2002), 11771195.
[17] H. Rosenberg \& W. Meeks, Stable minimal surfaces in $M \times \mathbb{R}$. J. Differential Geom. 68 (2004), 515-534.
[18] I.M.C. Salavessa, Graphs with parallel mean curvature. Proc. Am. Math. Soc. 107 (1989), 449-458.
[19] R. Schoen, Estimates for stable minimal surfaces in three dimensional manifolds Annals Math. Studies 103. Princeton Univ. Press. Princeton, 1983.

Departamento de Matemáticas, Universidad de Murcia, Campus de Espinardo, E-30100 Espinardo, Murcia, Spain

E-mail address: ljalias@um.es
IMPA, 22460-320, Estrada Dona Castorina 110, Rio de Janeiro - RJ, BRAZIL

E-mail address: marcos@impa.br
Instituto de Matemática, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre - RS, Brazil

E-mail address: ripoll@mat.ufrgs.br

[^0]: Date: February 2006.
 Key words and phrases. complete minimal surface, Bernstein theorem, homothetic Killing field.

