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Abstract

In the present paper it is proved that given a maximal invariant attracting homoclinic class
for a smooth three dimensional Kupka-Smale diffeomorphism, either the diffeomorphisms is C1—
approximated by another one exhibiting either a homoclinic tangency or a heterodimensional
cycle, or it follows that the homoclinic class is conjugate to a hyperbolic set (in this case we say
that the homoclinic class is “topologically hyperbolic”).

We also characterize, in any dimension, the dynamics of a topologically hyperbolic homoclinic
class and we describe the continuation of this homoclinic class for a perturbation of the initial
system.

Moreover, we prove that, under some topological conditions, the homoclinic class is contained
in a two dimensional manifold and it is hyperbolic.

1 Introduction and statements.

For a long time (mainly after Poincaré) it has been a goal of the theory of dynamical systems to
describe the dynamics from the generic viewpoint, that is, to describe the dynamics of “big sets”
(residual, dense, etc.) within the space of all dynamical systems.

It was briefly thought in the sixties that this could be realized by the so-called hyperbolic ones:
systems with the assumption that the tangent bundle over the limit set L(f) (the closure of the
accumulations points of any orbit) splits into two complementary subbundles TypnM = E° @ E*
so that vectors in E® (respectively E") are uniformly forward (respectively backward) contracted
by the tangent map D f. Under this assumption, it was proved that the limit set decomposes into a
finite number of disjoint transitive sets such that the asymptotic behavior of any orbit is described
by the dynamics in the trajectories in those finite transitive sets (see [S]). In other words, hyperbolic
dynamics on the tangent bundle characterizes the dynamics over the manifold from a geometrical,
topological and statistical point of view.

Uniform hyperbolicity was soon realized to be a less universal property than was initially
thought: it was shown that there are open sets in the space of dynamics which are nonhyper-
bolic. The initial mechanisms to show this nonhyperbolic robustness (see [AS], [Sh]) were the
existence of open sets of diffeomorphisms exhibiting hyperbolic periodic points of different stable
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indices inside a transitive set (the stable index of a hyperbolic periodic point is the number of
eigenvalues with modulus smaller than one counted with multiplicity).

Related to this, is the notion of heterodimensional cycle where two periodic points of different
indices are linked through the intersection of their stable and unstable manifolds (notice that at
least one of the intersections is non-transversal; a more precise definition will follow).

In all of the above examples the underlying manifolds must have dimension at least three, so the
case of surfaces was still unknown at the time. It was through the seminal works of Newhouse (see
[N1], [N2], [N3]) that hyperbolicity was shown not to be dense in the space of C" diffeomorphisms
(r > 2) of compact surfaces. The underlying mechanism here was the presence of a homoclinic
tangency: non-transversal intersection of the stable and unstable manifold of a periodic point.

These results naturally suggested the following question:

1. What mechanisms lead to generic (meaning generic perturbation of the initial system) non-
hyperbolic behavior?

2. Is it possible to identify the dynamical mechanism underlying any generic nonhyperbolic be-
havior?

We have mentioned two basic mechanisms which are obstruction to hyperbolicity, namely het-
erodimensional cycles and homolicinic tangencies. In the early 80’s Palis conjectured (see [P] and
[PT]) that these are very common in the complement of the hyperbolic systems:

1. Every C" diffeomorphism of a compact manifold M can be C" approzimated by one which is
hyperbolic or by one exhibiting a heterodimensional cycle or by one exhibiting a homoclinic
tangency.

2. When M 1is a two-dimensional compact manifold every C™ diffeomorphism of M can be C"
approximated by one which is hyperbolic or by one exhibiting a homoclinic tangency.

This conjecture may be thought of as a starting point for obtaining a generic description of
Cr-diffeomorphisms. If it turns out to be true we may focus on the two mechanisms mentioned
above in order to understand the dynamics.

To be precise, let us introduce some definitions.

A hyperbolic diffeomorphism means a diffeomorphism such that its limit set is hyperbolic. The
limit set is the closure of the forward and backward accumulation points of all orbits. A set A is
called hyperbolic for f if it is compact, f-invariant and the tangent bundle 7y M can be decomposed
as TAM = E° @ E" invariant under D f and there exist C > 0 and 0 < A < 1 such that

D f}gs @ < CA"

and



for all z € A and for every positive integer n.
Moreover, a diffeomorphism is called Axiom A, if the non-wandering set is hyperbolic and it is
the closure of the periodic points.

We recall that the stable and unstable sets
Weé(p) ={y e M : dist(f"(y), f"(p)) = 0 as n — oo},

W*(p) ={y € M : dist(f"(y), f"(p)) — 0 as n — —oo}

are C"-injectively immersed submanifolds when p is a hyperbolic periodic point of f. A point of
intersection of these manifolds is called a homoclinic point.

Definition 1 Homoclinic tangency. We say that f exhibits a homoclinic tangency if there is a
periodic point p such that there is a point x € W*(p) N W¥(p) with T,W?*(p) + T,W*(p) # T M.
Given an open set V, we say that the tangency holds in V if p and x belong to V.

The above conjecture was proved to be true for the case of surfaces and the C' topology (see
[PS1)).
Theorem ([PS1]): Let M? be a two dimensional compact manifold. Every f € Dif f1(M?) can
be C'-approzimated either by a diffeomorphism exhibiting a homoclinic tangency or by an Aziom
A diffeomorphism.

In dimensions higher than two, the theorem stated above is false, due to another kind of homo-
clinic bifurcation that breaks the hyperbolicity in a robust way: the so-called heterodimensional
cycles (see [D1] and [D2]).

Definition 2 Heterodimensional cycle. We say that f exhibits a heterodimensional cycle if
there are two periodic points q and p of different stable index, such that W*(q) N W#(p) # 0 and
Wt (p) N W2(q) # 0. Given an open set V, we say that the cycle holds in V if p, q and the points
where the stable and unstable manifolds intersect belong to V. In the case that the manifold is three
dimensional then q and p has stable index 1 and 2 respectively.

It is remarkable that for a compact manifold with dimension larger than and equal to three,
there are C''—open sets of diffeomorphisms containing a dense set of diffeomorphisms exhibiting a
tangency and a dense set of diffeomorphisms exhibiting a heterodimensional cycle. On the other
hand, the conjecture states that the systems exhibiting either a tangency or a heterodimensional
cycle are dense in the complement of the hyperbolic ones.

The present paper goes in the direction to prove the conjecture formulated by Palis in the C?
topology for an attracting homoclinic class of a three dimensional C2—diffeomorphisms. Observe
that the conjecture is stated for the whole Limit set and recall that this set is the closure of the
accumulation points of any orbit. Roughly speaking, in this paper we deal with the “attracting
region of the Limit set”. To be precise, first we have to introduce more definitions.



Definition 3 Homoclinic class. Given a periodic point p, we define the homoclinic class associ-
ated to p as the closure of the transversal intersection of the stable manifold of p with the unstable
manifold of p.

Definition 4 Attracting homoclinic class. Given a homoclinic class Hp, we say that Hy, is an
attracting homoclinic class if there exists an open set U such that H, C U and Hp, = Npsof"™(U)

Different kinds of examples of three dimensional attracting homoclinic classes have been found:
the solenoid attractor, the Plykin attractor (both hyperbolic), the Henon attractor (that it can be
approximated by a map exhibiting a tangency; see [BeCal, [V] and [U]), or partially hyperbolic
attractors (which can be approximated by a map exhibiting a heterodimensional cycle; see [M],
[BD] and [BV] for this kind of examples).

Now we can reformulate the conjectured stated by Palis for the context of an attracting ho-
moclinic class in dimension theree : Let f € Diff2(M?3). Let H, = Nysof™(U) be an attracting
homoclinic class associated to a periodic point p, such that all the periodic points in H, are hy-
perbolic. Then, holds: either i-Hp, is hyperbolic; or ii- there erists g Cl—arbitrarily close to f
exhibiting a homoclinic tangency in U; or iii-there exists g C'—arbitrarily close to f exhibiting a
heterodimensional cycle in U.

This problem is discussed in the next subsection.

1.1 “Hyperbolicity” or homoclinic bifurcations.

To prove the reformulated conjecture mentioned above, we consider two cases: either the periodic
point p has index one or it has index two.

Theorem A: Let f € Dif f2(M?3). Let H, = Np>0f™(U) be an attracting homoclinic class associ-
ated to a periodic point p of index one and such that all the periodic points in H, are hyperbolic.
Then, one of the following options holds:

1. Hj is hyperbolic;
2. there exists g C'—arbitrarily close to f exhibiting a homoclinic tangency in U;

3. there exists g C'—arbitrarily close to f exhibiting a heterodimensional cycle in U.

Observe that under the hypothesis of the previous theorem, if the systems cannot be approxi-
mated by onother one exhibiting either heterodimensional cycles or tangencies, then the homoclinic
class is actually hyperbolic. In other words, the statement in this context of homoclinic classes is
stronger than what is stated in the global conjecture. The previous theorem can be improved in
terms of the nature of dominated splitting that the homoclinic class can exhibit and the type of
homoclinic tangency that can be created by perturbation (see theorem F in section 5).

Now we consider the case that p has index two. Before formulating the corresponding theorem,
we need to introduce some definitions.



Definition 5 An f-invariant set A is said to have a dominated splitting, if the tangent bundle
over A is decomposed in two invariant subbundles TAM = E & F, such that there exist C > 0 and
0 < A < 1 with the following property:

|Df|TLE(w)||Df|;‘TEfn(w))| < CA\*, for allz € A,n > 0.

If the bundle TaM is decomposed in more than two directions, i.e.: if TAM = G)i-“zlEi then it is
said that the decomposition is a dominated splitting if for any 1 < j < k — 1 follows that
|Df|759{:1Ei($)||Df|@:’;=j+1Ei(f"(m))| < CN, for iz € Ayn > 0.

This concept was introduced independently by Maiié, Liao and Pliss, as a first step toward
proving that structurally stable systems satisfy a hyperbolic condition on the tangent map. In
some sense, a dominated splitting is a natural way to relax hyperbolicity.

Related to the notion of dominated splitting, there is a well known result proved in [HPS] that
states that for any point z € A there are manifolds WZ(z) and W (z) (not dynamically defined)
tangents to the subbundles F and F respectively (see subsection 2.3.1 for details). If more than
two subbundles are involved in the splitting, it follows that for any subbundle F; and any for point
x € A there is a manifold Wi (z) tangent to F; in . It is natural to ask which is the relation of
this tangent submanifolds with the local stable and unstable manifolds.

To precise, let us first recall the definition of local stable and unstable manifold of size e (where €
is a positive constant):

We(z) ={y € M : dist(f"(y), f"(z)) = 0n — oo, dist(f"(y), f*(z)) < €},

We(z) = {y € M : dist(f"(y), f*(x)) = 0n — —oo, dist(f"(y), /" (z)) < e}.
To be concise, W2(z) and Wk (z) are called the local stable and unstable manifold respectively.

Observe that if A is hyperbolic, then follows that the tangent manifolds to £ and F' are contained
in the local stable and unstable manifold respectively. However, the converse is false: it may happen
that the tangent manifolds are dynamically defined and A is not hyperbolic. Taking into account
this observation, we introduce the next definition:

Definition 6 Topologically hyperbolic sets: Given a compact invariant set A, it is said that
A is topologically hyperbolic if it is mazimal invariant in a neighborhood and exhibits a dominated
splitting E @ F such that the local tangent manifold to E, WF(z), is contained in the local stable
manifold and the local tangent manifold to F, WF (x), is contained in the local unstable manifold.
It this case, it is said that E is topologically contractive and F is topologically expansive.

In other words, it is said that a compact invariant set A is topologically hyperbolic if it is max-
imal invariant (i.e.: A = Ngpez3f"(U) for some neighborhood U; observe that it is not assumed
that A is an attractor) and for each point, the local stable and unstable manifolds are two comple-
mentary submanifolds of size independent of the point. In this case, we also say that the tangent
manifolds are dynamically defined.



Later, in theorem E1, we show that if A is a transitive topologically hyperbolic set, then it is a
homoclinic class and it is conjugated to a subshift of finite symbols. Moreover, in theorem E2 and
E3 we describe the continuation of a topologically hyperbolic homoclinic class for diffeomorphisms
nearby.

In the next theorem, replacing “hyperbolicity” by “topological hyperbolicity” we obtain a ver-
sion of theorem A, for the case that p has index two.

Theorem B: Let f € Dif f2(M3). Let H, = Np>of™(U) be an attracting homoclinic class associ-
ated to a periodic point p of index two and such that all the periodic points in H, are hyperbolic.
Then, one of the following options holds:

1. Hy is hyperbolic with a two dimensional contractive subbundle;

2. H, is topologically hyperbolic and exhibits a dominated splitting E1 ® Eo ® E3 such that, E,
is contractive, Fn @ FEo is topologically contractive and Fs is topologically expansive;

3. there exists g Cl—arbitrarily close to f exhibiting a homoclinic tangency in U;

4. there exists g Cl—arbitrarily close to f exhibiting a heterodimensional cycle in U.

The previous theorem can be improved in terms of the nature of dominated splitting that
the homoclinic class can exhibit and the type of homoclinic tangency that can be created by
perturbation. This result is formulated in theorem G of section 5.

To complete the proof of Palis’s conjecture under the hypothesis of theorem B, it is necessary
to show that if the second item of the thesis holds, then either H, is hyperbolic or there exists g
C'—arbitrarily close to f exhibiting a heterodimensional cycle. Therefore it raises the following
question: given a topologically hyperbolic attracting homoclinic class of a three dimensional Kupka-
Smale diffeomorphisms, and exhibiting o dominated splitting E1 ® Es ® E3 such that F1 @ Fs is
topologically contractive and E3 is topologically expansive; is it true that either the homoclinic class
is hyperbolic or there exists g C'—arbitrarily close to f exhibiting a heterodimensional cycle?

To deal with this problem, first we have to distinguish the cases when the homoclinic class is
genuinely three dimensional or essentially two dimensional. This problem is discussed in the next
subsection.

1.2 Actual “two dimensional” situation.

Even though our ambient manifold is three dimensional, it may happen that the homoclinic class
that we are considering are contained in a two dimensional submanifolds it could turn out that
they are actually two dimensional. In fact, to get examples of this kind a situation, let us consider
an attractor for a surface diffeomorphism f (for instance a Plykin attractor or a Henon attractor),
and then, let us embed this surface inside a in three dimensional manifold in a such a way that
the three dimensional diffeomorphism coincides with f on the surface and such that this surface is
invariant and normally hyperbolic for the new dynamics (see section 3 for precise definitions).



To distinguish the “two dimensional case” from the genuinely higher dimensional case, recall
that in theorem B, the homoclinic class exhibits a dominated splitting 1 @& Fo & E3, such that
E; @ E5 is topologically contractive. This implies that the subbundle E; is contractive: there exist
C > 0and 0 < A <1 such that |Df|’]‘51 :c)l < CA", for all x € A,n > 0. In fact, in proposition 2.7 it
is proved that if Fy ® Es is topologicaliy contractive and Fs is one dimensional, then the subbundle
E is contractive.

This allow us to consider a more general situation that may happen in any dimension. In
fact, in what follows we will discuss the previous problem in any dimension. To do that, we start
with a topologically hyperbolic sets A that has a dominated splitting Ef & E2 & E3 @ E} such
that E{ @ E» is topologically contractive, E3 @ E} is topologically expansive and Eq, E3 are one
dimensional subbundles. In this case, the local invariant manifold tangent to the subbundles E}
and E} (noted WeE i (z) and WEE i (z) respectively) are C!—manifolds usually called strong stable
and strong unstable manifolds. Using these manifolds we define the following sets:

T* ={z € Hy: W (z)\ {z}] N H, # 0};

T™ = {z € Hy : [WeEu(g;) \ {z}] N H, # 0}.

Observe on one hand that Smale’s hyperbolic solenoid attractor is a three dimensional hyper-
bolic attractor (in particular, a topologically hyperbolic attractor) that verifies that 7°° is not
empty. In dimension higher than three, it is possible to get examples where both 7°¢ and T“* are
not empty. On the other hand, the examples that we considered before (a Plykin attractor or a
Henon attractor embedded in a higher dimensional manifold) are examples where the sets 7°° and
T is empty.

If 75 and T"* are empty, from a result proved in [BC], the set A is contained inside a two
dimensional normally hyperbolic submanifold. Observe that in this case, there is no chance to
perturb the system in a way to create a heterodimensional cycle. In fact, if the submanifold
that contains the attractor is normally hyperbolic, it follows that the submanifold is robust by
perturbation and the perturbed homoclinic class is contained in this submanifold. So, for any
g close to f we also have that 7°° = () and 7%% = (. Therefore, it is not possible to get a
heterodimensional cycle for g. In particular, if we want to prove the conjecture in the present case,
we need to show that H), is hyperbolic. More precisely, it is proved the following:

Theorem C: Let f € Dif f2(M) be a Kupka-Smale diffeomorphisms. Let A be a topologically
hyperbolic set exhibiting a dominated splitting E§ ® E2 @ E3 ® E}, such that Ef ® Ey is topologically
contractive, E3 @ E} is topologically expansive and Es, E3 are one dimensional subbundles. If
T%° =0 and T** = 0 then Hp is hyperbolic.

We want to point out that the thesis of previous theorem is false if we assume that only one
of 7°% or T"* is not empty (see subsection 3.1 for an example of this statement). This shows,
that the situation changes qualitative when we move from dimension two to higher dimensions.
In fact, on the one hand observe that any topologically hyperbolic set for a smooth Kupka-Smale
surface diffeomorphisms is hyperbolic (see theorem B proved in [PS1] and its generalization given



by theorem C). On the other hand, there are topologically hyperbolic homoclinic classes for smooth
Kupka-Smale three dimensional diffeomorphisms which are not hyperbolic.

Due to the previous remark, if 7°° is not empty or 7** is not empty, it is naturally to ask
whether either the homoclinic class is hyperbolic or one can create a heterodimensional cycle by
small perturbation. To deal with this situation first it is consider the case that either the interior
of 7% is not empty or the interior of 7"* is not empty; where the interior is taken in the topology
restricted to the set H,. Observe that there are solenoid attractor in dimension three, that verifies
that the interior of 7°° is not empty.

Theorem D: Let f € Dif f'(M). Let Hy, be a topologically hyperbolic homoclinic class ezhibiting
a dominated splitting Ef ® Eo & E3 ® E} such that E; @ Es s topologically contractive, E3 & E}
is topologically expansive and Eq, E3 are one dimensional subbundles. If Hy, is nonhyperbolic and
either the interior of T** # 0 or the interior of T # 0, then there exists g C'—arbitrarily close
to f exhibiting a heterodimensional cycle in U.

In other words, given a topologically hyperbolic homoclinic class, two scenarios can occur: either
we are dealing essentially with a two dimensional system, meaning that the attractor is contained
in a two dimensional submanifold, or the system is essentially higher dimensional. This alternative
is related to the fact that in some sense “the strong manifolds is or not involved in the dynamics”.
When we are dealing with an essential two dimensional situation we prove that the homoclinic class
is hyperbolic. When we are dealing with a “higher dimensional system”, assuming that the interior
of 7°% # () or the interior of 7% # (), we prove that a heterodimensional cycle can be created by
perturbation. I remains the situation that either 7% # () and interior of 7% = () or 7T%“ # () and
interior of 7%* = () (again, we want to point out that it is possible to get examples of this type).

This case is analyzed in [Pu], where it is shown under certain conditopn on the rate of dissipation
that given a three dimensional topologically hyperbolic attracting homoclinic associated to a point
of index two and exhibiting a dominated splitting E; & Eo & E3 with T°° # 0, then either Hp is
hyperbolic or by a C'—perturbation it is created a heterodimensional cycle.

Before ending the subsection, observe that theorems C and D can be applied to the homoclinic
classes that satisfy the second part of the conclusion of theorem B.

1.3 Dynamical properties of topologically hyperbolic maximal invariant sets.

In the last section, we give a better description of the dynamics and structure of topologically
hyperbolic sets (without any restriction of the dimension of the manifold) and we show that even
if the set is not hyperbolic, it is conjugated to a subshift of finite symbols. In fact, we can obtain
the following theorem:

Theorem E1: Let f € Dif fI{(M). Let A be a transitive topologically hyperbolic set of f. Then,
A is a homoclinic class conjugated to a subshift with finite many symbols.

Recall that an important property of hyperbolic sets is that can be continued for nearby systems
(this continuatio is usually called analytic continuation): if A C Q(f) is a hyperbolic set then, for
any nearby diffeomorphism g there is a set A; homeomorphic to A and such that the dynamics of
f/A and g/Ag4 are conjugated. We may wonder if topologically hyperbolic homoclinic classes also



exhibit a unique continuation. In the full generality, the answer is no (see example at the end of
section 3.1). However, some partial results can be obtained.
Let V be a neighborhood of H,,, we define for diffeomorphisms g nearby f the following set:

Ay(V) = Closure(Ninezyg"(V))-

Theorem E2: Let f € Dif f'(M). Let H,, be a topologically hyperbolic homoclinic class. There
exists a neighborhood U of f and V of Hy, such that for any g € U there is a continuous map

hg: Ag(V) — H,p

such that
hgog= fohy.
Moreover, the map g — hg is continuous with g, relative to the uniform topology.

Assuming that A has a dominated splitting £ ® Eo ® F3® E} such that Ef @ E» is topologically
contractive, E3 @ EY is topologically expansive and FEs, F3 are one dimensional subbundles, then
it is possible to show that the map hg is onto and it is possible to get a better description of the
continuation of the homoclinic class for perturbations of the initial system, as we are going to see.

Given a periodic point g, we take A2(g) and A3(g) to be the eigenvalues of D, f"e (ng being the
period of ¢) associated to the subbundles Fy(g) and Es3(q) respectively. Given A2 and A such that
Ao < 1 < A3, we take the set of periodic point

Perxs (F/V) = {g € Per(f) : |ha(g)] < A2, [As(g)] > A3}

Theorem E3: Let f € Dif f(M). Let H,, be a topologically hyperbolic homoclinic class. If H, has
a dominated splitting E{ ® E ® E3 ® Ef such that E{ @ E3 is topologically contractive, E3 ® E} is
topologically expansive and Es, E3 are one dimensional subbundles, then there exists /\(2) and )\g with
0<A <1< )\g such that for any A2, A3 with A\ < g < 1 < A3 < )\g, there exist a neighborhood
U of f, AL, A with A2 < A} < 1 < Al < A3 and a neighborhood V' of H, such that

H,, = Closure(Pery,»; (f/V)) and,

hg : Peryixi(g/V) — Peraya (f/V)
is a homeomorphism. In particular, it follows that hg is onto.

To get this result, it is proved that the periodic points with eigenvalue exponentially far from
1 are dense in H), and it is shown that those points have a well defined dynamical continuation for
any ¢ in a uniform neighborhood of f.

At the end of the last section of this paper, is given a better description of the map h, for

the case that f € Diff2(M3) and H, is a topologically hyperbolic homoclinic class exhibiting a
dominated splitting E{ @ Ep @ E3 such that Ej, E3 are one dimensional subbundles.
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2 Proofs of Theorem A and B.

The strategy of the proofs consists first in showing that if f cannot be approximated by another
system exhibiting a homoclinic tangency, then in the case p has index one, H), exhibits either a
dominated splitting E @ F* with the property that dim(F*) = 2 and F" is an expansive subbundle
or Ty,M = E;, ® E; ® E3. In the case that p has index two, H,, exhibits either a dominated
splitting £° @ F with the property that dim(E°®) = 2 and E* is a contractive subbundle or Ty, M =
E1 ® Es @ Ej3. This is done in subsection 2.1.

In subsection 2.2 it is stated a result proved in [PS3] that shows that if H, exhibits either a
dominated splitting E @ F* with the property that dim(F") = 2 and F™ is an expansive subbundle
or a dominated splitting E° @& F with the property that dim(E®) = 2 and E*® is a contractive
subbundle, then the splitting is hyperbolic.

In subsection 2.3 it is considered the case that H, has a dominated splitting with three subbun-
dles. For the case that p has index one, that under the assumption that H, exhibits a dominated
splitting decomposed in three direction then either the homoclinic class is hyperbolic , or it is
created a heterodimensional cycle by small perturbations. For the case that p has index two, it is
shown that either the homoclinic class is topologically hyperbolic, or it is created a heterodimen-
sional cycle.

To prove these results, it is shown that under the assumption of dominated splitting, then the
local manifolds tangent to £ and E3 are dynamically defined embedded manifolds being contained
in the local stable and unstable manifold respectively. Later, it is shown that the local manifold
tangent to the subbundle Es is either dynamically defined (stable one in the case p has index two
and unstable one in the case that p has index one) or a heterodimensional cycle can be created by
small perturbations. In the case that p has index one, it is actually proved that all the subbundles
are contractive or expansive.

2.1 Systems far from tangencies.

In the sequel, given two diffeomorphisms f and g we say that g is C" — d—close to f if |f —g|. < ¢
where |.| is the usual norm in the C"—topology.
We start by assuming that it is not possible to create a tangency by a C!—perturbation.

Definition 7 Let p be a saddle periodic point and let H, = Ngpsey f™(U) be a mazimal invari-
ant homoclinic class. We say that the homoclinic class is C1—far from tangencies, if there is a
neighborhood U C Dif fY(M3) of f such that any g € U does not exhibit a tangency in U.

Definition 8 Given an f-invariant set A exhibiting a dominated splitting TaM = E® F, it is said
that E (F) is contractive (expansive) if there exist C > 0 and 0 < A < 1 such that |D f|%(z)| <

CA\*, forallz € A,n>0 (|Df|g(’m)| < CA*, forallz € A,n>0).

In the case that H,, is Cl—far from tangencies, we show that H), exhibits a dominated splitting.
More precisely, we show that the tangent bundle is either decomposed in two subbundles E & F
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such that either F or F' has dimension two and they are contractive or expansive respectively, or it
is decomposed in three subbundles F1 @ Fa @& E3. In what follows, any decomposition is assumed
to be dominated.

Theorem 2.1 Let us assume that H, is C'—far from tangencies.
If the point p has stable index one, then one of the next options holds:

1. Ty,M = E © F* with the property that dim(F") = 2 and F* is an expansive subbundle;

2. THPM = FE1® Ey ® Es.
If the point p has stable index two, then one of the next options holds:

1. Tyg,M = E° ® F with the property that dim(E®) =2 and E* is a contractive subbundles;
2. THpM =F1&® Ey D Ejs.

This result follows from techniques introduced in [PS1], [PPV] and in [LW]. First we recall some
definitions: It is said that a hyperbolic periodic point has stable index d if the number of stable
eigenvalues (or eigenvalues with modulus smaller than one) counted with multiplicity is d. It is said
that a dominated splitting £ @ F is a d—dominated splitting if dim(E) = d. The d-preperiodic set
of a C'! diffeomorphism f, is the set of points ¢ for which there is a diffeomorphisms g C' close to
f such that ¢ is a periodic point of g with stable index d.

Theorem 2.2 ([LW]) Let f € Dif f{(M). The following assertions are equivalent:

1. f cannot be C' approzimated by a diffeomorphism exhibiting homoclinic tangencies associated
to a periodic point of stable index d.

2. The closure of the periodic set of f with stable index equal to d, has a d-dominated splitting.

3. The d-preperiodic set of f has a d-dominated splitting.

In our context, if the homoclinic class is associated to a periodic point of stable index one
and by a C!—perturbation it cannot be created a homoclinic tangency, follows from the theorem
2.2 that H), has dominated splitting £ ® F' with dimension of F' equal to two. If the homoclinic
class is associated to a periodic point of stable index two and by a C'—perturbation it cannot be
created a homoclinic tangency, follows from theorem 2.2 that H, has dominated splitting £ & F
with dimension of F equal to two. However, using that we are dealing with a homoclinic class, this
result can be improved. In fact, it is proved that if the subbundle E cannot exhibit a dominated
splitting E; @ E, with two subbundles and f is C1—far from tangencies then E is contractive. The
strategy to prove that goes by contradiction: if the subbundle E cannot be splitted in two one
dimensional subbundles E; @ E» exhibiting a dominated splitting and E is not contractive, then
it can be created a tangency associated to a periodic point with stable index one; i.e.: a tangency
associated to point with one dimensional stable manifold and a two dimensional unstable manifold.
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To precise, we say that E cannot exhibit a dominated splitting with two subbundles or also that F
cannot be decomposed in two subbundles exhibiting domination, if it follows that any decomposition
of F in two subbundles is not a dominated splitting. Related to this, it is proved the following
proposition:

Proposition 2.1 Let f € Diff'(M?). Let Hy, = Mpezf"(U) be a mazimal invariant homoclinic
class associated to a periodic point of stable index two. Let us assume that Ty, M = E & F with
dim(F) = 1 such that E cannot be decomposed into two invariant subbundles exhibiting domination
and f is C'—far from tangencies in U. Then follows that E is contractive

A similar result can be stated for the case that p has stable index one:

Proposition 2.2 Let f € Diff1(M3). Let Hy, = Npezf™(U) be a mazimal invariant homoclinic
class associated to a periodic point of stable index one. Let us assume that Tyg,M = E & F with
dim(E) = 1 such that F' cannot be decomposed into two invariant subbundles exhibiting domination
and f is C'—far from tangencies in U. Then follows that F' is expansive.

Assuming the previous proposition, now we can prove the theorem 2.1.

Proof of theorem 2.1:
To prove theorem 2.1, first observe that theorem 2.2 implies that if p has stable index two, then

Ty,M = E & F with dim(F) = 1.
If p has stable index one, then
Tn,M = E ® F with dim(E) = 1.

To conclude, if dim(F) =1 and E cannot be decomposed in two other subbundles exhibiting
domination, by the proposition 2.1 follows that F is contractive. The case that dim(E) = 1 is
similar.

|

2.1.1 Proofs of proposition 2.1 and 2.2.

We give the proof of proposition 2.1; the proof of proposition 2.2 is similar. We prove the proposition
2.1 assuming that the thesis is false. The goal is to show that if the thesis is false then we can
create a homoclinic tangency. First we introduce the notion of angle of two vectors:

Definition 9 Let v and w be two vectors of RE. It is defined the angle a(v,w) as the unique
positive number in [0, 5] such that

cos(a(v,w)) =

where < .,. > is the internal product induced by the riemanniam metric. Given two one-dimensional
subspaces, it is defined the angle between them as the angle between two generators.
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It is used the following lemma, which is a simple yet powerful perturbation technique (in the
C! topology). This results says, for instance, that any small perturbation of the linear maps along
a periodic orbit can be realized through a diffeomorphism C!—nearby:

Lemma 2.1.1 [Fr, Lemma 1.1] Let M be a closed n-manifold and f : M — M be a C' diffeo-
morphism, and let U(f) a neighborhood of f. Then, there exist Up(f) C U(f) and § > 0 such
that if g € Uo(f), S C M is a finite set, S = {p1,p2,...Pm} and L;, i = 1,...,m are linear maps
Li : Ty, M — Ty M satisfying || L; — Dp,g|| < 6,7 =1,...,m then there exists § € U(f) satisfying
9(pi) = g9(pi) and Dp, g = L;, i = 1,...,m. Moreover, if U is any neighborhood of S then we may
chose § so that §(xz) = g(z) for all x € {p1,p2...Pm} U (M\U).

A s a consequences of this result, given a periodic point p and a perturbation of its derivative
along the orbit of p, follows that the perturbation of the derivativer can be realized as the derivative
as a perturbation of the initial map and keeping the orbit of p.

Now we introduce a lemma that states that if the thesis of proposition 2.1 is false, then for small
C'—perturbation it can be obtained a periodic point such that its derivative has two contractive
eigenspaces exhibiting a small angle and with one contractive eigenvalue of modulus close to one.

Lemma 2.1.2 Let us assume that the thesis of proposition 2.1 is false. Then, given vy > 0, § 1 > 0,
82 > 0 there exists a saddle periodic point q of f and a diffeomorphism g C' — 61— close to f such
that q is a periodic point for g such that

1. q has two different real contractive eigenvalues;
n,
3. a(Ef(q), E3(q)) <

where ng is the period of ¢ and E5(q), E5(q) are the two stable eigenspace associated to the two real
contractive eigenvalues of Dgf™e.

We postpone the proof of the lemma to the next subsection. The following lemma states that
assuming the thesis of the previous lemma we can create a tangency by a small C!—perturbation.

Lemma 2.1.3 Let us assume that the thesis of lemma 2.1.2 holds. Then, there is g C'— close to
f exhibiting a homoclinic tangency associated to a periodic point q with stable index one.

Proof: If there is a point g as in the thesis of lemma 2.1.2, using the lemma 2.1.1 we can perform
a Cl—perturbation to get a new system g such that ¢ remains periodic for it and such that for
Dgg™a it is verified that:

1. the directions F3(q) and Ej(q) remains invariant,

2. the modulus of the eigenvalue associated to the direction E3(g) become larger than one,
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3. the modulus of the eigenvalue associated to E7(q) is smaller than one.

So, the periodic point g for g has a local stable manifold of dimension one and a local unstable
manifold of dimension two such that the angle between both local manifold is small. By lemma
2.2.2 proved in [PS1], it is possible to create with a new perturbation, a tangency between the
mentioned manifolds.

|
So, to finish the proof of proposition 2.1 is enough to prove the lemma 2.1.2.

Proof of lemma 2.1.2.

To prove the lemma, we state a result proved in [PPV] (see proposition 2.3). Roughly speak-
ing, this result states that if F is not uniformly contractive then there is a periodic point in the
homoclinic class with rate of contraction close to one.

Definition 10 Given two hyperbolic periodic points, it is said that they are homoclinically related
(or homoclinically connected) if the stable manifold of each point intersects transversally the unstable
manifold of the other periodic point.

Proposition 2.3 ([PPV]) Let f € Dif f2(M3) and H, a homoclinic class associated to a periodic
point of stable index two and such that Ty,M = E ® F with dim(F) = 1. If E is not uniformly
contractive then for any § > 0 and m > 0 follows that there is a periodic point ¢ € Hy, with period
ng such that

1. q is homoclinically related with p,
2. (1=8)" < |Dflgpl <1,
3. ng >m,

where E*(q) is the stable eigenspace associated to Dgf™a.

Now we continue with the proof of lemma 2.1.2. Let us consider the set of periodic points such
that they have two contractive real eigenvalues. Let us call E5(q) and E3(q) the two eigenspace
associated to the two contractive eigenvalues, and let us assume that the absolute value of the eigen-
value associated to E3(qg) is smaller and equal than the absolute value of the eigenvalue associated
to E5(q)-

Given § > 0, let us consider the set Ps formed by periodic points g1 € H, such that

(1 -8 < |Df|’};;(ql)| <1 for some 0 < &' < 6,

where ng, is the period of ¢;.
We have to consider three different situations:

e Case 1. For any ¢ small Py is infinite and for any 0 < A < 1, any positive integer ng and
6 > 0 there is g1 € Ps and m > ng such that

[ Df™(E5(q1))]

D (B(a)|
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e Case 2. For any é small Py is infinite and there is 0 < A < 1 and a positive integer ng such
that for every 6 > 0 and ¢; € P; follows that E5(q1) (A, no)—dominates E3(q1); i.e.:

|Df™ (B} (£ (a1)))]

D (B (f )] =

for any j > 0.

e Case 3. There is dg such that for any ¢ < Jy the set Py either is finite or empty.

Case 1.

In the first case, it is proved that after a C!—perturbation we can get a new periodic point
exhibiting two subbundles with small angle and one eigenvalue close to one. In fact, first it is used
the following folklore lemma (the proof it can be found in [M1]):

Lemma 2.1.4 Let us assume that for any 6 the set Ps is infinite and does not exhibit a dominated
splitting. Then, for any v > 0 there is g C1—arbitrarily close to f exhibiting a periodic point q with
arbitrarily large period ng and such that

1. (1 - 5)nq < |Df|rgls(q)| < 1 and
2. a(E5(q), E3(q)) < -

Observe that it may happen that (1 — §)™ < |D f|Tg’s(q)| < 1 and |D f|7gs(q)| < As? for some

2
As < 1. In other words, the eigenvalues in the stable direction are much smaller than the norm in
this direction. In this case, we perform another perturbation to conclude the proof of lemma 2.1.2.

Lemma 2.1.5 Let us assume that the thesis of lemma 2.1.4 holds. Then there is g C'—close
to f exhibiting a periodic point q with large period such that (1 — §)™ < |Df % )| < 1 and

|E5(q
a(Ef(9), E5(q)) < 7

As a consequences of the previous lemma, follows that lemma, 2.1.2 is proved in the case that Py is
infinite and it has not dominated splitting. So, to finish in this case, we have to give the proof of
lemma, 2.1.5.

Proof of lemma 2.1.5:
Let us consider the basis B in E*(q) given by two orthonormal vectors v1, v such that v1 € Ej(q).

Let B; basis in E*(f%(q) given by D) and an orthonormal vector to it.

: |D f#(v1)]
Let A; = Df : E*(f"!(q)) — E*(f%(q)) and in theses basis we can assume that:
o ki
=[5 5]

Observe that

ng . g o [0 k
Dfige(q) = Wizadi = { 0 3 }
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since we are assuming that there exists A\s; < 1 such that for any ¢ follows that |D f|7115“1f(q)| <

|Df |ng(q)| < As? (otherwise there is nothing to prove) then

la] < A5%, 8] < Mg, (1 =8 < |k| < 1

Let us take € > 0 and § > 0 small. Let us consider the following linear maps which are small
perturbations of the maps A;:

PR E 2}
B;=| ' 7170 | 1<i<n-2
' [ 0 G } =t=nTs
B, | = |: Op—1 kn—l%g :|
" € /Bn—l
So, A
_mep—| @k
B =145 [ ae ke+f ]
where

146
(1+8) <k < (1%6)%.

Then, taking

1-6 r

1+6

holds that one of the eigenvalues of B is close to one and the eigenspaces has small angle. By lemma

2.1.1, the linear maps B; can be realized as the derivative along the orbit of ¢ of a perturbation of
f- This conclude the proof of lemma 2.1.5.

e<(

||
Case 2.

The second case (i.e.: the set Ps is infinite and it has dominated splitting) is more delicate. For
that, we need another two lemmas that basically state that assuming that if the subbundle F is
not contractive and it cannot be decomposed in two one dimensional subbundles with domination,
follow that it is possible to get two periodic points g2, g3 homoclinically related such that:

1. the eigenvalue of Dfu? (where ng, is the period of ga) associated to the subbundle E is a
complex eigenvalue;

2. Dfp3 (where ng, is the period of g3) has two eigenspaces with small angle.

Observe that for the points g2 and ¢3 it may occur that the rate of contraction of Df in the
subbundle E is exponentially far from one (i.e.: for any pair of points ¢; and g2 as the one selected,
the rate of contraction is smaller than some A; smaller than one). However, using that there is
another periodic point g; such the rate of contraction of Dg, f*« in the direction E for g is close to
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one (see proposition 2.3) and that the three periodic points (g1, ¢2,¢3) are homoclinically related,
follows that we can get a another periodic points verifying the thesis of the lemma 2.1.2.

We start enunciating the following lemma which is the proposition 2.1 proved in [BDP] (page
376).

Lemma 2.1.6 Let H, be a homoclinic class exhibiting an splitting E®F with dim(E) = 2 and such
that E does not exhibit a dominated splitting with two subbundles. Then there is a diffeomorphisms
g Cl'—close to f having a periodic point q with contractive complex eigenvalue and homoclinically
related with p.

The next lemma, is a folklore one and a proof of it can be found in [DPUJ.

Lemma 2.1.7 Let q be a periodic point with complex eigenvalue and let us assume that there is a
transversal intersection of the stable and unstable manifold of q. Then, for any v > 0 then there is
a diffeomorphisms g C'—close to f, a periodic point ¢' of f such that ¢ is homoclinically related
with q, q' is a periodic point for g and a(E$(q'), E5(q')) < .

First, we take a point ¢o in the condition of lemma 2.1.6, i.e.: g2 has a complex contractive
eigenvalue and exhibiting a transversal intersection of their invariant manifolds. To continue with
the proof, we use the next lemma usually called C!'—connecting lemma:

Lemma ([H]): (C'— connecting lemma:) Let f € Dif f"(M™) and let p be a periodic point such
that there are a point x in the unstable manifold and y in the stable manifold, a sequence of points
&, accumulating in x and points f*»(z,,) in the forward orbit of the sequences x,, accumulating on
y. Then, there is a diffeomorphisms g C'—close to f such that p remains periodic for g, x is in
the unstable manifold, y is in the unstable manifold and y is in the forward orbit of x.

Now, using the C'—connecting lemma it is possible to perturb f in such way that ¢; and g
are homoclinically related (recall that ¢; is a point in Ps). Then, also follows that the unstable
manifold of g9 intersects the stable manifold of g5. Now, we introduce a second perturbation to
get a point g3 that verifies the thesis of lemma 2.1.7. Observe that the points ¢1, g2 and g¢3 are
homoclinically related. Using that, we prove that we can get a new periodic point g such that

2. a(E$(q), E5(q)) is small.

In fact, we take three neighborhood Vi, Va2 and V3 of the orbit of g1 g2 and g3 respectively (in what
follows we can assume that these points are fixed) and we can assume that for each neighborhood
V; follows that Dfjy, = Df(g:). Using that the three periodic points g1, g2, g3 are homoclinically
related follows that we can get a periodic point ¢ with period ng + k3 +n} + ki + ny + k1 +n3 + k2
such that

1. n1,nd, n3,n are arbitrarily large,
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2. ki,k3, ks, k2 are bounded by some kg independently of the election of n1,n3, n3,n3,
3. fi(q) € V3 for 0 < j < ng,
4. fi(q) € Va for ng + ks < j < n3 + ks + nd,
5. fi(q) € Vi for ng + ks +ni + k3 <j<ng+ks+nl+kl+n
6. and fI(q) € Va for ng + ks +ny + k3 + n1 + k1 < j < ng + ks +nd + k) + n1 + k1 + n3.
We consider the following linear maps
A1 =Df(q1) : TyM — Ty, M; Ay = Df(qe) : Ty, M — Ty, M

A3 = Df(q;;) : T%M — TV3M
Tso = Df¥s : Ty, M — Ty, M; Toy = Df*s : Ty, M — Ty, M

Tia = Df* : Ty, M — Ty, M; Tog = Df* : Ty, M — Ty, M

See figure 1.

Figure 1

We consider the vectors wq, wa such that wy € Ej(q3), wa € E5(g3). Assuming that the complex
eigenvalue has irrational imaginary part (if it is not the case with a small perturbation it would
be the case), we can take n} and an small perturbation of T; (we keep the same notation for the
perturbation) such that

1
To1 A Tso(we) € E5(q1)
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Moreover, we can take an small perturbation of Ths (let us remain calling it T3) and n2 such
that for any n; follows that

2 1
T23A72LZ T12A71L1 TQlAgz T3o (w2) € E; (q3)

In other word, follows that the direction E5(q) is invariant for
nj ni ny
T3 Ay*T12 AT T51 A5 T30

1 1
Observe that a(Ts1 Ay>Ts2(ws), T21 Ay>Ta2(w1)) is small.
1
Since To1 Ay>Ts2(ws) € E5(q1) and E3(q1) is dominated by Ej(q1), follows that

1 1
a(AT1T21A;2T32(w1), A?1T21A32T32(w2)) <7

with v being small. Then we can get another small perturbation of 753 such that

2 1
T23A;2 leA?l T21A;l2 T3 (wl) € ES (Q1)

So, we obtain a new linear map close to the initial one such that has two eigenspaces with small
angle. Moreover, if n; is chosen larger than the others, follows that the new linear map that has
rate of contraction along w; and ws close to one. Again by lemma 2.1.1, the linear maps B; can
be realized as the derivative along the orbit of ¢ of a perturbation of f.

Case 3.

If it follows that for some §g holds that for any § < &g that Py is empty or finite, by proposition
2.3 follows that there is a periodic point ¢ having a contractive complex eigenvalue with modulus
close to one. By lemma 2.1.7 we get a periodic point with two contractive real eigenvalues and such
that their stable eigenspaces has small angle. Moreover, we can assume that this periodic point
expends a large part of its orbit close to the periodic point ¢ and so its the rate of contraction is
also close to one. Then, we can apply the lemma 2.1.5 to conclude.

|

2.2 Case that either Ty, M = E°® F or Ty, M = E ® F".

First we consider the case that either Ty,M = E* ® F or Ty,M = E & F". In these situations
is proved that H), is hyperbolic. To do that, we use a theorem proved in [PS4] that studies the
dynamical consequences of a codimension one dominated splitting.

Theorem 2.3 Let f € Dif f2(M™) be a Kupka-Smale system. Let A be a compact invariant set
contained in a homoclinic class such that ezhibits a dominated splitting Ty, M = E* @ F where E*
is contractive and dim(F) = 1. Then A is hyperbolic.

The central argument follows from the fact that F' has dimension one and the complementary
subbundle is contractive. This allows to perform similar argument developed in [PS1]. In [Z] similar
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results was obtained: in the mentioned paper was proved that given a topological minimal compact
invariant set A such that exhibits a dominated splitting Ty, M = E° ®@ F' where E® is uniformly
contracted and dim(F') = 1 follows that F' is hyperbolic.

Applying theorem 2.3 to our context, we get the next two corollaries:

Corollary 2.1 If Ty,M = E° © F with dim(E®) = 2, then H, is hyperbolic. If Ty, M = E @ F*
with dim(F*) = 2, then H), is hyperbolic.

Corollary 2.2 Let f € Dif f2(M3) be such that Ty,M = Ey ® E2 ® E3. If Es is hyperbolic, then
the homoclinic class is hyperbolic.

The last corollary is immediate and holds in the following way: if Es is contractive, by domi-
nation holds that E; is also contractive. Then we are in the presence of a contractive codimension
one dominated splitting and we can apply the theorem 2.3. If E5 is expansive, by domination holds
that Ej3 is also expansive. Then we are in the presence of a expansive codimension one dominated
splitting and we can apply the theorem 2.3.

2.3 Case that Ty, M = E, ® E, ® Es.

To finish with the proofs of theorem A and B we have to deal with the case i.e.. Ty, M = E1 ©
Ey ® E3. The rest of the section is devoted to deal with this situation. The study in this case goes
through different steps:

Step I: First, we conclude that under the assumption that H,, is a maximal invariant set, the local
tangent manifold of the extremal subbundles (E; and E3) are dynamically defined. More precisely
we show that the local tangent manifold to the subbundle E; and F3 are stable and unstable
manifolds respectively. This is the statement of theorem 2.4 and it is formulated in the subsection
2.3.1.

Step II: Using that the local tangent manifold associated to the extremal subbundles are dynam-
ically defined, it is proved that if the center subbundle is not hyperbolic, then there are periodic
points homoclinically related with p such that the eigenvalue associated with the center subbundle
(the subbundle E») is close to one. This is the theorem 2.5 and it is formulated in the subsection
2.3.2. This theorem is a reformulation of the proposition 2.3 stated in section 2.1.

Step III: We consider independently the case where the periodic point p has either stable index
one or stable index two. In the case that p has stable index one, using the connecting lemma
and the fact that we are dealing with an attractor, it follows that if H), is not hyperbolic then it
is possible to get an intersection between the tangent manifold to the extremal subbundles of a
periodic point with central eigenvalue close to one. From this, the periodic point is bifurcated in
a way to obtain a heterodimensional cycle. This is done in subsection 2.3.3. The next step deals
with the case that p has stable index two.

Step IV: In the case that the periodic point p has stable index two (see subsection 2.3.4), first
we study the dynamical behavior of the manifold tangent to the center subbundle. If the center
manifold (the one tangent to Es) is not a stable manifold then it is proved that by a C!— pertur-
bation it is obtained a periodic point with center eigenvalue close to one and such that the tangent
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manifold associated to the extremal subbundles (which are a local stable and unstable manifold)
has an intersection. From this, the periodic point is bifurcated in a way to obtain a heterodimen-
sional cycle (see subsection 2.3.4). If the local manifold tangent to the center subbundle is a stable
manifold follows for every point there are two transversal complementary dynamically defined local
manifold of uniform size: one is a two dimensional local stable manifold and the other is a one
dimensional unstable manifold. In other words, we had proved that H, is topologically hyperbolic.

2.3.1 Dynamical behavior of the tangent manifolds associated to the extremal sub-
bundles.

First, we state the existences of manifolds tangent to each subbundle of the dominated splitting.
Recall by [HPS] that there are 1—dimensional manifolds W% (x) tangents to each E;. More precisely,
let us define first I; = (—1,1) and I, = (—¢, €), and denote by Emb'(I1, M) the set of C'-embedding
of I on M.

Lemma 2.3.1 For each subbundle E; there ezists a continuous functions ¢' : H, — Emb'(I1, M)
such that for any x € Hy, it is defined WFi(z) = ¢'(z)I. and verifies:

1. T,WFi(z) = E;(z),
2. if f(WFi(x)) C Be(f(x)) then f(WEFi(z)) ¢ WFi(f(z)),
8. if fTI(WEi () C Be(f7' () then f1(WFi(x)) ¢ WE(f7 ().

The previous lemma does not state any dynamical meaning for the tangent manifold. Recall
the definition of local stable and unstable manifold of size € given in the introduction.
With this definition in mind, we say that the tangent manifold W is dynamically defined if there
exists, €1 > 0 and ez > 0 such that for any x € H, follows that

WEhs(z) c W2 (z).

In the same way, we say that Wt is dynamically defined if there exists e; > 0 and €3 > 0 such
that for any x € H,, follows that
WE (z) c WE (z).

In this case, we call W3 and W/ the strong unstable and strong stable manifolds respectively.
Without loose of generality we can assume that e; = e = €. Observe that in this case the tangent
manifolds are unique.

The next theorem states that assuming that the system is C2? and the homoclinic class is
maximal invariant set follows that the tangent manifolds associated to the extremal subbundle are
dynamically defined. The theorem is a consequences of a result stated in [PS4] and holds in any
dimension assuming that the extremal subbundles are one dimensional. The precise statement of
this theorem is formulated in next section.
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Theorem 2.4 Let f € Dif f2(M3). If H, is a mazimal invariant homoclinic class exhibiting a
dominated splitting with three subbundles Ty, M = E1 ® E2 ® E3, then there exists € > 0 such that
WEL and WEs are dynamical defined.

Remark 2.1 Observe that we are not assuming in this case that the homoclinic class is an attrac-
tor.

As a consequences of the previous theorem we can get the next lemma that it shows that either
the periodic points in the homoclinic class has the same stable index or it is possible to get a
diffeomorphisms arbitrarily close to the initial one exhibiting a heterodimensional cycle.

Lemma 2.3.2 Let f € Dif f2(M®) and let H, = Ninezy f™(U) be a mazimal invariant homoclinic
class ezhibiting a dominated splitting with three subbundles Ty, M = Ey ® E2 ® E3. Then, one of
the following options holds:

1. there exists a neighborhood U of H,, such that all the periodic points in U has the same stable
index;

2. there is g C' arbitrarily close to f exhibiting a heterodimensional cycle.

Proof:

Let us assume that the point p in the homoclinic class has stable index two. We have to show that
all the periodic points in the neighborhood U has stable index two. If it is not the case, we have to
show that we can C''—approximate f by another diffeomorphism g exhibiting a heterodimensional
cycle. If there exists a periodic point g of stable index one in a small neighborhood of Hp, from the
fact that the homoclinic class is maximal invariant, follows that it is contained in H,. Since we are
assuming that the homoclinic class exhibits three subbundles, follows that any intersection of the
stable and unstable manifold of p is a transversal intersection. Then, there is a sequences of points
gn of stable index two homoclinically related to p and accumulating on g. Due to the fact that the
strong stable manifold has uniform size for any point g, close to g follows that the strong stable
manifold of them intersects transversally the unstable manifold of q. Let us take a point ¢’ of the
sequences ¢,. Observe that the intersection of the stable manifold of ¢’ with the unstable manifold
of ¢ is robust by perturbation.

From the fact that ¢ is in Hj, and it has stable index one (the local stable manifold of g is one-
dimensional), follows that there are points in the homoclinic class that accumulates in the stable
manifold of the point ¢. Since H, is an attractor, the unstable manifold of ¢’ is contained in H,
and so there exist a point in H, with orbit accumulating in the unstable manifold of ¢’ and in the
stable manifold of ¢. So, using the connecting lemma, we get that with a C'—perturbation it is
possible to connect the unstable manifold of ¢’ with the stable manifold of q. Then it was created
an heterodimensional cycle involving q and some ¢’ close to q.

The case that p has stable index one is treated in the same way.

So, from now on, we assume that all the periodic points in U has the same stable indez.

At this point, we consider two cases:
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e Theorem A: The periodic point p has stable index one,

e Theorem B: The periodic point p has stable index two.

Before to deal with both situation, we need some results proved elsewhere. We enunciate these
results in the next subsection, and in the subsections 2.3.3 and 2.3.4 we return to both cases
enunciated above.

2.3.2 Previous results.

First, we start reformulating the proposition 2.3 to the case that the splitting has three subbundles.
The present reformulation states that under the assumption of dominated splitting over a homo-
clinic class for a C? diffeomorphisms in a three dimensional manifold, holds that if the subbundle
E» is not hyperbolic then there are periodic points contained in H, and homoclinically related to
p such that the eigenvalue associated to the center subbundle is close to one.

Theorem 2.5 ([PPV]) Let f € Dif f2(M3) and let H, be a homoclinic class ezhibiting a domi-
nated splitting Ty, M = FE1 ® Ey ® Ej.

e If p has stable index two and the subbundle Ey is not hyperbolic, then for any & > 0 there
ezxists a periodic point ¢ with period ng and homoclinically related to p such that (1 — §)™ <
|D fﬁé’z( q)| < 1 (in this case we say that q has 6—weak contraction along the center direction).

e Ifp has stable index one and the direction Ea is not hyperbolic, then for any § > 0 there exists
a periodic point g with period ng and homoclinically related to p such that 1 < |D f|rg’2(q)| <
(1+96)" (in this case we say that q has 6—weak expansion along the center direction).

This version follows immediately from the proposition 2.3 and from the fact that we are assuming
that all the periodic points in the homoclinic class has the same stable index. For instance, in the
case that p has stable index two, and the homoclinic class is not hyperbolic, from proposition 2.3
follows that there is a periodic point with weak rate of contraction along the subbundle E; @ Es.
Since the angle between both subbundle is uniformly bounded from below and from the domination
property, follows that

|DfE,0E,| = max{|Dfg, |, |Dfir,|} = |D fiE,|
and therefore follows the previous theorem.

It is important to remark that the previous theorem is not a perturbation theorem. More
precisely, the theorem 2.5 shows that the obstruction of the hyperbolicity (in the context that we
are considering) come from the existences of periodic points with eigenvalues close to one in the
center direction.

An immediate corollary is the following result:

Corollary 2.3 Let f € Dif f2(M3) and let H, be a homoclinic class exhibiting a dominated split-
ting
Ty,M = E1 ® E2 © Ej3
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e If p has stable index two and the subbundle Eo is not contractive, then for any § > 0 the
periodic points erhibiting §—weak contraction are dense.

e If p has stable index one and the subbundle E2 is not expansive, then for any 6 > 0 the
periodic points echibiting d—weak expansion are dense.

In fact, to conclude this corollary from the theorem 2.5 it is enough to recall that the point
point ¢ with weak contraction (expansion) is homoclinically related to the point p. So, taking any
point x in the homoclinic class, we can approximate it by a periodic point z homoclinically related
to p and so homoclinically related to q. Then, we can take periodic points in horseshoes that
contains z and q with the property that they accumulate on z but they expends more time close
to g. So, these points have a weak contraction (expansion) along the center direction. This kind of
arguments are folklore (see for instance [BDP]) and we state it here for sake of completeness. To
be precise, we get the following lemma:

Lemma 2.3.3 Let f € Dif f*(M) having two periodic points q and qs such that there are homo-
clinically connected and such that qs has g—weak contraction along the center direction. Then, for
any r > 0 there is a periodic point g5 homoclinically connected with q such that dist(q,q5) < r and
qs has 6—weak contraction along the center direction.

For some periodic points in the homoclinic class follows that they exhibits a transverse inter-
section of its stable and unstable manifold. If this intersection holds along the strong stable and
unstable manifolds we say that there is a strong homoclinic connection:

Definition 11 Strong homoclinic connection. Given a periodic point q, we say that it has a
strong homoclinic connection if the strong stable and strong unstable manifolds of q has an inter-
section.

Now, let assume that there is a periodic point with weak contraction (expansion) along the center
direction and also exhibiting a strong homoclinic connection. In this case, after a C! perturbation,
it is possible to show that it is created a heterodimensional cycle.

Proposition 2.4 Given &g > 0, there exists § such that if there is a periodic point with é—weak
contraction (expansion) along the central direction and exhibiting and strong homoclinic connection,
then there is g C' — 6g—close to f exhibiting a heterodimensional cycle.

The proof of this proposition is given in section 2.4.

Now we reformulate a lemma proved in [H| and already to stated in previous subsection, that
allows to connect the strong stable and unstable manifolds when they are orbits that accumulates
on both manifolds.

Lemma ([H]): (C'— connecting lemma:) Let f € Dif f"(M"™) and let p be a periodic point such
that there are points x in the strong unstable manifold and y in the strong unstable manifold, a
sequence of points T, accumulating in © and points f*»(z,,) in the forward orbit of the sequences
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accumulating on y. Then, there is a diffeomorphisms g C'—close to f such that p remains periodic
for g, x is in the strong unstable manifold, y is in the strong unstable manifold and y is in the
forward orbit of x.

2.3.3 Proof of Theorem A: p has stable index one.

In this case, we show that if the homoclinic class is not hyperbolic then we can get a heterodimen-
sional cycle.
First, we get the following proposition (the proof of this proposition is given in section 2.4):

Proposition 2.5 Let H, be an attracting homoclinic class associated to a periodic point of stable
index one and ezhibiting a dominated splitting Ty, M = E1 ® E2 ® Es. If Hy is not hyperbolic, then
for any & > 0 there exists g C'—close to f and a periodic point q with §—weak expansion along Eo
such that q exhibits and strong homoclinic connection.

Assuming proposition 2.5, we use proposition 2.4 to finish the proof of the theorem A.

2.3.4 Proof of Theorem B: p has stable index two.

We consider two situations: either the center manifold is dynamically defined or it is not the case.
More precisely, we say that W2 is dynamically defined if there exist € > 0 and y > 0 such that
for any x € Hj, follows that

L frWEF(z)) C Wi (f*(z)) for any n > 0,
2. L(f*(WE2(z))) = 0 as n — oo.

In other words, we are saying that W/2(z) is dynamically defined if it is contained in W35(z) for
some ¢ > 0. We can assume that ¢ = v =e.

Related to the previous option (if the center manifold is either dynamically defined or not) we get
the following proposition (the proof of this proposition is given in section 2.4):

Proposition 2.6 Let f € Diff>(M?3). Let H, be an attracting homoclinic class associated to a
periodic point of stable index two and ezhibiting a dominated splitting Ty, M = E1 ® E2® E3. Then,
one of the following option holds

1. Case B.1: for any § > 0, there is a periodic point q with §—weak contraction along Eo such
that

W (@) \ {a}] N Hy # 0

In this case we say that the homoclinic class has a point in the strong stable manifold of the
point q.

2. Case B.2: the local manifold WE2(z) tangent to E is dynamical defined.
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It is important to remark that there exist robust example of both situations.

Case B.1.
In this case we have that for any § > 0 there exists a periodic point ¢ homoclinically related to
p such that

1. (1-90)™ < |Dg|rg2(q)| < 1 where ny is the period of g,

2. [WFi(¢)\ {g}] N H, # 0 (i.e.: the homoclinic class has a point in the strong stable manifold
of q).

Then for any 6 > 0 using the C'!'—connecting lemma, we get that by a C!' —perturbation follows
that there is ¢ C'— close to f with a periodic point g which §—weak contractive along E and
exhibiting a strong homoclinic connection.

Using the proposition 2.4 follows the existence of a heterodimensional cycle and so finishing the
proof of theorem B in the case Bl, i.e.: we finished showing the existence of a heterodimensional
cycle in the case that the homoclinic class is not hyperbolic and the center subbundle is not
dynamically defined.

Case B.2.: W2(z) is dynamically defined. H, is topologically hyperbolic.

At this point the theorem B is concluded showing that H), is topologically hyperbolic. We give
other properties that the splitting satisfies.
Recall that in this case we are assuming that the center manifold tangent to Ey is dynamically
defined. Under this assumption, we get the following proposition (the proof of this proposition is
given in section 2.4):

Proposition 2.7 Let A be a compact invariant set exhibiting a dominated splitting E1 @ Eo ® E3®
E4. If E1 & E5 is topologically contractive, and Fa is one dimensional then it follows that F1 is
contractive. If E3 @ Ey4 is topologically expansive, and Es is one dimensional then it follows that
E, is expansive.

Applying the previous proposition to the case B.2., follows that taking £ = E1® FEs and F = Ej3
then for any point x € H, there is a stable and unstable manifold of uniform size tangents to E
and F respectively. The manifold tangent to E; is used to be called the strong stable manifold; the
manifold tangent to Eo, the center manifold; the manifold tangent to Fq @ FE», the center-stable
manifold; the manifold tangent to F3, the unstable manifold; the manifold tangent to Es & FEj,
the center-unstable manifold. In the present context, follows that the center-stable manifold is
contained in the local stable manifold.

Remark 2.2 From the fact that the dominated splitting is decomposed in one dimensional subbun-
dles, we can assume that there is an adapted metric such that the constant of domination is A < 1
and C = 1. Moreover, we can assume that there is As < 1 such that

|Df|E1| < Xg.
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2.4 Proof of propositions and theorems of subsections 2.3.1, 2.3.3, 2.3.4.

First, we appeal to some results and definitions proved in [PS4] for “codimension one dominated
splitting”. It what follows with (1) it is denoted the usual length of an arc I.

Definition 12 Let f : M — M be a C? diffeomorphism and let A be a compact invariant set having
dominated splitting E & F with dim(F) = 1. Let U be an open set containing A where is possible
to ertend the previous dominated splitting. We say that a C?-arc I in M (i.e, a C?-embedding of
the interval (-1,1)) is a §-E-arc provided the next two conditions holds:

1. f*(I) C U, and £(f™(I)) <4 for alln > 0.

2. f™(I) is always transverse to the E-subbundle.

Related to this kind of arcs it is proved in [PS4] the following result.

Theorem 2.6 There exists dg such that if I is a 6-E-interval with § < &g, then one of the following
properties holds:

1. w(I) = Uggenw(z) is a periodic simple closed curve and fie:€¢—=C (where m is the period
of C) is conjugated to an irrational rotation,

2. w(I) C J where J is a periodic arc.

Now we can proceed to show how the theorem 2.4 follows from the previous result.
Proof of theorem 2.4:

First, we prove that the local manifold tangent to F3 is an unstable manifold. We start showing
that there exist € > 0 and y > 0 such that f~"(WF(z)) c W, (f~"(z)).

Let us assume that this is not the case. So it follows that there are a positive number =, a
sequences of positive numbers ¢, — 0, points x, and a strictly increasing sequences of positive
integers k;,, such that

Lf(WEE (2n)) =

and
LfIWE(2n)) <v 0<j < kn.

Taking
I= lim [~ (W2 (zn))

n—+o0o
follows that I does not growth for positive iteration and it is transversal to Fy @ FEy; i.e.: I is a
v — E; @& Eg—arc.
Then, we can apply theorem 2.6 and follows that either w(I) is a periodic curve with dynamic
conjugated to an irrational rotation or it is contained in a periodic arc. Both situation cannot hold
inside a homoclinic class.
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To prove that £(f " (WZF3(z))) — 0 as n — oo we repeat the same argument. In fact, if it is not
the case, we can find an arc I transversal to F; @ E» that does not growth by positive iterations
and the same conclusion is obtained.

To show that WP is dynamically defined, we take f~! and it is done the same argument
changing backward iterations by forward iterations.

[ |
Proof of lemma 2.3.3:

To prove the lemma, observe that using that ¢ and gs are homoclinically related, follows that
there is a horseshoes containing ¢ and g5. Moreover, we can take two small neighborhoods W and
Ws of ¢ and g5 respectively such that there exists two positive integers k1 and ko and for some
positive integers n and ng arbitrarily large, there exists a periodic point z such that

1. the period of z is n + k1 + ns + k2,
2. for any 0 < i < n follows that f’(z) € W and we can assume that 1D fim(ria)| < Ag < 1,

3. for any 0 < i < ng follows that f"t*1+¢(2) € W5 and we can assume that

1)
1— 5 < |Df|E2(f"+k1+i(z))| <1

Observe that for any r > 0 there is n = n(r) such that the corresponding periodic point z has
an iterate such its distance to ¢ is smaller than r.

To see that z is §—weakly contractive along the E» direction we proceed as follows:

Observe on one hand, that there is a positive constant C' such that

C ' <|Dgfp, Il <C, C'<|Dgz|<C.
So, given the periodic point z follows that
6
—2 n n n+ki+ns+k 2 n n 2 n
C D flgy(2(1 — 5) * < |Df|E2(zl) <O |Df|E2(z)||Df|E62(fn+k1(Z))| < C%ID f{gy (|-
If n is large enough, follows that
Fixed n, we take ng large enough such that

1_5

Zyms,

(1= g)vthtnaths < C_2|Df|%2(z)|( 2

From both inequalities the lemma follows.

Proof of proposition 2.4.
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The proof consist in to bifurcate the periodic point with center eigenvalue close to one in two
periodic points of different stable index and to control the behavior of the strong unstable manifold
and the strong stable manifold of the periodic point that it is created by the bifurcation. We use
the lemma 2.1.1 to bifurcate the periodic point that has an eigenvalue close to one.

Let us take a point ¢ with J—weak contraction along the direction and exhibiting a strong
homoclinic connection. Let us take a point = contained in [WF3(q) \ {¢}] N [WF1(q) \ {q}] and let
7* be a connected compact arc containing z and contained in a fundamental domain of W¥3(q).
Let also takes v*° the compact arc contained in W1 (q) that connects ¢ with 2. Using the lemma
2.1.1 we bifurcate g into three periodic points g_1, qo, 1 for a diffeomorphisms g C'—close to f such
that ¢_; and g; has stable index two, gg has stable index one and gy coincide with g. Observe that
W*(q1) N W*(qo) # 0. Moreover, the bifurcation can be done in a way that the arc y** remains
contained in W1 (go) \ {go}; i.e.: 7** remains contained in the local strong stable manifold of go.
On the other hand, we can perform the bifurcation such that g="(y*) ¢ W3 (q;) for some n > 0;
i.e.: " remains contained in the unstable manifold of q;. So, follows that W(q1) N W1 (qo) # 0;
therefore, a heterodimensional cycle is created involving qg and g¢;.

|
Proof of proposition 2.5:

Let us take a point ¢ with weak expansion along the center direction. On one hand, since g and p
are homoclinically related and both points has stable index one, follows that W (¢) N W3 (p) #£ 0
and so W2 (q) \ {q}] N H, # 0 (recall that W'1(q) and W3 (q) are the local strong stable and
unstable manifold). On the other hand, again since H, is a attractor, follows that W23 (q) C H,.
Then, there are orbits in H, accumulating in W3(q) \ {¢} with positive iterates also accumulating
in W1 (q) \ {¢}. By the connecting lemma, we can get a periodic point with weak expansion along
the center direction and exhibiting a strong homoclinic connection.

|
Proof of proposition 2.6:
Recall that all the periodic points has the same stable index. First, we start proving that either

1. there exist € > 0 and 7 > 0 such that for any =z € H, f*(W(z)) C W (f*(z)) for any
n > 0 or,

2. there exists a periodic point ¢ having weak contraction along the center direction and such
that (W2 (q) \ {¢}] N H, # 0.

Let us assume that the first option does not hold. Then follows that for any small positive
number <y, there is a sequences of positive numbers €,, points z, and an increasing sequences of
positive integers k, such that

n E —
([ (W2 (za))) = 7
and .
LW (2n)) <7 0<j < En.
Taking
J = limn s yoo f (WE (2,,))
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follows that J does not growth for negative iteration; i.e.:
L(f(T) <y Vji>o0.
Then, if v > 0 is small enough, it follows that
fAJ)CcUV;i>0

and so J is contained in H(p). So, it is approximated by periodic points and we can assume that
these points have §—weak contraction along the direction E3 (see lemma 2.3.3). Now we take

WH(J) = Ugeen W (2)

and a sequences of periodic point {g,} close to some point in the interior of J.

We have that either there are periodic points of the sequences {g,} which are not contained in
WZ(J) or they are contained in W(J).

In the first case, we have that the strong stable manifold of some g of the sequences {q,},
intersect W¥(J) and q ¢ W¥(J). Taking y = W1 (q) N W2(J) follows that the backward orbit of
the point y remains in U and so the point belongs to the homoclinic class and then we conclude that
there is a periodic point such that its strong stable manifold intersects the homoclinic class; i.e.:
we proved that there exists a periodic point ¢ having weak contraction along the center direction
and such that [W2 (q) \ {g}] N H, # 0.

So, to conclude the proof it is enough to conclude that the second case cannot occur. If a
periodic point ¢ of the sequences {gy} is contained in J, using the fact that ¢ is periodic and J
does not increase the size for negative iterates, we conclude that there is a point of different stable
index in J which is an absurd. In fact, if ¢ is contained in J observe that J C W%2(q). Let r be
the period of g, so f~"*(J) c WF2(q) for any positive k, and so taking L = Upsof "*(J) follows
that L c W2(q). Moreover, L is invariant by f~" and f/_LT : L — L is an homeomorphism where ¢
is a repelling fixed point. Taking 3’ € W*(q) N L we get that there is ¢’ = limy_,oo f*" (') € L and
so ¢' is an attracting fixed point for f~7, i.e.: ¢’ is a repelling periodic point for f in H,. Which is
an absurd because we are assuming that the periodic points in H, has the same index .

In the case that a periodic point g of the sequences {g,} is not contained in J but contained in
WZ(J), we get that the unstable manifold of ¢ intersects J. Using again that J does not increase
the size by negative iteration, we conclude that there is an arc I contained in the center manifold
of ¢ such that does not increase the size by negative iterations, and again this implies that there is
a periodic point of different stable index in U which is an absurd.

To finish, we have to prove that either:

1. £(f~(WF2(z))) - 0 as n — +oo or

2. there exists a periodic point ¢ having weak contraction along the center direction and such
that [W (q) \ {g}] N H, # 0.
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The argument to prove it, is similar to the one already performed and we leave it to the reader.
[

Proof of proposition 2.7:
To prove it, we start with the following lemma:

Lemma 2.4.1 For any 6 > 0 small, there is ng = ng(8) such that for any € A and any n > ng
holds
IDfhy ) < (146"
. L . . IDfR, | .

Observe that this lemma implies the proposition 2.7: In fact, since D7 1| < CA™ (recall that
Ej is one dimensional) then [Df[, | < C(A(1+6))" so if § is small enough follows that A(1+6) < 1.

To proceed with the proof of the lemma, we have to state a lemma due to Pliss:
Pliss’s Lemma: Given 0 < 7y < 1 and a > 0, there exist N1 = N1(v0,71,a) and [ = l(y9,71,a) >
0 such that for any sequences of numbers {a;}o<i<n with n > Ny, a~ ! < a; <aand I pa; <"
then there exist ng with ng < In such that

2noal<'yj no < j < n.

So, if the lemma 2.4.1 is not true, we get that there is a sequences of points x,, and an increasing
sequences of positive integers k, such that |Df|’3§2($n)| > (140)kn e |Df|;3’;'(‘fkn (mn))| < (148)7Fn,
Using Pliss’s lemma holds that there exist points yn, and integer ng and an increasing sequences
of positive integers j, such that |Df,; E (4 )| < (1+ ) —J for ng < j < jn. Taking an accumulation
point x of the sequences y, follows t£

—-n g -n
IDfifial < (L4+3)™" ¥ 1> no.

Then, the center manifold along x is stable for f~', which is a contradiction. In fact, to see that
it is proved a folklore claim that we repeat here for completeness. The claim states the following

Claim 1 Let g € Dif f"(M) having a dominated splitting TAM = @i'c:lEi on a compact invariant
set A follows that if for some subbundle E = E; and some x € A holds that there exists § > 0 and
ng such that

7~ 01|Dg|E ol <L =8)" Vn>ng

then there exists 6g such that
1. g"(ng(x)) - W£(g"(x)) for any n > ng,

2. E(gn(ng(x))) — 0 as n = +o00.
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To get that observe that given d2 > 0 there exists d3 > 0 such that for any y € A and z € Wg (y)
follows that
10915
|Dgr(y)]
Then, it is taken dy such that (1 — §)(1 + d2) < v < 1 for some v < 1. Then we can take §p > 0
such that §y < d3 and

< 14 &, where E(z) = Tng(y).

Ug" (Wi (2))) € Wi (g"(2)) 1 < k < no.
From that, follows if z € ng (z) then

|Dg’ ||
|E(Z) (1 +62)n0
1Dgj(y)|
and so
326 1Dgys(gi ey < 1D (1 +82)" < (1= 8)(1+82))™ < 4™
and so

9" (Wi, (2)) C W (g™ (2)).

Making and inductive argument, the claim follows.
[
Coming back to the proof of the lemma, we can apply the previous claim to the subbundle FEo
using that Fs is one dimensional and so

| D f{y ()| = Wimo| D f iy £(2))|
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3 Proof of Theorem C.

In the proof we use a theorem in [BC] that allows us to reduce the problem to a problem for surfaces
diffeomorphisms. To conclude, we adapt a theorem proved in [PS1].
First we start recalling the definition of normally hyperbolic submanifold.

Definition 13 We say that an invariant submanifold S is normally hyperbolic if there is a splitting
TsM = E°® F @& E* such that

1. E?® is contractive;

2. there is A < 1 such that |Df|Es(m)||Df|}1(f(m))| < A for any x € S;

8. E" is expansive;

4. there is A < 1 such that |Df|F(a:)||Df|E£(f(z-))| < A for any x € S}

5. T,S = F(z) foranyz € S.
If it holds that f € Dif fT(M) and

-1 r T -1
|Df|E5(a:)||Df|F(f(z))| <A<1 |Df|F(a:)| |Df|Eu(f(m))| <A<l

it is said that S is r—normally hyperbolic and follows that S is C" (see [HPS]).

Theorem 3.1 (/BC]) Let f € Dif fT(M) (r > 1) be a diffeomorphism on a compact manifold M.
Let A be a compact mazimal invariant set exhibiting a dominated splitting Tp = E°* ® F ® E* where
E* is contractive and E" is expansive. Let also assume that for every x € A holds that W2*(z)NA =
{z} (where W2*(x) is the local strong stable manifold tangent to E*) and W**(z)NA = {z} (where
WX (z) is the local strong unstable manifold tangent to E*) . Then, there exist two C*—submanifold
normally hyperbolic S and S such that,

1. T,S = F(z),

2. 8cS,

8. ACS, f(S)c S and f~1(S)C §.

Applying the previous theorem to the homoclinic class H), follows the next corollary:

Corollary 3.1 Let Hy, be a topological hyperbolic homoclinic class exhibiting a dominated splitting
E; @ E;® E3® E} such that Ef @ Eq s topologically contractive, E3@® E} is topologically expansive,
Es, E3 are one dimensional subbundle, and T*° = () and T** = (). Then there is a C'—submanifold
S containing Hy and such that fis is a C'—surface map exhibiting a dominated splitting.
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Even f is C2, the manifold obtained in theorem 3.1 it could be only C!. In fact, if there is a
periodic point ¢ in H, with stable eigenvalues A; and Az such that 0 < Ay < Ao but )\% < )\ follows
that S cannot be C2.

On the other hand, for C?—surfaces maps exhibiting a dominated splitting it is possible to
obtain a well description of the limit set:

Theorem 3.2 ([PS1]) Let f € Dif f2(M?) and assume that A C Q(f) is a compact invariant set
echibiting a dominated splitting such that any periodic point is a hyperbolic saddle periodic point.
Then, A = Ay UAy where Ay is hyperbolic and Aa consists of a finite union of periodic simple closed
curves Ci,...C,, normally hyperbolic, and such that f™ : C; — C; is conjugated to an irrational
rotation (m; denotes the period of C;).

Due to the fact that S is C!, the restriction of f to the submanifold S is only C* (even f is C?).
So, the two dimensional result stated above cannot be directly applied. However, using that H, is
topologically hyperbolic, we have some extra properties associated to f: the manifold tangent to Eo
and E3 are dynamically defined, being stable and unstable respectively. So, we are in a situation that
we have more information for the map f restricted to S. We use this extra information to show that
another extra property holds along the stable and unstable manifold (called bounded distortion).
This extra property, allows to get a generalization of the theorem 3.2 for C'—diffeomorphism, and
this generalization finish the proof of theorem C.

To be more precise, we have to introduce some definitions for two dimensional diffeomorphisms.

Let S be a surface and f € Diff1(S). Let us assume that f has an invariant set A exhibiting
a two dimensional dominated splitting £ @ F'. Recall that for each subbundle and for every point
x € A we have associated the tangent manifolds W (z) and W7 ().

Definition 14 We say that W (z) has bounded distortion property if there exists Ko and 6>0
such that for all x € A and J C WF(x) we have for all z,y € J and n > 0, if £(f~%(J)) < § for
0<17<n then

. wapu{ozﬁéa i(J))),

2. |Df 7 | < A exp(Ko S5y 6 71(0)) Fly) = T,W! (a).

We say that WE (z) has bounded distortion property if there exists Ko and 6 > 0 such that for
all z € A and J C WE(z) we have for all z,y € J and n > 0, if £(f(J)) < & for 0 < i <n then

IDfR | el o
1. [y < exp(Ko i (7).

2. D ffpml < Z(e(lg) D exp(Ko Y170 U(fi(T))) F(y) = TWE(x).
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With this definition in mind, it is possible to get the following result which is a generalization
of the theorem 3.2 for C!'—maps on surfaces:

Theorem 3.3 ([PS1]) Let f € Dif f1(M?) and assume that A C Q(f) is a compact invariant set
erhibiting a dominated splitting £ @ F such that any periodic point is a hyperbolic saddle periodic
point. Moreover, assume that WE(x) and WF (z) has bounded distortion. Then, A = A; U Az
where A1 is hyperbolic and Ay consists of a finite union of periodic simple closed curves Cq,...Cp,

normally hyperbolic, and such that f™ : C; — C; is conjugated to an irrational rotation (m; denotes
the period of C;).

The proof of theorem 3.3 is similar to the proof of the theorem 3.2. In fact, in the proof of
theorem 3.2 it is only used that f is C2 to show that the center manifolds are C? (see lemma 3.0.3
in [PS1]) and as a consequences of it is proved that the center manifolds have bounded distortion
property (see lemma 3.5.1 in [PS1]). In the theorem 3.3, the distortion property are taken for grant.
For details we refer to [PS1].

Therefore, to apply theorem 3.3 to the map f,g where S is the submanifold given by proposition
3.1, it is necessary to show that along the local center-unstable manifold and the local center-
stable manifold hold the bounded distortion property. The center manifold are not unique so
it could happen that the one chosen are not contained in S. However, if we take the manifold
defined as We(z) N S (where W (z) = wrier: (z)) follows that this manifolds are invariant
by f, To(W(xz) N S) = FE2(x) and they are stable. On the same way, if we take the manifold
defined as We(z) NS (where W& (z) = Wik (z)) follows that this manifolds are invariant by
f, Tp.(We*(x) N S) = E3(x) and they are unstable.

Proposition 3.1 Let f € Dif f2(M) and let H, be a topologically hyperbolic homoclinic class. Let
us assume that there exists a two dimensional C'—normally submanifold S such H, C S. Then,
the tangent manifolds WE*(z) NS and WE(x) NS have bounded distortion property.

Proof:
First, we start proving that for f, the stable discs and the unstable manifold are C2. At this
point, it is used that the manifold are dynamically defined. For that, we need the following lemma:

Lemma 3.0.2 There exist a constant C > 0 and 0 < o < 1 such that for every x € A and for all
positive integer n the following holds:

Dy 2\pfn _ PIel” _
IDfibs0m @) 1P f pye mp (5@ = m e
Dfns xT Df_n u n 2 = n—2 o-n‘
| |EIEBE2( )|| |E3€BE4 (f (1,‘))| |Df|E3(:L‘)|2
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Proof of the lemma:

Let us start with the first inequality. Recall that the manifold tangent to Fs is a unstable
manifold. From this, we claim that for any § > 0 there is ng = ng(d) such that for any n > ny
holds

Df | > (1—8)"

So, if the claim is not true, we get that there is a sequences of points z,, and an increasing
sequences of positive integers k, such that |D fﬁ% ($n)| < (1 = §)*n. Using Pliss’s lemma and that
FE3 is a one dimensional subbundle, holds that there exist points y,,, and integer ng and an increasing
sequences of positive integers j, such that

; 0y ; .
1D fipy | < (1= ) 1m0 <J <jn
Taking an accumulation point x of the sequences y, follows that,

0

Then, using the claim 1, follows that the manifold W¥(x) is a stable manifold for f, which is a
contradiction.
Then,
|Df|7;32| _ |Df|7}52| 1 1 A

= <A = "
D D A < a—a ~ =)

for n > ng; so if § is small enough the first part of the lemma follows.

For the second inequality, we repeat a similar argument using that the manifold tangent to E5
is a stable manifold and arguing as in lemma 2.4.1.

|

Now, we can apply a result in [HPS] that establish that if the inequality stated in the previous
proposition, then the manifold tangent to E§ ® Es and to E3 @ E} are C? subbundles and so the
local stable and unstable manifold are C?.
Observe that even the map is C?, the central leaves W (x) N S and W (z) NS could be only C*
inside the stable discs. However, we can show that they have distortion property:

Lemma 3.0.3 There exists a constant K such that
1. ify e We(x) NS follows that

LY

D <o KZ £(@) ~ Fw)):

2. ifye W& (z) NS follows that

D fiye)| _ - -
< KE 1F7 ) = £ (W)))-
|Df|E3(y)| w
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Proof of the lemma:
Let us start with the first inequality (the second is similar). We want to control

DSl o)
1D f i )]

where z,y € J.
Observe that we can assume that |Df|g| = |Df|g,| where E = E{ © Es. So

DSl 1Pl

Moreover
1D fle@)| = 1D fEy )] = ol D fimy(5i(e)) | = Mitol D fim(riy)|

For each z we have defined the map y € W2(z) — log|D f|g(y)| and recalling that the discs W (x)
are C? follows that the maps y € log|D fiE(y)| are Lipschitz. Since A is compact follows that there
is a constant K independent of the discs such that

|log(|Dfip(a)|) — log(ID fipy)D| < K|z —y| Vy € W(z)

where K is the Lipschitz constant for log(|D fig|)-

So
log(%) = "1og(ID fip(si())) — log(ID fp(riep)) < KD () = Fi(y)l.
Then we get that 1
:D;:’?;: < exp szow - F'@)).

The proof of the second inequality is similar replacing E{ ® E by E3 ® E¥. and f by f~!.
|
To finish showing that the manifold has the bounded distortion property, we have to show that
they verifies the two second items. This is immediately since the submanifold are C.
|

3.1 Topologically hyperbolic sets of Kupka-Smale diffeomorphisms are not nec-
essary hyperbolic.

Before to end the section we would like to make some remarks. Observe that when 7% and T%* are
empties, it was proved that the homoclinic class is hyperbolic. It is natural to ask if it is possible
to get a similar result when either 7°° or T"* are not empty. In other words, given a Kupka-Smale
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topologically hyperbolic class such that the strong subbundle is involved in the dynamic, is it true

that the homoclinic class is hyperbolic?
The answer is no and it is easy to construct a counterexample:

Let Hy = Nip501f™(U) be a hyperbolic attracting homoclinic class for a surface diffeomorphism
f. Let M be a minimal set contained in H,.
Let h: U — R be a C* function such that

1.0<h(z)<lforallzeU,
2. =1,
3. hpme < 1.
Let F: U x [-1,1] = U x [-1,1] defined as
F(z,y) = (f(z),h(z)y — v°)

Observe that the set
H, x {0}

is an attracting homoclinic class. In fact,

. 11
Hy x {0} = Ngpsoy F™(U X [+, 5])-
272

Moreover, the homoclinic class has dominated splitting Ef®FE>® E5 and Fjyy[—1,1) is a Kupka-Smale
system. This follows from the fact that the periodic points of F' are contained in the complement
of M and in this set the center subbundle is contractive from the fact that |DFjg, )| = |h(z)| <1
for any z € M®. However, F is not hyperbolic from the fact that |DFjg, (| is equal to one when

T € M.
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4 Proof of theorem D:

In this section we assume that either the interior of 7°° is not empty or 7"* is not empty. First
we need a lemma equivalent to theorem 2.3 for the topologically hyperbolic sets considered in the
hypothesis of theorem D. The prof is immediately and it is similar to the proof of the classical
Anosov closing lemma for hyperbolic sets:

Lemma 4.0.1 Let f € Dif f1{(M). Let H, be a topologically hyperbolic homoclinic class ezhibiting
a dominated splitting Ef ® Eo ® E3 ® E} such that E; ® Es s topologically contractive, E3 & E}
is topologically expansive, Eo and E3 are one dimensional. Then it follows that:

1. if Es is not contractive, then for any § there is a periodic point in q having § —weak contraction
along the direction Fo;

2. if E3 is not expansive, then for any & there is a periodic point in q having 6—weak erpansion
along the direction Ej3.

Proof:
If Ey is not contractive, using the Pliss’s lemma, the fact that Ey is one dimensional and the
lemma, 2.4.1 follows that there is a point  and sequences of iterates { f*»(x)} such that

Taking f*n1(z) and f*n2(z) close enough, and using that the manifold tangent to E = E @ Fs
and F' = E3 @ E} are dynamically defined, follows that we can get a periodic point ¢ shadowing
the orbit

{fk"1+j (%) Ho<j<na—n1}-

For details about that see lemma 6.2.1. Using that the subbundle E5 on the orbit of ¢ is close to
the subbundle E on the orbit of f*1(x) up to the iterate ny — ni, follows the conclusion of the
lemma.
The proof of the second item is similar.
[

Let us start considering the case that the interior of 7°° is not empty. From the fact that the
periodic points with weak contraction along the direction Ey are dense (in fact, a similar lemma
to lemma 6.2.4 can be obtained for the present situation), follows immediately that there exists a
periodic point ¢ with weak contraction along the center direction such that [IW2*(q) \ {¢}] N H, # 0.
Then, applying the C!—connecting lemma and proposition 2.4, we conclude the theorem D. The
proof of the case that 7"" is not empty, is similar.

Before to finish the section, we would like to make some remarks. If we want to get a complete
results, it remains to consider the case that 7°° and 7T** are not empty but the interior of 7°° and
T are empty.
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If for instance 7°° is not empty, follows that there exists a pair of points in the homoclinic class
z,y such that y € W2*(x). On one hand, observe that z is accumulated by a sequence {gn} of
periodic points and so it follows that there is a sequences of points {g}} such that ¢ € W2*(q,)
and ¢ — y. Moreover, we can assume that the periodic points g, have weak contraction along the
center direction. On the other hand, the unstable manifold of p accumulates on y and therefore,
the unstable manifold of the points ¢, also accumulates on y. Observe that if it holds that for some
gn holds that g, € H, the we can apply the Cl'—connecting lemma. However, even if for any g,
holds that [W2*(gn) \ {gn}) N Hp = 0, since y € H, and g}, — y, it is natural to try to perform some
kind of connecting lemma argument’s with the goal to connect the unstable manifold of one of the
points g, with the local strong stable manifold of the same point. If this type of perturbation can
be done, then a heterodimensional cycle is created.

However, to use the connecting lemma, it is necessary to assume some restrictions over the orbits
of the periodic points {¢,} . For instance, if the periodic points {g,} do not accumulate on y then
it can be applied the connecting lemma. On the other hands, if it occurs that the periodic points
{gn} do accumulate on y, then connecting lemma argument’s can not be performed. In fact, if
the pair of points  and y belongs to a minimal invariant set contained in Hj, then the situation
mentioned above holds. Therefore, it is necessary to develop other techniques to deal with these
type of situation.

The paper [Pu] is devoted to overcome these difficulties.
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5 Extended versions of Theorem A and B.

The next two theorems give a better description of the kind of homoclinic bifurcation that may
occur in the case that the homoclinic class is not hyperbolic. This description it is related to the
different kind of splitting that the attractor may exhibit. We state different theorems for the case
that the point p has stable index either one or two.

To clarify this, we need to recall some results about homoclinic tangencies and the relation
between tangencies and the presence of heterodimensional cycles. For surfaces maps, the unfolding
of a homoclinic tangencies leads to the nowadays so-called “Newhouse phenomena”, i.e., residual
subsets of diffeomorphisms displaying infinitely many periodic attractors. In particular, this shows
that the unfolding of tangencies “destroys” tramnsitive sets. This phenomena is not valid in higher
dimension. In fact, robust transitive sets can coexist with the presence of an homoclinic tangency
(see for instances the examples showed in [BV] of robust transitive systems). In these examples,
tangencies and heterodimensional cycles are coexisting.

On the other hand, it was shown in [PV] that in dimension larger than two, the unfold of
tangencies associated to sectional dissipative periodic points (the modulus of the product of any
pair of eigenvalues is smaller than one) leads to the same Newhouse phenomena that holds in
dimension two.

Regarding the previous remarks, some partial result are concluded.

Theorem F: Let f € Dif f2(M3) be a Kupka-Smale system.
Let Hy, = Np>of™(U) be an attracting homoclinic class associated to a periodic point of stable index
one. Then, the following options holds:

1. If H, does not exhibit any dominated splitting, then there exists a g C'— close to f such that
g has a homoclinic tangency and o heterodimensional cycle in U.

2. If H, exhibits a dominated splitting but it does not exhibit any dominated splitting E ® F with
dim(F) = 2; then there erists a g C'— close to f having a heterodimensional cycle and a
homoclinic tangency in U.

3. If Hp has a dominated splitting E @ F with dim(F) = 2 and F cannot be decomposed in two
subbundles with domination, then follows that either

e H,, is hyperbolic or

o there exists a g C'— close to f exhibiting a homoclinic tangency associated to a point of
stable indexr one and exhibiting a heterodimensional cycle in U.

4. If H, has a dominated splitting E1 ® E3 @ E3 then follows that either

e H, is hyperbolic or

o there exists a g C1— close to f exhibiting a heterodimensional cycle in U.
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Remark 5.1 Observe that in the previous theorem, any time that it can be created a tangency by
a Cl—perturbation it also can be created a heterodimensional cycle.

Let us assume now that p has stable index two. In this case it is not possible to get a strong
version as in theorem F.

Theorem G: Let f € Dif f>(M3) be a Kupka-Smale system.
Let Hy, = Np>of™(U) be an attracting homoclinic class associated to a periodic point of stable index
two. Then, the following options holds:

1. If H, does not exhibit any dominated splitting, then there exists a g C'— close to f such that
g exhibits a homoclinic tangency and a heterodimensional cycle in U.

2. If H, has a dominated splitting E @ F with dim(E) = 2 and E cannot be decomposed in two
subbundles then follows that either

e H, is hyperbolic or

o there exists a g C1— close to f exhibiting a homoclinic tangency associated to a point of
stable indexr one and exhibiting a heterodimensional cycle in U.

3. If Hy has a dominated splitting E & F with dim(E) = 1 such that F' cannot be decomposed
in two subbundles. Then follows that either:

(a) there is a g C'— close to f exhibiting a homoclinic tangency and a heterodimensional
cycle in U;

(b) all the periodic points in Hy, has stable index two, E is uniformly contractive and one of
the following options holds:

o there exists a g C'— close to f exhibiting a sectional dissipative homoclinic tangency
in U and the set H, is contained in a normally hyperbolic submanifold;

o the set T is not empty, (i.e.: there exists x such that [W2*(x) \ {z} N Hp # 0) and
there exists a g C1— close to f exhibiting a homoclinic tangency in U;

4. If H, has a dominated splitting E1 @ E3 ® E3 then follows that either

e H, is topologically hyperbolic or

o there exists a g C'— close to f exhibiting a heterodimensional cycle in U.

Remark 5.2 To get a better description it remains the question that if in the case 3.b when T is
not empty it also follows that a heterodimensional cycle can be created.

Observe that from theorem A and B follows the last case of theorem F and G. In fact, if H,
has a dominated splitting Eq & E2 @ E3 then follows that either H), is hyperbolic (or topologically
hyperbolic in case of theorem B) or there exists a g C!— close to f exhibiting a heterodimensional
cycle.
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5.1 Proof of Theorem F:
5.1.1 There is not a dominated splitting.

Following the techniques in [BDP] it can be proved that if H, has not a dominated splitting then
there is a diffeomorphisms g close to f and a periodic point ¢ with orbit arbitrarily close to Hy, such
that Dgg™¢ has three eigenspaces with arbitrarily small angle, having only real eigenvalues and at
most one eigenvalue with modulus smaller than one.

From the fact that the angle between all the eigenspaces is small, follows that by a C' per-
turbation, a tangency can be created between the strong subbundles. From there, follows that we
get a periodic point having a strong homoclinic connection. Therefore, from the fact the angle
between the eigenspaces is small, by another C!—perturbation follows that the center eigenvalue
has a weak expansion. Therefore, we a get a periodic point with weak expansion along the center
subbundle and exhibiting a strong homoclinic connection. Then, applying proposition 2.4 follows
the existences of a heterodimensional cycle.

5.1.2 There is not a dominated splitting Ty, M = E ® F with dim(F) = 2.

In the present case, we want to show that by C!—perturbations we can create a tangency and a
heterodimensional cycle. First we state a proposition whic is usefull in what follows and shows a
general mechanism to create heterodimensional cycles.

Proposition 5.1 Let g € Dif f"(M?) and § > 0 such that
1. g has two hyperbolic periodic points q1 and qa verifying

(a) q1 and q2 are homoclinically connected,

(b) W (q2) NW*(q1) # 0;

2. there exists a periodic points q5 with g—weak contraction along the center direction and ho-
moclinically related with q;.

Then, there is § arbitrarily C*—close to g and a periodic point §s with §—weak contraction along
the center direction and exhibiting a strong homoclinic connection.

Observe that the previous proposition implies the theorem F. So the goal is to show that if the
interior of 7 is empty, for any 6 > 0 we can get by perturbation a diffeomorphisms g C!—arbitrarily
close to f verifying the hypothesis of proposition 5.1. Before to do that, let us show the proof of
proposition 5.1.

Proof of propositions 5.1:

By lemma 2.3.3 we get a sequences of periodic points g§ such that ¢j accumulates on ¢, they
are homoclinically connected with ¢; and they have § —weak contraction along the center direction.
Moreover, we can suppose that the orbits of these points do not accumulate in g2 and so they do
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not accumulate over the point of intersection between the unstable manifold of g2 and the strong
stable manifold of q;. Observe that the strong stable manifold of the points gj accumulate over the
local strong stable manifold of g;. Since the points ¢§ are homoclinically connected with ¢; and so
with g9, follows that their unstable manifolds accumulate over the connected arc of the unstable
manifold of go that contains g2 and a point z € W*(g2) N W2¥(q1). Then, it is possible to unfold
the intersection of the unstable manifold of g2 with the strong stable manifold of ¢; in such a way
that the unstable manifold of some ¢ intersects the local strong stable manifold of the same gj .

More precisely, we can do that performing two perturbation: First, it is performed an arbitrarily
small perturbation such that the unstable manifold of g2 intersect the strong stable manifold of
same gy sufficiently close to gi. Since ¢§ remains homoclinically connected with g2, follows that
they are arcs contained in the unstable manifold of g§ that accumulates over the connected arc
of the unstable manifold of ¢o that contains ¢o and a point z € W*(q2) N W2%(q1). The second
perturbation consists in unfolding the intersection of the unstable manifold of g5 with the strong
stable manifold of ¢ in a way that the unstable manifold of g§ intersect the local strong stable
manifold of the same point.

The first perturbation is straightforward from the fact that the orbits of the points ¢ do not
accumulate over go For the second one, we take a sequences of compacts arcs {l,, }, contained in
the unstable manifold of gj such that:

1. the arcs {l,,} accumulates in a compact arc [ which is contained in the unstable manifold of
g2 and it contains the point g2 and a point in W*(g2) N W2*(q5);

2. for each m follows that {f *(Im)}{i>0) does not accumulate on .

So, perturbing g in a way to unfold the intersection of I with W?°(qf') and at the same time
not perturbing g}, follows that the unstable manifold of ¢} intersects W *(qf) and this conclude
the proof of the proposition 5.1.

|

First we state a lemma that shows that in the hypothesis of the present case,then it can be

created a heterodimensional cycle.

Proposition 5.2 Let us assume that H, is an attractor. If p has stable index one, then there exist
g arbitrarily C'—close to f and a periodic point q of f such that the analytic continuation qg s
homoclinically connected with py and it exhibits a strong homoclinic intersection.

Proof:

Let us assume first that p has real eigenvalues. In this case, we can show that the point p
verifies the thesis of the lemma. In fact, from the fact that H, is an attractor follows that the
strong unstable manifold of p is contained in the homoclinic class. On the other hand, there are
orbits in the homoclinic class accumulating in the stable manifold of p, which is one dimensional,
so its coincide with the strong stable manifold. Then, using the C'—connecting lemma we can
perturb the systems in a way to connect the strong stable and unstable manifold of p.

If p has complex expanding eigenvalue we use the following lemma which is a consequences of
lemma 2.1.7:
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Lemma 5.1.1 Let p be a periodic point with compler eigenvalue and stable indexr one. Let us
assume that there is a transversal intersection of the stable and unstable manifold of p. Then,
there exists a periodic point q of f and a diffeomorphisms g C'—close to f such that q has real
etgenvalues and the strong unstable manifold of q intersect the stable manifold of p.

The proof of the lemma, is similar to the proof of lemma 5.1.1.

To conclude the proof of proposition 5.2, if p has an expanding complex eigenvalue, first it
is created a transversal homoclinic intersection and later it is applied the previous lemma. Now,
observe that by theorem 2.1, if there is not a splitting Ty, M = E @ F with dim(F) = 2 then
it implies that there exist g C'—close to f and a periodic point ¢’ of f such that the analytic
continuation q; has a tangency between the stable and unstable manifold and q_f]. Using that we
are dealing with a homoclinic classes, it can be proved that q_f] is homoclinically connected with pg.
In particular, it is connected with the point g4 obtained in the previous lemma.

Unfolding the tangency, we can get another tangency and another periodic point ¢, homoclini-
cally connected with q; and g4, and exhibiting a weak expansion along the center direction (see for
instance [PT]). Then, we have a periodic point with real eigenvalues having a weak expansion along
the center direction and homoclinically connected with a periodic point having a strong homoclinic
connection. In fact, to finish the proof of proposition 5.2, we use proposition 5.1.

Therefore, to finish the proof of theorem F in the present case, we need to create a tangency by a
small perturbation. To do that, we apply the first part of theorem 2.1.
[

5.1.3 There is a dominated splitting Ty, M = E @ F with dim(F) = 2.

From theorem 2.1 follows that if F' cannot be decomposed in two subbundle then either F' is
expansive or it can be created a tangency. Moreover, by lemma 2.1.2 applied to f~!, follows that
there is a periodic point of stable index one with real eigenvalues and having a weak expansion
along the center direction. On the other hand, by lemma 5.1.1, we get a periodic point with real
eigenvalues and exhibiting a strong homoclinic connection. Using proposition 5.1 it is conclude the
existence of a heterodimensional cycle for a perturbation of the initial map.

To deal with the situation that the splitting is decomposed in three subbundle we proceed as
in the proof of the main theorem.

5.2 Proof of theorem G.

In the case that there are not a dominated splitting we proceed as in the previous theorem.

5.2.1 There is a dominated E @ F with dim(E) = 2, and E cannot be decomposed in
two subbundles.

In this case, by theorem 2.1 follows that either E is contractive or there exists a ¢ C'— close to f
exhibiting a homoclinic tangency. To finish the proof, remains to show that it can also be created
a heterodimensional cycle. Since we are assuming that E cannot be decomposed in two invariant
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subbundles and F is not contractive, by lemma 2.1.2 follows that for any v > 0 and § > 0 there
exists a periodic point g for a diffeomorphisms g C'—close to f such that

1. ¢ has two real contractive eigenvalues;
_ n g .
2. (1—09)™ < |Df|Eg(q)| <1

3. a(Ei(q), E5(q)) <~

4. g has a transversal homoclinic point.

Then, using that the angle between Ej(q) and E5(q) is small it can be shown that after a second
perturbation it is possible to get a strong homoclinic connection. Since one of the stable eigenvalues
is close to one, then it can be performed a perturbation to get a heterodimensional cycle.

5.2.2 Ty M = E® F with dim(E) = 1.

Let us assume that there is a periodic point ¢ in H, with stable index one. using that E is one
dimensional and therefore the local manifold tangent to F is dynamically defined, we can argue
as in lemma 2.3.2 and it is proved that by a C'—perturbation it is created a heterodimensional
cycle. From the fact that F' cannot be decomposed in two subbundle, follows also the existences of
a tangency.

Now we deal with the case that all the periodic points in H, has stable index two. First it is
proved that in this case, the subbundle E is contractive.

Lemma 5.2.1 Let us assume that all the periodic points in H, has stable index two. Then follows
that E4 is contractive.

Proof:

The proof is similar to the proof of the lemma 2.4.1. In fact, if the thesis does not hold, for any
d > 0, using the Pliss’s lemma and that the subbundle F; is one dimensional, it is possible to find
a point = such that

o |D fu(si@yyl > (1 —9)"

for any n > ng and some ng. Again, by the Pliss’s lemma, we can get a sequences nj, converging
to infinity such that

IG 0| D fu(smk (@)))] > (1 —6)"
By the domination property, follows that

A

n -1 n

=0l DI p(p-may | < (775"

Observe that this implies that there exists eg = €o(6, f,n0) > 0 for any f~"*(z) follows that
Weo (f7 () € Wi (£~ (2))
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whereWZ (y) is the manifold tangent to the subbundle F. Taking two integers ny, and ny, such that
f7™1(x) and f~"™*2(x) are close, using that the manifold tangent to the subbundle E is dynamically
defined (because the subbundle E is one dimensional), then we can find a periodic point q of stable
index one close to f~"*1(z) which is a contradiction with the hypothesis.
|

Then, we have two options: either E is involved in the dynamics or it is not the case; ie.:
either 7°% is not empty or it is empty. In the second case, we can apply the theorem 3.1 and
follows that there exists a C! two dimensional normally hyperbolic submanifold S such that the
homoclinic class is contained in S. Since H), is an attractor, follows that D fis cannot be volume
expanding. Moreover, follows that there is a periodic point ¢ which is dissipative restricted to S.
Since the subbundle E is contractive, follows that g is dissipative. From the fact that F' cannot
be decomposed in two subbundle having a dominated splitting, follows that there is g C1—close to
f exhibiting a tangency. Using that we are dealing with a homoclinic class, it is possible to show
that the tangency is associated to a periodic point ¢’ that remains homoclinically connected with
g. Therefore, we can get a tangency associated to ¢, which is a sectional dissipative periodic point.

48



6 Topological hyperbolic sets.

In the first subsection, we give some dynamical properties of the topological hyperbolic sets. This
is done basically using the notion of adapted metric for expansive maps introduced by Fathi in [Fa].
In the second subsection, it is proved theorem E2 where it is characterized the continuation of a
topological hyperbolic set. In the third subsection, proving theorem E3 we analyze the particular
case that A exhibits a dominated splitting Ef ® E2 @ E3 @ E} such that E{ @ E> is topologically
contractive, E3 @ E} is topologically expansive and Ey, F3 are one dimensional subbundles. In the
last subsection, it is studied the case that E} = {0}.

6.1 Dynamical properties of a topological hyperbolic set. Proof of theorem E1.

Recall that we are assuming that A is a maximal compact invariant that exhibits a dominated
splitting E @ F' and that there are continuous functions

¢*: A — Emb!(D3, M) ¢": H, — Emb' (D}, M),

where

1. Df={z€R*:||zl| < 1}; D5 = {z € R* : ||2|| < €} with s = dim(E),

9. D¥ = {z€ R*:||2]| < 1}; D = {z € R® : ||2]| < ¢} with u = dim(F),
and such that for any z € A it is defined

Wé(z) = ¢°(z)Dg; We(z) = ¢"(z) D¢

verifying

L. T,Wé(z) = E(z), T,We (z) = F(z)

2. We(z) ={y € M : dist(f"(z), f*(y)) — 0,dist(f"(z), f"(y)) < €},

3. We(z) ={y € M :dist(f "(z), f "(y)) = 0,dist(f "(z),f "(y)) <e}

From the above properties, it follows immediately that if A is a transitive topologically hyper-
bolic set then it is a homoclinic class. Moreover, it can be also proved that topologically hyperbolic
set contained in the Limit set, they have local product structure and they exhibit a spectral de-
composition as it holds for hyperbolic sets. The proof of this facts goes in the same way that goes
for hyperbolic sets. We refer to [Sh] for proofs and definitions.

The next proposition states that for topologicaly hyperbolic set it is possible to get a hyperbolic
metric (not necessarily coherent with a riemannian structure).

Proposition 6.1 Given a topologically hyperbolic set, follows that there exists an adapted metric
dist compatible with the topology, and there exist constants € > 0 and 0 < A\g < 1 such that
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1. ify € Wi(x) then
dist(f"(z), f"(y)) < Apdist(z,y).

2. ify € W*(x) then
dist(f (@), f "(v)) < Nodist(z, ).

Before to give the proof, we state an easy lemma that says that a transitive topologically
hyperbolic set is expansive.

Lemma 6.1.1 There exists r > 0 such that if dist(f™(z), f"(y)) < r for any integer n then x = y.

Proof:
The proof follows from the fact that for points nearby their local stable and unstable manifold
intersect transversally.
|
Proof of proposition 6.1:
It was proved in [Fa] that for expansive homeomorphisms, it is possible to obtain an hyperbolic
adapted metric, not necessarily coherent with a riemannian structure.

Lemma 6.1.2 ([Fa/) Given a expansive homeomorphisms f in a compact metric space, then there
erists an adapted metric dist compatible with the topology, and there exist constants r > 0 and
0 < Ao < 1 such that if

dist(f"(x), f"(y)) < r then dist(f"(z), f"(y)) < Aydist(z,y).

This lemma can be easily adapted to an expansive compact maximal invariant set, with the
property that the metric is defined over a whole neighborhood of A.

So, to conclude the proposition it is enough to adapt the previous lemma and to apply it to the
local stable manifold and to the local unstable manifold.

|

Using the hyperbolic metric, it is possible to repeat for topologically hyperbolic set the classic
construction of Markov partition done for maximal invariant hyperbolic set (see [Bow]). Using the
Markov partition, follows immediately that f,, is conjugated to a subshift of finite symbols.

6.2 Continuation of transitive topologically hyperbolic sets. Proof of theorem
E2 and E3.

By theorem E2, we can assume in what follows that we are dealing with a homoclinic class. Observe
that it may happen that the homoclinic class Hj, does not remain maximal invariant by perturba-
tions. Moreover, it may occur that the set Ag(U) = Npezyg™(U) is not topologically hyperbolic.
In fact, it is not clear that the tangent manifolds remain a stable and unstable foliation for the
perturbed map. However, it is possible to show that after perturbation the maximal invariant set
Ag(U) is semi conjugate to Hp.
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6.2.1 Proof of theorem E2:

Using that there exists an adapted metric such that it is a hyperbolic metric for f, and the fact that

we are dealing with a homoclinic class which is topologically hyperbolic, the proof of the shadowing

lemma for hyperbolic sets with local product structure can be pushed in the present case (see [Fa]).
In other words, it s possible to prove the following lemma:

Lemma 6.2.1 Given a topologically hyperbolic homoclinic class, there exist o > 0 and 8 > 0 such
that if {x;} is a f—pseudo orbit (meaning that for all integer i holds that dist(zit1 — f(x;)) < )
then there is a unique = such that dist(f"(z),zn) < a.

Then, observe that for g close to f and a small neighborhood V' of H, follows that for any
z € Nnezg™(V), the orbit of z by g, {9"(2)}nez}, is @ B—pseudo orbit. Then there is unique z
such that the orbit of x by f shadows the orbit of z by g. Therefore, we can define a map hy from
Ninezyg™ (V) to Hy such that for z € Ny,ez39" (V) follows that hy(z) is the unique point in H), that
its orbits by f shadows the orbit of z by g.
|

6.2.2 Proof of theorem E3.

Observe that the map hy introduced in theorem E2, is not necessary injective neither onto. In
fact, it could happen that after the perturbation, a periodic point g of f bifurcates either along the
stable manifold or along the unstable one, in two periodic points with orbits that remains close. In
this case, the orbit of this two periodic points are shadowed by the orbit of ¢q. In proposition 6.2
we state it is possible to show that the map is onto and that restricted to some set it is defined the
inverse of the map h.

Recall that in the hypothesis of theorem E3, we are assuming that H, has a dominated splitting
E{® Ey® E3® E} such that Ef ® E» is topologically contractive, E3@® EY is topologically expansive
and Es, E3 are one dimensional subbundles. As a consequences of that, follows that:

1. there are continuous functions
¢ : A — Emb' (D5, M) ¢™*: H, — Emb' (D}, M),
where

(a) Di={z€ R*:||z|| < 1}; D¢ ={z € R® : ||z|| < €} with s = dim(E] & E»),
(b) D} ={z € R®: ||z|]| < 1}; D¥ = {z € R® : ||z|| < €} with u = dim(E3 & E});

2. there exist continuous functions
¢ : Hy — Emb' (I, M) ¢°*: H, — Emb' (I, M)

where I = (—1,1), I = (—¢,€);

51



3. there are continuous functions
¢** : H, — Emb'(D§*, M) ¢** : H, — Emb'(D}*, M),
where
(a) D§* ={z € R** : ||z|| < 1}; D = {z € R** : ||2|| < €} with ss = dim(E3),
(b) DY* ={z € R*™ : ||z|]| < 1}; D¥* = {z € R*"™ : ||z|| < €} with uu = dim(E});
such that for any x € H), it is defined
W (z) = () De; We(z) = ¢°(2) D5 Weo(x) = ¢%(z) e,
W (x) = ¢™“(x) D¢ Wi (z) = ¢**(x) D5 W (x) = o™ (2) I,
and verifying
(a) T.WE*(z) = Ef @ Ea(x), T,WE (2) = Bf(z), T.WE (z) = Ea(x),
(b) oW (z) = B3 ® Ef (z), T.W*(2) = Ei(z), LW (2) = Es(z),
(c) Wes(z) = Wi(x) ={y € M : dist(f"(z), f*(y)) = 0,dist(f"(x), f"(y)) < e},
(d) Wer(z) = Wet(z) = {y € M = dist(f " (2), f " (y)) = 0, dist(f " (2), f " (y)) < e},
(e) Wei(x) ={y € M : dist(f"(z), f"(y)) < AT, dist(f"(z), f"(y)) < €},
(f) We(x) ={y € M : dist(f~"(z), f"(y)) < AL, dist(f~"(z), f"(y)) < e},
(8) Wes(z) C We*(z) = We(a),
(h) We(z) C W (x) = We ().

Now, we need a result about the continuation of a dominated splitting.

Lemma 6.2.2 Let f € Dif f"(M) (r < 1) and A be a compact mazimal invariant set of f exhibiting
a dominated splitting TAM = @i?:lEi. There exists an open neighborhood U of f in Dif fm(M)
and an open neighborhood U of A such that for each g € U and any subbundle E; there exists a
continuous function, Ty : Ay — Tp,M and (;Sg : Ag x Dif f(M) — Emb' (D, M) such that for any
g € Uand z € A, it is defined the dominated splitting ®F_, E;(g) and the manifold tangent to E;(g)
is given by WEi(z,g) = ¢§ (x)De and verifying

1. TwWeEi(g) (z,9) = Ei(g,z),
2. if gWF9 (z,9)) C Be(g(x)) then g(W (2, g)) ¢ W9 (g(x), g),
3. if g W9 (2)) C B(g (x)) then g (W9 (z,9)) c WO (g (), g).

4. the maps g €U — T, and g € U — Emb* (D, M) are continuous.
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Remark 6.1 If one of the subbundles of the dominated splitting is hyperbolic, then it remains
hyperbolic after a C"—perturbation of the system.

We take a small neighborhood V' of H, and for g C*— close to f we take the set
Ay = Ay(V) = Closure(Ngnezy g™ (V))-

From lemma 6.2.2 and previous remark, follows that for any ¢ close to f there is a dominated
splitting
Ei(g) ® Ea(g) @ Es(g) ® Ef(9),

such the subbundle F3(g) is contractive in Ag(V), and the subbundle E}(g) is expansive in Ag4(V).
In the sequel, we denote with W2 (z, g) the tangent manifold to E1(g) ® Ea(g), with W(z, g)
the tangent manifold to Ea(g) and with Wg%(x,g) the tangent manifold to Es(g), W**(z,g)
the tangent manifold to E3(g) ® E}(g), and with W2*(z, g), W**(x,g) the tangent manifold to
E3(g), Ef(g) respectively .

Now, we study how the dynamic of a perturbed map behave related to the distance introduce in
lemma 6.1.2 and proposition 6.1. Observe that the adapted metric not necessary is coming from a
riemannian metric so even the distance along the center manifold are contracted exponentially this
does not imply that the derivative is either contractive or expansive along the respective subbundles.
In particular, we cannot expect that a perturbation of the initial map contracts distances along
the center manifold. However, some contraction along the center stable manifold is kept when the
points are not close enough one to each other. This is the statement of the next lemma.

Lemma 6.2.3 Let dist, r and ) the distances and the constants introduced in lemma 6.1.2. Then,
for any v < r there exist a neighborhood U of f and A1 with A < A1 < 1 such that for any g € U
holds:

1. ify € W&(x,g) follows that:

(a) if dist(z,y) > v then dist(g(z), g(y)) < Mdist(z,y),
(b) if dist(z,y) <~y then dist(g(z), 9(y)) < 7;

2. ify € We(z, g) follows that:

(a) if dist(z,y) > v then dist(g~ (x), g7 (y)) < Midist(z,y),
(b) if dist(z,y) < 7y then dist(g~'(x), 9" (y)) < 7-

Moreover, the distance dist remains hyperbolic along E3(g) and E}(g), being contractive and
expansive respectively.
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Proof:

The proof of this lemma follows from the fact that the tangent manifolds associated to diffeo-
morphisms close to f are closed in the distance obtained in lemma 6.1.2. In fact, for ¢ C'—close
to f follows that if y € W£(x, g) then

dist(g(z), g(y)) < Aodist(z,y) + 1’

where ' = 7'(J]g — f|1) > 0. Moreover, 7’ is arbitrarily small if g is sufficiently close to f. So, there
exists v = y(r’) with 4 small if 7’ is small such that if dist(z,y) > v follows that

Mist(z,y) + 7' < Midist(z,y)

for some A\ verifying g +7' < A\ <1

Corollary 6.1 The same conclusion of lemma 6.2.3 holds for WE*(., g) and W (., g).

Now, given a periodic point g, we take \2(q) and A3(g) the eigenvalues of Dgf™ (ng being the
period of g) associated to the subbundles E2(q) and E3(q) respectively.

Lemma 6.2.4 There exist positive constants \ < 1 < )\g such that for any A2 and A3 such that
A < g <1< A3 < A follows that the periodic points of f with center eigenvalue smaller than s
and unstable eigenvalue larger than A3, are dense in Hy.

Proof: Since we are assuming that f is Kupka-Smale, then the periodic points in H), are hyperbolic.
Let us take a hyperbolic periodic point pg and let )\8 <1l )\g be the center and unstable eigenvalue.
Moreover, again from the fact that H, is topologically hyperbolic and transitive, follows that for
any z € H, there is 2’ € W*(po) N W*¥(po) arbitrarily close to z. Then we can take A2, A3 such that
0 < A9 < A2 <1< A3 < AJ such that given a transversal intersection 2’ of the stable and unstable
manifold of py it is possible to get a periodic point 2’ with eigenvalue |A2(2”)| smaller than A2 and
unstable eigenvalue A3(2”) larger that A3. To do that, it is only necessary to get a periodic point
that expends large part of the orbit close enough to the orbit of pg. For more details see the proof
of lemma 2.3.3.
|
Now, given A2 and A3 such that A < Ag < 1 < A3 < A}, we take the set of periodic point

Peras (F/V) = {g € Per(f) : |ha(g)] < A2, [As(g)] > A3}

By lemma 6.2.4 follows that
H,, = Closure(Perx,,(f/V))

Remark 6.2 Given a hyperbolic periodic point q for f, there exists a meighborhood U of q and

U=U(q, f) of f, such that for any g € U follows that g has a unique periodic point in U with the
same period of q. This periodic point is called the analytic continuation of q and it is noted q(g).
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Observe that I/ in the previous definition, depends on f and g. In the next proposition it is
shown that for any point in Pery,»,(f/V') follows that the analytic continuation is defined in the
whole neighborhood U.

Proposition 6.2 There ezist positive constants 0 < \J < 1 < )\g and dy > 0 such that for any Ao
and A3 such that \) < Ao < 1 < A3 < ] there ezists a neighborhood U = U(X2, A3, f) of f and
A, AL verifying Ao < A} <1 < AL < A3, such that for every periodic point q in Pery,,(f) and any
g €U follows that

1. there exists the analytic continuation q4 of q,

2. dist(g*(qq), f1(q)) < do,
3. qq € Per)\%Ag (g/V),
4. hg(qg) = q and h;'(q) = q¢ (where hy is the map introduced in theorem E2).

Corollary 6.2 There ezxists a neighborhood U = U(A2, A3, f) of f such that for any g € U the map
hg introduced in theorem E2 is onto.

Proof:

Let € Hp and let a sequences of points {g,} in Pery, »,(f/V) accumulating on z. Let us
consider the points h;l(qn) and let us take z an accumulation point of them. It follows that
qn = hg(h;'(gn)) accumulates on hy(z) and therefore, hy(2) = z.

|
Observe that the previous proposition and corollary finishes the proof of theorem E3.

To prove the proposition 6.2 we start with the next lemma which is a weak version of a shadowing
lemma. Recall that in lemma 6.2.1, it is shown that pseudo-orbits for f in a neighborhood of H,
are shadowed with real orbits of f in Hj. Since it may occur that for small perturbations of f, the
homoclinic class H, does not remain expansive, then it is not expected to get a lemma 6.2.1 for
maps close to f. However, we can obtain the following weak shadowing lemma.:

Lemma 6.2.5 For any o > 0 there exists a neighborhood U = U(vo, f) of f, there exist positive
constants ag, Bo and o such that for any g € U and o < «y, there exists 3 < By such that if {z;}
is a f—pseudo orbit and dist(x;, Ag) < ro, then there is © € By (Ag) such that

dist(g"(z),zn) < o+ 270.

Observe that if A, is hyperbolic, then 7y is zero. In the present situation, vy could be considered
as the “error” performed by the shadow orbit due to the fact that the subbundle Ey and E3 are
not hyperbolic. Before to give the proof we state another lemma and an easy claims that allows
to conclude the proposition 6.2. The next lemma states that for g close to f, the set A, does not
collapse.
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Lemma 6.2.6 For every rq there exists a neighborhood U = U(f,ro) of f, such that for any g € U
and © € Hy, there exists ©' € Ag such that dist(z,z") < ro.

Proof:

Let us assume that lemma is false. Then there is a sequence of diffeomorphisms g,, converging
to f and points z, € Hj such that dist(zn,Ag,) > ro. Taking an accumulation point z of z,
follows that dist(z,Ag,) > 22 for n large. Recall that the closure of periodic points in H, contains
H,. Then, we take a periodic point ¢ close to . Since we are assuming that they are hyperbolic,
for g close enough to f follows that ¢ has a continuation for g close to f and this continuation is
close to ¢ and therefore close to x. Which is a contradiction if g is one of the diffeomorphisms of
the sequence g,

|

Claim 2 Given §y > 0 there exists yo = v(do) and U such that if g € U and dist(z,y) < o then

D D
|D f\Ea (e, 5) 146y 14y < |D fiEs ()]

1—93g <
1Dg|E, (y,9)] |Dg)Bs (y,0)]

<144

The claim follows from the fact that the subbundles moves continuously with g.
Now we are in condition to show the proof of proposition 6.2.

Proof of proposition 6.2. Lemmas 6.2.5, 6.2.6 and claim 2 imply proposition 6.2:

Let A2 and A3 be the constants given by the lemma 6.2.4. Let us take dp and A} < 1 < /\é such
that A2(1 +dp) < A3 < 1 < Al < (1 —68p)A3. Now we take the neighborhood Uy and the constant
Yo given by claim 2. Now we take 71 < 7p and let us take the neighborhood U; and the constants
g, Bo, o given by lemma 6.2.5. Let us choose a < ag such v; + a < 9. Then, giving a < aq let
us take 8 = B(a) given by lemma 6.2.5. Now, let us consider the neighborhood Us given lemma
6.2.6. Now we take U = Uy N U N Us.

Let g € U and let g be a periodic point of f Per>\2 As (f/ V) Using the Pliss’s lemma, there is
a positive ko such that we can assume that |D fI Fa(a, f)| < Ak for all k > ko. Again, using Pliss’s
lemma and the fact that the subbundle is one dimensional follows that there is a positive ky and
jo such that for any m > 0 holds that |Df|E3(fmj0(q)’f)| < )\3 for all kg < k < mjo.

By lemma 6.2.5 follows that there exists ¢’ in a neighborhood of A, such that dist(f*(q), g'(q")) <
¥1 + a < g for any ¢ > 0, therefore, by claim 2 follows that

IDgbssar o] < A1) V k> ko and |Dg, <A Vm >0 ko < k < myo.

(g™i0(q"),9)

We claim that
g"1(q") e W (d,g) (%)

In fact, if g"*(¢') & W™ (q', g) then We(q', g) N [We™(g™(q'), 9) \{g"*(¢)}] # 0. Let z = g™(¢')
and 2/ = Wes(q',g) N W (g™a(q')) . We assert that there is a positive integer m such that
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dist(g™(z),g™(2')) > 2v0. Observe that from the fact that |Dg|;3’; (gmio (). < (M) for all m > 0
and kg < k, follows that for any v > 0 then there is a positive integer n that

g™ (W5 (g™ (d'), 9)) > €

therefore the assertion follows.
So to finish the proof of (%),

dist(g™ (9" (q")), f™(q)) > dist(¢™(9"(¢")), g™ (2))—

—dist(g™(2),9™(q)) — dist(g™(q'), f™(d)) > € — 370

Taking 7o sufficiently small, we get a contradiction because also holds that

dist(g™(g"*(¢')), F™(q)) = dist(g™"(q')), F™ ™ (q)) < Yo

Using that |Dg|’“E2 @9l < (/\%)]c for all k > ko and that g™ (q’) € WE(¢', g) follows that
9" (WE(q')) € WE(q') and £(g™(WEE(q'))) — 0 (see claim 1 for details). Therefore, there is a
periodic point of period smaller or equal to n, contained in Wg*(g'). To check that the period is
equal to ng we argue by contradiction. If the period is n with n < nq let us take the point f"(gq) and
observe that f™(q) is close to g (recall that ¢’ shadows g). Since the period of g is ny with ny > n
follows that We5(q, f) N [WE(f™(q, f)) \ {f™(¢')}] # 0. Arguing as before, replacing ¢’ by ¢ and
g"(q") by f™(q) we get a contradiction. Therefore, follows that ¢’ is the analytic continuation of
q. n

Now we proceed to prove lemma 6.2.5
Proof of lemma 6.2.5:

Given <o small, we take v < 2. Then, given v we take &/ and A; < 1 given by lemma 6.2.3.
Let us note \; with .

Observe that given 3 small follows that for any g close to f if y € W(z, g) and dist(z,z') < S,
then We(y, g) N W (2!, g) is a unique point. Moreover, there exists 31 = (1(3) such that for
any g close to f follows that if y € We(z, g), dist(z,z') < B, vy = W (y,g) N WE(2', g) then
follows that

dist(z',y') < dist(z,y) + B1 and dist(y,y') < Bi.

Given «a smaller than € (e is the size of the local stable and local unstable manifolds), we take
B < 7 small such that A(y + 3) + 51 < v and S < 7.

Given g € U and a S—pseudo orbit {x,}, first we claim that we can construct by induction a
sequences {y,} such that

yn = W (9(Yn-1),9) N W™ (2, 9),
verifying:
1. dist(yn,zn) < Y0+ 5,
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2. for any k < n follows that dist(yx, g~ ™ ¥ (yn)) < 70.

The proof of the first item is done by induction in n. For n = 0 we take yg = x¢ and we take
y1 = W (g(xo),g) N W (1, g). Since dist(g(zo),z1) < B follows that dist(y1,z1) < f1 <7 <

Yo + 5.
Assuming that we have chosen y,, we take

Ynt1 = W™ (9(yn), 9) "W (@nt1, 9)-

We need to prove that dist(yn41,Znt+1) < Y0 + 8. Observe that if dist(yp,x,) > v then

dist(g(zn), g(yn)) < Adist(xn,yn) < A(y0 + B).

Recalling that dist(g(zn),Zn+1) < B, and from the election of 3 follows that

dist(Yn11, Tng1) < A(v0 + B) + B1 < 70 < 70 + B-

In case that dist(yn,z,) < 7 then

dist(g(zn), 9(yn)) < v <0

so, again follows that

. 0
dist(Yn+1, Tnt1) <7+ F1 < 2% <7 +B.

To check the second item we perform induction in k.

Let us assume that dist(yn &, 9 *(yn)) < Y0-

Then we have to check that dist(yn,(kﬂ),g_(k“)(yn)) < Y-
From the following four facts

L yn—k € W (9(Un—(k+1))) N W (2r—),

2. 9(Yn—(k+1)) € W (9(Tp—(r+1)))>

3. dist(9(Yn—(k+1))> 9(Tn—(k+1))) <0 + B and
4. dist(g(Tp—(k+1)), Tn—k) < B

follows that
dist(Yn—ks 9(Yn - (k+1))) < Br-

Therefore,
dist(g™"(Un), 9(Un—(k+1))) < ¥+ B1 <0+ Br-

Then, if dist(g7*(yn), 9(Yn—(k+1))) > 7 follows that

diSt(g_kH(yn), Yn—(k+1)) < A(70 + B1) <70
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If dist(g*k(yn),g(yn,(kﬂ))) < « follows that

dist(g7" ™ (Yn), Yn— (k1) < ¥ < Y0-

Now we take
{97 (Un) }nen

and observe that g7 "(y,) € W%(zg,g). We take an accumulation point y* of the sequences
g9 "(yn) and we prove that
dist(g"(y"), @n) < @+ 270

In fact,

dist(g™(y*), zn) < dist(g"(y*),yn) + dist(yn, ) <
< dist(g"(y"), 9" (9 " (Ym))) + dist(yn, 9" (9 " (Ym))) + dist(yn, n).

To conclude, observe that dist(¢g"(y*),9™(g™™(ym))) is small provided m large and if m > n
then

dist(Yn, 99 ™ (Ym))) = dist(Yn, g~ ™™ (ym)) < 0.

Now we formulate a series of lemma that improve the description of the semi conjugacy between
H, and A,.

Lemma 6.2.7 Let g € U and let q be a periodic point of g such that there exists ¢ € Pery,»,(f/V)
with ¢' = hg(q). Then
We(a,9) C Wi(g,9) and W¥(q) C Wi(q).

Proof: On one hand, by proposition 6.2 follows that [A2(g)| < (A})"¢, where n, is the period of g;
in particular, holds that there is an iterate of ¢, name g™(q) such that Wc(¢™(q), g) C W&(q™(q))-
On the other hand, by lemma 6.2.3 follows that £(¢g"(W£(q,9))) < € for any n . Therefore,

g (We(q,9)) C WE(9™(a), 9) € Wi(g™(q))- So,
Lg*(g™(WE(q,9)))) = 0 as k— oo L(g"(W(q,9))) <€ V k.

Then, We(q,g9) C W2(q,g). The proof for the center unstable manifold is similar, changing g by

g
|

Lemma 6.2.8 Let g € U and let q be a periodic point of g and q' € Pery,»,(f/V) such that
dist(g"(q), f™(d")) < € for all n. Then, ¢’ = hy(q).

Proof:
The proof is similar to the proof of proposition 6.2.
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Lemma 6.2.9 Let qo be a hyperbolic periodic point in H,. Then, there exists U = U(qo, f) such
that for any g € U and any q € Pery,x;(f/V) follows that the hg_l(q) 18 homoclinically related with

hy ' (q0)-

Proof:

Let us suppose that the lemma is false. Then, there exists a sequences of periodic points {g, } of
fin Pery,x,(f/V), and a sequence of diffecomorphisms {g,} accumulating on f such that hg_n1 (gn)
is not homoclinically related with h'(go). Observe that h,'(gs) is close to g, and h,'(qo) is
close to go. By lemma 6.2.7 follows that W2 (h(qn), gn) is close to W(gn, f). Let us take 2o an
accumulation point of the points g,. Observe that there is a connected compact arc v contained in
the unstable manifold of gy such that intersect W2(zp, f) and so intersects W2 (gy, f). Moreover,
if U is small, on one hand follows that for any g € U, there is an arc y(g) close to y contained in
the unstable manifold of h;l(qo). Therefore, for g, close to f follows that the unstable manifold of
h;ﬂl (qo) intersects W (hg*"1 (Gn), gn)-

With a same argument it is shown that the stable manifold of k" (qo) intersects W (k! (qn), gn),
getting a contradiction.
|

6.2.3 Topologically hyperbolic sets with dominated splitting E{ ® F» © E3.

Now we consider a specific case: A exhibits a dominated splitting £} @ E2 @ E3 such that Ef @ Es is
topologically contractive, E3 is topologically expansive and Es, E3 are one dimensional subbundles.
The following results can be applied to the topologically hyperbolic homoclinic classes obtained in
theorem B.

Moreover, these results are used in [Pu] to show that given a topologically hyperbolic attracting
homodclinic class is either hyperbolic or by perturbation it can be created a heterodimensional cycle.

In what follows, we consider neighborhood U412 of f given by C?—maps that they are C'—close
to f. In the next propositions, it is characterized the pre image by hy and it is considered the
particular case that a point that does not belong to the stable manifold of a periodic point. In this
case, it is proved that the pre image by hy is contained in a center stable disc and the local center
unstable manifold is contained in the unstable manifold. The proof of the proposition uses the
theorem 2.6, which characterized the omega limit of a center unstable arc that does not increase it
size by positive iteration. Observe that this result is only valid for at least C?—maps.

Proposition 6.3 Let f € Diff2(M). Let H,, be a topologically hyperbolic homoclinic class ex-
hibiting dominated splitting E{ ® Eo @ E3 such that E] ® E is topologically contractive, E3 is
topologically expansive and Es, E3 are one dimensional subbundles. Let hg be the semicongugacy
introduced in theorem E2. Then there exists a neighborhood U2 of f such that for any g € US? it
follows that given 2’ € h;'(z) either

1. h’g_l(z) NWE(Z', g) is a single point or

2. W', g) Nh,'(2) is a compact arc such that its w—limit is a periodic arc.
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Proposition 6.4 Let f € Dif f2(M). Let H, be a topologically hyperbolic homoclinic class ez-
hibiting dominated splitting E{ ® Eo @ E3 such that E] ® E s topologically contractive, E3 is
topologically expansive and Es, E3 are one dimensional subbundles. Let hg be the semicongugacy
introduced in theorem E2. Then there exists a neighborhood U2 of f such that for any g € UY2 if
z € Hy does not belong to the stable manifold of some periodic point then for any z' € h;l(z) and
for any & > 0 follows that there exists a positive integer n such that

Ug"(W5"(#,9))) > €.
Moreover either
1. hy'(2) is a single point or

2. hy'(z) is an arc contained in the center stable manifold of some point z' € Ag(V) such

Ug™"(h7*(2))) < 0 for anyn > 0.

Corollary 6.3 Let g be a hyperbolic periodic point of f in H,. There exists a neighborhood U 1,2 =
UY2(q, f) such that for any g € UY? follows that if z € W¥(q) and z does not belong to the stable
manifold of some periodic point, then h;l(z) is a single point.

Proof: Let us take U?(q, f) with the property that q remains hyperbolic for any g € U2(q, f).
In particular, it follows that the center stable manifold of ¢ has not bounded length.

On one hand, if h;l(z) is not a single point, by proposition 6.4, follows that h;l(z) is contained
in the center stable arc of a point 2’ in the unstable manifold of ¢ with the property that its
length remains bounded by negative iteration. On the other hand, by negative iteration follows
that h;l(z) converges to the center stable manifold of ¢, which has not bounded length. Therefore,
hy'(z) is a single point

[

A similar result to the one obtained in propositions 6.3 and 6.4 can be stated for points that

belong to the stable manifold of a periodic point.

Proposition 6.5 Let g be a hyperbolic periodic point of f in Hp. There erists a neighborhood
U2 =U2(q, f) such that for any g € US? follows that if = € W*(q) then h;l(z) is contained in
the stable manifold of h;l(q).

Proof of proposition 6.3:

It follows easily that either h;'(z) N W(2, g) is a single point or it is an arc I contained in
WE(2', g). In the last case, since for any w € [ = hy'(z)NW£*(2/, g) follows that dist(g"(w), g"(2'))
is small, then by theorem 2.6 the proposition follows.

[ ]
Proof of proposition 6.3:

Let 2/ € h;l(z) such that z does not belong to the stable manifold of some periodic point. If
there is some § > 0 small such that for any positive integer n follows that £(g"(W§"(2',9))) < €
then it holds that w(W§*(2', g)) is a periodic interval; therefore, g™(2’) converge to a periodic point.
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Since g"(2') and f™(z) remains close, follows that the orbit of z by f converges to a periodic point,
and so z belongs to the stable manifold of some periodic point. Which is a contradiction.

For the last part, if there are two points z; and z2 such that zo ¢ WE(21), it follows that
WE8(z2) intersect the local unstable manifold of z; in a point z3 different than z;. If we consider
the arc I contained in the local unstable manifold of z; and bounded by z; and z3, follows that
the arc does not growth the length by positive iterations; which is contradiction with the previous

item. The last item is immediately.
]

The proof of proposition 6.5 is similar to the proof of 6.4 and it is left for the reader.
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