
Topological Mesh Operators

Luiz Velho a Hélio Lopes b,∗ Esdras Medeiros a Thomas Lewiner b,c
Geovan Tavares b

aLaboratório VISGRAF – IMPA – Rio de Janeiro – Brazil.
bLaboratório Matmídia – PUC-Rio – Rio de Janeiro, Brazil.
cGeométrica Project – INRIA – Sophia Antipolis, France.

Abstract

In this paper we introduce an unified framework for basic operations on combinatorial 2-
manifolds with or without boundary. We show that there are two kinds of primitive operators
on the underlying meshes: operators which change the topological characteristic of the mesh and
operators which just modify its combinatorial structure. We present such operators and demon-
strate that they provide a complete set of elementary operations for mesh modification. We also
give a description of the algorithms and data structures for an efficient implementation of these
operators.

Key words: Geometric Modeling, Handle Operators, Stellar Operators.

1 Introduction

Polygonal meshes constitute one of the fundamental representations for objects in com-
puter graphics and geometric modeling. They describe the spatial support where at-
tributes of the objects are defined, such as geometry and texture.

∗
Email addresses: lvelho@visgraf.impa.br (Luiz Velho),

lopes@mat.puc-rio.br (Hélio Lopes), esdras@impa.br (Esdras Medeiros),
tomlew@mat.puc-rio.br (Thomas Lewiner), tavares@mat.puc-rio.br (Geovan
Tavares).

In spite of the fact that other representations, such as point sets, are becoming increas-
ingly popular in recent years, polygonal representations are still prevalent and will al-
ways be necessary in one way or another. The main reason is that meshes describe in a
convenient piecewise manner the global space, intrinsic to the object. Point sets, on the
other hand, provide only a local description. Indeed, the generation of polygonal meshes
from point data is an active area of research.

Two dimensional surfaces are, arguably, the most common type of object in computer
graphics. Moreover, we are often interested in non-degenerate surfaces, i.e. 2D mani-
folds. These objects are best represented by a simplicial mesh, or a combinatorial man-
ifold structure.

Contributions: In this paper we investigate operators to build and modify combinato-
rial manifolds with or without boundary.

The main contributions of this work are:

• The introduction of an unified framework for primitive operations on combinatorial
2-manifolds with or without boundary. This framework is based on the integration of
two fundamental theories in computational topology: the Handlebody theory and the
Stellar theory.

• The definition of a complete and sufficient set of operators to change the combinatorial
structure, as well as, the topological characteristic of a polygonal mesh. This result is
substantiated by the main theorems of the Handlebody and Stellar theories.

• The description of an implementation of these basic mesh operators, including the
specification of the data structures used for mesh representation.

We also discuss how the proposed mesh operators can be applied in the solution of
several problems in geometric modeling and computer graphics. We present examples
of prototypical applications and point out how the framework could be incorporated with
advantages in previously known algorithms.

Paper outline: Section 2 describes some previous and related works. Section 3 intro-
duces some concepts of combinatorial topology and presents the Handlebody and Stellar
theories. Section 4 proposes the complete set of operators for surface modeling. Section
5 presents the data structures and algorithms. Finally, section 7 concludes this work by
giving some final remarks and suggestion for future works.

2

2 Related Works

The representation of a surface by a polygonal mesh has two components that describe
its topology and geometry, respectively. The topological component defines neighbor-
hood relations within the surface, while the geometric component defines the shape em-
bedding in ambient space.

In this paper, we are mainly concerned with the combinatorial structure of a polygonal
mesh. For this reason, we will not address geometric issues extensively here. Nonethe-
less, we note that there is an interdependency between the implementation of geometric
operations and the combinatorial representation of a mesh. Related work in the area fall
into three categories: topological data structures; topological operators; and geometric
operators.

The neighborhood relations within a mesh are encoded by a topological graph that indi-
cates incidence relationships among vertices, edges and faces. Thus, the major issue in
terms of topological data structures, is the trade-off between: size of the representation;
time complexity for queries; and flexibility of making structural changes.

Practically all topological data structures are based on edges. The classical structure is
the winged edge [2], which links vertices and faces, and also includes information about
orientation. Variations of this basic structure, such as the half-edge [18], decouple the
two uses of an edge by a face (i.e., incidence and orientation), and encode the orientation
in an implicit way.

The quad-edge [10] is also an edge-based data structure, but is able to represent both
the primal and dual graphs of the mesh. Another important characteristic of the quad-
edge data structure is that it was defined together with an edge algebra (see comments
below). As an alternative to the quad-edge, Shewchuk [27] proposed a triangle-based
data structure that supports equivalent operations. A similar triangle-based data structure
is the corner table [26], which is optimized for compression.

All the above data structures were designed to represent only manifold surfaces. The
radial edge [35] is a data structure that can represent non-manifold surfaces, as well.
In many applications, the radial edge is used to describe the non-manifold skeleton of
a space decomposition in R

n. We note that, in such cases, it suffices to use a manifold
structure in R

n+1.

In this paper we adopt an edge-based mesh representation. It is similar to the half-edge,
but it is enhanced to support manifolds with boundary. Such data structure shows to be
very suitable for an efficient implementation of the proposed mesh operators.

Operations on a surface are implemented through operators on its mesh representation.
These operators can be classified according to various criteria, such as level of abstrac-
tion and functionality.

3

Euler operators [18] are low-level operators for editing a mesh representation of the
boundary of a solid. They are based on the Euler-Pointcaré theory. This theory says
that an orientable combinatorial surface S with boundary is uniquely identified by its
Euler characteristic χ(S) = |V |− |E|+ |F|, where |V |, |E| and |F| indicate respectively
the number of vertices, edges and faces of S. The Euler characteristic classifies the sur-
face according to the Euler formula that is χ(S) = 2s− 2g− b (where s is the num-
ber of connected components, g is the number of holes or genus, and b is the num-
ber of boundary curves of the surface). This formula states that the genus on an ori-
entable combinatorial surface with s connected components and b boundary curves is
g= s−b/2− (|V |− |E|+ |F|)/2.

Mäntylä proved that Euler operators form a complete set of modeling primitives for
manifold solids. That is, every topologically valid polyhedron can be constructed from
an initial polyhedron by a finite sequence of Euler operators. There are two groups of
such operations: themake group and the kill group. One disadvantage of the Euler opera-
tors is that, in the process of editing a mesh with these atomic operations, some interme-
diate results may not represent valid solids. Moreover, the Euler operator that generates
a genus, assume that the 2-manifold being operated is the boundary of a solid in R

3.
Therefore, Euler operators are usually encapsulated into higher level operators.

Quad-edge operators are low-level operators based on the edge algebra defined in [10].
Their main advantage is conciseness. Guibas and Stolfi showed that only two atomic
operations are sufficient for the construction and modification of arbitrary topological
graphs embedded in two-dimensional manifolds.

The operators proposed in this paper work at a higher-level than the ones above, and, as
such, could be defined either in terms of the Euler or quad-edge operators — although
this is not necessary. Here we have chosen to define them directly, as atomic operations,
since we believe that they provide the right level of abstraction. In addition, they are not
restricted to R

3, i.e., they don’t depend on the space where the surface is embedded.

Because of their importance in applications, many high level operators have been pro-
posed to change the resolution of a mesh. These operators can be used for mesh simplifi-
cation or mesh refinement. The meshes that they operate on can have regular or irregular
connectivity.

Multiresolution operators for regular meshes are usually associated with subdivision
algorithms. In this area, the classical operators are the quadrisection for faces [5], [16]
and vertices [7] (e.g. primal and dual refinement). The drawback of these operators is
that they cannot be used for adaptive refinement without compromising the regularity
of the mesh. Recently, two new schemes,

√
3 subdivision [13] and

√
2 subdivision [33],

introduced operators that are suitable for adaptive refinement. These schemes employ
trisection and bisection operators, respectively.

4

The most popular multiresolution operators for irregular meshes are the edge collapse
and its inverse, the edge split. Hoppe [12] proved that these two operators can be used
to transform between any two equivalent simplicial complexes. Although edge collapse
was designed originally in connection with progressive meshes [11], it has also been
extensively used in many mesh simplification methods [8].

In this paper we introduce a set of high-level operators that can be used to make changes
both on the combinatorial and topological structure of the mesh. In that sense, our op-
erators have more expressive power than the multiresolution operators discussed above
and can be used to implement them.

As we mentioned before, geometric operations are not the focus of this paper. Nonethe-
less, we would like to briefly discuss their relationship with topological operators.

Some geometric operations, such as warping deformations, are defined only in terms of
pointwise information of a shape embedded in the ambient space. Therefore, this type
of operators are independent of the mesh structure.

Other geometric operators, such as the umbrella operator [28] used in Laplacian smooth-
ing, depend on the local geometry of the surface. There are also operators that associate
geometric quantities with elements of the mesh, for example differential properties [6].
These two types of operators need information about the neighborhood of a topological
entity, and, thus, they rely on queries about the mesh structure.

The data structure proposed in this paper supports efficient mesh queries and can be aug-
mented with geometric atributes associated with different topological elements. Thus, it
is suitable for the implementation of geometric operators.

3 Fundamental Concepts

In this section, we lay out the fundamental concepts of our framework for mesh op-
erations. We distinguish between two kinds of operators on meshes: query operators
and modification operators. We can further classify the modification operators into two
types: the ones that change the topology of the mesh, and the ones that just alter its
combinatorial structure.

We will see next, that basic concepts from topology are sufficient to define query op-
erators. Operators that change the mesh topology are based on the Handlebody theory,
while operators that alter the mesh structure are based on the Stellar theory.

5

3.1 Basic Topological Concepts

A simplex σp of dimension p (p-simplex, for short) is the convex hull of p+ 1 points
{v0, ...,vp},vi ∈ R

m, in general position, i.e., the vectors v1− v0,v2− v0, ...,vp− v0 are
linearly independent. The points v0, ...,vp are called the vertices of σ. A face of σ is the
convex span of some of the vertices of σ and therefore is also a simplex. The simplices
of dimensions 2 and 1 will be called, respectively, triangles, edges. If σ is a face of a
simplex τ then σ is said to be incident to τ. The boundary of a p-simplex σ, denoted by
∂σ, is the collection of all of its proper faces, i.e., different from σ itself. Two k-simplices
σ and ρ ∈ K are adjacent when σ∩ρ �= ∅, and independent otherwise. The valence or
degree of a vertex v ∈ K is the number of edges which have v as a vertex, and is denoted
by deg(v).

A simplicial complex K is a finite set of simplices together with all its subsimplices such
that if σ and τ belong to K, then either σ and τ meet at a subsimplex λ, or σ and τ are
independent.

A complex K is connected if it cannot be represented as a union of two non-empty
disjoint subcomplexes L andM without common simplexes. A component of a complex
K is a connected subcomplex that it is not contained in a larger connected subcomplex
of K.

The underlying polyhedron |K| ⊂ R
m corresponds to the union of the simplexes in K. A

triangle mesh is the underlying polyhedron of a 2-dimensional simplicial complex.

The join σ� τ of independent simplices σ and τ is the simplex whose vertices are those
of σ and τ. The join of complexes K and L, written K �L, is {σ� τ : σ ∈ K,τ ∈ L} if the
following holds:

(1) If σ ∈ K and τ ∈ L, σ and τ are independent.
(2) If σ1,σ2 ∈K and τ1,τ2 ∈ L, then σ1 �τ1∩σ2 �τ2 is either empty or a face of σ1 �τ1

and σ2 � τ2.

Consider a simplicial complex K and σ ∈ K. The local neighborhood of σ is described
by the following elements:

• The open star of σ is

star(σ,K) = {τ ∈ K : σ is a face of τ}.

• The star of σ is

star(σ,K) = {τ ∈ K : τ is a face of an element of star(σ,K)}.

6

• The link of σ is

link(σ,K) = {τ ∈ K : τ and σ are independent and σ� τ ∈ K}.

Definition 1 (combinatorial surface) A simplicial complex S, |S| ⊂ R
m is a combina-

torial surface if: Every edge in S is bounding either one or two triangles and the link of
a vertex in S is homeomorphic either to an interval or to a circle.

The edges in a combinatorial surface S incident to only one face are called boundary
edges. A vertex incident to a boundary edge is called a boundary vertex. The subcomplex
of S of those boundary simplices forms the boundary of S and is denoted by ∂S. The
boundary of a combinatorial surface is a collection of closed curves. The edges and
vertices that are not on the boundary are called, respectively, interior edges 1 and interior
vertices.

The set of faces, edges and vertices of a surface S will be denoted, respectively, by
F(S),E(S) and V (S).

3.2 Handlebody Theory

The topological setting applied to boundary representation of solids [2] has traditionally
been the Euler-Poincaré theory, dated from the turn of the 19th century [24].

The Handlebody theory [21] refines the Euler-Poincaré theory by bringing several new
topological invariants for n-dimensional manifolds. The fundamental problem of Han-
dlebody theory is to study the topological changes generated by handle attachments to a
manifold with boundary.

In the surface case, three types of handles are to be defined and they will be distinguished
by an index λ that varies from 0 to 2. Here, Di denotes the i-dimensional disk and ∂P the
boundary of a set P.

Definition 2 A handle of index λ, denoted by Hλ, is a pair of topological spaces (Aλ,Bλ)
such that Bλ ⊂ Aλ, Aλ =Dλ ×D2−λ and Bλ = ∂Dλ ×D2−λ.

According to this definition, one can observe that: 1) the set A0 is a 2-disk and B0 is the
empty space; 2) the set A1 is a square and B1 is defined to be two of its opposite sides
and 3) the set A2 is a 2-disk and B2 is its boundary (see Figure 1).

To attach a handle Hλ = (Aλ,Bλ) to the boundary of a surface S means to identify by
a homeomorphism the set Bλ with a subset I contained in the boundary of S that is
homeomorphic to Bλ.

1 Observe that the link of an interior edge is the pair of opposite vertices.

7

A0 = D0×D2 B0 = (∂D0)×D2 = ∅

A1 =D1×D1 B1 = (∂D1)×D1

A2 =D2×D0 B2 = (∂D2)×D0

Fig. 1. The 2D Handles: H0 = (A0,B0); H1 = (A1,B1); H2 = (A2,B2).

The next theorem is the main mathematical tool in which the Handlebody Theory is
based.

Theorem 3 (Handlebody Decomposition) For every surface S there is a finite sequence
of surfaces {Si}, i = 0..N, such that S0 = ∅, SN = S and the surface Si is obtained by
attaching a handle Hλ = (Aλ,Bλ) to the boundary of Si−1. This sequence is called the
Handlebody Decomposition of S.

Figure 2 illustrates the handlebody decomposition of a torus, S4 = (((S0+H0)+H1)+
H1)+H2.

S0 = ∅

S1 = S0+H0

S2 = S1+H1 ≈

S3 = S2+H1 ≈

S4 = S3+H2

Fig. 2. Handlebody decomposition of a torus, S4 = (((S0+H0)+H1)+H1)+H2.

8

When a handle Hλ = (Aλ,Bλ) is attached to the boundary of Si−1 to obtain Si, a topolog-
ical change is generated and such change depends only on the index λ.

Theorem 4 If Si is obtained by attaching the handle Hλ to Si−1, then χ(Si) = χ(Si−1)+
(−1)λ.

As a consequence, the Euler characteristic of a surface S provided with a handlebody
decomposition {Si}, i= 0..N is

χ(S) = |H0|− |H1|+ |H2|

where |Hk|, k ∈ {0,1,2} corresponds to the number of handles of type k in {Si}. For
example, in the handlebody decomposition of the torus in Figure 2, there are one handle
H0, 2 handles H1, and 1 handle H2. The formula above is, then, verified, since the Euler
characteristic of a torus is zero. This is a new topological invariant introduced by the
Handlebody theory.

Handles can be attached to an orientable surface with boundary in such a way to preserve
its orientability, i.e., the identification has to be coherent. If one starts with an orientable
surface, then after attaching a handle coherently the surface is again orientable.

We observe that if we keep track the number of connected components and the number
of boundary curves, we can easily calculate the number of genus on the surface and
classify it whenever it is necessary. We are to present how to count those two numbers
by studying the topological changes caused by a handle attachment that preserves the
orientability.

The topological change generated by a handle attachment of index 0 is a creation of a
new surface component (see S1 in Figure 2). This handle attachment increases the Euler
characteristic by one.

When the handle H1 is coherently attached to a surface Si, three situations can occur:

(1) The set A1 is attached to disjoint intervals on the same boundary curve compo-
nent. In this case, the topological change is a inclusion of a new boundary curve
component in the surface (see S2 in Figure 2).

(2) The set A1 is attached to intervals on different boundary curve components of a
surface component. The topological change is here characterized by the creation of
a new genus on the surface. In addition, the number of boundary curve components
decreases (see S3 in Figure 2).

(3) The set A1 is attached to intervals on different surface components. Here, a bound-
ary curve component and a surface component is removed.

In these three situations, when a handleH1 is attached coherently to Si−1 to obtain Si, we
have χ(Si) = χ(Si−1)−1. Notice that, all of them alter the number of boundary curves.
Moreover, the last one also changes the number of connected components on the surface.

9

Handles of index 2 close a boundary curve component (see S4 in Figure 2).

Concluding, there are three types of handles and five different situations in which they
can be attached to a boundary surface.

3.3 Stellar Theory

In the previous section, saw how to change the topology of a manifold. Now, we will
see how to manipulate the structure of a combinatorial surface without modifying its
topology, which is the main point of Stellar theory [1, 22, 23, 15].

As we have seen in Section 3.1, the link and the star of a simplex σ provide a combinato-
rial description of the neighborhood of σ. We can use them to define certain changes in
a triangle mesh, without modifying essentially (i.e., “topologically”) that neighborhood.
That is, we do not want to change the topology of the realization of the surface in R

3.
The stellar operations provide a such change. They comprise bistellar moves and stellar
subdivision:

Definition 5 Let K be an n-dimensional simplicial complex. Take an r-simplex σ ∈ K,
and an (n− r)-simplex τ �∈ K, such that link(σ,K) = ∂τ. Then, the operation κ(σ,τ),
called bistellar move, consists of changing K by removing σ�∂τ and inserting ∂σ� τ.

The bistellar moves are atomic operations that make local changes to the neighborhood
of an simplex, while maintaining the integrity of its combinatorial structure. In the case
of combinatorial surfaces, there are three types of bistellar moves, for dimσ = 2,1,0,
called 2-move, 1-move, and 0-move. They are shown in figure 3.

(a) dimσ = 2 →

(b) dimσ = 1 →

(c) dimσ = 0 →

Fig. 3. Two dimensional bistellar moves.

The fundamental result of the Stellar theory is given by the following theorem:

Theorem 6 ([22], [23]) Two combinatorial surfaces are piecewise linearly homeomor-
phic if and only if they are bistellar equivalent.

10

The above result guarantees that bistellar moves can change any triangulation of a closed
piecewise linear manifold to any other. A version of this theorem for manifolds with
boundary uses all stellar operations, including stellar subdivision [23].

Definition 7 Let K be a 2-dimensional simplicial complex, take an r-simplex σ ∈ K and
a vertex ν in the interior of σ.

The operation (σ,ν) removes star(σ,K) and replaces it with ν�∂σ� link(σ,K) is called
a stellar subdivision.

The inverse operation (σ,ν)−1 is called a stellar weld.

Note that, some of the stellar subdivision and welds are also stellar moves. For example,
in the two dimensional case, for dimσ = 2, see κ(σ,ν) and κ(ν,σ) that are shown in
the top and bottom rows of figure 3.

The new operation in two dimensions, is the stellar subdivision on edges, called 1-split.
It is shown in figure 4 the interior edge case and in figure 5 the boundary edge case.

(σ,ν)−→

Fig. 4. Two dimensional stellar subdivision on interior edges.

(σ,ν)−→

Fig. 5. Two dimensional stellar subdivision on boundary edges.

Stellar subdivision is a very powerful concept and it is the cornerstone of Stellar theory.
Here, we will only mention some results of the stellar subdivision theory [1].

Proposition 8 Any stellar move, κ(σ,τ), is the composition of a stellar subdivision and
a weld, namely (τ,ν)−1(σ,ν).

This result can be easily seen through an example, shown in figure 6.

Proposition 9 Any stellar operation can be decomposed into a finite sequence of ele-
mentary stellar operations on edges.

This result is even stronger than the previous one. It basically allows us to restate the
main theorem of Stellar theory only in terms of operations on edges.

11

κ(σ,τ)

(σ,a)−→ (τ,a)−1−→

Fig. 6. A bistellar move on an edge can be decomposed into a subdivision and an weld.

4 Computational Framework

The purpose of this section is to introduce a new representation for surfaces based on the
concepts of Handlebody and Stellar theories. It consists of a topological data structure
that describes the incidence and adjacency relations on a combinatorial surface with
or without boundary. It also includes operators for building/unbuilding meshes and to
change the structure and resolution of a mesh.

We remark that, although the Handlebody theory can be applied to general combinatorial
manifolds, the Stellar theory is restricted to simplicial complexes. Therefore, from now
on, we will focus primarily on triangular meshes. This is not a limitation, since any
manifold surface can be triangulated and, in practice, triangular meshes are a common
choice in applications.

4.1 Handle Operators

The Handlebody theory presented in Section 3.2 studies the topological changes in a
surface caused by a handle attachment. There are three types of handles to build a han-
dlebody decomposition of a surface. From a combinatorial point of view, three types of
operators are to be defined to represent the handle attachments:

• Handle operator of type 0 – This operator creates a new combinatorial surface com-
ponent with only one triangle (see Figure 7).

• Handle operator of type 1 – The purpose of this operator is to identify two given
boundary edges with no vertices in common. There are three situations for this group:
Case 1: the boundary edges are on different surfaces. In this case the operator at-
taches the surfaces and removes one boundary curve (see Figure 8(a)).
Case 2: the given boundary edges are incident to the same boundary curve. The
operator splits the boundary curve into two different components (see Figure 8(b)).
Case 3: the boundary edges are on different boundary curves on a surface compo-
nent. It creates a new genus in the surface and reduce in one the number of boundary
curve components of the surface (see Figure 8(c)).

12

• Handle Operator of type 2 – In this group the operator identify two given boundary
edges with two vertices in common. The operator closes one boundary curve compo-
nent and transform those boundary vertices into two interior vertices (see Figure 9).

NIL −→

Fig. 7. Handle operator of type 0 (triangle creation).

−→
(a) Boundary edges belong to different
surfaces

−→
(b) Boundary edges belong to the same
boundary curve of a surface

−→
(c) Boundary edges belong to different
boundary curves of a surface

Fig. 8. Handle operator of type 1 (joining boundaries).

−→
(a) Boundary edges have two vertices in com-
mon

Fig. 9. Handle operator of type 2 (closing boundaries).

According to the definitions above, we notice that if a Handle operator of type λ is
applied to a combinatorial surface S1 to obtain S2, then χ(S2) = χ(S1)+(−1)λ. This is
a direct consequence of theorem 4.

13

−→
(a) Boundary edges have one vertex in com-
mon

Fig. 10. Zip operator.

One can observe that the Handle operators of type 1 and type 2 identify two boundary
edges to make an interior edge. The first is applied when the edges have no vertices in
common, and the second when the edges have two vertices in common. Thus, there is
one missing case to consider: when the boundary edges have one vertex in common.
So, it is suitable to define the Zip operator, which identifies two boundary edges with
one vertex in common. This operator removes one edge and one vertex, then it doesn’t
change the Euler characteristic of the surface. Its main purpose is to close the vertex link
(see Figure 10). In fact, such operator can be derived from the Handle operators together
with their inverse. However, it is very convenient to have a direct implementation of it.

4.1.1 Inverse Handle Operators

There is an inverse operator not only for each handle operator, but also for the Zip
operator. The topological changes caused by their inverse operation are now described.

The inverse handle operator of index zero destroys a triangle. Inverse handle operators
of index 1 and index 2 split an interior edge into two boundary edges. There are five
cases to consider when splitting an interior edge. Such cases are distinguished according
to the number of boundary vertices incident to the interior edge that will be operated,
which could be 2,1 or 0. The inverse handle operator of type 1 is used when the incident
vertices to the interior edge are both in the surface boundary. The inverse handle operator
of type 2 is applied when the incident vertices of the interior edge are on the interior of
the surface. In the last case, when the interior edge has one vertex in the boundary, one
should use the inverse Zip operator.

The topological changes caused by an inverse handle operator of index 1 when applied
to a given interior edge e, depend on the answer to the following question:

Are the incident boundary vertices to e on different boundary curve components?

If the answer is affirmative then the inverse handle operator will remove one boundary
curve component (see the inverse operation in the Figure 8(b)). In contrary, the second
question has to be answered.

Are those edges on the same boundary curve component?

14

When the vertices are incident to the same boundary curve, the inverse operation not
only will add a new boundary curve component to the surface but also it will either
remove a genus (see inverse of Figure 8(c)) or disconnect the surface (see inverse of
Figure 8(a)).

Inverse operator of index 2 splits an interior edge with zero incident boundary vertices.
The topological change in this situation is an addition of a new boundary curve to the
surface.

The inverse Zip operator (the unzip op.) is applied when the interior edge e has one inci-
dent vertex on the boundary. It simply splits an interior edge and transforms an interior
vertex into a boundary vertex.

With the set of operators presented above one can easily build and unbuild all kinds of
orientable combinatorial surfaces, with or without boundary. Handle operators shall be
used to perform paste operations on the surface, while the inverse operators shall be used
to make cut operations.

4.2 Stellar Operators

The Stellar theory presented in Section 3.3 studies structural modifications to the neigh-
borhood of a simplex that do not alter the topology. These modifications are the stellar
moves, stellar subdivision and welds. They can be used to change the connectivity and
the resolution of a mesh.

We classify the stellar operators in terms of their effect in the number of faces, |F|,
in the mesh. Accordingly, there are three groups of operators: isolevel, refinement, and
simplification.

• The isolevel operators do not change |F|. The operator in this group is the bistellar
1-move, also called 1-flip (or edge flip). It simply exchanges two existing triangles by
two new triangles. This operator is shown in Figure 3(b).

• The refinement operators increase |F|, and the resolution of the mesh. The operators
in this group are the 2-split (face split), and 1-split (edge split). The face split replaces
one existing triangle with three new triangles, and thus, it increases |F| by 2. This op-
erator is shown in Figure 3(1). The edge split replaces two existing triangles sharing
that edge with four new triangles, when the edge is an internal edge. When the edge is
a boundary edge, it replaces one existing triangle with two new triangles. This oper-
ator increases |F|, by 1 or 2, depending of whether the edge belongs to the boundary
or not. Figure 4 shows the 1-split of an internal edge.

• The simplification operators are the inverse of the refinement operators. The inverse
of the face split is the face weld, and the inverse of the edge split is the edge weld.
Observe that, weld operations (σ,ν)−1, are specified through a vertex ν, whose star
defines the neighborhood to be changed.

15

At this point it is appropriate to note that stellar operators can be used as primitives
to define other multiresolution operators. For example, edge collapse and its inverse,
vertex split, can be decomposed into a sequence of elementary stellar operations. This
is a natural consequence of Theorem 6. More specifically, the edge collapse is given by
a composition of edge flips and a final edge weld, while the vertex split is given by an
edge split composed wit a sequence of edge flips. This is shown in Figure 11.

Fig. 11. Decomposition of an edge collapse (top) into an edge swap followed by an edge weld
(bottom).

We remark that stellar operations are more flexible in general. In the case of edge col-
lapse / vertex split, it is easy to see that there are many possible sequences of edge flips
leading to the final edge weld. Therefore, these edges flips can be chosen such that the
quality of the mesh is improved (for example, a measure of aspect ratio).

5 Implementation

The implementation for a mesh library based on the framework proposed in this paper,
consists of the set of topological, handlebody and stellar operators.

The mesh representation itself employs a edge-based data structure that describes the
mesh connectivity.

5.1 Mesh Operators

The basic topological operators allow queries and navigation of the mesh structure. They
are: c = link(s); and c = star(s). Note that they can take as arguments a simplex s of
dimension 0 (vertex), 1 (edge) or 2(face). In our current implementation, we use only
the vertex star, which returns an adjacency iterator object c, called circulator [20]. We
also have the basic operators of the edge algebra [10]: v = org(e) (origin vertex v of a half
edge e); f = left(e) (face f to the left of a half edge e); h = sym(e) (symmetric half edge h);
and n = lnext(e) (next half edge n on left face). These operators are trivially computed
from the edge-based data structure.

16

The handlebody operators allow cutting and pasting surfaces. They are: f = create(v0,
v1, v2) (creates a new triangular face f); destroy(f) (destroys an existing face); glue(e0,
e1) ("identify" two boundary edges to make one interior edge), and unglue(e) (split one
interior edge to make two boundary edges).

The stellar operators allow changing the resolution and structure of the mesh. They are:
flip(e) (swaps the edge e); split(e) (bisects the edge e and its incident faces); split(f) (tri-
sects the face f); weld(v) (inverse of the split operators). Note that flip is only defined for
internal edges. In our C++ implementation, split is defined using overload of operators.
weld deduces the type operation from the star of the vertex v.

5.2 Mesh Representation

Different data structures can be used to implement a mesh representation that supports
the operators defined above. We have chosen an edge based topological data structure
because it gives a good compromise between simplicity and generality.

In this representation, a mesh is a collection of surface components pointers.

struct Mesh {
Container<Surface*> surfaces;

}

The surface is structured as S= (V,E,F,B) where V , E, F , B are the collections of ver-
tices, edges, faces and boundary curves respectivelly. These sets are stored in containers
of pointers to the correspondent topological data structures.

struct Surface {
Container<Face*> faces;
Container<Edge*> edges;
Container<Vertex*> vertices;
Container<Edge*> bndries;

}

The boundary container simply stores pointers to one of the edges of each boundary
curve and it is the topological core of our data structure. Indeed it deals effectivelly with
all topological changes, i.e., the increase or decrease in the number of boundary curves.
Note that a compact surface will have an empty set as its boundary.

The face structure stores a pointer to the first half-edge of its outer loop. Here, we assume
triangular faces and thus, the face loop contains exactly three edges.

struct Face {
Half Edge* he ref;

}

17

An edge is formed by two half-edges. In the case it is representing a boundary edge one
of these half-edges points to a null face.

struct Edge {

Half Edge he[2];

}

The half-edge is the central topological element of the data structure. It stores a pointer to
its initial vertex, a pointer to the next half-edge in the face loop, and pointers to the edge
and face it belongs. Note that the mate half-edge can be accessed through the pointer to
its parent edge.

struct Half Edge {

Vertex* org ref;

Half Edge* next ref;

Face* f ref;

Edge* e ref;

}

The vertex structure stores one pointer to an incident half-edge. In the case of a boundary
vertex, this half-edge is part of the boundary curve. This representation makes it trivial
to identify if a vertex is on the boundary or is in the interior of the surface. Also, it is
instrumental not only for the implementation of the vertex star iterator, but also for the
boundary curve iterator. The vertex structure also holds a pointer to vertex geometry.

struct Vertex {
Half Edge* star i;

Point* p;

}

The point data structure stores a pointer to the vertex. It represents a "bridge" between
geometry and topology. It also stores geometric data of the vertex and can also hold
additional data, such as normals, texture and parametric coordinates.

struct Point {
Vertex* v;

Data* d;

}

These last two data structures separate the roles of points and vertices which are to
represent geometry and topology of the mesh, respectivelly. This is a robust approach to
compare geometric coincidences between vertices. Surfaces reconstruction is a typical
example where this is necessary. Indeed the geometric operations acts on sampple points
(some may belong to the boundary or not) whereas mesh vertices attach then by handle
operations whenever new triangles are created. See for example [19].

18

5.3 Complexity Analysis

5.3.1 Data Structure

The data structure requires 1 pointer per face, 1 pointer per boundary, 8 pointers per edge
and 1 pointer per vertex (plus the additional geometric data). To estimate the mesh size
in terms of the number of vertices we can use the Euler formula, |V |− |E|+ |F| = χ(S).
If we assume that the genus is small compared to |V |, then |V |− |E|+ |F | ≈ 0 and the
number of boundary edges is small. Since each internal edge is shared by two faces,
|E| = 3 · |F|/2. We also know that the average valence of a vertex is 6. Therefore, the
size of the data structure is 6V + 3

2 ·8V +1V ≈ 18V pointers.

Although this data structure cannot compete in terms of size with a compressed mesh
format, it compares favorably with other edge based data structures, such as the winged
edge and quad edge. Alternatively, the mesh representation can be implemented using
a corner table data structure instead of a half-edge data structure. This option gives a
control over the usual trade-off between computational and space complexity. The half-
edge data structure occupies more space because it uses pointers, but support efficient
editing operations. The corner table data structure is very compact because it uses arrays,
but needs realocation if the mesh is modified. An implementation of such a table-based
data structure for tetrahedral meshes is described in [14].

5.3.2 Mesh operators

Using the half-edge based data structure, we can affirm that all the API operators f =
create(v0, v1, v2), destroy(f), flip(e), split(e), split(f), and weld(v) have constant time com-
plexity.

The glue(e0, e1) operator internally decides whether to use a handle operator of type
1, a handle operator of type 2 or a zip operator. This decision is done in constant time
using the presented data structure, by simply counting how many vertices in common
e0 and e1 have. The low level implementation of the handle operator of type 2 and the
zip operator have constant time complexity. While the handle operator of type 1 in the
worst case have linear time complexity in the number of edges on the boundary curves
of e0 (or e1, we choose the one that has a minimum number of edges.

The unglue(e) operator internally decides whether to use an inverse handle operator of
type 1 or type 2 or the unzip operator. The complexity of this decision is also done in
constant time in our data structure. Given an interior edge we have count how many
interior vertices are incident to it. If it has two incident interior vertices, we have to
apply the inverse handle operator of type 2. In the case it has only one incident interior
vertex, we have to apply the unzip operator. Both of them have constant time complexity.
Otherwise, we have to apply the inverse handle operator of type 1, whose complexity is
linear in the number of edges on the boundary incident to the vertices of e.

19

6 Applications and Examples

Mesh operators embody the fundamental transformations for combinatorial manifolds.
Applications that adopt meshes as a surface representation can greatly benefit from our
operators, because they provide the correct level of abstraction for algorithm design and
guarantee that the representation is always valid.

In this section we discuss how our framework fits into graphics applications. Below we
give examples of previous algorithms that employed some of the concepts presented in
this paper. We also point out how these prototypical applications can fully exploit our
mesh operators.

Among the different strategies to compress the connectivity of meshes, many of the suc-
cessful approaches are based on G. Taubin and J. Rossignac’s topological surgery [29].
The Edgebreaker scheme [25] is one example. All algorithms of this kind during the en-
code phase, cut the surface along a set of edges, thus they could be naturally expressed
in terms of inverse handlebody operators and the unzip. As an important consequence,
the handle operators together with the zip operator are the natural ones to reconstruct the
surface during the decoding process. These operators prove to be very useful to design
and analyze a very concise algorithm for the Edgebreaker scheme to encode and decode
surfaces with genus (see [17]).

The ball-pivoting algorithm [3] reconstructs a polygonal surface from point samples. It
starts with a seed triangle and grows the surface by gluing new triangles to the surface
boundary. The handlebody operators allows a very robust and concise implementation
of this algorithm [19].

Other important recent application where the handle operators has a very suitable use is
in the construction of geometry images [9]. In such application a surface with boundary
is cut along a set of edges. One can easily implement this algorithm by the use of the
detach operator.

Most refinement methods for subdivision surfaces can be implemented with stellar op-
erators. Velho [31] showed that both primal [5] and dual [7] schemes can be factorized
using edge splits.

√
2 subdivision [33] also uses edge splits.

√
3 subdivision [13] em-

ploys face splits and edge flips.

Simplification methods that are based on edge collapse [8] can be implemented using
edge flips and edge splits [30, 34].

Stellar operators are very suitable for creating multiresolution structures. Progressive
meshes [11] and binary multi-triangulations [32] are examples of hierarchical data struc-
tures that can be built with these operators.

Normal meshes have been proposed in [4] as a representation for combinatorial man-

20

ifolds with a non-regular triangulation. This canonical description is constructed using
stellar operators.

Welch [36] describes a system for free-form modeling of smooth surfaces. Variational
and topological methods are used to design the surface shape. This is an example of a
system in which both handlebody and stellar operators could play an equally important
role. This is in contrast with the previous examples which emphasize only one class of
operators.

7 Conclusions

We presented in this work an unified framework for the representation of combinato-
rial 2-manifolds with or without boundary. This representation includes two kinds of
primitive operators on the underlying meshes: operators which change the topological
characteristic of the mesh and operators which just modify its combinatorial structure.
We also introduced a new data structure that explicitly represents the boundary curves.
This data structure shows to be very useful for the implementation of those operators.

References

[1] J. Alexander. The combinatorial theory of complexes. Ann. Math., 31:294–322,
1930.

[2] B. G. Baumgart. A polyhedron representation for computer vision. AFIPS National
Computer Conference, (44):589–596, 1975.

[3] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. The ball-
pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization
and Computer Graphics, 5(4):349–359, October - December 1999.

[4] S. Bischoff and L. Kobbelt. Towards robust broadcasting of geometry data. Com-
puters & Graphics, 26(5):665–675, 2002.

[5] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topo-
logical meshes. Comput. Aided Design, 10:350–365, 1978.

[6] M. Desbrun, M. Meyer, P. Schroder, and A. Barr. Discrete differential-geometry
operators in nd, 2000.

[7] D. Doo and M. Sabin. Behaviour of recursive division surfaces near extraordinary
points. Comput. Aided Design, 10:356–360, 1978.

[8] M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics.
Computer Graphics, 31(Annual Conference Series):209–216, 1997.

[9] X. Gu, S. J. Gortler, and H. Hoppe. Geometry images. In Proceedings of the
29th annual conference on Computer graphics and interactive techniques, pages
355–361. ACM Press, 2002.

21

[10] L. J. Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions
and the computation of voronoi diagrams. ACM Trans. Graph., 4:74–123, 1985.

[11] H. Hoppe. Progressive meshes. In Proceedings of SIGGRAPH 96, pages 99–108,
New Orleans, Louisiana, August 1996.

[12] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Mesh optimiza-
tion. Technical report, University of Washington, 1993. TR UW CSE 1993-01-01.

[13] L. Kobbelt.
√
3 subdivision. In Proceedings of SIGGRAPH, Computer Graphics

Proceedings – Annual Conference Series, pages 103–112, 2000.
[14] M. Lage, T. Lewiner, H. Lopes, and L. Velho. Chf: A scalable topological data

structure for tetrahedral meshes. In Proceedings of SIBGRAPI 2005 - XVIII Brazil-
ian Symposium on Computer Graphics and Image Processing, Natal, October
2005. SBC - Sociedade Brasileira de Computacao, IEEE Press.

[15] W. B. R. Lickorish. Simplicial moves on complexes and manifolds. In Proceedings
of the Kirbyfest, volume 2, pages 299–320, 1999.

[16] C. Loop. Smooth subdivision for surfaces based on triangles. Master’s thesis,
University of Utah, 1987.

[17] H. Lopes, J. Rossignac, A. Safonova, A. Szymczak, and G. Tavares. Edgebreaker:
a simple compression for surfaces with handles. In 7th ACM Siggraph Symposium
on Solid Modeling and Application, pages 289–296, 2002.

[18] M. Mäntylä. An Introduction to Solid Modeling. Computer Science Press,
Rockville, Maryland, 1988.

[19] E. Medeiros, L. Velho, and H. Lopes. A topological framework for advancing
front triangulations. In Proceedings of the XVI Brazilian Symposium on Computer
Graphics and Image Processing (SIBGRAPI 2003), to appear. IEEE Press, Octo-
ber 2003.

[20] K. Mehlhorn, S. Naher, and C. Uhrig. The LEDA platform of combinatorial and
geometric computing. In Automata, Languages and Programming, pages 7–16,
1997.

[21] J. Milnor. Morse Theory. Annals of Mathematics Study 51. Princeton University
Press, 1963.

[22] M. H. A. Newman. On the foundations of combinatorial analysis situs. Proc. Royal
Acad., 29:610–641, 1926.

[23] U. Pachner. Pl homeomorphic manifolds are equivalent by elementary shellings.
Europ. J. Combinatorics, 12:129–145, 1991.

[24] H. Poincaré. Sur la géneralisation d’un théoréme d’euler relatif aux poliédres. C.
R. Acad. Sci. Paris, (117):437–464, 1893.

[25] J. Rossignac. Edgebreaker: Connectivity compression for triangle meshes. IEEE
Transactions on Visualization and Computer Graphics, 5(1):47–61, /1999.

[26] J. Rossignac and A. Szymczak. Wrap&zip: Linear decoding of planar triangle
graphs, 1999. Computational Geometry: Theory and Applications.

[27] J. R. Shewchuk. Triangle: Engineering a 2D QualityMesh Generator and Delaunay
Triangulator. In Applied Computational Geometry: Towards Geometric Engineer-
ing, volume 1148, pages 203–222. 1996.

[28] G. Taubin. A signal processing approach to fair surface design. In Proceedings of
SIGGRAPH 95, pages 351–358, August 1995.

22

[29] G. Taubin and J. Rossignac. Geometric compression through topological surgery.
ACM Transactions on Graphics, 17(2):84–115, 1998.

[30] L. Velho. Mesh simplification using four-face clusters. In Proceedings of SMI
2001. Instituto per la Matematica Applicata - CNR, IEEE Computer Society, May
2001. International Conference on Shape Modeling and Applications.

[31] L. Velho. Using semi-regular 4–8 meshes for subdivision surfaces. Journal of
Graphics Tools, 5(3):35–47, 2001.

[32] L. Velho and J. Gomes. Variable resolution 4-k meshes: Concepts and applications.
Computer Graphics forum, 19:195–212, 2000.

[33] L. Velho and D. Zorin. 4-8 subdivision. Computer-Aided Geometric Design,
18(5):397–427, 2001. Special Issue on Subdivision Techniques.

[34] A.W. Vieira, L. Velho, H. Lopes, G. Tavares, and T. Lewiner. Fast stellar mesh sim-
plification. In Proceedings of the XVI Brazilian Symposium on Computer Graphics
and Image Processing (SIBGRAPI 2003), to appear. IEEE Press, October 2003.

[35] K. Weiler. Edge-Based Data Structures for Solid Modeling in Curved-Surface
Environments. IEEE Computer Graphics and Applications, 5(1):21–40, 1985.

[36] W. Welch and A. Witkin. Free-form shape design using triangulated surfaces. In
Proceedings of SIGGRAPH 94, pages 247–256, July 1994.

23

	Introduction
	Related Works
	Fundamental Concepts
	Basic Topological Concepts
	Handlebody Theory
	Stellar Theory

	Computational Framework
	Handle Operators
	Stellar Operators

	Implementation
	Mesh Operators
	Mesh Representation
	Complexity Analysis

	Applications and Examples
	Conclusions

