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Abstract

We study hypersurfaces of constant mean curvature immersed into warped
product spaces of the form R x, P", where P" is a complete Riemannian
manifold. In particular, our study includes that of constant mean curvature
hypersurfaces in product ambient spaces, that have been extensively studied
recently. It also includes constant mean curvature hypersurfaces in the so
called pseudo-hyperbolic spaces. If the hypersurface is compact, we show that
the immersion must be a leaf of the trivial totally umbilical foliation ¢ € R —
{t} xP", generalizing previous results by Montiel [11]. We also extend a result
of Guan and Spruck [7] from hyperbolic ambient space to the general situation
of warped products. This extension allows us to give a slightly more general
version of a result by Montiel [11], and to derive height estimates for compact
constant mean curvature hypersurfaces with boundary in a leaf.
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1 Introduction

It is a classical result that a compact hypersurface embedded in Euclidean space
with constant mean curvature must be a round sphere. Alexandrov [1| gave a
proof of this fact by making a clever use of the maximum principle for elliptic
partial differential equations. The now called Alexandrov’s reflexion method works
as well for hypersurfaces in Euclidean sphere and hyperbolic space, since its main
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requirement of having a large number of isometric reflexions is satisfied in such
ambient spaces.

An attempt to extend the above result from constant sectional curvature mani-
folds to a larger class of Riemannian spaces should consider manifolds with a plenty
of complete embedded constant mean curvature hypersurfaces. Such hypersurfaces
play the role of the umbilical ones in spaces of constant sectional curvature. Then,
one looks for geometric conditions on an immersed complete constant mean curva-
ture hypersurface that force it to be one of those already classified. In space forms,
one proves such classification results using the plenty of isometries of the space.
Since here we consider more general ambient manifolds, one needs to develop an
appropriate method of proof.

Montiel [11] observed that a natural class of manifolds to consider is that of
warped products M™ = R x ,P" where P" is a complete n-dimensional Riemannian
manifold, p : R — R, is a smooth function and the product manifold R x P" is
endowed with the complete Riemannian metric

() =mk(dt?) + o*(ma)mp({ , )e)-

Here mr and 7p denote the projections onto the corresponding factor and ( , )p
is the Riemannian metric on P". Each leaf P, = {t} x P" (called here a slice) of
the foliation t € R +— P, of M™" by complete hypersurfaces has constant mean
curvature. Its mean curvature vector field is

where H(t) = ¢/(t)/o(t) and T'= 0/0t € TM. For further geometric inside, observe
that 7 = oT is a closed conformal vector field on M™*!, that is, it satisfies

VvT =0V forany V € TM. (1)

Here and elsewhere V stands for the Levi-Civita connection in M™*! and, by abuse
of notation, we denote in the same way functions on R and their lift to A/"*!. In
[11, §3] it is carefully shown that any Riemannian manifold M"*! with a closed
conformal vector field is locally isometric to a warped product manifold with one-
dimensional factor. Furthermore, the isometry is global if M"*! is complete and
simply connected.

Extending the well-known Mercator projection, used in cartography to confor-
mally project the two-dimensional sphere into the Euclidean plane [16, p.173] (see
[13] for the hyperbolic case), we conformally transform the warped product space
R x, P" into a product space with factor P". In fact, let 7: R x P* — J x P" be



given by 7(t,x) = (s(t), x) where J = s(R) and

0= [ (1 ofw))du.

Then 7 is a reversing orientation isometry between M™"*! and J x P endowed with

the conformal metric
< ) > - >\2<S) (d82 + < ) >]P") ) (2)
where the conformal factor is A(s) = o(t(s)). Suppose that o(t) satisfies

+oco 1 0 1
/ - < 400 and / - = +o0, (3)
0

0 —o0 @

and take sg = f0+oo(1/g). Then, we have that J = R, and, therefore, P" acts as a
boundary at infinite of R x,P", as does {0} x R™ in H"*! and the leaves P, can be
thought as horospheres in a fixed direction of H"*?.

There are two cases (after normalization) in which all slices have the same con-
stant mean curvature H. The first one is when H(t) = 0 (o(t) = 1), and the ambient
space is just a Riemannian product M"*! = R x P". Constant mean curvature hy-
persurfaces in these spaces have been extensively studied in recent years. The second
case is when H(t) = 1 (either o(t) = e’ or g(t) = cosht), and M™*! belongs to the
class of pseudo-hyperbolic manifolds defined in [17]. When o(t) = €, the conformal
factor in (2) is A(s) = 1/s and (3) is satisfied. Moreover, if P" is Ricci flat then
M™1 is Einstein with negative Ricci curvature, and if P is flat then M"™! is a
negatively curved space form. Thus, for o(t) = €' we deal with ambient spaces that
have many ressemblaces with hyperbolic space H"**.

Montiel’s method of proof in [11] combines the use of two Minkowski-type for-
mulas. In Corollary 7 he gives the following (Montiel’s 18t result).

Let P be a compact manifold satisfying Ricp > supp{—0?H'(t)}. Then
any compact orientable immersed constant mean curvature hypersurface
in R x,P" that is locally a graph over P must be a slice.

This result has the following consequences (Corollary 8) for the class of pseudo-
hyperbolic ambient spaces (Montiel’s 224 result).

(a) Let P be compact with non-negative Ricci curvature. Then any com-
pact constant mean curvature hypersurface in R X P™ that is locally a
graph on P™ must be a slice.

(b) Let P™ be compact with Ricci curvature satisfying Ricp > —1. Then
any compact constant mean curvature hypersurface in R X oqn ¢ P that is
locally a graph on P™ must be a slice.
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In Section 2 we compute the Laplacian of o o h € C*(X), where h is the height
function of an immersed hypersurface 3" +— R x, P" and o € C>®(R) satisfies
o'(t) = o(t). This yields a rather simple differential equation that has several ap-
plications for compact hypersurfaces. In particular, it allows a generalization of
Montiel’s 224 result, for instance, by removing the assumption on the Ricci cur-
vature. We also consider the case of complete hypersurfaces via the Omori-Yau
maximum principle.

In Section 3 we extend a result of Guan and Spruck [7] from hyperbolic ambient
space to the general situation studied in this paper. Such extension allows a slight
generalization of Montiel’s 15t result. Then we use our result to provide height esti-
mates for compact constant mean curvature hypersurfaces with boundary contained
in a slice of either a product or a pseudo-hyperbolic ambient space; thus extending
results in [7] and [9]. Further applications for graphs with boundary are given in

[2].

2 The 1% equation

In this section we compute a basic partial differential equation whose strength is
based on its independence of the curvature tensor of the ambient space. We then
derive several consequences, in particular, a generalization of Montiel’s 15t result.

Let f: X" — R x,P" be an isometric immersion of an n-dimensional Riemannian
manifold ¥"; its height function h € C*(X) is defined as h = mgo f, where 7 denotes
the projections onto the first factor.

Proposition 1 Let f: 3" — M" ™ =R x,P" be an isometric immersion with mean
curvature vector field H. If o(t) = ftz o(r)dr, then

Ao (h) = no(h)(H(h) + (H,T)) (4)
where H(t) = ¢'(t)/o(t) and T = 9/0t € TM.
Proof: The gradient of mg € C*°(M) is Vg = T, and thus the gradient of h is

Vh = (Vrg)' =T — (T,N)N, (5)

where by ()T we mean taking the tangential component of a vector field along f
and N is a (local) smooth unit normal vector field. It is a standard fact that the
Levi-Civita connections of a warped product satisfies

VT =H(V —(V,T)T) forany V € TM. (6)
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It follows from (5) and (6) that
VxVh=Hh)(X—(X,T)T) - X((T,N))N + (T, NYAX (7)

for any X € TY. Here AX = —VxN denotes the second fundamental form of f
with respect to N. Then, we get

VxVh = (VxVh)" = H(h)(X — (X,Vh)Vh) + (T, N)AX, (8)

where V stands for the Levi-Civita connection in X". It follows from here that the
Laplacian of h is given by

Ah =H(h)(n — ||VA|?) +n(H,T). (9)

Since Vo (h) = o(h)Vh, we have that

—

Aa(h) = o(h)Ah+ ¢/ () [[Vh|* = no(h)(H(h) + (H,T)),
and this concludes the proof. i

We first analyze the case of compact hypersurfaces (without boundary). Our
first result is mostly technical because of the assumption on the immersion itself.

Proposition 2 Let f: ¥" — R x,P" be a compact hypersurface such that either
|H| <Hoh or |[H|<-Hoh (10)
holds along ™. Then P™ is compact and f(X") is a slice.
Proof: At any point of X" we have by Cauchy-Schwarz that
H(h) — || H| < H(h) + (H,T) < H(h) + [|H].

By assumption the function H(h)+ (H, T does not change sign. It follows from (4)
that Ao (h) does not change sign either. But being ¥" compact, the divergence theo-
rem gives Ao (h) = 0, and hence o(h) must be constant (that is, any subharmonic or
superharmonic function on a compact Riemannian manifold without boundary must
be constant; this property is used several times in the paper). Since o'(t) = o(t) > 0,
we conclude that h itself must be constant. g

Notice that (10) implies that the function Hoh € C*(X") does not change sign,
and says just that in the minimal case. It is thus natural (and convenient) to assume
that H € C*(R) does not change sign, instead of involving the immersion f in the
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hypothesis. Geometrically, the fact that H does not change sign means that the
mean curvature vectors of all slices P; point in the same direction.

Next corollary of Proposition 2 states the analogous in R x, P" of the non-
existence of compact hypersurfaces that are either minimal in R**! and R x H"
or with mean curvature function 0 < H < 1 in H""'. The case H(t) < 0 can be
reduced to the case H(t) > 0 by changing the orientation of the factor R.

Proposition 3 Assume H(t) > 0 and set Hy = infgr H(t). A compact hypersurface
in R x, P" with mean curvature function 0 < H < Hy only occurs if P" is compact
and, then, it is any slice Py, where H(to) = Ho.

Proof: From Proposition 2 we have that P" must be compact and that H = H(to)
for some ty € R. Thus H = H, by assumption. 1

A submanifold f: X" — R x, P" is called two-sided if its normal bundle is
trivial, i.e., there is a globally defined unit normal vector field. For instance, every
hypersurface with non-zero constant mean curvature is trivially two-sided. Then,
we define the smooth angle function ©:%" — [—1,1] by

O(p) = (N(p), T)

where N denotes the global normal field.

If f is locally a graph over P" (i.e., transversal to T') then either © < 0 or © > 0
along »". Thus, asking © not to change sign is a weaker assumption than being a
local graph. Notice that ©% = 1 if and only if X" is a slice (see (11) below).

From now on, every time the angle function of a two-sided hypersurface does not
change sign, then the orientation N is chosen so that © < 0, and then the mean
curvature function is H = (H, N).

Montiel observed that if P" is compact and if the mean curvature of the slices is
non decreasing (H’(t) > 0) then any compact constant mean curvature graph over P
must be a slice (see [11, Remark 6]). To see this, he compares the hypersurface with
slices and then invokes the maximum principle. The following theorem generalizes
such result as well as Corollary 8 in [11] (Montiel’s 224 result).

Theorem 4 Let f: X" — R x,P" be a compact two-sided hypersurface of constant
mean curvature H. Assume that H'(t) > 0 and that the angle function © does not
change sign. Then P™ is compact and f(X") is a slice.

Proof: Let puin, Pmax € X" be such that

h(pmin) = h = mEinh and  h(Pmax) = h = max h.
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Therefore, VA(pmin) = 0 and Vh(ppax) = 0. We have from (5) that
IVal* =1- 67 (11)

and therefore
O(Pmin) = 1 and O (Ppax) = £1. (12)

Moreover, (9) gives

Ah(plrnm) - n(H(h) + <ﬁ(pmin)7T>) >0

T

Ah(Pmax) = n(H(h) + (H (pmax), T)) < 0.

Hence,
—(H(puin), T) < H(h) and  H(h) < —(H (Pmax), T)- (13)

Before we proceed, for later use notice that the proof of (13) only uses that 3"
is compact. From (12), (13) and H' > 0, we obtain

O (puin) H (puin) < (1) < H(E) < O (D) H (Prns).
By assumption O(puin) = O(Pmax) = sign ©, and hence
—Hsign© < H(h) < H(h) < —H sign©.
It follows that H o h = —H sign ©. We obtain from (4) that
Ac(h) =no(h)H(O — sign 9),

and thus A(o o h) does not change sign. Therefore, o o h and hence h itself must be
constant. 1

We have two useful corollaries of the proof of Theorem 4. For instance, dropping
the assumption that H’ > 0 we still have the following result.

Proposition 5 Let f: X" — R x,P" be a compact two-sided hypersurface such that
© does not change sign. Then, we have

min H < H(minh) and maxH > H(maxh).
2 » b >
Proof: We have that ©(pmin) = O(pmax) = —1 since we are always choosing © < 0.
It follows from (13) that
mEinH < H(pmin) < H(mzin h) and H(mgx h) < H(pmax) < max H,

and this concludes the proof. &

Our second result is for minimal immersions.



Proposition 6 Assume that ¢"(t) > 0. A compact minimal hypersurface in R x ,P"
only occurs if P is compact and then it is any slice Py, where H(ty) = 0.

Proof: From (13) we have ¢'(h) < 0 < ¢'(h). Then ¢”(t) > 0 yields ¢’ o h = 0, and
hence 'H o h = 0. The proof follows from Proposition 2. g

To extend the preceding results from compact to complete submanifolds we use
the following well-known Omori-Yau maximum principle [18].

Lemma 7 Let M be a complete Riemannian manifold with Ricci curvature bounded
from below. If u € C*(M) is bounded from below, then there exists a sequence of
points {p;} € M such that

lim u(p;) = infu, ||Vu(p;)| <1/j and  Au(p;) > —1/j.

J—o0

Remark 8 The Omori-Yau maximum principle (thus our next result) holds under
the weaker assumption (see [3])

Ricy > —C(1 4 r?log®(r +2))
where 7 is the distance function in M to a fixed point and C' a positive constant.

Next Theorem is the analogous of Theorem 4 for complete hypersurfaces con-
tained in a slab.

Theorem 9 Let f: ¥" — R x,P" be a two sided complete hypersurface of constant
mean curvature H, with Ricci curvature bounded from below and

f(Z") C [tl,tg] x P"

where ty,ty € R are finite. Assume that H'(t) > 0 almost everywhere and that the
angle function © does not change sign. Then f(X") is a slice.

Proof: By Lemma 7 using (9) and (11) there exists a sequence {p;} € X" such that

lim h(p;) = h:=infh > —o0,  [Vh(p,)[? = 1 - ©(p;) < (1/5)?

J—00

and
Ah(p;) = H(k(p;))(n = [[VR(p)*) + nH (p;)O(p;) > —1/5.

The last equation gives
—nH (p;)O(p;) < 1/5 +H(h(p;)(n — [ Vh(p)|*)-
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Since lim; - O(p;) = sign © by the second equation, it follows that

—sign© lim H(p;) < H(h). (14)
Jj—+oo

Similarly, applying Lemma 7 to —h yields a sequence {g;} € £" such that

H(h) < —sign® lim H(g)) (15)
Jj—+too

where h := suph < oo. We obtain from (14), (15) and our assumptions that
—sign OH < H(h) < H(h) < —sign O H,
and since H'(t) > 0 almost everywhere, we conclude that h = h. §

For complete hypersurfaces we have the following version of Proposition 5.

Proposition 10 Let f: X" — R x, P" be a two-sided complete hypersurface with
Ricci curvature bounded from below and contained in a slab. Assume that the angle
function © does not change sign. Then,

inf H <H(infh) and supH > H(suph).
% % » b

Proof: Since sign © = —1, we obtain from (14) and (15) that

ing < lim H(p;) < H(igf h) and H(suph) < lim H(g;) <supH,
> >

J—+0oo Jj—-+oo
and this concludes the proof. &

Any function u € C*(P) determines an entire graph I'(u) over P™ by the map
fu: P — R x P™ defined as f,(q) = (u(q), q). It is a standard fact that the equation
for the mean curvature function H of I'(u) is

D
Div — e = —p 1, (16)

VI+[Dul?

where Du denotes the gradient of u € C*°(P) and Div the divergence on P". If P"
is compact, it follows easily from (16) that any entire graph in R x P whose mean
curvature H does not change sign is necessarily minimal. As H = 0, from (9) it
follows that the height function w is harmonic on the compact I'(u), and thus the
graph must be a slice.

Extending a result due to Heinz (n = 2) it was proved independently by Chern
[4] and Flanders [5] that any entire graph in Euclidean space R™™ with constant
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mean curvature must be minimal. A beautiful argument due to Salavessa [15] shows
that, for a complete non-compact P", an entire graph in R x P" with constant mean
curvature H is minimal provided that the Cheeger constant h(P) of P™ vanishes. To
see this, recall that
area (0D
h(P) = inf area (9D)

D area(D)
where D C P is any compact domain with smooth boundary. Integrating (16) over
D and using the divergence theorem, we obtain

(Du,v)
op /1 + || Dul|?

and, similarly, n area (D) maxp > —area (0D). We thus have,

narea (D) mDinH < n/ HdAp = ds < area (0D)
D

1 D
and sup H > _oarea (0D)
P

1 area (0D)
n area (D)’

inf H < —
2 area (D)
and hence,

1 1
inf H <—-h(P) and supH >——h(P).
P n P n
In particular, when h(PP) = 0 we obtain infp H < 0 < supp H. Then, if H is constant
it must vanish.
As a consequence of Proposition 10 we have the following result for graphs in

Riemannian products.

Corollary 11 Let I'(u) be an entire graph over P* determined by v € C*(P). If u
is bounded and if the Ricci curvature of T'(u) is bounded from below then the mean
curvature function of the graph satisfies

inf H <0 <supH.
r r

In particular, if H is constant then the graph must be minimal.

For other results of this type see Corollary in [14, p. 445] and Theorem 2 in [8].
Examples of entire graphs in the product space R x H? of constant mean curvature
H € (0, 3] with u bounded only on one side where given in [12].

To conclude this section we consider the case of parabolic submanifold, where
by parabolic we mean that any subharmonic function on the submanifold, bounded
from above, must be constant.
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Proposition 12 Let f: X" — R x,P" be an isometric immersion. Assume that X"
1 parabolic and that either

(i) h<h<+oco and ||H| <Hoh, or
(ii) h>h>—oc and ||H| < —Hoh.

Then f(X") is a slice.

Proof: In case (i) using (4) we have Ac(h) > 0, and the proof follows since " is
parabolic and o(h) < o(h). Case (ii) is analogous using —o. i

3 The 2" equation

We already reached several conclusions for hypersurfaces whose mean curvature is
smaller than the mean curvature of slices. To get rid of this restriction, we assume a
bound on the normalized Ricci curvature of P" and we introduce a partial differential
equation coming from the Codazzi equation.

The following result extends Theorems 1.2 and 2.2 in [7] proved for hypersurfaces
in hyperbolic space (we will explain in which sense in Remark 15).

Given a two-sided hypersurface f: X" — R x, P", we fix an orientation N and
define ¢ € C*(X") by
¢ =o(h)H + o(h)©. (17)

Theorem 13 Let f: X" — R x,P" be a two-sided hypersurface of constant mean
curvature. If the angle function © does not change sign and the Ricci curvature of

P" satisfies
Ricp > s%p{—QQH’(t)}, (18)
then ¢ is subharmonic.
Proof: The Codazzi equation of f: ¥" — R x,P" is
(R(X,Y)N)" = (VyA)X — (VxA)Y, (19)

where R denotes the curvature tensor of R x, P". It follows from (1) that

V(N,T)=—A(T") = —o(h)A(Vh), (20)
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where T = ¢T'. Therefore, using (8) and (19) we conclude from (20) that

VAV(N,T) = —d(h)(X, VRYAVE — o(h)(V x A)(Vh) — o(h) A(V x V)
— —o(h) (Ve A)X — o(h)(R(Vh, X)N)T = o (W)AX — (N, T)A’X.

Let Ric be the Ricci tensor of M™"*! = R x, P". Using tr(VzA) = (VtrA, Z), we
obtain

A(N,T) = —no(h)(VH,Vh) + o(h) Ric(N,Vh) —ng (h)H — (N, T)||A|*. (21)
The curvature tensor of M™*! expressed in terms of the curvature tensor of P" is
R(U V)W = Rp(U, V)W — HX((V,W)U — (U, W)V)
+HW,TY(U, TV = (V. T)U) = H' (V. W)U, T) — (U W)V, T))T,

where we denote U = 7ps U. Then, the Ricci tensor of M+ can be given in terms
of the Ricci tensor of P, namely,

Ric(V, W) = Ricp(V, W) — (nH2 + H)(V, W) — (n — OH(V,THW,T). (22)

Thus, - o
Ric(N, X) = Ricp(N, X) — (n — 1)H'(h)O(X, Vh)

for any X € TY. Since T = Vh + ON, then (Vh)* = —ON*, where ( )* means
taking the P"-component of a vector field in T'M. Thus,

Ric(N,Vh) = —(n —1)0 (RicP(N) + H’(h)uvm\?) (23)

where, as usual, (n — 1)Ricp(-) = Ricp(-, -). Since the mean curvature H is con-
stant, we conclude from (4), (21), (23) and o(h)© = (N, 7T) that

A6 = —o(m)© {J|A|2 = nH? + (n — 1) (Rice(N) + H(W)|VA?) } . (24)
From (18) and || N|2 = 072(h)||VA|?> we obtain
Ricg(N) +H'(B)||VR|* = 0, (25)
and the proof follows using that ||A||> > nH?. &
Remark 14 It follows easily from (22) that (18) is equivalent to
Ric(X) > Ric(T) for all X € TM.

In other words, the direction T" must be of least Ricci curvature.
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Remark 15 Given a vertical graph over R™ in H"™! with constant mean curvature,
the result in [7, §2] asserts that the mean curvature function computed with respect
to the underlying Euclidean metric is subharmonic. To see that the preceding result
extends the one in [7] we consider the case of pseudo-hyperbolic ambient spaces
R X P". Then (18) reduces to Ricp > 0 (this holds for H"*! since P"* = R") and
the subharmonic function ¢ takes the simple form

¢ =e"(H +0). (26)

It turns out that ¢ is also the mean curvature of the hypersurface when computed
in the product metric of Ry x P". In fact, a straightforward computation yields that
the mean curvature function H of f =70 f: &7 — J x P" is H = o(h)H + ¢/(h)®©.
Then observe that H = ¢ if and only if o(t) = €.

Montiel’s 1%t result [11, Corollary 7], in our case is an easy consequence of our
Theorem 13.

Theorem 16 Let f: 3" — M"™ =R x,P" be a compact two-sided hypersurface
of constant mean curvature. Assume that (18) holds and that the angle function
© does not change sign. Then either f(X") is a slice over a compact P* or M™*!
has constant sectional curvature and X" is a geodesic hypersphere. The latter case
cannot occur if we assume that the inequality in (18) is strict.

Proof: We know by Theorem 13 that ¢ is a subharmonic function on X", but being
" compact that implies that ¢ is constant. Then (24) gives

O (I = nH? + (n = 1)(Rics(N) + H'()|[VH]%)) = 0. (27)

We claim that U = {p € ¥" : ©(p) = 0} has empty interior. To see this, assume on
the contrary that & contains a non-empty open subset V of ¥™. On V the function
o(h)H = ¢ is constant and, if H # 0, then o(h) and, equivalently, A is constant.
But this is not possible, since |[VA|*> = 1 — ©? = 1 on V. Therefore, it must be
H =0, and then o(h)© = ¢ is constant on >". Since it vanishes on V it must vanish
on all of ¥". Hence U = X", but this is not possible because ©? = 1 at least where
h attains its extrema. Summing up, U/ has empty interior. Then (27) implies that

IAI? = nH? + (n — 1)(Rice(N) + H'(h)||VA|*) = 0

that is,
|A|? —nH? =0 (28)
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and )
Ricp(N) + H'(h)||VA|* = 0. (29)

Equality (28) means that f is totally umbilical. Moreover, we observe that Montiel’s
reasoning in his proof of Corollary 7 in [11] also applies here, and allows us to
conclude that the case where f is totally umbilical (but not a slice) can only occur
if Mt has constant sectional curvature and X" is a geodesic hypersphere.

Finally, when inequality in (18) is strict, then (29) is equivalent to N(p) = 0 at
any p € X", that is, Vh = 0 on X", and hence f(3") is a slice over a compact P".
|

One can use Theorem 13 to obtain height estimates for constant mean curvature
hypersurfaces with (nonempty) boundary contained in a slice. Next result is an
extension of the height estimates for vertical graphs in R x P? in [9).

Theorem 17 Let f: X" — R x P" be a compact hypersurface of constant mean
curvature H > 0 and nonempty boundary 03" C Py. Assume

. n
Ricp > 1Oz for some «a <0,

© <0 and H?> > |a|. Then, we have f(X") C [0, H%MI} x P,
Proof: By assumption, (n — 1Ricp(N) > nal|N||2 > na because of o < 0 and
| N2 = ||[VR||* < 1. Consider ¢ € C®(X") defined as

H? — o

h .
7 +0

(0%

Using (9) and (24), we have

Ay = —O(||A||? — nH? + (n — 1)Ricp(N) — na)

> —0O((n — 1)Ricp(N) — na),
and thus v is subharmonic on ¥". The maximum principles yields

= < = <
Vi h+© w_n%%xw I%%X@_O,

and hence 0 < h < H/(H? — |a|).

For our next result we first recall a well known tangency principle. Let X7
and X% be two hypersurfaces in an arbitrary Riemannian manifold N™*! that are
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tangent at a common point py. Fix a normal vector ng at py and locally parametrize
both hypersurfaces in a neighborhood U of zero in 1), ¥, = T,,%2 by means of the
exponential map of N"*! as follows:

(PJ(CC) = epro (.CE + ,uj(x)HO)a j = 17 27

where 11, € C*(U) are well determined functions satisfying 1;(0) = 0. One says that
YT lies above XY in a neighborhood of pg if pq(z) > pe(x) in a neighborhood of zero.
This is equivalent to require that the geodesics of N™*! normal to the hypersurface
exp,,(U) in a neighborhood of py in the orientation determined by 7 intercept X3
before 37. The following fact is well-known (cf. [6]).

Let 37 and X% be hypersurfaces as above with constant mean curvature
satisfying Hy,, < Hy, with respect to ng. Then X} and X% coincide in a
neighborhood of py.

The following general result has no assumption on the curvature of P* and is of
independent interest.

Proposition 18 Let f: ¥" — R x,P" be a compact two-sided constant mean cur-
vature hypersurface with nonempty boundary f(0X) C P,, and whose angle function
© does not change sign. Then, we have:

(i) If H <inf[; ;o) H then f(X") C (—oo, 7] x P".
(i) If H > sup_. 1 H then f(X") C [, +00) x P
In particular, if H'(t) > 0 and H = H(7) then f(X") C P,.
Proof: Assume H < inf|; ) H but that h < 7 does not hold. Hence, we obtain

mgxh =h(pe) =10>T

at some interior point py of ¥". Take ¥; = X", ¥y = P,,, and hence ¥; # 3.
Observe that >, and Y, are tangent at the common point py, and that >, lies above

Yo with respect to the common normal 7y = —T" at py. Since
HZ1 =H S : inf )H S H(To) = H227
T,+00

by the tangency principle we would get that »; and X, coincide in some open
neighborhood of py. This is in contradiction to ¥; # 5. The proof for the case
H > sup_, ;1 H is similar.

The following consequence of Proposition 18 extends Proposition 2.3 in [10].
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Corollary 19 Let f: 3" — Rx.P" be a compact two-sided hypersurface of constant
mean curvature with nonempty boundary f(0%) C P, and whose angle function ©
does not change sign. Then, we have:

1. H <1 ifandonlyif h <.
2. H>11if and only if h > 7 on X",

In particular, H = 1 if and only if f(X") C P,.

To conclude we extend Theorem 3.3 in [10], that applies to graphs in hyperbolic
space H"!, to graphs in pseudo-hyperbolic manifolds. For the case of pseudo-
hyperbolic space with o(t) = e’ we have the following.

Theorem 20 Let f: X" — R X P" be a compact hypersurface of constant mean
curvature H ¢ [0,1) and nonempty boundary f(OX"™) C P,. Assume Ricp > 0 and
that the angle function © does not change sign. Set C' =log (H/H — 1). Then, we
have:

(i) If H <0, then f(X") C [t + C, 7] x P".
(1) If H > 1, then f(X") C [r,7 + C] x P".
(i5i) If H =1 then f(X") C P,.

Proof: By the preceding result, we have f(X") C (—oo,7] x P" if H < 0, that
f(E™) C [r,+o00) xP*if H > 1, and that f(X") C P, if H = 1. From the maximum
principle applied to the subharmonic function ¢ given by (26), we obtain

e"(H—-1)<e"(H+0)< Hé%xeh(H—i—@) = eT(H—{—r%%X@) <e'H,

and the proof follows easily. 1

Finally, for the case of pseudo-hyperbolic space with o(t) = cosht we obtain the
following.

Theorem 21 Let f: 3" — R Xeoent P be a compact hypersurface of constant mean
curvature H and nonempty boundary f(0X") C Py. Assume Ricp > —1 and that
the angle function © does not change sign. Set tanh C' = 1/H. Then, we have:

(1) If H < —1, then f(X") C [C,0] x P™.
(ii) If H > 1, then f(X") C [0,C] x P™.

16



(iii) If H =0 then f(") C P,.

Proof: By Proposition 18, we have f(¥") C (—o0,0] x P* if H < 0, that f(X") C
[0,400) x P* if H > 0, and that f(X") C Py if H = 0. Now o(t) = sinht¢, and
from the maximum principle applied to the subharmonic function ¢ given by (17),
we obtain

Hsinhh — coshh < ¢ < max¢ = max0© <0,
ox ox

that is, H tanhh < 1. Then, when H < —1 this gives tanhh > 1/H, and when
H > 1 this yields tanhh < 1/H. 1
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