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Abstract. The classical Bernstein theorem asserts that any com-
plete minimal surface in Euclidean space R3 that can be written
as the graph of a function on R2 must be a plane. In this pa-
per, we extend Bernstein’s result to complete minimal surfaces in
(maybe non complete) ambient spaces of non-negative Ricci cur-
vature carrying a Killing field. This is done under the assumption
that the sign of the angle function between a global Gauss map
and the Killing field remains unchanged along the surface. In fact,
our main result only requires the presence of a homothetic Killing
field.

1. Introduction

The classical Bernstein theorem asserts that any complete minimal
surface in Euclidean space R3 that can be written as the graph of a
function on R2 must be a plane. H. Rosenberg observed in [16] that
the following extension holds:

Any entire minimal graph in M 2 × R over a complete
two-dimensional Riemannian manifold M 2 with non-
negative Gaussian curvature is a totally geodesic sur-
face.

According to his reasoning this follows since such a graph is necessarily
stable, and a well-known result of Schoen [19] proves that a complete
stable minimal surface in any three-dimensional Riemannian manifold
with non-negative Ricci curvature must be totally geodesic

If M 2 is complete there is an abundance of complete totally geodesic
surfaces in M 2 × R. First, there are the slices M 2 × {t} for any t ∈ R
that are stable. Then, there are the cylinders {γ}×R for any complete
geodesic γ in M 2 and, as seen below, depending on γ these may or
may not be stable. Slices are (entire) graphs over M 2 and cylinders
certainly not. But surfaces in both classes share the property that the

Date: February 2006.
Key words and phrases. complete minimal surface, Bernstein theorem, homo-

thetic Killing field.
1
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angle function between the Gauss map and the (Killing) vector field
T = ∂/∂t does not change sign.

In this paper, we further extend Bernstein’s result to complete min-
imal surfaces in (maybe non complete) ambient spaces of non-negative
Ricci curvature carrying a Killing field. This is done under the assump-
tion that the sign of the angle function between a global Gauss map
and the Killing field remains unchanged along the surface. In fact, our
main result only requires the presence of a homothetic Killing field.

Recall that a vector field T on a Riemannian manifold N is called a
conformal Killing field if the Lie derivative of the metric tensor 〈 , 〉 =
〈 , 〉N with respect to T satisfies LT 〈 , 〉 = 2φ〈 , 〉 for some function
φ ∈ C∞(N). Equivalently, for any U, V ∈ TN we have that

〈∇̄UT, V 〉+ 〈∇̄V T, U〉 = 2φ〈U, V 〉,
where ∇̄ denotes the Levi-Civita connection in N3. Then T is called a
homothetic Killing field if the function φ is constant, and just a Killing
field whenever that constant vanishes.

In the following and main result in this paper, let N 3 denote a three-
dimensional (maybe non complete) Riemannian manifold endowed with
a homothetic Killing field T . Then Σ = Σ2 is assumed to be a two-
sided minimal surface in N 3. The latter condition means that there is a
globally defined unit normal vector field η and, therefore, the function
Θ ∈ C∞(Σ) given by

Θ(p) = 〈η(p), T (p)〉
is also globally defined. In the sequel, we denote by KN and RicN the
sectional and Ricci curvature of N 3, respectively.

Theorem 1. Let Σ be a two sided complete minimal surface in N 3 such
that the function Θ does not change sign. Then either Σ is invariant
by the one-parameter subgroup of homotheties generated by T or it is
stable. In the latter case, we have:

a) If RicN ≥ 0 then Σ is totally geodesic.
b) If KN ≥ 0 then also Θ is constant and RicN(η) = 0 everywhere.

In the preceding result the surface Σ may be invariant by T and,
simultaneously, stable. For instance, in [17, Theorem 1.1] it was shown
that a properly embedded totally geodesic surface of the form γ×R in
a Riemannian product M2 × R with M2 compact is stable only if γ is
a simply closed stable geodesic.

Theorem 1 can be applied to warped product manifolds N3 = I×tM2,
where I is an open interval in R+ = (0,+∞) and N3 is endowed with
the Riemannian metric

〈 , 〉N = π∗I (dt
2) + t2π∗M(〈 , 〉M).
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Here πI and πM denote the projection onto the first and second factor
of N3, respectively. It is easy to see that t∂/∂t is a homothetic Killing
field, as required by our Theorem 1. Moreover, the condition RicN ≥ 0
in this case becomes KM ≥ 1.

Any positive function u ∈ C∞(Ω) defined on a domain Ω ⊂ M2

determines a radial graph G(u) over Ω in R+ ×t M 2 given by p ∈
Ω 7→ (u(p), p). In particular, we have the following consequence of
Theorem 1.

Corollary 2. Let Σ be a complete minimal radial graph in N3 = R+×t

M 2 over a domain Ω ⊂ M2. If KM ≥ 1 then Σ is totally geodesic.

In particular, the only complete minimal radial graphs over a domain
in S2 in R3 are the planes defined over an open hemisphere of the sphere.
This Bernstein type result for radial graphs in R3 also follows from the
results in [15].

Theorem 1 can also be applied to warped product manifolds N 3 =
M 2 ×% R, that is, the product manifold M 2 × R endowed with the
Riemannian metric

〈 , 〉N = π∗M(〈 , 〉M) + %2π∗R(dt2)

where % ∈ C∞(M). In this case T = ∂/∂t is a Killing field in N 3, and
the condition RicN ≥ 0 is simply KM ≥ 0.

It is a standard fact that N 3 = M 2×% R is complete if and only if M 2

is complete. If N 3 is complete and KN ≥ 0, then % must be constant.
This is because KM ≥ 0 and

RicN(T, T ) = −%∆M% ≥ 0,

where ∆M is the Laplacian on M2. Thus % is a positive superharmonic
function on M2. Since M2 is complete and KM ≥ 0, then M2 is para-
bolic and hence % is constant.

In the following result, by a cylinder in N 3 = M 2 ×% R over a unit
speed curve γ : R → M 2 we mean the equivariant surface in M 2 ×% R
obtained by acting on γ the one-parameter subgroup of vertical trans-
lations. A cylinder is minimal if kg = % ∂%/∂ν, where kg = 〈∇γ′γ

′, ν〉
is the geodesic curvature of γ and ν the unit normal field to γ in M 2.
In particular, a cylinder is totally geodesic if and only if γ is a geodesic
and ∂%/∂ν = 0.

Corollary 3. Let Σ be a two sided complete minimal surface in N 3 =
M 2 ×% R, where M 2 is not necessarily complete. Assume that KN ≥ 0
and that Θ does not change sign. Then, either

(i) Σ is a minimal cylinder, or
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(ii) Σ is totally geodesic and % is constant. Moreover, if KM(q) >
0 at a point q ∈ πM(Σ), then Σ is a slice over a necessarily
complete M2.

If M 2 = R2 and % = 1 (i.e., N3 = R3) then any affine plane other than
a horizontal or vertical one is an example of a totally geodesic surface
with constant Θ that is neither a cylinder nor a slice. Moreover, the
assumption KM ≥ 0 is necessary since in N3 = H2 × R there exist
non-trivial entire minimal graphs (see [7] or [13]).

A given function u ∈ C∞(M) determines an entire (normal geodesic)
graph Γu over M 2 in M 2 × R given by

p ∈ M2 7→ Γu(p) = (p, u(p)).

In the special case of entire minimal graphs, the following result is
slightly more general than Rosenberg’s in [16]. Its proof makes use of
a beautiful argument due to Salavessa [18] that shows that an entire
constant mean curvature graph over M 2 must be necessarily minimal
if the Cheeger constant of M 2 vanishes.

Theorem 4. Let M 2 be a complete surface with Gauss curvature KM ≥
0.

(i) Any entire constant mean curvature graph in M 2×R is totally
geodesic.

(ii) If, in addition, KM(q) > 0 at some point q ∈ M 2 then the graph
is a slice.

In the special case of N3 = M 2 × R, we give a proof of Corollary 3
by a direct elementary argument; see Proposition 7 below. The proof
builds on an idea taken from Chern’s proof [6] of classical Bernstein
theorem, and is not only interesting by itself but also allows to prove
the following half-space result for minimal graphs.

Theorem 5. Let M 2 be a complete surface satisfying∫
M
K−

M dAM < +∞, where K−
M(q) = max{−KM(q), 0}.

Then any entire minimal graph in a half-space M 2× [0,+∞) is a slice.

The authors would like to heartily thank Bennett Palmer and Harold
Rosenberg for useful comments during the preparation of this paper.

2. Proofs and further results

Before giving the proof of Theorem 1 we need to extend Proposition
1 in [10].
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Proposition 6. Let Nn+1 be a (n+ 1)-dimensional Riemannian man-
ifold endowed with a conformal Killing field T . For a two-sided hyper-
surface Σn in Nn+1 the Laplacian of Θ ∈ C∞(Σ) given by Θ = 〈η, T 〉
is

∆Θ = −n〈∇H,T 〉 − (‖A‖2 + RicN(η))Θ− n(Hφ+ ∂φ/∂η).

Here ∇H is the gradient of the mean curvature function H with re-
spect to a unit normal vector field η and ‖A‖ the norm of the second
fundamental form of Σn.

Proof: Set T = T>+Θη, where ( )> denotes the tangential component
of a vector field in TN along Σn. Being T conformal, we have

X(Θ) = −〈AX, T>〉 − 〈∇̄ηT,X〉
for any X ∈ TΣ. It follows that

(1) ∇Θ = −AT> + (∇̄ηT )>.

The Codazzi equation for Σn is

(2) (∇XA)Y = (∇YA)X − (RN(X, Y )η)>

where RN is the curvature tensor of Nn+1. From (2) for Y = T> and

(3) ∇XT
> = (∇̄XT )> + ΘAX

we easily obtain that

div(AT>) = tr(∇T>A) + nHφ+ Θ‖A‖2 − RicN(T>, η),

where div denotes the divergence on Σn. Using that the trace commutes
with the covariant derivative, we have

(4) div(AT>) = n〈∇H,T 〉+ nHφ+ Θ‖A‖2 − RicN(T>, η).

On the other hand, a straightforward computation yields

(5) RicN(T, η) = div((∇̄ηT )>)− n∂φ/∂η,

and the result follows from (1), (4) and (5).
We are now in condition to prove our main result.

Proof of Theorem 1. Choose the orientation of η such that Θ ≥ 0.
Then Θ is a Jacobi field since the Jacobi operator J = ∆+‖A‖2 +RicN
satisfies

(6) JΘ = ∆Θ + (‖A‖2 + RicN(η))Θ = 0

by Proposition 6. Suppose that Θ(p0) = 0 at some point p0 ∈ Σ. For
a sufficiently small neighborhood U of p0 the first eigenvalue for the
Dirichlet problem of J satisfies λ1(J) > 0 on U . Therefore, by Theorem
1 in [9] there exists a positive solution g of Jg = 0 on U . Setting
Θ = αg, then α ≥ 0 and it follows from JΘ = 0 that div(g2∇α) = 0
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on U . The maximum principle applies to this equation since it is of
divergence form. Thus, α attains its minimum at an interior point of
U . Then α, and hence Θ, must vanish. We conclude that either Θ = 0
or Θ > 0 on Σ.

If Θ = 0 the surface is invariant by the one parameter subgroup of
homotheties generated by T . Otherwise Θ is a positive Jacobi field,
and the surface is stable by a well-known result due to Fischer-Colbrie
and Schoen [9, Corollary 1]. For the sake of completeness we give
the following standard argument that proves this fact in our case. An
arbitrary function ψ with compact support on Σ can be written as
ψ = ϕΘ where ϕ has compact support. From JΘ = 0 we have

Jψ = Θ∆ϕ+ 2〈∇ϕ,∇Θ〉

and

ψJψ = Θ2ϕ∆ϕ+
1

2
〈∇ϕ2,∇Θ2〉 = div(Θ2ϕ∇ϕ)−Θ2‖∇ϕ‖2.

Thus

−
∫

Σ

ψJψdAΣ =

∫
Σ

Θ2‖∇ϕ‖2dAΣ ≥ 0,

and the surface is stable.
If the surface is stable and the Ricci curvature satisfies RicN ≥ 0, then

a result of Schoen [19] implies that Σ is totally geodesic. Moreover, if
KN ≥ 0, then Σ is totally geodesic and, from the Gauss equation, has
non-negative Gauss curvature. By a classical result by Ahlfors [1] and
Blanc-Fiala-Huber [8] a complete surface of non-negative Gaussian cur-
vature is parabolic in the sense that any non-negative superharmonic
function on the surface must be constant. Then, it follows from (6)
that Θ is constant, and hence, RicN(η) = 0 unless Θ = 0.
Proof of Corollary 3. It is a standard fact that the covariant derivative
in N 3 satisfies

(7) ∇̄ZT = %−1〈∇%, Z〉T and ∇̄TT = −%∇̄%,

where Z ∈ TM and ∇̄% denotes the gradient of % as a function in N 3.
Hence ∇̄% is the lift of the gradient of % in M 2. In particular, it follows
easily that T = ∂/∂t is a Killing field in N 3.

Theorem 1 applies, and thus either Σ is a minimal cylinder or Σ
is totally geodesic. In the latter case, we have that Θ is a nonzero
constant and RicN(η) = 0 everywhere. We prove now that in the latter
case ρ =constant. Given any Y ∈ TΣ, we set

Y = Z + %−2〈Y, T 〉T,
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where Z ∈ TM. We have,

Y (Θ) = 〈η, ∇̄Y T 〉 = %−1(Θ〈∇̄%, Y 〉 − 〈T, Y 〉〈∇̄%, η〉).
Thus the gradient ∇Θ of Θ along Σ is

∇Θ = %−1
(
Θ∇̄%− 〈∇̄%, η〉T

)
.

In particular,

‖∇Θ‖2 = %−2
(
Θ2‖∇̄%‖2 + %2〈∇̄%, η〉2

)
.

Since Θ is constant and does not vanish it follows that % is constant.
Therefore, if at some point KM(p0) > 0, then RicN(η(p0)) = 0 is possi-
ble only if Θ = 1.
Proof of Theorem 4. Recall that the differential equation for the mean
curvature function H is

(8) divM

(
Du√

1 + ‖Du‖2

)
= 2H,

where Du denotes the gradient of u ∈ C∞(M) and divM the divergence
on M 2.

It suffices to show that H = 0 and the proof follows from Corollary
3. If M 2 is compact this is a consequence of the divergence theorem
applied to (8). In the non-compact case, we first argue that its Cheeger
constant h(M) vanishes. Recall that

h(M) = inf
D

length (∂D)

area (D)

where D ⊂ M 2 is any compact domain with smooth boundary. Let
Bp(r) ⊂ M 2 denote the geodesic disk of center p and radius r. Since
KM ≥ 0 we know from Theorem 1.1 of [5] that the first eigenvalue of
the Dirichlet problem on Bp(r) satisfies

λ1(Bp(r)) ≤
c

r2
, 0 < r < +∞,

for a positive constant c. On the other hand, by a result of Cheeger [4]
(cf. Theorem 3 p. 95 in [3]) we have that λ1(Bp(r)) ≥ h2(Bp(r))/4. We
obtain that

h2(M) ≤ h2(Bp(r)) ≤ 4λ1(Bp(r)) ≤
4c

r2

for any 0 < r < +∞, and hence h(M) = 0.
To conclude the proof we use an argument due to Salavessa [18] to

show that if M 2 satisfies that h(M) = 0 then any entire graph in M 2×R
with constant mean curvature H is necessarily minimal. If u ∈ C∞(M)
determines an arbitrary entire graph in M 2 × R, then integrating (8)
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over a compact domain D ⊂ M 2 and using the divergence theorem we
have

2 min
D

H area (D) ≤ 2

∫
D

HdAM =

∮
∂D

〈Du, ν〉√
1 + ‖Du‖2

ds ≤ length (∂D)

and, similarly,

2 max
D

H area (D) ≥ −length (∂D).

Therefore, for any compact domain D ⊂ M 2, we have

inf
M
H ≤ 1

2

length (∂D)

area (D)
and sup

M
H ≥ −1

2

length (∂D)

area (D)
,

and hence,

inf
M
H ≤ 1

2
h (M) and sup

M
H ≥ −1

2
h (M).

In particular, when h(M) = 0 we obtain

inf
M
H ≤ 0 ≤ sup

M
H,

and if H is constant we conclude that it must vanish.
The second statement in Theorem 4 says that globally defined solu-

tions of (8) over M 2 for constant H exist only for H = 0, and that they
are the constant functions. The latter is no longer true if M 2 is flat
since non-horizontal planes in R3 = R2×R correspond to non-constant
linear solutions.

For Riemannian products M 2 × R the following result generalizes
Rosenberg’s referred at the beginning of the paper. In the sequel, by
the height function h of an immersed surface Σ in M2×R we mean the
projection h : Σ → R onto the second factor. Observe that ∇h = T>

and that ‖∇h‖2 = 1 − Θ2. Besides, since T is parallel in M2 × R we
also have from (3) that ∇X∇h = ΘAX, and hence

(9) ∆h = 2HΘ.

Proposition 7. Let Σ be a two-sided complete minimal surface in M 2×
R. Assume that Θ does not change sign.

(i) If KM ≥ 0 along πM(Σ) then Σ is totally geodesic.
(ii) If, in addition, KM(q) > 0 at some point q ∈ πM(Σ) then ei-

ther Σ is a cylinder over a complete geodesic of M 2, or M 2 is
necessarily complete and Σ is a slice.

Proof: We choose η such that Θ ≥ 0. Since the surface is minimal, we
have

A2 =
1

2
‖A‖2I
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where I stands for the identity map on TΣ. Then using (1) we obtain

‖∇Θ‖2 =
1

2
‖A‖2(1−Θ2).

Therefore,

(10) ∆ log(1+Θ) =
∆Θ

1 + Θ
− ‖∇Θ‖2

(1 + Θ)2
= −1

2
‖A‖2−Θ(1−Θ)KM(π).

On the other hand, the Gauss equation gives

KΣ = K̄Σ + detA

where KΣ denotes the Gauss curvature of (Σ, ds2) and K̄Σ the sectional
curvature in M 2 ×R of the plane tangent to Σ. The latter is given by

K̄Σ = KM(π)(1− ‖T>‖2) = Θ2KM(π).

Thus, the Gauss equation becomes

KΣ = Θ2KM(π)− 1

2
‖A‖2,

and (10) reduces to

(11) ∆ log(1 + Θ) = KΣ −ΘKM(π).

Next we introduce on Σ the complete metric ds̃2 = (1 + Θ)2ds2. It
is a standard fact that the Gauss curvature K̃ of (Σ, ds̃2) is given by

(12) (1 + Θ)2K̃ = KΣ −∆ log(1 + Θ).

We conclude from (11) and (12) that

(13) K̃ =
Θ

(1 + Θ)2
KM(π).

In particular, if KM ≥ 0 on π(Σ) then K̃ ≥ 0 on Σ. From a classical
result by Ahlfors [1] and Blanc-Fiala-Huber [8] a complete surface of
non-negative Gaussian curvature is parabolic in the sense that any
non-negative superharmonic function on the surface must be constant.
Since superharmonic is preserved under a conformal change of metric,
then (Σ, ds̃2) and (Σ, ds2) are both parabolic.

We have that log(1 + Θ) ≥ 0, and from (10) we know that

∆ log(1 + Θ) = −1

2
‖A‖2 −Θ(1−Θ)KM(π) ≤ 0.

Then Θ = Θ0 is constant, ‖A‖ = 0 and Θ0(1 − Θ0)KM(π) = 0. It
follows that the surface is totally geodesic and, if KM > 0 somewhere
on π(Σ), then either Θ0 = 0 or Θ0 = 1. The case Θ0 = 0 means that
T is tangent to the surface and, then, the surface must be a cylinder
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over a complete geodesic of M 2. If Θ0 = 1, then ∇h = 0 and it follows
that the surface is a slice over a necessarily complete M 2.

If Σ is compact a stronger version of Corollary 3 holds true without
assumptions neither on the immersion nor on the Gauss curvature of
M 2. In fact, if Σ is a compact minimal surface in M 2 × R, then M 2

is necessarily compact and Σ a slice since its height function must be
harmonic on Σ, and thus constant.
Proof of Theorem 5. As before, we orient the graph Γu of u such that
Θ > 0. If ds2 denotes the complete metric on M 2 induced by Γu, then
(13) becomes

K̃ =
Θ

(1 + Θ)2
KM,

where K̃ is the Gauss curvature of the complete conformal metric ds̃2 =
(1 + Θ)2ds2. Observe that the area elements of ds2 and ds̃2 are related
by dÃ = (1 + Θ)2dA. Since Θ > 0, we have

(14) K̃−dÃ = ΘK−
M dA.

On the other hand, from

η =
1√

1 + ‖Du‖2
(T −Du)

we obtain that

Θ =
1√

1 + ‖Du‖2
.

Since dA =
√

1 + ‖Du‖2 dAM, then (14) becomes K̃−dÃ = K−
MdAM.

Therefore, ∫
M
K̃−dÃ < +∞.

Then, the classical result of Huber [8, Theorem 15] (see Section 10
in [11]), implies that (M 2, ds̃2) is parabolic. Hence, also (M 2, ds2) is
parabolic. Since the height function u is harmonic on (M 2, ds2) it must
be constant.

The following result relates to Theorem 4 in the introduction.

Proposition 8. Let M 2 be a complete surface that satisfies∫
M
K−

M dAM < +∞, where K−
M(q) = max{−KM(q), 0}.

Then, any entire graph Γu contained in a slab M 2 × [a, b], −∞ < a ≤
b < +∞, with constant mean curvature and Gauss curvature bounded
from below is a slice.
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Proof: Since we are dealing with graphs we may take Θ > 0. In what
follows we see u as a function along Γu. We do not assume that the
mean curvature H is constant yet. Since u and the Gauss curvature of
Γu are both bounded from below, by Omori’s lemma [14] there exists
a sequence of points {qj} ∈ Γu such that

lim
j→∞

u(qj) = inf
Γ
u, ‖∇u(qj)‖ < 1/j and ∆u(qj) > −1/j.

Thus by (1) we have

‖∇u(qj)‖2 = 1−Θ2(qj) < 1/j 2.

This implies that limj→+∞Θ(qj) = 1, and using (9) that

∆u(qj) = 2H(qj)Θ(qj) > −1/j.

Hence, limj→+∞H(qj) ≥ 0. Similarly, since u is also bounded from
above there is a sequence of points such that limj→+∞H(pj) ≤ 0.
Thus,

inf
Γ
H ≤ lim

j→+∞
H(pj) ≤ 0 ≤ lim

j→+∞
H(qj) ≤ sup

Γ
H.

In particular, if H is constant we obtain that Γu must be minimal, and
the proof follows from Theorem 5.

After the statement of Theorem 1 we observed that a cylinder may
not be stable. The following example shows that, in fact, the index
may be infinity.

Example 9. Take a cylinder S1 × R in S2 × R over an equator of the
unit round sphere S2. The Jacobi operator is J = ∆+1, where ∆ is the
Laplacian operator on the cylinder. Since the subsets Ωr = S1×(−r, r)
with r > 0 form an exhaustion of S1 × R by bounded domains with
compact closure, we can compute

Ind(S1 × R) = lim
r→∞

Ind(Ωr).

For k = 1, 2, . . . the functions

φr,k(x, t) =

{
cos πkt

2r
, if k is odd

sin πkt
2r
, if k is even

satisfy

∆φr,k +
π2k2

4r2
φr,k = 0

on Ωr and φr,k = 0 on ∂Ωr; that is, they are linearly independent
eigenfunctions for the Dirichlet eigenvalue problem of the Laplacian on
Ωr. Thus

Jφr,k +

(
π2k2

4r2
− 1

)
φr,k = 0,
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and therefore

λr,k =
π2k2

4r2
− 1

is an eigenvalue for the Dirichlet problem of J on Ωr for every k ≥ 1.
Finally, for every r > π/2 we have that λr,k < 0 if 1 ≤ k < 2r/π,
which implies that Ind(Ωr) ≥ [2r/π], and, in particular, we conclude
that Ind(S1 × R) = +∞.
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Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre - RS, Brazil

E-mail address: ripoll@mat.ufrgs.br


