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Abstract. Let H be a separable Hilbert space, U ⊆ H an open convex subset,

and f : U → H a smooth map. Let Ω be an open convex set in H with

Ω ⊆ U , where Ω denotes the closure of Ω in H. We consider the following

questions. First, in case f is Lipschitz, find sufficient conditions such that for

ε > 0 sufficiently small, depending only on Lip(f), the image of Ω by I ± εf ,

(I ± εf)(Ω), is convex. Second, suppose df(u) : H → H is symmetrizable

with σ(df(u)) ⊆ (0,∞), for all u ∈ U , where σ(df(u)) denotes the spectrum

of df(u). Find sufficient conditions so that the image f(Ω) is convex. We

establish results addressing both questions illustrating our assumptions and

results with simple examples. We apply them to finite difference methods for
approximating solutions of nonlinear ordinary differential equations in Hilbert

spaces and also discuss the invariance of convex-valued maps from measure
spaces into Hilbert spaces under certain nonlinear integral operators.

1. Introduction

In this paper we are concerned with the preservation of the convexity of bodies
transformed by maps f : U ⊆ H → H from an open convex set U of a separable
Hilbert space H into H. The results presented here generalize to the infinite di-
mensional setting those of [11, 12]. The first type of result we consider is related
to Lipshitz maps. So, we assume that f is Lipschitz and, given an open convex Ω,
with Ω ⊆ U , we wish to find sufficient conditions on f and ∂Ω such that (I±εf)(Ω)
is convex, if 0 < ε < ε0, with ε0 depending only on Lip(f). The link of this problem
with the question of the invariance of convex sets under finite difference schemes
for systems of conservation laws, not necessarily hyperbolic everywhere, was first
discovered in [10].

As in [11], the most important assumption relating f and ∂Ω is that, for all ω at
which ∂Ω is smooth, df(ω)(Tω(∂Ω)) ⊆ Tω(∂Ω), where Tω(∂Ω) denotes the tangent
space to ∂Ω at ω. As usual, most of the difficulty for the extension from the
finite to the infinite dimensional case is, from the very beginning, to find suitable
conditions that allow an adequate adaptation of the finite dimensional techniques
to the more general infinite dimensional context. Here, we find necessary to impose
the following new assumptions which involve the concept of what we call standard

Fredholm operators. By this we mean an operator T : H0 → H0, H0 a Hilbert
space, such that T = cI + K, with c ∈ R and K : H0 → H0 a compact operator.
When c 6= 0 this concept coincides with the simplest example of the usual concept
of Fredholm operator (see, e.g., [7]). Roughly speaking, if ω ∈ ∂Ω and locally
∂Ω is given by the equation G(v) = 0, with G : U → R, three times continuously
Gateaux differentiable, dG(ω) 6= 0, we assume that df(ω)|H0 is a standard Fredholm
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operator and the symmetric bilinear forms d2G(ω)|H0 and dG(ω)d2f(ω)|H0 are also
represented by standard Fredholm operators, where H0 = Tω(∂Ω).

The other type of result we consider is concerned with the case when df is sym-
metrizable everywhere in U and σ(df(u)) ⊆ (0,∞), for all u ∈ U , where σ(A)
denotes the spectrum of the operator A : H → H. The question then is to find
sufficient conditions on f and ∂Ω such that f(Ω) is convex. In the finite dimen-
sional context this question was first addressed by D. Serre [25], who discovered
its connection with the question of the invariance of convex sets under continu-
ous relaxation and kinetic approximations for systems of conservation laws. We
illustrate our assumptions and results with simple examples and give applications
to finite difference approximations of nonlinear ordinary differential equations in
Hilbert spaces and to the invariance of convex-valued maps from measure spaces
into Hilbert spaces under certain nonlinear integral operators arising in kinetic
theory and others fields such as game theory and mathematical economics.

Our main result for the Lipschitz case raises an interesting question, left open,
concerning the possibility of improving the upper bound for ε, ε0 = (2Lip(f))−1,
for which we guarantee the convexity of (I ± εf)(Ω), to some value in the interval
(ε0, 2ε0], in the interior of which I ± εf is still a bi-Lipschitz diffeomorphism, or,
otherwise, to prove the impossibility of such improvement. For our method, the
upper bound (2Lip(f))−1 seems optimal. Another interesting question is the pos-
sibility of extending the results to the more general context of Banach spaces. In
concluding this introduction, we would like to stress the fact that the extension to
the infinite dimensional context of the results in [11, 12] provided here not only
is far from being a trivial matter but also allows a much neater exposition of the
key techniques set forth in the mentioned papers revealing in much clearer way, in
particular, their strength.

The remaining of this manuscript is organized as follows. In section 2, we state
our main assumptions (A1)-(A6), which will be in force through the whole paper,
and establish the main result for the Lipschitz case mentioned above. In section 3,
we deal with the symmetrizable case, establishing our corresponding main result.
In section 4, we consider the application to finite difference approximations for
ordinary differential equations in Hilbert spaces. Finally, in section 5, we consider
the application to the invariance of convex-valued maps from measure spaces into
Hilbert spaces under certain nonlinear integral operators arising in kinetic theory
and others fields such as game theory and mathematical economics.

2. Lipschitz Maps of Convex Bodies

Let L be a real linear space. A subset S of a real linear space L is called convex if,
for every pair p, q of its points, it contains the entire segment [p, q] = {θp+(1−θ)q :
0 ≤ θ ≤ 1}. A subspace V of L has codimension n if there exists a subspace W ⊆ L
of dimension n, with V ∩ W = 0 and L = V + W . A hyperplane H in L is the
translate of a subspace of codimension 1. If l : L → R is a linear functional and
α ∈ R, we denote by [l = α] the set of all points x ∈ L for which l(x) = α. We define
analogously the sets [l ≥ α] and [l ≤ α]. It is well known that H is a hyperplane
of L if and only if there is a linear functional l : L → R and α ∈ R such that
H = [l = α].
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H is called a supporting hyperplane of S ⊆ X at the point p ∈ S if p ∈ H and S
is entirely contained in one of the closed halfspaces bounded by H, that is, either
S ⊆ [l ≥ α] or S ⊆ [l ≤ α], where H = [l = α].

Let L denote a real topological linear space, that is, a real linear space endowed
with a Hausdorff topology with respect to which the operations (α, u) 7→ αu and
(u, v) 7→ u + v are continuous from R × L to L and L × L to L, respectively. The
following is a basic fact about convex sets. We refer to [27] for a proof.

Theorem 2.1 (Minkowski [20], Brunn [8], Klee [14]). If S is a closed subset with

nonempty interior in some real Hausdorff topological vectorspace L, S is convex if

and only if it possesses a supporting hyperplane at each of its boundary points.

We say that the subset S of the real topological linear space L is strongly locally

convex at p ∈ L if there exists a neighborhood U of p in L such that S∩U is convex.
S is said to be strongly locally convex if it is strongly locally convex at each of its
points. We recall the following fundamental result. Again, a proof may be found
in [27].

Theorem 2.2 (Tietze [26], Klee [14]). Let S be a closed connected subset of some

real topological linear space L. Then S is convex if and only if S is strongly locally

convex.

For many other facts about convex sets we refer to [3], [27], [22], [13] and the
references therein.

In what follows we will be working in a real Hilbert space H, that is, a real
linear space endowed with an inner product 〈·, ·〉 : H ×H → R, which is complete
with respect to the metric induced by the norm ‖u‖ = 〈u, u〉1/2. We say that H is
separable if it possesses a countable dense subset.

So, we start by assuming:

(A1) H be a real separable Hilbert space and U ⊆ H an open convex subset.

(A2) We consider functions Gj : U → R, j = 1, . . . , N , which are in C3(U), that
is, they are 3 times continuously Gateaux differentiable in U . Suppose 0 is
a regular value for Gj .

Let

Sj = {u ∈ U : Gj(u) = 0}, j = 1, . . . , N.(2.1)

We denote
Ωj = {u ∈ U : Gj(u) < 0}, j = 1, . . . , N.

We assume

(A3) Ωj is strongly locally convex at each ω ∈ Sj , j = 1, . . . , N . If Tω(Sj)
denotes the tangent space to Sj at ω ∈ Sj , this assumption is equivalent to
the quasiconvexity condition:

(2.2) d2Gj(ω)(ξ, ξ) ≥ 0, for all ξ ∈ Tω(Sj).

Let f : U → H be three times continuously Gateaux differentiable, i.e., f ∈
C3(U ,H). We now make our most important assumption. Namely:

(A4) For each ω ∈ Sj , df(ω)(Tω(Sj)) ⊆ Tω(Sj), j = 1, . . . , N .

Finally, set
Ω := ∩N

j=1Ωj ,

and assume
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(A5) Ω 6= ∅ and Ω ⊆ U , where Ω denotes the closure of Ω in H.

The last assumption that we next state is only needed in the infinite dimensional
context and involve the concept of standard Fredholm operator.

Definition 2.1. We will say that a linear operator T on a Hilbert space H0 is a
standard Fredholm operator if T = cI + K, where c ∈ R, I is the identity operator
of H0, and K is a linear compact operator on H0. Also, if U ⊆ H0 is an open set,
we will say that f : U → H0 is a standard Fredholm map if f = cI + g where c ∈ R

and g : U → H0 is a compact map, that is, g maps bounded sets onto relatively
compact sets.

The motivation for the denomination in the above definition is just the fact that
when c 6= 0 those operators satisfy the Fredholm alternative. Here, we also allow
the case c = 0 when T is then simply a compact operator. We will use the following
basic fact about standard Fredholm operators which follows immediately from the
well known spectral theorem for compact symmetric operators (see, e.g., [7]).

Lemma 2.1. Let T : H → H be a standard Fredholm operator. Suppose T is

symmetric, that is, 〈Tξ, η〉 = 〈ξ, Tη〉, for all ξ, η ∈ H. Then there exists an or-

thonormal basis of H, {e1, e2, . . . }, consisting of eigenvectors of T associated with

real eigenvalues, i.e., Tej = λjej, j = 1, 2, . . . .

We also assume:

(A6) For each j = 1, . . . , N and any ω ∈ Sj , the linear maps df(ω)|H0, d
2Gj(ω)|H0,

dGj(ω)d2f(ω)|H0 : H0 → H0 are standard Fredholm operators on H0 =
Tω(Sj).

Here, for ω ∈ Sj , we denote by d2Gj(ω)|H0 the symmetric linear operator on H0

such that

(2.3) d2Gj(ω)(ξ, η) = 〈[d2Gj(ω)|H0] ξ, η〉, for all ξ, η ∈ H0,

and by dGj(ω)d2f(ω)|H0 the symmetric linear operator on H0 representing the
symmetric bilinear form on H0 given by

dGjd
2f(ω)(ξ, η) := dGj(ω)

(

d2f(ω)(ξ, η)
)

, for all ξ, η ∈ H0,

that is,

(2.4) dGjd
2f(ω)(ξ, η) = 〈[dGjd

2f(ω)|H0] ξ, η〉, for all ξ, η ∈ H0.

We say that ν(ω) is a vector in the outer normal cone of a convex set Ω at
ω ∈ ∂Ω if ν(ω) is orthogonal to a supporting hyperplane for Ω at ω and ω + ν(ω)
is separated from Ω by the supporting hyperplane.

Theorem 2.3. Let H, U , Gj : U → R, j = 1, . . . , N , f : U → H and Ω satisfy

the assumptions (A1)–(A6). Suppose f is Lipschitz continuous on U and let M0 =
Lip(f). Then, (I ± εf)(Ω) is an open convex subset of H, provided that 0 < ε <
1/(2M0). Moreover, if ω ∈ ∂Ω and ν(ω) is an unit vector in the outer normal cone

at ω, we have

(2.5) |〈f(u) − f(ω), ν(ω)〉| ≤ ε−1〈ω − u, ν(ω)〉,

for all u ∈ Ω.
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Proof. 1. We begin by proving that (I ± εf)(Ω) is convex if 0 < ε < 1/(2M0).
We prove the assertion for (I + εf) being the proof for (I − εf) entirely identical.
Since (I + εf) is clearly a diffeomorphism from U onto (I + εf)(U), in view of
(A5) and Theorem 2.2, it suffices to prove that (I + εf)(Ωj) is strongly locally
convex at each v ∈ (I + εf)(Sj), for an arbitrary j ∈ {1, . . . , N}. We proceed by
contradiction. Suppose, on the contrary, that for some j ∈ {1, . . . , N}, there is a
point v0 ∈ ∂(I + εf)(Sj) such that (I + εf)(Ωj) is not strongly locally convex at
v0. Let u0 ∈ ∂Sj be given by (I + εf)(u0) = v0. Set

g(u) = u + ε(f(u) − f(u0)).

Then g(u0) = u0 and g(Ωj) is not strongly locally convex at u0 ∈ g(Sj)∩Sj . Now,
g(Sj) is a smooth submanifold of codimension 1 in H, and so for r > 0 sufficiently
small g(Sj)∩B(u0, r) is the graph of a non-convex function whose epigraph contains
g(Ωj) ∩ B(u0, r). So, let us consider such r > 0.

2. We observe that, by (A4), g satisfies dg(ω)(Tω(Sj)) = Tω(Sj), for all ω ∈ Sj .
Hence, if ν(ω) is the unit outer normal to ∂Ωj at ω ∈ Sj , it is also the unit outer
normal to ∂g(Ωj) at g(ω) ∈ g(Sj). Indeed, ν(ω) is an eigenvector of dg∗, the
adjoint of dg, viewed as a transformation on H by the usual identification H∗ ≡ H,
associated with a positive eigenvalue, and so

〈dg(ω)ν(ω), ν(ω)〉 = 〈ν(ω), dg(ω)∗ν(ω)〉 = λ > 0.

Hence, since dg(ω)ν(ω) points outwards g(Ωj) and ν(ω) is normal to g(Sj), ν(ω)
must point also outwards g(Ωj). In particular, for ω = u0, ν(u0) is both the unit
outer normal to ∂Ωj and ∂g(Ωj) at u0 ∈ g(Sj) ∩ Sj .

3. Changing coordinates by means of an orthogonal affine transformation, we
may assume u0 = 0, and may take a countable orthonormal basis for H, {e0, e1, e2, . . . },
with e0 = ν(u0), so that any u ∈ H may be written as a square summable sequence
(x0, x1, x2, · · · ), and Tu0

(Sj) is identified with the Hilbert space H0 ⊆ H consist-
ing of those vectors x̄ = (x0, x), with x = (x1, x2, . . . ), for which x0 = 0. So,
{e1, e2, . . . } is an orthonormal basis for H0. Further, g(Sj)∩B(u0, r) may be iden-
tified with the graph, x0 = G(x), of a function of class C3, G : H0 → R, satisfying
G(0) = 0, dG(0) = 0. Moreover, G may be taken so that d2G(0) is diagonalizable,
as we show in the next paragraph. Thus, {e1, e2, . . . } may be taken as an orthonor-
mal basis of eigenvectors of d2G(0), where we identify the bilinear form d2G(0)
with the symmetric transformation canonically associated with it. Moreover, for
u0 suitably chosen, as a point at which g(Ωj) is not strongly locally convex, we
may also assume that e1 is such that d2G(e1, e1) > 0. Let us denote by Π the
two-dimensional subspace (plane) of H having {e0, e1} as an orthonormal basis.

4. Concerning the fact that G may be chosen so that d2G(0) is diagonalizable,
indeed, we may define G implicitly by Gj ◦ g−1(G(x), x) = 0, by using the Implicit
Function Theorem. The latter also gives

d2G(·, ·) = −(dGj · D0g
−1)−1

(

d2Gj

(

[D0g
−1dG + dtgg

−1] · , [D0g
−1dG + dtgg

−1] ·
)

+ dGj

(

[(dG ·)(dG ·)]D0D0g
−1 + 2[(dG ·)(dtgD0g

−1 ·)]sym + d2
tgg

−1(·, ·)
)

)

,

as may be easily verified, where dtgg
−1 denotes the restriction of dg−1 to H0, D0

means the partial derivative in the direction e0 and [ ]sym means the symmetric part.
From this formula, using (A6), it can be seen that d2G is given by a symmetric
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standard Fredholm operator and, hence, it is diagonalizable. Indeed, the only
terms in the above formula that are not represented by operators of finite rank are
d2Gj

(

dtgg
−1 · , dtgg

−1 ·
)

and dGjd
2
tgg

−1(·, ·). The fact that df(ω)|H0 is a standard
Fredholm operator, given by (A6), implies that dg(ω)|H0 is a standard Fredholm
operator, and, since

dg−1
tg (g(ω)) = [dg|H0]

−1 = I +
∞
∑

k=1

(−ε[df |H0])
k,

it follows that dg−1
tg (g(ω)) is also a standard Fredholm operator. On the other hand

dGjd
2g|H0 is a standard Fredholm operator by (A6) and

dGjd
2
tgg

−1(ξ, η) = −dGj

(

d2g(dg−1ξ, dg−1η)
)

, for all ξ, η ∈ Tω(Sj),

and so

dGjd
2
tgg

−1|Tω(Sj) = −(dg−1)∗dGjd
2gdg−1|Tω(Sj),

which shows that dGjd
2
tgg

−1 is also a standard Fredholm operator.
5. We may parametrize Π∩ g(Sj)∩B(u0, r) around u0 by α : [−δ0, δ0] → g(Sj),

with α(s) = (G(x(s)), x(s)), with x(s) = (s, 0, 0, · · · ). Set p = α(−δ), q = α(δ), for
some 0 < δ < δ0. We have

(2.6) 〈ν(p), q − p〉 > 0, 〈ν(q), p − q〉 > 0,

where ν(p) and ν(q) are the unit outer normal vectors to g(Sj) at p and q, respec-
tively (see Figure 1).

Figure 1

On the other hand,

‖u − g(u)‖ ≤ εM0‖u − u0‖ ≤
εM0

1 − εM0

‖g(u) − u0‖,

from which we deduce

(2.7) ‖g−1(v) − v‖ ≤
εM0

1 − εM0

‖v − u0‖.

Now, since (εM0)/(1 − εM0) < 1, (2.7) implies that, if δ is sufficienly small, each
of the pairs of points p, g−1(p) and q, g−1(q) lies together in the interior of one of
two antipodal and, hence, coaxial convex cones with vertex u0 and axis parallel to
α′(0) (see Figure 2).
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Figure 2

Figure 3

6. We first assume that G(x) is quadratic. By the choice of the basis {e1, e2, · · · },
we then have

G(x) = λ1x
2
1 + λ2x

2
2 + · · · ,

where λ1 = d2G(0)(e1, e1) > 0. In this case, along the curve α(s), the outer unit
normal to g(Sj), ν(α(s)) ∈ H, is parallel to the plane Π. More specifically,

ν(α(s)) =
1

√

1 + 4λ2
1s

2
(1,−2λ1s, 0, 0, · · · ).

We then have the diagram described in Figure 3. The lines 1 and 3 are the intersec-
tions with Π of the hyperplanes orthogonal to p−q, containing p and q, respectively.
The lines 2 and 4 are the intersections with Π of the hyperplanes orthogonal to
g−1(p) − g−1(q), containing p and q, respectively. Since g−1(p) and g−1(q) are
contained in the interior of the antipodal strictly convex cones, the hyperplanes
orthogonal to g−1(p)− g−1(q) cannot contain the plane Π, so that the intersection
of those hyperplanes with Π must actually be lines as 2 and 4 in Figure 3.

7. Now, the convexity of Ω implies that

(2.8) 〈ν(p), g−1(q) − g−1(p)〉 ≤ 0, 〈ν(q), g−1(p) − g−1(q)〉 ≤ 0,

where we used the fact that ν(p) is also an outer unit normal vector to Sj at g−1(p)
and similarly for ν(q) and g−1(q). This means that ν(p) and ν(q) should not point
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toward the interior of the strip bounded by the lines 2 and 4. But this is impossible
because of (2.6). We have then arrived at a contradiction.

8. We now examine the general case dropping the assumption that G is qua-
dratic. In this general case, since G is of class C3, near x = 0, we have

G(x) = λ1x
2
1 +

∞
∑

j=2

λjx
2
j + O(‖x‖3),

again with λ1 > 0. Hence, we get

ν(α(s)) =
1

√

1 + 4λ2
1s

2
(1,−2λ1s, 0, 0, · · · ) + O(|s|2).

Set

ν∗(α(s)) =
1

√

1 + 4λ2
1s

2
(1,−2λ1s, 0, 0, · · · ).

So the distance from ν(α(s)) to ν∗(α(s)), which plays the role of ν(α(s)) in the
quadratic case, is ≤ c|s|2. Here and henceforth c will denote a positive constant
not depending on |s|, whose precise value may change from one occurrence to the
subsequent one.

9. On the other hand, for sufficiently small |s|, the distance from α(s) + ν(α(s))
to the hyperplane orthogonal to the vector α(s) − α(−s) containing α(s) is ≥ c|s|,
since λ1 > 0. Also, the distance from α(s) + ν(α(s)) to the hyperplane or-
thogonal to the vector g−1(α(s)) − g−1(α(−s)) containing α(s) differs from the
distance of α(s) + ν∗(α(s)) to the same hyperplane by O(|s|2). Moreover, be-
cause, for s sufficiently small, g−1(α(s)) and g−1(α(−s)) belong to the interior of
the antipodal strictly convex cones with vertice u0 (see Figure 2), the absolute
value of the cosine between the unit vectors in the direction of α(s) − α(−s) and
g−1(α(s)) − g−1(α(−s)), respectively, is bounded below by a positive constant.
Now, since ν∗(α(s)) and ν∗(α(−s)) should both point toward the interior of the
slab bounded by the hyperplanes orthogonal to the vector α(s)−α(−s) containing
α(s) and α(−s), respectively, as in Figure 2, then either α(s) + ν∗(α(s)) will be
apart from the hyperplane orthogonal to g−1(α(s))−g−1(α(−s)) containing α(s) a
distance ≥ c|s| (this is the case of q = α(δ) in Figure 3) or the analogous assertion
will hold for α(−s)+ ν∗(α(−s)), where we use the observation about the cosine be-
tween the unit vectors in the directions of α(s)−α(−s) and g−1(α(s))−g−1(α(−s)).
Hence, we again arrive at contradiction, similar to the one in the quadratic case,
for then either ν(α(s)) or ν(α(−s)) would have to point toward the interior of the
slab bounded by the hyperplanes orthogonal to g−1(α(s))− g−1(α(−s)) containing
α(s) and α(−s), respectively, contradicting (2.8) which must hold by the convexity
of Ω.

10. This completes the proof that (I ± εf)(Ωj) is strongly locally convex at
each point of (I ± εf)(Sj), for each j = 1, . . . , N . Since, by (A5), (I ± εf)(Ω) =
⋂N

j=1(I ± εf)(Ωj) and ∂(I ± εf)(Ω) ⊆
⋃N

j=1(I ± εf)(Sj), applying Theorem 2.2, we

easily deduce the convexity of (I ± εf)(Ω), as desired, concluding the proof of the
first part of the theorem.

11. Concerning the inequality (2.5), by the convexity of (I ± εf)(Ω), we have for
all u ∈ Ω and ω ∈ ∂Ω, using (A4),

〈(I ± εf)(u) − (I ± εf)(ω), ν(ω)〉 ≤ 0,
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which gives

−ε−1〈ω − u, ν(ω)〉 ≤ 〈f(u) − f(ω), ν(ω)〉 ≤ ε−1〈ω − u, ν(ω)〉.

Now, the convexity of Ω implies that 〈ω − u, ν(ω)〉 ≥ 0 and so we get

|〈f(u) − f(ω), ν(ω)〉| ≤ ε−1〈ω − u, ν(ω)〉,

which is the desired inequality. The proof now is complete.
�

Remark 2.1. Perhaps it should be natural to expect that the result would hold
already for ε < (Lipf)−1, instead of ε < (2Lipf)−1, which is true in some cases
where we assume df to be symmetrizable, as we will see in the next section. On
the other hand, the upper bound (2Lipf)−1 for ε seems optimal for our method.
It is an interesting open problem to know whether it is possible or not to improve
the upper bound for ε up to its seemingly natural value.

2.1. A simple example. We consider here the following very simple example. Let
H be any real separable Hilbert space and f ∈ C3(H,H) such that

f(u) =

{

ρ(‖u‖2)u, if u ∈
⋃N

1 Sj ,

arbitrary, otherwise,

where ρ ∈ C3([0,∞)), and

Sj = {u ∈ H : 〈u, ξj〉 = 0}, j = 1, . . . , N − 1,

SN = {u ∈ H : ‖u‖2 = R2},

for some fixed linearly independent set of vectors {ξ1, . . . , ξN−1} ⊆ H. Setting
Gj(u) = 〈u, ξj〉, j = 1, . . . , N − 1, GN (u) = ‖u‖2 − R2, and

Ω = {u ∈ H : ‖u‖ < R, 〈u, ξj〉 < 0, j = 1, . . . , N − 1},

it is easy to verify that all assumptions (A1)-(A6) are trivially satisfied and f is
Lipschitz on any open bounded convex U ⊆ H, say, U = B(0, R̄), with R̄ > R.

3. Maps with Symmetrizable Differential

In this section we analize the convexity of f(Ω) for f and Ω satisfying (A1)-(A6)
but now, instead of assuming f to be Lipschitz, as in Theorem 2.3, we assume that
df(u) is symmetrizable, for all u ∈ U .

Before stating our theorem concerning this context, we establish an elementary
lemma about standard Fredholm maps.

Lemma 3.1. Let f ∈ C1(U ,H) be a standard Fredholm map. Then, for each u ∈ U ,

df(u) : H → H is a standard Fredholm operator.

Proof. We have that f = cI + g, where g ∈ C1(U) is a compact map, and so the
lemma reduces to the fact that the differential dg(u) : H → H of a differenciable
compact map g ∈ C1(U) is a compact operator, which follows directly from the
definition of differential. Indeed, given u ∈ U and δ > 0, the image by gu,δ =
(g(u + · ) − g(u))/δ of the sphere Sδ = {v ∈ H : ‖v‖ = δ}, gu,δ(Sδ), is a relatively
compact set, whose distance to dg(u)(S1) is less than ε > 0, for sufficiently small
δ > 0, where S1 = {v ∈ H : ‖v‖ = 1}. Since ε > 0 is arbitrary, we get that
dg(u)(S1) is relatively compact. The latter clearly implies the compactness of the
operator dg(u) as desired. �
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We now state the main result of this section. In order to do that, if h : O → H
is a non-compact standard Fredholm map (c 6= 0), let us say for short that the pair
h,O, formed by such a map h and an open convex set O ⊆ H, has the properties
(P1), (P2) or (P3) if it satisfies:

(P1) h : O → H is proper, that is, the pre-image of a compact set is compact.
(P2) For any vector ξ ∈ H, supu∈O ξ · u < +∞ implies supu∈O ξ · h(u) < +∞.
(P3) h(O) is simply connected.

It is an easy exercise to check that, for non-compact standard Fredholm maps,
property (P1’) below implies property (P1).

(P1’) If {un}n∈N is a sequence in O with ‖un‖ → ∞ then ‖h(un)‖ → ∞.

Also, properties (P1’) and (P2) are trivially satisfied if O is bounded.

Theorem 3.1. Let H, U , Gj : U → R, j = 1, . . . , N , and f : U → H and Ω
satisfy the assumptions (A1)–(A6). Suppose, for each u ∈ U , df(u) : H → H
is continuously symmetrizable, that is, there exists a symmetric positive definite

bounded operator P (u) : H → H, depending continuously on u ∈ U , such that

P (u)df(u) is symmetric. Further, assume that, for each u ∈ U , the spectrum of

df(u), σ(df(u)), satisfies σ(df(u)) ⊆ (0,∞). Then, f is a diffeomorphism from

Ω onto f(Ω) and the latter set is convex, provided that, in addition, one of the

following is satisfied:

(i) U = H, σ(df(u)) ⊆ (ε0,∞) and µI ≤ P (u) ≤ MI, for all u ∈ H, for

certain ε0, µ,M > 0.
(ii) U = H and the pair f,H has the property (P1).
(iii) The pair f,Ω has the properties (P1) and (P3).
(iv) f is a non-compact standard Fredholm map, f = cI + g, with g compact

and c > 0, and the pair f,Ω has the properties (P1’) and (P2).

Moreover, if ω ∈ ∂Ω and ν(ω) is an unit vector in the outer normal cone at ω,

we have

(3.1) 〈f(u) − f(ω), ν(ω)〉 ≤ 0,

for all u ∈ Ω.

Proof. 1. We first prove that f is a diffeomorphism from Ω onto f(Ω) in each of
the cases (i)-(iv). We observe that, since σ(df(u)) ⊆ (0,∞), we immediately have
that f is a local diffeomorphism on U .

2. In case (i), we easily verify that there exists α > 0 such that ‖df(u)ξ‖ ≥ α‖ξ‖,
for all u, ξ ∈ H. The fact that f : H → H is a diffeomorphism then follows from
a straightforward infinite dimensional version of a well known lemma of Hadamard
(see, e.g., [2], p. 222).

3. In case (ii), we have that f : H → H is a local diffeomorphism which is closed
and proper, in view of property (P1). Hence, f(H) = H and f is a covering map
from H onto H. Since, H is simply connected, it follows that f is a diffeomorphism
of H onto itself (see, e.g., [16, 19]).

4. Similarly, in case (iii), f is a local diffeomorphism which is proper, by property
(P1), and, so, it is a covering map (see, e.g., [16, 19]), whose image is simply
connected, by property (P3). Hence, again, f is a diffeomorphism from Ω onto its
image and the assertions follow as above.

5. As for case (iv), first we prove that f(∂Ω) = ∂f(Ω). Since f is a local
diffeomorphism, clearly f(∂Ω) ⊃ ∂f(Ω). Therefore, it is enough to prove that
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there can be no point of f(∂Ω) in the interior of f(Ω). Indeed, suppose v0 is such
a point, and let ω0 ∈ ∂Ω be such that f(ω0) = v0, and let ν(ω0) be the outer unit
normal to ∂Ω at ω0, which we may assume to be well defined by properly choosing
v0. Then ν(ω0) is also local outer normal to f(∂Ω) at v0 by (A4). Since v0 is in the
interior of f(Ω), ν(ω0) ·f(u) cannot assume a maximum at u = ω0. Hence, because
of the property (P2), there exists ω1 ∈ ∂Ω for which

(3.2) ν(ω0) · f(ω1) = sup
u∈Ω

ν(ω0) · f(u).

It then follows that ν(ω0) · u = ν(ω0) · ω1 is a supporting hyperplane to Ω and
ν(ω0) ·u = ν(ω0) ·f(ω1) is a supporting hyperplane to f(Ω). It follows by convexity
that the supporting hyperplanes ν(ω0)·u = ν(ω0)·ω0 and ν(ω0)·u = ν(ω0)·ω1 must
coincide and so both ω0 and ω1 must lie in this hyperplane. Again by convexity,
the line segment connecting ω0 to ω1 is entirely contained in ∂Ω. But then the
image by f of this line segment must be contained in a hyperplane normal to ν(ω0)
and containing both f(ω0) and f(ω1), which is an absurd, and so we actually have
f(∂Ω) = ∂f(Ω).

6. Now, for θ ∈ [0, 1] let fθ = (1 − θ) I + θ f ; clearly each fθ also satisfies
properties (P1) and (P2). We obtain analogously fθ(∂Ω) = ∂fθ(Ω). Let v0 ∈ f(Ω)
and u0 ∈ Ω be such that f(u0) = v0. Define gθ(u) = fθ(u) − fθ(u0). We notice
that 0 /∈ gθ(∂Ω), for θ ∈ [0, 1]. We also observe that the Leray-Schauder topological
degree deg(gθ,Ω, 0) is well defined since, by property (P1), g−1

θ (0) is finite, and it

coincides with the number of elements of g−1
θ (0) because of the positiveness of the

spectrum of dgθ(u), everywhere in U . Since θ 7→ gθ is a homotopy with g0 = I −u0

and g1 = f − v0, we conclude that deg(f − v0,Ω, 0) = 1, and since this holds for all
v0 ∈ f(Ω), it follows that f is a diffeomorphism of Ω over its image, and the proof
is finished.

7. We now pass to the proof that f(Ω) is convex. We proceed as in the proof of
Theorem 2.3 and assume that v0 ∈ f(Sj) is a point at which f(Sj) is not strongly
locally convex, suitably chosen, and u0 ∈ Sj is given by f(u0) = v0. Let r > 0 be
small enough so that 0 < ε0 ≡ inf{λ ∈ σ(df(u)) : u ∈ B(v0, r)}. Define

h(u) = u0 +
1

ε0

(f(u) − f(u0)).

Let α : [−δ0, δ0] → h(Sj), with α(0) = u0, p = α(−δ), q = α(δ), for some 0 < δ <
δ0, as in the proof of Theorem 2.3. Given ξ, η ∈ H, define

〈ξ, η〉u = 〈P (u)ξ, η〉, ‖ξ‖u = 〈P (u)ξ, ξ〉1/2.

We have

(3.3) 〈dh−1(u0)α
′(0), α′(0)〉u0

> ε0M
−1
0 〈α′(0), α′(0)〉u0

,

where M0 is the least upper bound of the eigenvalues of df(u0). Obviously, a similar
inequality holds for −α′(0). Also, clearly

‖dh−1(u0)α
′(0)‖u0

≤ ‖α′(0)‖u0
,

which, from (3.3), gives

(3.4) 〈dh−1(u0)α
′(0), α′(0)〉u0

> ε0M
−1
0 ‖dh−1(u0)α

′(0)‖u0
‖α′(0)‖u0

.

8. Inequality (3.4) means that dh−1(u0)α
′(0) lies in the interior of a strictly

convex cone symmetric around the axis passing through u0 in the direction of
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α′(0), in the geometry induced in H by the inner product 〈·, ·〉u0
. Replacing α′(0)

for −α′(0), we get that −dh−1(u0)α
′(0) lies in the interior of the strictly convex

cone antipodal to the one just described, in the referred geometry. It follows that
for δ > 0 sufficiently small, h−1(p) and p lie together in the interior of one of these
strictly convex cones and h−1(q) and q lie together in the antipodal one, as depicted
in Figure 2, with g replaced for h. From this point on the proof of the convexity of
f(Ω) follows exactly as the proof of the convexity of (I ± εf)(Ω) in Theorem 2.3.
The inequality (3.1) follows directly from the convexity of f(Ω) as was the case for
inequality (2.5). The proof is complete. �

3.1. A simple example. Let H be any real separable Hilbert space, T : H → H
be a linear compact symmetric operator, with σ(T ) ⊆ [0,∞), f = cI +g, with c > 0
to be chosen later, and g ∈ C3(H,H) defined by

g(u) = ρ(‖T 1/2u‖2)Tu,

where ρ ∈ C3 ∩L∞ ∩Lip([0,∞)). Let {ξ1, . . . , ξN} be a linearly independent set of
eigenvectors of T ,

Sj = {u ∈ H : 〈u, ξj〉 = 0},

set Gj(u) = 〈u, ξj〉, j = 1, . . . , N , and

Ω = {u ∈ H : 〈u, ξj〉 > 0, j = 1, . . . , N}.

It is easy to verify that all assumptions (A1)-(A6) are trivially satisfied. Moreover,
f is a standard Fredholm map such that df(u) is a symmetric standard Fredholm
operator, for all u ∈ H, and σ(df(u)) ⊆ (0,∞) if c > 0 is sufficiently large. Finally,
since

‖u‖‖f(u)‖ ≥ 〈u, f(u)〉 = c‖u‖2 + ρ(‖T 1/2u‖2)〈Tu, u〉 ≥ (c − ‖ρ‖∞‖T‖)‖u‖2,

we deduce that, if c > ‖ρ‖∞‖T‖, (P1’) and, hence, item (ii) of Theorem 3.1 is
satisfied.

4. Application to Finite Difference Approximations

In order to apply our results to finite difference approximations for ordinary
differential equations in H, we establish the following corollary of Theorem 2.3.

Corollary 4.1. Let the hypotheses of Theorem 2.3 be satisfied. Let M0 = Lip(f)
and g(u) = u + εf(u), for some ε ≤ 1/(2M0). Suppose further that

(4.1) 〈f(ω), ν(ω)〉 ≤ 0,

for all ω ∈ ∂Ω and ν(ω) in the outer normal cone of Ω at ω. Then g(Ω) ⊆ Ω.

Moreover, when equality holds in (4.1) we get g(Ω) = Ω, for ε ≤ 1/(2M0).

Proof. The proof follows from the fact that if u ∈ Ω, ω ∈ ∂Ω and ν(ω) is in the
outer normal cone of Ω at ω then, by Theorem 2.3, one has

〈g(u) − ω, ν(ω)〉 = 〈g(u) − g(ω), ν(ω)〉 + ε〈f(ω), ν(ω)〉 ≤ 0,

which in turn implies that g(u) ∈ Ω for any u ∈ Ω. Finally, in case the equality
holds in (4.1), using the first part for both f and −f we conclude that, for any
ω ∈ ∂Ω, both ω + εf(ω) and ω − εf(ω) belong to Ω. But, since ω ∈ ∂Ω is in the
line segment joining these two points, convexity of Ω implies that they both should
also belong to ∂Ω. Hence, for ε ≤ 1/(2M0), we have that g is obviously bijective,
g(Ω) ⊆ Ω and g(∂Ω) ⊆ ∂Ω. Since g|∂Ω : ∂Ω → ∂Ω provides a homeomorphism
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between ∂Ω and g(∂Ω), we have that g(∂Ω) is open and closed in ∂Ω. Since, by
convexity, ∂Ω is connected, we easily conclude that g(∂Ω) = ∂Ω, which immediately
implies g(Ω) = Ω. �

We apply the above corollary to prove the invariance of Ω under Euler and
Runge-Kutta type schemes applied to the system of ordinary differential equations
u̇ = f(u), for Ω and f satisfying its hypotheses. Indeed, we recall that the Euler
scheme is given by

un+1 = un + hf(un),

where h = ∆t, while the fourth-order Runge-Kutta type scheme we consider is
given by

un+1 = un +
1

6
(k1 + 2k2 + 2k3 + k4),

where,

k1 = hf(un)

k2 = hf(un +
k1

2
)

k3 = hf(un +
k2

2
)

k4 = hf(un + k3).

So, the invariance of Ω under the Euler scheme follows immediately from the corol-
lary if we choose h ≤ (2M0)

−1.
Concerning the Runge-Kutta scheme, instead of (4.1), we make the stronger

assumption that

(4.2) 〈f(ω), ν(ω)〉 = 0,

for all ω ∈ ∂Ω and ν(ω) in the outer normal cone of Ω at ω. The invariance of Ω
now follows by first observing that we may write

(4.3) un+1 =
1

6
(un + k1) +

1

3
(un + k2) +

1

3
(un + k3) +

1

6
(un + k4).

We claim that the expressions inside the parentheses belong to Ω, for h ≤ (2M0)
−1.

Indeed, that un + k1 ∈ Ω follows directly from Corollary 4.1. Moreover,

k2 = hJ2(un) := hf ◦ (I +
h

2
f)(un),

k3 = hJ3(un) := hf ◦ (I +
h

2
J2)(un),

k4 = hJ4(un) := hf ◦ (I + hJ3)(un),

and J2, J3, J4 so defined also satisfy (4.2) and the other hypotheses of Corollary 4.1,
as can be recursively verified by applying iteratively the corollary itself. Therefore,
the claim follows. Hence, un+1 is a convex combination of points in Ω and, hence,
it is a point in Ω.
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5. Application to Convex-Valued Maps

In this section we briefly analyze a class of convex-valued maps whose motivation,
in our case, comes from the theory of kinetic approximation shemes, which also arise
in game theory and mathematical economics (see,e.g. [1]). The result we establish
here in the setting of Hilbert spaces, was first obtained in the finite dimensional case
by D. Serre [25], analyzing the invariance of convex sets under kinetic approximation
schemes. In this connection, we also refer to [21, 4, 5, 15] and to [6, 18, 17], the
latter relating to the so called kinetic formulation of conservation laws.

So, let (S, µ,A) be a finite measure space, that is, S is a set, µ is a finite measure
on S and A is a σ-algebra of µ-measurable subsets of S. For each ξ ∈ S, let
Mξ : U → H and Ω ⊆ U satisfy the assumptions of Theorem 3.1, with Mξ playing
the role of f . From Theorem 3.1, we obtain that

Ωξ := Mξ(Ω) is convex, for each ξ ∈ S,

provided that one of the assumptions (i)–(iv) thereof is satisfied.

(A8) Assume that, for each fixed w ∈ U , ξ 7→ Mξ(w) is a bounded weakly
measurable map from S to H satisfying

(5.1) w =

∫

S

Mξ(w) dµ(ξ).

Because of (5.1) Mξ(u) is usually called Maxwellian distribution.

Theorem 5.1. Let X : S → H satisfy X(ξ) ∈ Ωξ, supξ∈S ‖X(ξ)‖ < ∞. Suppose X
is weakly µ-measurable, that is, for all v ∈ H, 〈X(ξ), v〉 is a µ-measurable function

from S to R. Let

(5.2) u =

∫

S

X(ξ) dµ(ξ).

Then, u ∈ Ω.

Proof. First of all we observe that u is well defined by (5.2) since

v 7→

∫

S

〈v,X(ξ)〉 dµ(ξ)

clearly defines a bounded linear functional on H. To prove (5.2) it suffices to show
that

(5.3) 〈u − ω, ν(ω)〉 ≤ 0,

for all ω ∈ ∂Ω and all ν(ω) in the outer normal cone of Ω at ω. Now, given such ω
and ν(ω), from (A6) we deduce that ν(ω) is also in the outer normal cone of Ωξ at
Mξ(ω) ∈ ∂Ωξ, for all ξ ∈ S. Using also (A8) we get

〈u − ω, ν(ω)〉 =

∫

S

〈X(ξ) − Mξ(ω), ν(ω)〉 dµ(ξ),

which implies (5.3) because of the convexity of Ωξ, for all ξ ∈ S.
�
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