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Abstract

In this paper, we discuss the remaining obstacles to prove Smale’s conjecture about the
C1- density of hyperbolicity among surface diffeomorphisms. Using a C1- generic approach,
we classify the possible pathologies that may obstruct the C1- density of hyperbolicity. We
show that there are essentially two types of obstruction: (i) persistence of infinitely many
hyperbolic homoclinic classes and (ii) existence of a single homoclinic class which robustly
presents homoclinic tangencies. In the course of our discussion, we obtain some related
results about C1- generic properties of surface diffeomorphisms involving homoclinic classes,
chain-recurrence classes, and hyperbolicity. In particular, it is shown that on a connected
surface the C1-generic diffeomorphisms whose non-wandering sets have non-empty interior
are the Anosov diffeomorphisms.
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bolicity, surface diffeomorphism.
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1 Introduction

1.1 Motivations

Some ideas of Mañé and new C1- perturbation lemmas generalizing Hayashi connecting lemma
[H] have recently opened the door for a global understanding of C1- generic systems (diffeo-
morphisms or flows) on compact manifolds of any dimension. Many mechanisms responsible for
robust non-hyperbolicity are now understood. It is not known, however, whether the best-known
C2- mechanism for generating robust non-hyperbolic behavior, the Newhouse phenomenon (of
persistence of tangencies and coexistence of infinitely many sinks), has some C1- equivalent in
dimension two. In fact, this problem seems the most important open problem for the global
understanding of the C1-generic systems on compact surfaces: it remains unknown whether the
(open) set of Axiom A diffeomorphisms is dense in the space of surface diffeomorphisms, for the
C1- topology. We do expect a positive answer to the following conjecture:

Conjecture (Smale, [Sm]). Let S be a compact surface. The set of diffeomorphisms verifying
the Axiom A and the no-cycle condition is (open and) dense in Diff1(S).
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Faperj, and Pronex (Brazil). The authors acknowledge the kind hospitality of IMB – Univ. de Bourgogne (France)
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This conjecture is known to be false in dimension equal to or higher than 3, for the C1-
topology, due to the co-existence of hyperbolic saddles with different indices (dimension of the
unstable bundle) in the same transitive set (see [AS] and [Si] for counter-examples in dimension
4 and 3) and in dimension equal to or higher than 2 for the Cr- topology, r ≥ 2, due to the
phenomenon of persistence of tangencies (see [N] and [PV])).

Here we try to present an overview of the dynamics of C1- generic diffeomorphisms of compact
surfaces far from hyperbolic systems. If one believes in Smale’s conjecture above, one can say
that this work discusses the remaining obstacles to a solution of the conjecture. The difficulty
of the conjecture comes from the fact that we do not know any local mechanism which could be
responsible for robust non-hyperbolicity in dimension 2 for the C1- topology (in fact, we expect
that such a mechanism does not exist). For diffeomorphisms in higher dimensions, the only
local phenomenon which generates C1- robust non-hyperbolicity is associated to the unfolding of
heterodimensional cycles (i.e., cycles associated to saddles having different indices), see [D, DR].
Of course, such a cycle may not appear on surfaces and the main candidate for such a mechanism
on surfaces seems to be the presence of homoclinic tangencies, i.e. non-transverse intersections
between the invariant manifolds of some hyperbolic periodic orbit: for the C2- topology, they do
imply the existence of a C2- open set of non-hyperbolic diffeomorphisms. Moreover, Pujals and
Sambarino proved in [PS] that the existence of homoclinic tangencies is a C1- dense phenomenon
among surface diffeomorphisms far from hyperbolicity (i.e. diffeomorphisms that can not be
approximated by hyperbolic ones).

Since the result of [PS] gives only a description for a dense part of the set of diffeomorphisms
far from hyperbolicity and since we are interested in robust non-hyperbolic phenomena, our aim
in this paper is to study a generic part of this set of diffeomorphims (meaning a residual subset of
Diff1(M)). By [PS], we know that surface diffeomorphisms that are far from hyperbolicity may
be perturbed to create homoclinic tangencies. However, it is not clear whether such tangencies
can be obtained in a persistent way for the same periodic point. This motivates the following
definition:

Definition 1.1. A diffeomorphism f of a compact manifold M presents a persistent homoclinic
tangency associated to a hyperbolic periodic point p if there exist a C1- neighborhood U of f and
a dense subset D ⊂ U such that for any diffeomorphisms g ∈ D the continuation pg of p presents
a homoclinic tangency.

The following consequence of our results explains what occurs for generic diffeomorphisms
(i.e. diffeomorphisms in a residual subset) far from hyperbolicity. Such a diffeomorphism may
(in principle) exhibit a persistent tangency, but we cannot exclude a priori another possibility:
that the homoclinic class of any periodic orbit is a hyperbolic basic set but that the global
dynamics presents infinitely many different homoclinic classes accumulating on aperiodic classes
(see Section 1.2 below for the definition of aperiodic class).

Theorem 1. Let S be a closed surface. There are three disjoint open sets H, T , and W whose
union is dense in Diff1(S) such that:

• H is the set of diffeomorphisms which satisfy the Axiom A and the no-cycle condition;

• T is the set of diffeomorphisms admitting a persistent homoclinic tangency associated to
some hyperbolic periodic saddle;
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• W contains a residual subset GW such that every f ∈ GW has infinitely many homoclinic
classes, all of which are hyperbolic basic sets.

Let us discuss now how homoclinic tangencies associated to a single homoclinic class may
occur persistently. Keeping in mind the classical C2- Newhouse phenomenon (see [N]), the most
intuitive way is to imagine that some hyperbolic set has a robust tangency in the following sense:

Definition 1.2. Let Λ be a hyperbolic set of a diffeomorphism f on a compact manifold. We
say that Λ presents robust tangencies if there is a constant T > 0 and a C1- neighborhood U of
f such that for any g ∈ U the local stable manifold W s

T (Λg) of size T of the continuation Λg of
Λ presents a tangency with the local unstable manifold W u

T (Λg) of size T of Λg.

In fact, if a hyperbolic set Λ presents locally generically some tangency then it presents
robust tangencies:

Proposition 1.3. Let f be a diffeomorphism of a compact manifold M and Λ a hyperbolic set
of f . If there exist a neighborhood U of f in Diff1(M) and a residual subset G of U such that
for every diffeomorphism g ∈ G the stable and unstable manifolds of the continuation Λg of Λ
are tangent, then f is C1- approached by diffeomorphisms h which exhibit robust tangencies.

It is natural to ask whether a diffeomorphism in T (i.e., one that has a persistent homoclinic
tangency) admits robust tangencies. The following proposition explains what else might happen.

Proposition 1.4. There are two C1- open disjoint subsets Trob and T∞ of T , whose union is
dense in T , such that:

• Trob is the set of diffeomorphisms admitting a robust tangency associated to some hyperbolic
set;

• there is a residual subset GT∞ in T∞ such that for every g ∈ GT∞ and for any hyperbolic
set Λ of g, the invariant manifolds of Λ are transverse (even though g presents persistent
tangencies in the sense of Definition 1.1).

When trying to solve Smale’s conjecture above, one usually focuses on whether the New-
house phenomenon (robust tangencies) can occur. The discussion above shows that two other
phenomena may be responsible of the non-density of Axiom A diffeomorphisms: the creation
of homoclinic tangencies either “at the infinity of some homoclinic class” (corresponding to the
set T∞) or “in the aperiodic classes” (corresponding to the set W). We have therefore broken
Smale’s conjecture into three parts:

Conjecture 1. A generic diffeomorphism of a compact surface whose homoclinic classes are all
hyperbolic satisfies the Axiom A.

Conjecture 2 (No robust tangencies). Let Λ be a hyperbolic set of a diffeomorphism f of a
compact surface S. Then, for any L > 0, there is a C1- perturbation g of f such that the local
invariant manifolds of size L of the hyperbolic continuation Λg of Λ for g, are transverse.

Conjecture 3 (Persistent tangencies imply robust tangencies). Any diffeomorphism
f which admits persistent tangencies associated to some hyperbolic periodic point may be C1-
approximated by a diffeomorphism which has robust tangencies associated to some hyperbolic set.
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By Theorem 1, these three conjectures imply Smale’s conjecture: Conjecture 1 implies that
W is empty, Conjecture 2 implies that Trob is empty, and finally, Conjecture 3 shows that the
open set Trob is dense in T implying that T∞ is empty.

The third one is equivalent to the following (a priori) weaker statement (see Proposition 6.2
at the end of the article):

Conjecture 4. Let f be a C1- generic diffeomorphism such that for any hyperbolic set Λ of f
the stable and unstable manifolds of Λ are transverse. Then all the homoclinic classes of f are
hyperbolic.

We end this discussion with another question related to the techniques of the paper. In the
context of C1- generic dynamics of diffeomorphisms in any dimension, [ABD] formulates, and
proves in some particular cases, the following conjecture:

Conjecture 5. For any C1- generic diffeomorphism of a compact connected manifold, if the
non-wandering set has non-empty interior then the diffeomorphism is transitive, in particular,
the non-wandering set coincides with the whole manifold.

Notice that a positive answer to Smale’s conjecture would imply a positive answer to this
one in dimension two. The results proven in this paper do imply:

Corollary 1. Let S be a connected closed surface. There is a residual subset G0 of Diff1(S)
consisting of diffeomorphism f such that:

int(Ω(f)) 6= ∅ =⇒ S is the torus T 2 and f is Anosov.

Moreover, in this case f is topologically conjugate to some linear Anosov diffeomorphism. In
particular, f is transitive.

The conjugacy to a linear Anosov system in the previous corollary is a consequence of a
result of Franks [F]. Thus in this paper we settle the two-dimensional case of the conjecture in
[ABD].

We note that the residual set G0 in Corollary 1 will be given by Theorem 2 below.

1.2 Presentation of the results

For surface diffeomorphisms, Pujals and Sambarino have provided in [PS] a precise description
of the dynamics under the hypothesis of the existence of a dominated splitting. This notion will
be important for us since from a C1- generic viewpoint it characterizes hyperbolicity.

Definition 1.5. A compact set K which is invariant by a diffeomorphism f admits a dominated
splitting if the tangent bundle TKM over K splits into two bundles TKM = E ⊕ F and if there
exists an integer ` ≥ 1 such that for every point x ∈ K and every pair of unit vectors u ∈ E and
v ∈ F we have

‖Df `(x) · u‖ ≤ 2 ‖Df `(x) · v‖.

Next remark states the main properties of a dominated splitting we use in this paper (see,
for instance, [BDV, Section B.1.1])

Remark 1.6. (Properties of dominated splittings) Let Λ be an f - invariant set with a
dominated splitting E ⊕ F .
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1. Extension to the closure. The dominated splitting E⊕F can be extended in a dominated
way to the closure of Λ.

2. Extension to a neighborhood. The dominated splitting E ⊕ F can be extended in a
dominated way to the maximal invariant set of f in a small neighborhood of Λ.

3. Robustness. Every dominated splitting persists under C1- perturbations: There are a
C1- neighborhood U of f and a neighborhood of Λ in the ambient manifold such that, for
every g ∈ U , the maximal invariant of g in U has a dominated splitting.

Another important ingredient for what follows is the decomposition of the dynamics into
its chain-recurrence classes, given by Conley’s theory, [Co]. We recall the main results of this
theory and state some relevant properties of chain-recurrence classes in Section 2.1.

Let f be a homeomorphism of a compact metric space X. For any ε > 0, an ε-pseudo-orbit of
f is a sequence (xn) in X such that, for each n, d(f(xn), xn+1) < ε. A point x is chain-recurrent
if for any ε > 0 there exists an ε- pseudo-orbit starting and ending at x. We denote by R(f)
the set of chain-recurrent points. It decomposes as the union of chain-recurrence classes, which
are pairwise invariant compact sets defined as follows: two points x and y belong to the same
chain-recurrence class if for any ε > 0, there are ε-pseudo-orbits starting at x and ending at y,
and conversely starting at y and ending at x.

A third important ingredient in this paper is the notion of homoclinic class. The homoclinic
class of a hyperbolic periodic orbit p of a diffeomorphism f , denoted by H(p, f), is the closure
of the transverse intersections of its stable and unstable manifolds. This set coincides with
the closure of the periodic orbits q homoclinically related to p, i.e., the stable manifold of p
transversely meets the unstable one of q and the unstable manifold of p transversely meets the
stable one of q. We observe, that a homoclinic class always is an f -invariant transitive set. An
important property of homoclinic classes of C1- generic diffeomorphisms is the following: any
pair of homoclinic classes either coincide or are disjoint, see [CMP].

Quite recently, [BC] proved a perturbation lemma for pseudo-orbits and deduced from this
lemma that for C1- generic diffeomorphisms of compact manifolds, any chain-recurrence class
which contains a hyperbolic periodic point p coincides with the homoclinic class of p (in par-
ticular, this result generalizes the one in [CMP] above). The other chain-recurrence classes of
these generic diffeomorphisms (when they exist) are called aperiodic classes (whose existence in
some locally generic regions was proven in [BD2]).

Let us note that for diffeomorphisms f which satisfy the Axiom A (the non-wandering set
Ω(f) is hyperbolic and equal to the closure of the periodic points) Smale has proven in his
spectral theorem [Sm] that the non-wandering set is the union of finitely many pairwise disjoint
homoclinic classes. These homoclinic classes are the basic sets of the spectral decomposition of
the non-wandering set. Moreover, under the no-cycles assumption (i.e., there are no basic sets
of the spectral decomposition cyclically related by intersections of the corresponding stable and
unstable manifolds), the chain-recurrence classes are homoclinic classes. More precisely, in this
case, each chain-recurrence class E is a basic set :

• E is a hyperbolic homoclinic class,

• E is the maximal invariant set in the a level of a filtration: there exist compact sets U
and V such that f(U) ⊂ int(U), f−1(V ) ⊂ int(V ) and E is the maximal invariant set in
U ∩ V , i.e. E =

⋂
n∈Z f

n(U ∩ V ).
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Our next result shows that, C1- generically, a chain-recurrence class of a surface diffeomor-
phism is hyperbolic if, and only if, it is isolated, and also if, and oly if, it admits a domi-
nated splitting (this assertion does not hold in higher dimensions, see the series of examples in
[Sh, M1, BD1, BV]):

Theorem 2. Let S be a compact surface. There is a residual subset G0 of Diff1(S) such that,
for any f ∈ G0 and any chain-recurrence class E of f , we have the following dichotomy:

1. either E is isolated in the chain-recurrent set R(f) of f ; in this case, E is a hyperbolic
homoclinic class (and so a basic set);

2. or E is not isolated; in this case:

(a) E does not admit any dominated splitting;

(b) E is contained in the closure of the set of sinks and sources of f ;

(c) for any neighborhood U of E, there is a C1- neighborhood U of f and a dense subset
D of U such that any g ∈ D has a hyperbolic periodic point pg whose homoclinic class
is contained in U and presents homoclinic tangencies.

If the chain-recurrence class E is a non-isolated homoclinic class H(p, f), we obtain the
announced tangencies inside the homoclinic class H(pg, g) of the continuation pg of p:

Theorem 3. Let f be a diffeomorphism of a compact surface S and p be a hyperbolic periodic
saddle of f . If the homoclinic class H(p, f) of p has no dominated splitting, then there exists a
diffeomorphism g arbitrarily C1- close to f such that the continuation pg of p admits a homoclinic
tangency.

From the two previous theorems one deduces the following genericity result:

Corollary 2. Let S be a compact surface. There is a residual subset G1 of Diff1(S) such that,
for every f ∈ G1 and every periodic point p of f whose homoclinic class is non-isolated in
the recurrent set R(f) of f , the diffeomorphism f presents a persistent homoclinic tangency
associated to p.

2 Some results in arbitrary dimension

This section collects some results that we will use later in this paper. Most of these results
were obtained in previous works. In Section 2.1, we recall the Conley’s Fundamental Theorem
of Dynamical Systems and state properies of chain-recurrence classes and their filtrations. A
general reference for Conley’s theory is [R]. In Section 2.2, we briefly study hyperbolic chain-
recurrence classes. Finally, in Section 2.3, we state a result about generic chain recurrent sets
(which follows from a perturbation lemma for pseudo-orbits in [BC]) and deduce properties of
non-isolated chain-recurrence classes from it.
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2.1 Conley’s theory and filtrating sets

We begin with Conley’s fundamental theorem:

Theorem 2.1 (Conley’s Fundamental Theorem of Dynamical Systems, [Co]). Let f be
a homeomorphism of a compact metric space X. There exists a continuous function ϕ : X → R
such that:

1. ϕ is a Lyapunov function: for any x ∈ X, ϕ(f(x)) ≤ ϕ(x);

2. for any x ∈ X, ϕ(f(x)) = ϕ(x) is equivalent to x ∈ R(f);

3. for every x, y ∈ R(f), ϕ(x) = ϕ(y) is equivalent to x and y belonging to the same chain-
recurrence class;

4. ϕ(R(f)) is a totally disconnected compact subset of R.

Such a function ϕ will be called a Lyapunov function adapted to R(f).

Remark 2.1. If X is a smooth compact manifold, the function ϕ may be assumed to be smooth.

A compact set A is a trapping region for f if f(A) is contained in the interior of A. The
maximal invariant set

⋂
n∈N f

n(A) of f in A, is the attractor associated to A. In the same way,⋂
n∈N f

−n(X \ A) =
⋂

n∈N f
−n(X \A) is the repellor associated to A. If B is a trapping region

for f−1, we define its attractor and repellor as the attractor and the repellor of the trapping
region (X \B) for f .

We say that a compact set U is a filtrating set if there are two compact sets A, B such that:

• U = A ∩B;

• f(A) ⊂ int(A) (that is, A is a trapping region for f);

• f−1(B) ⊂ int(B) (that is, B is a trapping region for f−1).

Let K be some invariant compact set of f . A filtrating neighborhood of K is a neighbor-
hood of K which is a filtrating set. An isolating filtrating neighborhood U of K is a filtrating
neighborhood of K whose maximal invariant set

⋂
n∈Z f

n(U) is K.

Remark 2.2.

1. Let U = A ∩ B be a filtrating set (where A and B are trapping regions for f and f−1

respectively), then the maximal invariant set of f in U is the intersection of the attractor
of A with the repellor of B.

2. If U is a filtrating set for f , then U is also a filtrating set for any homeomorphism g of X
which is C0- close to f .

3. If ϕ is a Lyapunov function adapted to R(f), then for any a, b ∈ (R \ϕ(R(f))), a < b, the
set ϕ−1([a, b]) is a filtrating set.
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4. Let U = A∩B be a filtrating set defined as above, then any compact set V contained in the
interior of U and containing f(U)∩f−1(U) is also a filtrating set. Moreover, the maximal
invariant sets of f in U and in V coincide. Indeed, V may be written as an intersection

V = A′ ∩B′ = (V ∪ f(A)) ∩
(
V ∪ f−1(B)

)
,

where A′ and B′ are trapping regions for f and f−1, respectively.

5. By the last item, if X is a smooth compact manifold then V can be chosen as a smooth
submanifold with boundary. Hence, we can replace any filtrating set by a filtrating set
which is a smooth submanifold with boundary having the same maximal invariant set.

6. By the definition of filtrating set, any chain-recurrence class which intersects a filtrating
set is contained in the interior of the filtrating set.

7. Let K be the maximal invariant set in a filtrating set U = A ∩B as above. Then, for any
i, j ∈ Z, f i(A)∩f j(B) is a filtrating set having K as its maximal invariant set. Moreover,
{fn(A)∩f−n(B), n ∈ N} is a basis of neighborhoods of K, each of which is a filtrating set.

Proposition 2.3. Let f be a homeomorphism of a compact metric space X, E any chain-
recurrent class of f , ϕ a Lyapunov function adapted to R(f), and U a neighborhood of E. Then,
for every ε > 0 small enough, the maximal invariant set in Vε = ϕ−1([ϕ(E) − ε, ϕ(E) + ε]) is
contained in U .

Proof: Note that the set of maximal invariant sets Λε in Vε is a decreasing family as ε goes to
0. We just have to prove that the intersection Λ =

⋂
ε Λε is contained in the interior of U : this

set is an invariant compact set on which ϕ is equal to ϕ(E). As a consequence, Λ = E. 2

Proposition 2.4. Let f be a homeomorphism of a compact metric space X. Any chain-
recurrence class E of f admits arbitrarily small filtrating neighborhoods.

Proof: Let ϕ be a Lyapunov function adapted to R(f) and U a neighborhood of E. By
Proposition 2.3, for ε small enough, the maximal invariant set Λε in Vε = ϕ−1([ϕ(E)−ε, ϕ(E)+ε])
is contained in U . We choose ε such that ϕ(E) − ε and ϕ(E) + ε do not belong to ϕ(R(f))
(this is possible since ϕ(R(f)) has empty interior). By Remark 2.2. (3), Vε is a filtrating set.
By Remark 2.2. (7), we can choose a filtrating set, which is an arbitrarily small neighborhood
of Λε, hence contained in U and containing E. 2

Proposition 2.5. Let f be a homeomorphism of a compact manifold M such that its chain-
recurrent set R(f) has non-empty interior. Then there exists a chain-recurrence class which has
non-empty interior.

Proof: Consider a connected component C of the interior of R(f) and a Lyapunov function
ϕ adapted to R(f). The image ϕ(C) is connected and contained in ϕ(R(f)), which is totally
disconnected. So, ϕ(C) is a point and, by Theorem 2.1, C is contained in a chain-recurrence class
E. Since a manifold is locally connected, C has non-empty interior. Hence, E has non-empty
interior. 2
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Proposition 2.6. Let X be a compact metric space. There exists a countable family of compact
sets F = {Vn} such that for any homeomorphism f of X and any fitrating set U of f , there
exists Vn ⊂ U which is a filtrating set of f such that the maximal invariant sets of f in U and
in Vn coincide.

Proof: Let O = {On} be a countable basis of open sets of X. We consider the countable family
F of compact sets that are the closure of finite unions of sets in O.

Let f be a homeomorphism of X and U a filtrating set. We consider the compact set
f(U) ∩ f−1(U), contained in the interior of U . Each point x of f(U) ∩ f−1(U) belongs to some
open set On(x), whose closure is contained in the interior of U . Let V be the closure of the
union of a finite covering of f(U) ∩ f−1(U) by such On(x). The compact set V belongs to F , is
contained in the interior of U , and contains f(U) ∩ f−1(U). Thus, by Remark 2.2. (4), the set
V is a filtrating set which has the same maximal invariant set as U . 2

Proposition 2.7. Let f be a homeomorphism of a compact metric space X and let U be a
filtrating set. Then there exist two trapping regions A for f and B for f−1 such that U = A∩B
and the three following equivalent properties are satisfied:

1. the attractor of A contains the attractor of B;

2. the repellor of B contains the repellor of A;

3. the repellor of A is disjoint from the attractor of B.

Proof: We first prove that the three properties are equivalent. First, notice that the repellor
associated to a trapping region is the largest invariant compact set disjoint from the attractor of
the trapping region. If the first item is satisfied, the repellor of A is disjoint from the attractor
of A, hence of B (i.e. the third item is satisfied). Conversely, if the repellor of A is disjoint from
the attractor of B (item 3), then it is contained in the largest invariant compact set disjoint
from the attractor of B, that is, the repellor of B (this gives item 2). The other implications
follow similarly.

Let now U be a filtrating set. By definition, there are two trapping regions A0 for f and
B for f−1 such that U = A0 ∩ B. We define A as the union of A0 with f(X \ int(B)). Since
the union of two trapping regions is a trapping region, A and B are trapping regions for f and
f−1, respectively. Since B is a trapping region for f−1, f(X \ int(B)) is disjoint from B so that
A ∩B = A0 ∩B = U .

Finally, the maximal invariant set in A contains the maximal invariant set in f(X \ int(B)).
Hence, the attractor of A contains the attractor of B. 2

2.2 Hyperbolic theory

The following result is certainly well-known and has been proven, in particular, in [ABD, The-
orem 1].

Proposition 2.8. Let M be a connected compact manifold. Any hyperbolic set Λ of a diffeo-
morphism f ∈ Diff1(M), contained in the non-wandering set Ω(f) of f and with non-empty
interior, is the whole manifold. Thus the diffeomorphism f is Anosov.
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We recall that a transitive hyperbolic set which is the maximal invariant set in a neighborhood
is called a basic set. A basic set which is a chain-recurrence class is called a basic piece.

From Theorem 2.1 and the hyperbolic theory, we get:

Proposition 2.9. Let f be a diffeomorphism of a compact manifold. Any hyperbolic chain-
recurrence class of f is an isolated homoclinic class (hence, a basic piece of f).

Remark 2.10. In fact, any chain-recurrence class containing a hyperbolic set contains a periodic
point.

Proof: Let E be a hyperbolic chain-recurrence class of f . From Proposition 2.4, E admits
arbitrarily small filtrating neighborhoods. Consider a small filtrating neighborhood U of E.
The maximal invariant set Λ in U is a compact hyperbolic set. Moreover, the shadowing lemma
(see, for instance, [Y]) asserts that, for any small δ, any ε-pseudo-orbit, with ε > 0 small enough,
is δ-shadowed by a unique orbit of Λ. One deduces that Λ contains a sequence of periodic orbits
{γn} converging to E in the Hausdorff topology. As Λ is hyperbolic, the continuity of the local
stable and unstable manifolds implies that there is µ > 0 such that any two periodic orbits in Λ
having points µ-close to each other are homoclinically related, so they have the same homoclinic
class. As a consequence, all the γn, for n large enough, have the same homoclinic class H. As H
is compact (by definition) it contains E. However, H is transitive so it is contained in a unique
chain-recurrence class. Hence E = H, concluding the lemma. 2

As a consequence of the previous proposition and the persistence of hyperbolic sets, one has
the following:

Proposition 2.11. Let f be a diffeomorphism of a compact manifold and V a filtrating set.
Suppose that R(f) ∩ V is hyperbolic. Then:

• R(f) ∩ V consists of finitely many basic pieces;

• there is a C1- neighborhood of f consisting of diffeomorphisms g such that V is a filtrating
set of g and R(g) ∩ V consists of finitely many basic pieces which are the continuations
of the basic pieces of f . In particular, g on R(g) ∩ V is topologically conjugate to f on
R(f) ∩ V .

2.3 Genericity results

[BC] states the following consequences of the connecting lemma for pseudo-orbits:

Theorem 2.2. Let M be a compact manifold. The set of diffeomorphisms f for which all the
periodic orbits are hyperbolic and the chain-recurrent set R(f) is the closure of the set of periodic
points is a residual subset of Diff1(M).

This is a direct consequence of Kupka-Smale’s theorem, of Pugh’s theorem on the generic
density of the periodic points in the non-wandering set, [P], and of [BC, Corollaire 1.2.],.

Proposition 2.12 ([BC], Remarque 1.10, 1.12 and Corollaire 1.11). There is a residual
part G2 of Diff1(M) such that for any f ∈ G2, any chain-recurrence class E of f containing a
periodic point is a homoclinic class.
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Remark 2.13. The hypothesis of Proposition 2.12 are satisfied (for f in G2), for instance, if
E has non-empty interior or if E is isolated in R(f).

Combining this result with Proposition 2.9, we get:

Corollary 2.14. For any diffeomorphism f in the residual set G2, any homoclinic class which
is hyperbolic is a basic piece.

Let us state a well-known property of homoclinic class which we will use later (see for instance
[CMP]).

Remark 2.15. Let M be a closed manifold. There is a residual subset of Diff1(M) of dif-
feomorphisms f such that for every periodic point p of f the homoclinic class H(p, f) varies
continuously under small C1- perturbations.

[BC] shows the existence of a residual set G of Diff1(M) such that, if f ∈ G and if p is
a (hyperbolic) periodic point whose chain-recurrence class C(p) is isolated in R(f), then this
chain-recurrence class is robustly isolated : there are neighborhoods U of C(p) in M and U of f
in Diff1(M) such that, for any g ∈ U , R(g) ∩ U is the chain-recurrence class of the hyperbolic
continuation pg of p (in fact, the homoclinic class of pg). The following proposition gives some
converse result of this property: for generic diffemorphisms, the non-isolated homoclinic classes
are locally generically non-isolated.

Proposition 2.16. Let M be a compact manifold. There is a residual subset G4 of Diff1(M)
such that any f ∈ G4 has the following property:

Assume that p is a hyperbolic periodic point of f such that the chain-recurrence class of p is
not isolated. Then there is a neighborhood U of f on which the hyperbolic continuation of p is
well defined and such that, for any g ∈ G4 ∩ U , the chain-recurrence class of pg is not isolated.

Proof: It is enough to prove the property for periodic orbits of period less than n, for any integer
n (that is, we will build a residual subset Rn and define the residual set G4 as the countable
intersection of the Rn). Now fix some n ∈ N, there is a dense open subset O of Diff1(M)
such that, for any connected component O0 of O, the periodic orbits of period less than n are
all hyperbolic and has a hyperbolic continuation on the whole O0. As O has countably many
connected components, it is enough to build, for any component O0, a residual set Rn,O0 such
that the announced properties hold in Rn,O0 ∩ O0.

So, on O0, the periodic orbits of period less than n are given by finitely many continuous
functions f 7→ p(f). Thus it is sufficient to build, for any of these periodic orbits p, a residual
set Rn,O0,p such that the property is verified on the periodic orbit p for f ∈ Rn,O0,p ∩ O0.

Let I be the set of diffeomorphisms f ∈ O0 for which the chain-recurrence class C(p(f)) is
robustly isolated. By definition of being robustly isolated, I is an open subset of O0. Write
Ĩ = O \ I, then I ∪ Ĩ is a dense open subset of O and therefore of Diff1(M).

Denote by G the residual subset of Diff1(M), built in [BC], on which the isolated chain-
recurrence classes are robustly isolated. We define Rn,O0,p = G∩(I∪Ĩ). Consider f ∈ Rn,O0,p∩O0

and assume that the chain-recurrence class of p(f) is not isolated. Then f does not belong to I;
consequently, f belongs to Ĩ. By definition, Ĩ is open and so it contains a neighborhood U of f .
Therefore, for every g ∈ Rn,O0,p ∩ U , the chain-recurrence class C(p(g)) is not robustly isolated
(by definition of Ĩ) so it is not isolated, by definition of G.
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Now, Rn,O0 is the (finite) intersection over the periodic orbits p of period less that n of
the residual sets Rn,O0,p and is therefore residual. Finally, Rn is the intersection, over all the
connected components O0, of Rn,O0 . The announced residual set G4 is the intersection of all the
Rn, n ∈ N. 2

3 Dominated splitting/homoclinic tangencies: a local version

on surfaces

The aim of this section is to obtain a local version of the following theorem of [PS] and to derive
some consequences of such an extension.

Theorem 3.1 (Pujals-Sambarino, [PS]). Let S be a compact surface. Then there is a dense
subset D of Diff1(S), such that any f in D either is Axiom A or else exhibits a homoclinic
tangency.

In order to obtain a similar local result around a chain-recurrence class, we build in the next
section some geometrical filtrating neighborhoods. Using such neighborhoods we complete the
dynamics outside them by adding sinks and sources, this allows us in to apply Theorem 3.1 to
the resulting global dynamics.

3.1 Geometrically simple filtrating neighborhoods

Definition 3.1. Let f be a homeomorphism of a compact surface S.
A trapping region A of f is said to be geometrically simple if A is a compact surface with

boundary and A \ int(f(A)) is the finite union of disjoint annuli.
A filtrating set U for f is said to be geometrically simple if it is a compact surface with

boundary and if there are two geometrically simple trapping regions A for f and B for f−1 such
that:

1. U = A ∩B; and

2. E = A \ int(f(A)) and S = B \ int(f−1(B)) are disjoint.

12



A B U

f

Theorem 4. Given any homeomorphism f of a compact surface S, any compact f - invariant
set Λ, and any compact filtrating neighborhood V of Λ, there is a geometrically simple filtrating
set U ⊂ S whose maximal f - invariant set coincides with Λ.

The proof uses the following lemma which is essentially proven in [BL, Lemme 1.3.2.].

Lemma 3.2. Let f be a homeomorphism of a compact surface S and W a trapping region for
f . Then there is a geometrically simple trapping region U such that the attractors and repellors
(for f) of U and W coincide.

Proof: Let Λ+ and Λ− be the attractor and the repellor associated to W . We define the open
surface S̃ = S \ (Λ+ ∪ Λ−). By Remark 2.2. (5), there exists a trapping region W̃ which is a
compact surface with boundary whose attractor and repellor also are Λ+ and Λ−. Notice that
any orbit by f in S̃ contains a unique point in W̃ \ f(W̃ ) and that W̃ \ int(f(W̃ )) is a compact
surface with boundary whose boundary consists of the disjoint sets ∂W̃ and f(∂W̃ ).

The orbit space of S̃ is canonically identified with the closed surface O obtained from W̃ \
int(f(W̃ )) by gluing ∂W̃ to f(∂W̃ ) by f . Note that O has finitely many connected components.
The canonical projection π : S̃ → O, which associates to each point its orbit, is a covering
and f is an automorphism of the covering acting transitively on the fibers: for each connected
component O0 of O, f generates the group of covering automorphisms (Deck transformations)
for π−1(O0) → O0.

Let S0 be a connected component of S̃ and O0 = π(S0) be the associated connected compo-
nent of O. We claim that there exists k such that fk(S0) = S0: Otherwise S0 would be disjoint
from f i(S0) for each i and homeomorphic to the compact surface O0. This would imply that S
contains infinitely many compact surfaces, hence connected components, which is a contradic-
tion. As a consequence, S̃ has finitely many connected components. The projection S0 → O0 is
an infinite cyclic covering whose automorphism group is generated by an iterate f ` of f , where `
is the period of S0 under the action of f . As the genus of S0 is bounded (by the genus of S), S0 is
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homeomorphic to the open annulus S1×R and O0 to the torus or to the Klein bottle. Moreover,
f ` (the automorphism of the covering) is conjugate to the translation (x, y) 7→ (x, y+ 1) or else
to the translation composed with the symmetry: (x, y) 7→ (−x, y + 1).

Summing up this argument, one has that S̃ is a finite union of disjoint cylinders Si homeo-
morphic to S1×R1 which are permuted by f and such that the expression of f : Si → Sj in these
coordinates writes as (x, y) 7→ (±x, y+1). As a consequence, there is a family of essential circles
S1 × {ti} in each Si such that the union Ũ of the half-cylinders S1 × [ti,+∞[ is mapped into
its interior by f . Furthermore, the difference Ũ \ int(f(Ũ)) is a finite union of disjoint annuli.
Notice that the intersection of W̃ with any component Si contains a half-cylinder S1×]ai,+∞[
and is disjoint from an other half-cylinder S1×] −∞, bi[.

From the previous arguments, we deduce that U = Ũ ∪Λ+ is a compact neighborhood of Λ+

and hence a trapping region which is geometrically simple. Finally, the fact that the repellors
of U and W coincide follows by construction. 2

Proof of Theorem 4: By Proposition 2.7, one can write the filtrating neighborhood V as
the intersection A ∩ B, where A and B are trapping regions for f and f−1, respectively, such
that the repellor associated to A is disjoint from the attractor of B. By Lemma 3.2, there exist
two geometrically simple trapping regions Ã and B̃ for f and f−1, respectively, such that A and
Ã (resp., B and B̃) have the same attractor and repellor. As a consequence, for any i, j ∈ Z,
the maximal invariant sets in the filtrating sets V = A ∩ B and f−i(Ã) ∩ f j(B̃) coincide, see
Remark 2.2. (1) and (7).

For i large enough, the fundamental domain f−i(Ã) \ int(f−i+1(Ã)) is contained in an arbi-
trarily small neighborhood of the repellor of Ã, and hence of the repellor of A. Similarly, for j
large enough, the fundamental domain f j(B̃) \ int(f j−1(B̃)) is contained in an arbitrarily small
neighborhood of the attractor of B̃, and hence of the attractor of B. Thus, defining A0 = f−i(Ã)
and B0 = f j(B̃), the sets A0 \ f(A0) and B0 \ f−1(B0) are disjoint. Since, by our choice, Ã and
B̃ are geometrically simple, each of the sets A0 \ int(f(A0)) and B0 \ int(f−1(B0)) is a finite
union of disjoint annuli (these sets are homeomorphic to Ã \ int(f(Ã)) and B̃ \ int(f−1(B̃))).

Consequently, U = A0 ∩B0 is a geometrically simple filtrating set having the same maximal
invariant set as V . 2

Proposition 3.3. Let S be a compact surface and U a geometrically simple filtrating set of a
diffeomorphism f ∈ Diff1(S). Then there exist a compact surface S0, a diffeomorphism f0 of
S0, and a diffeomorphism ϕ : U → U0 ⊂ S0 such that:

• for any x ∈ U ∩ f−1(U), we have ϕ ◦ f(x) = f0 ◦ ϕ(x);

• the connected components of S0 \ int(U0) are diffeomorphic to the disk D2;

• the intersection of the chain-recurrent set R(f0) of f0 with any connected component of
S0 \ int(U0) is a periodic point (attracting or repelling).

Proof: Write U = A∩B, where A and B are trapping regions for f and f−1, and consider the
disjoint sets E = A \ int(f(A)) and S = B \ int(f−1(B)), which are the finite union of disjoint
annuli.

Notice that U ∪ f(U) is equal to U ∪ f(S) and is obtained by gluing annuli along the
boundary ∂B ⊂ ∂U . Consider the compact surface S0 obtained by gluing disks on each boundary
component of U∪f(U). There is a diffeomorphism f ′ of S0 coinciding with f on U and satisfying
the following properties:
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1. each disk attached to the boundary of A (resp. f(B)) contains a unique periodic point,
which is a source (resp. a sink).

2. R(f0) is the union these periodic points and R(f) ∩ f(U) ∩ f−1(U).

The proof of this fact is analogous to the argument in [BL, Lemme 1.3.4]. Finally, the proposition
follows using the previous fact. 2

Consider the setting and the notations of Proposition 3.3. For the sake of simplicity, let us
identify U with U0 = ϕ(U). The next proposition allows us to use the perturbations of f0 for
understanding the perturbations of f .

Proposition 3.4. Given any compact set K ⊂ int(U) there is a neighborhood V ⊂ Diff1(S0) of
the identity map of S0 and a continuous map χ : V → Diff1(S) sending the identity map to the
identity map, such that g and χ(g) coincide on K for any g ∈ V.

The construction uses the next lemma.

Lemma 3.5. Let M be a compact manifold, U ⊂ M an open set and K ⊂ U a compact set.
Denote by Diff1

U (M) ⊂ Diff1(M) the set of diffeomorphims which are the identity outside U .
Then there is a C1- neighborhood V ⊂ Diff1(M) of the identity of M and a continuous map

ψ : V → Diff1
U (M) which sends the identity map to the identity map such that for any f ∈ V the

diffeomorphisms f and ψ(f) coincide on K.

Proof: We consider an arbitrary smooth Riemannian metric on M and denote by exp: TM →
M the associated exponential map. There is a small neighborhood Ṽ of the identity of M such
that any f ∈ Ṽ is the image by exp of a C1- vector field Xf . Furthermore, the map f 7→ Xf is
a homeomorphism from Ṽ to a C1- neighborhood X̃ of the zero vector field of M .

Let θ : M → [0, 1] be a smooth map which takes the value 0 on the complement of U and the
value 1 on K. The map Xθ : f 7→ θ ·Xf , defined on Ṽ, is continuous for the C1- topology and
sends the identity diffeomorphism to the zero vector field. Hence there exists a neighborhood
V ⊂ Ṽ of the identity whose image by Xθ is contained in X̃ . We define ψ on V as f 7→ exp ◦Xθ(f).

Since θ is 1 on K and 0 outside U , the diffeomorphism ψ(f) coincide with f on K and with
the identity outside U . Clearly, ψ(Id) = Id. 2

Proof of Proposition 3.4: We apply Lemma 3.5 to the sets K ⊂ U ⊂ S, obtaining a
neighborhood V of the identity of S0 and a map ψ : V → Diff1

U(S0). For each g ∈ V we define
the diffeomorphism χ(g) ∈ Diff1(S) coinciding with ψ(g) on U (using the identification of U and
U0 by ϕ) and with the identity map outside U . 2

3.2 Dominated splitting/homoclinic tangencies: a local version

Here is the announced local version of Theorem 3.1.

Theorem 5. Let S be a compact surface. Given any open set U in Diff1(S) and any set V
which is a filtrating set for every f ∈ U , there is a dense subset D = H∪ T of U such that:

1. H is a C1- open set such that for any g ∈ H the intersection R(g) ∩ V is the union of
finitely many (disjoint) hyperbolic homoclinic classes (which are basic sets);
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2. for any g ∈ T there is a a homoclinic class contained in V which exhibits a homoclinic
tangency (whose orbit is contained in V ).

Proof: Let V and U be as in the assumptions of the theorem. Let H be the set of diffeomor-
phisms f ∈ U such that V ∩ R(f) is hyperbolic. The set H is open (see Proposition 2.11). Let
T be the set of diffeomorphisms exhibiting a homoclinic tangency in V . We have to show that
H ∪ T is dense in U .

Consider any f in U . Using Theorem 4, one obtains a geometrically simple filtrating neigh-
borhood U whose maximal invariant set coincides with the maximal invariant set of f in V . So,
using Remark 2.2. (2), for any g sufficiently close to f the maximal invariant sets of g in U and
in V coincide. So it is sufficient to prove the theorem for the set U .

Proposition 3.3 introduces a compact surface S0, a diffeomorphism f0 of S0, and a conjugation
ϕ. For the sake of simplicity, as above, we identify U ⊂ S with its image ϕ(U) = U0 ⊂ S0. We
consider the compact set K = f(U)∩ f−1(U), which is contained in the interior of U since U is
a filtrating set. We denote by V the neighborhood of the identity of S0 and by χ : V → Diff1(S)
the map given by Proposition 3.4.

Any diffeomorphism g0 ∈ Diff1(S0) close enough to f0 can be written in the form g0 = h0 ◦f0

for some h0 ∈ V. Define Θ(g0) by Θ(g0) = χ(h0) ◦ f . This map is continuous and sends f0 to f .
By Theorem 3.1, there exists g0 ∈ Diff1(S0) arbitrarily C1- close to f0 such that g0 either is

Axiom A or else exhibits a homoclinic tangency. Let us show that g = Θ(g0) belongs to H∪T .
By continuity of Θ and Remark 2.2. (2), for every g0 sufficiently close to f0, U is a filtrating

set of g = Θ(g0). Moreover, by Remark 2.2. (4), the maximal invariant sets of g in U and K
coincide. As a consequence, the intersection R(g)∩U is the union of the chain-recurrence classes
contained in K (see Remark 2.2. (6)). Finally, by construction, the dynamics of g and g0 in K
coincide (i.e. they are conjugate by the identification ϕ).

We first consider the case where g0 is Axiom A. Then R(g)∩U is hyperbolic since R(g0)∩U
is hyperbolic. Thus, by Proposition 2.11, we get g ∈ H.

In the case where g0 exhibits a homoclinic tangency at some point q one has that the whole
orbit of q is contained in K: note first that q is non-periodic and chain-recurrent and the chain-
recurrent set of f0 (thus of g0) outside K is a finite union of hyperbolic sinks and sources. Since
K is a filtrating set of f0, this remains true for g0 close enough to f0. Therefore the orbit of q
by g0 is contained in K. Consequently, g = Θ(g0) also exhibits a homoclinic tangency at q and
its orbit remains in U , hence in V , that is, g ∈ T . 2

3.3 Consequences of the local dichotomy

Corollary 3. For any compact surface S there is a residual part G5 of Diff1(S) such that every
chain-recurrence class E of any f ∈ G5 satisfies the following property:

• if E admits a dominated splitting then it is a hyperbolic basic piece,

• if E has no dominated splitting then it is accumulated by homoclinic tangencies: for every
neighborhoods U of E in S and U of f in Diff1(S) there exist a diffeomorphism g ∈ U
and a homoclinic class H(P, g) of g which is contained in U and exhibits a homoclinic
tangency.

The proof will use the following lemma:
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Lemma 3.6. Let V be a compact subset of a compact surface S. Then there exists a dense open
subset O(V ) ⊂ Diff1(S) which decomposes as O(V ) = H(V ) ∪W(V ) ∪ S(V ) such that:

1. the sets H(V ), W(V ) and S(V ) are open and pairwise disjoint;

2. for any f in H(V ), the set V is a filtrating set of f and the intersection of R(f) with V
is hyperbolic;

3. for any f ∈ W(V ), the set V is a filtrating set of f and there exists g arbitrarily C1- close
to f which exhibits a homoclinic tangency inside V ; and

4. for any f in S(V ), the set V is not a filtrating set of f .

Proof: Let U(V ) be the set of f ∈ Diff1(S) such that V is a filtrating set of f . By Re-
mark 2.2. (2), the set U(V ) is open in Diff1(S). The set S(V ) is the interior of Diff1(S) \ U(V ).

Let H(V ) be the set of diffeomorphisms f ∈ U(V ) such that the intersection of R(f) with
V is hyperbolic. This set is open by Proposition 2.11.

We define W(V ) as U(V ) \ H(V ). By construction, the three sets H(V ), W(V ), and S(V )
are open and pairwise disjoint. Moreover, their union is dense in Diff1(S). It remains to show
that any diffeomorphism in W(V ) may be approximated by a diffeomorphism which exhibits a
homoclinic tangency inside V .

We apply Theorem 5 to V and the open set of diffeomorphisms W(V ). Since for any dif-
feomorphism f in W(V ) the intersection R(f) ∩ V is not hyperbolic, Theorem 5 ensures the
existence of a dense subset of diffeomorphisms of W(V ) which exhibit a homoclinic tangency
inside V . 2

Proof of Corollary 3: We consider the countable family {Vn} of compact sets of S given
by Proposition 2.6. Using Lemma 3.6 we get the residual set G5 =

⋂
n O(Vn). Let E be a

chain-recurrence class of f ∈ G5.
First, assume that E has a dominated splitting. Since a dominated splitting always extends to

a neighborhood (see Remark 1.6. (2)), there exists a neighborhood U of E such that the maximal
invariant set of f in U admits a dominated splitting. By Proposition 2.4, E admits a filtrating
neighborhood V contained in U . By Proposition 2.6, there exists a filtrating neighborhood Vn

of E contained in U . Since the existence of a dominated splitting is a robust property (see
Remark 1.6. (3)), by Remark 2.2. (2), there exists a neighborhood U of f in Diff1(S) such that,
for any g ∈ U , the set Vn is a filtrating set for g and the maximal invariant set Λg of g in Vn

has a dominated splitting. Consequently, g does not exhibit any homoclinic tangency in Vn.
This shows that f belongs neither to S(Vn) nor to W(Vn). Hence f belongs to H(Vn) and E is
hyperbolic. Finally, by Proposition 2.9, it is a basic piece.

Let us now analyze the case where E has no dominated splitting. Consider neighborhoods
U of E and U of f . As above, there exists a neighborhood Vn ⊂ U of E which is a filtrating set.
By construction, f does not belong to S(Vn). Since E has no dominated splitting, f does not
belong to H(Vn). Hence f belongs to W(Vn) and may be approximated by a diffeomorphism
g ∈ U which exhibits a homoclinic tangency in Vn ⊂ U . 2

4 Proof of Theorem 2 and Corollary 1

Proof of Theorem 2. We need the following dichotomy for chain recurrence classes of C1-
generic diffeomorphisms which generalizes a similar dichotomy for homoclinic classes in [BDP].
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Theorem 4.1 ([ABC]). There is a residual part G3 of Diff1(M) such that for any f ∈ G3 and
any chain-recurrence class E of f , the following dichotomy holds:

1. either E admits a dominated splitting,

2. or E is the limit of a sequence of sinks or sources for the Hausdorff topology (Newhouse
phenomenon).

Let G3 and G5 be the residual subsets of Diff1(S) given by Theorem 4.1 and Corollary 3. Let
G0 be the intersection G0 = G3 ∩ G5. We consider f ∈ G0 and a chain-recurrence class E of f .

First, if E has a dominated splitting then, by Corollary 3, it is a hyperbolic basic piece and
hence it is isolated. If E has no dominated splitting then the same corollary implies that it is
accumulated by homoclinic tangencies and Theorem 4.1 shows that E is the Hausdorff limit of
a sequence of sinks or sources, hence E is not isolated in R(f). This concludes the proof of
Theorem 2.

Proof of Corollary 1. Suppose that R(f) has non-empty interior for some f ∈ G0. By
Proposition 2.5, there is a chain-recurrence class E of f which has non-empty interior. Note
that this interior cannot contain any sink or source, so that E is not contained in the closure of
sinks nor sources. By Theorem 2, this implies that E is a hyperbolic basic set (with non-empty
interior). Proposition 2.8 shows that f is an Anosov diffeomorphism. By [F], the surface S is
the torus T2 and f is conjugate to a linear Anosov map of T2, finishing the proof of Corollary 1.

5 Homoclinic tangencies inside a prescribed homoclinic class

5.1 Homoclinic classes with small angles

The aim of this section is to create (by C1- perturbations) homoclinic tangencies in any homo-
clinic class containing saddles whose stable and unstable bundles form small angles.

Proposition 5.1. Let g be a diffeomorphism of a closed Riemannian surface S and H(p, g) a
non-trivial homoclinic class.

For any ε ∈ ]0, 2π[, if there exists a periodic point q ∈ H(p, g) homoclinically related to the
orbit of p and such that the angle between the stable and unstable spaces at q is smaller than ε

8
then there exists a C1- perturbation ϕ of the identity of S such that:

• the support of ϕ is contained in an arbitrarily small neighborhood of q;

• the diffeomorphism ϕ is ε- close to the identity in the C1- norm;

• the diffeomorphism h = ϕ◦g has a homoclinic tangency associated to p (thus the homoclinic
class H(p, h) contains a homoclinic tangency).

The main ingredient of the proof is the following lemma.

Lemma 5.2. Let ε > 0 be small enough (smaller than 2π) and A a hyperbolic automorphism of
R2 such that

• the eigenvalues λs, λu of A satisfy |λs|−1 , |λu| > 5;
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• the angle between the stable space Es and the unstable space Eu of A is smaller than ε
8 .

Then for every pair of orbits Os in the stable space Es and Ou in the unstable space Eu of A
there exists a perturbation ϕ of the identity of R2 such that

• ϕ has compact support contained in an arbitrarily small neighborhood of 0̄ and coincides
with the identity on a neighborhood of 0̄ and of the orbits Os and Ou;

• ϕ is ε- close to the identity in the C1- norm; and

• the diffeomorphism ϕ ◦ A of R2 exhibits a homoclinic tangency associated to the saddle
fixed point 0̄.

Let us first prove the following lemma:

Lemma 5.3. Let A be a hyperbolic automorphism of R2 such that the eigenvalues λs, λu of A
satisfy |λs|−1 , |λu| > 5. Given any pair of points x in the stable space Es of A and y in the
unstable space Eu of A there exists an arbitrarily small t > 0 such that the strip [ t

2 , t] × R is
disjoint from the orbits of x and y by A.

Proof: We consider the sequences {ri} and {si} of the first coordinates of Ai(x) and Ai(y). We
choose some arbitrarily small ri and assume, for instance, that ri > 0 (the argument is analogous
in the other case).

By our assumption on the eigenvalues, the strip ]ri, 5ri[×R does not contain any point of
the orbit of x and contains at most one point of the orbit of y. If it does not contain any point
of the orbit of y then the lemma follows for t = 2ri. Otherwise, ]ri, 5ri[ contains some sj, then
one of the ratios sj

ri
and 5ri

sj
is strictly larger than 2. We can hence choose t such that [t, 2t] is

contained in ]ri, sj[∪ ]sj , 5ri[. 2

Proof of Lemma 5.2: We fix a smooth function ψ : R → [0, 1] such that ψ is equal to 0
outside ]12 , 1[, its graph is tangent to the graph of the identity at the point (3

4 ,
3
4), and |Dψ| is

bounded by 4. (One may easily build such a function by smoothing a piecewise affine function.)
We choose orthonormal coordinates of R2 such that in these coordinates the unstable space

of A is the axis R × {0} and the stable space is the line y = σx, with σ > 0. By Lemma 5.3,
there exists some arbitrarily small t > 0 such that the strip [ t

2 , t] × R is disjoint from the orbits
Os and Ou.

Consider the map Ψ̃σ : R2 → R2 defined by (x, y) 7→ (x, y+ σ ψ(x)). By construction, this is
a diffeomorphism of R2 which coincides with the identity outside the strip [12 , 1] × R. We have
that ‖DΨ̃σ − Id‖ and ‖DΨ̃−1

σ − Id‖ are strictly uniformly bounded by 4σ on R2. There exists
a diffeomorphism Ψσ of R2 with compact support contained in the strip [12 , 1] × R such that
‖DΨσ − Id‖ and ‖DΨ−1

σ − Id‖ are strictly uniformly bounded by 4σ on R2 and such that Ψσ

and Ψ̃σ coincide on a neighborhood of the segment [12 , 1] × {0}.
The map ϕ in the proposition is now defined by (x, y) 7→ tΨσ(x

t ,
y
t ). This is a diffeomorphism

of R2 which coincides with the identity outside an arbitrarily small (for t small) neighborhood
of 0̄ contained in the strip [ t

2 , t] × R. By construction, ϕ is the identity on a neighborhood of 0̄
and of the orbits Os and Ou. Finally, the image ϕ(Eu) is tangent to the space Es at the point
z = ϕ(3

4 t, 0) = (3
4 t, σ

3
4 t).

Since the C1- norm is invariant by homotheties, ‖Dϕ − Id‖ and ‖Dϕ−1 − Id‖ are strictly
uniformly bounded by 4σ on R2. Notice that σ is the tangent of the angle α between the
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eigenspaces of A. By assumption, the angle α is less than ε
8 <

π
4 so that σ is bounded by 2α,

which is less than ε
4 . Hence ϕ is an ε- perturbation of the identity for the C1- distance.

Set Is = {(x, σx), x ∈ [ t
2 , t]}. Since, by construction (Lemma 5.3), for any n > 0, An(Is) is

disjoint from the strip [ t
2 , t] × R, we have (ϕ ◦ A)n(Is) = An(Is), so that Is is contained in the

stable manifold of 0̄ for ϕ ◦A. Similarly, we set Iu = [ t
2 , t]×{0}. We have, for every n > 0, that

(ϕ ◦ A)−n(ϕ(Iu)) = A−n(Iu) so that ϕ(Iu) is contained in the unstable manifold of 0̄ by ϕ ◦ A.
It follows that the stable and unstable manifolds of 0̄ for ϕ ◦A have a tangency at z (in a small
neighborhood of 0̄). 2

Proof of Proposition 5.1: Since H(p, g) is a non-trivial homoclinic class there exists some
non-trivial hyperbolic basic set K contained in H(p, g) that contains q. Hence there is a family
of distinct periodic orbits {γn, n ∈ N} contained in K such that for each n there is a point
qn ∈ γn such that the sequence {qn} converges to q. This implies that

• the periods πn of the orbits γn go to ∞; hence, for n large enough, the stable eigenvalue
λs

n and the unstable eigenvalue λu
n of γn satisfy |λs

n|
−1 , |λu

n| > 5;

• the angle between the stable and the unstable manifold of γn at qn is smaller than ε
8 for n

large enough.

We consider one qn with n large enough. By an arbitrarily small perturbation in an arbitrarily
small neighborhood of qn, we can assume that gπn is linear in a neighborhood of qn. After this
small perturbation qn and p remain homoclinically related. We choose x ∈ W s(γn) t W u(p)
and y ∈ W u(γn) t W s(p). Notice that there is a small neighborhood U of qn on which gπn is
linear such that the intersection of the orbit of x with U is contained in the local stable manifold
of qn and has the form {gkπn(x0), k ∈ N}. Similarly, the intersection of the orbit of y with U is
contained in the local unstable manifold of qn and has the form {g−kπn(y0), k ∈ N}.

By Lemma 5.2, there exists a perturbation ϕ0 of the identity of S, with support in U ,
disjoint from the forward orbit of x0 and the backward orbit of y0 and such that ϕ0 ◦ gπn has a
homoclinic tangency z in U associated to the point qn. As the support of this perturbation is
disjoint from the forward orbit of x, the backward orbit of y, and the whole orbits of p and qn,
the points p and qn remain homoclinically related for the diffeomorphism ϕ0 ◦ g. By a classical
argument, an unfolding of a homoclinic tangency associated to qn (that is a small perturbation
in a neighborhood of z) creates a homoclinic tangency associated to p.

The C1- norm of the perturbation ϕ0 was strictly smaller than ε so that the perturbation
remains ε- close to the identity. Finally, by construction, the support of the perturbation is
arbitrarily close to q. 2

5.2 Homoclinic classes with no dominated splitting

Proposition 5.4. Let f be a diffeomorphism of a compact surface S and p a hyperbolic periodic
point of f whose homoclinic class H(p, f) does not admit any dominated splitting. Fix a C1-
neighborhood U of f and any α > 0.

Then there exists a periodic point q ∈ H(p, f) whose orbit by f is homoclinically related to
p such that for any neighborhood U of the orbit of q there exists a perturbation g ∈ U of f , with
support in U , such that

• the orbit of q remains homoclinically related to p;
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• the angle between the stable and unstable spaces of q is bounded by α.

Proof: One fixes some constant η > 0 such that for any two diffeomorphisms h, h′ which are η-
C1- close to the identity the composed diffeomorphism h ◦ f ◦ h′ is in U .

Since p is hyperbolic and H(p, f) has no dominated splitting, the homoclinic class of p is
non-trivial. If the angles between the stable and the unstable spaces of the periodic points
whose orbits are homoclinically related to p are not (uniformly) bounded from below then the
proposition follows taking g = f . Thus, from now on, we can assume that all these angles are
greater than some δ > 0.

Consider a sequence of periodic orbits {γn} in H(p, f) which are homoclinically related to
p, whose periods πn go to infinity, and which are dense in H(p, f). Since dominated splittings
extend to closures (see Remark 1.6. (1)), there is no dominated splitting on the union of the
orbits γn. Thus, for any N > 0 there are a periodic orbit γn with arbitrarily large period πn

and a point x ∈ γn such that for any unit vectors u ∈ Es(x) and v ∈ Eu(x) we have

2 ‖DfN (x) · u‖ > ‖DfN (x) · v‖.

At each point y ∈ γn, n ∈ N, one chooses unit vectors uy ∈ Es(y) and vy ∈ Eu(y). Recall that
the angle between the invariant spaces at each point y ∈ γn, n ∈ N, is greater than δ. Hence
the basis transformation maps from an orthonormal basis to the basis (uy, vy), as well as their
inverses, are uniformly bounded in y ∈ γn and n ∈ N by some constant K > 0. If one writes
Df(y) in the basis {uy, vy} of TyM and {uf(y), vf(y)} of Tf(y)M one obtains a diagonal matrix

(
ay 0
0 by

)
.

In order to work in the basis (uy, vy) one needs to adapt the constants η and α as follows:
For ε > 0 small enough, any pair of linear maps P,H ∈ GL(2,R) with ‖P‖ < K, ‖P−1‖ < K,
and ‖H − Id‖ < ε satisfies ‖P ◦H ◦ P−1 − Id‖ < η. For β > 0 small enough and P ∈ GL(2,R)
with ‖P‖ < K, ‖P−1‖ < K, if u, v are non-zero vectors whose angle is less than β, then the
angle between P (u) and P (v) is less than α.

We will use the following lemma, which explains how to perturb linear maps (and indeed
diagonal linear maps) of R2 by diffeomorphisms in order to create small angles between the
invariant manifolds while keeping a control of the invariant manifolds outside a small neighbor-
hood of 0̄. The proof of this lemma will be postponed until after the end of the proof of the
proposition:

Lemma 5.5. For any ε > 0 and any β > 0 there exists L > 0 such that for any integers N ≥ L
and M ≥ N + 2L we have the following property:

Let (ai) and (bi) be two sequences of non-zero real numbers such that

• 2
∣∣∣
∏N

i=1 ai

∣∣∣ >
∣∣∣
∏N

i=1 bi

∣∣∣;

•
∣∣∣
∏M

i=1 ai

∣∣∣ <
∣∣∣
∏M

i=1 bi

∣∣∣.

For each i, let Ai be the matrix given by
(
ai 0
0 bi

)
.

Then there exists a sequence of diffeomorphisms (ϕi)i∈{1,...,M} of R2 with compact support
such that, denoting by Bi the diffeomorphism Ai ◦ ϕi for i ∈ {1, . . . ,M − 1} and by BM the
diffeomorphism ϕM ◦ AM , we have the following properties:
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1. for each i the diffeomorphism ϕi is a perturbation of the identity which sends 0̄ to 0̄ and
whose derivative is ε- close to the identity;

2. the point 0̄ is a hyperbolic fixed point of BM ◦ · · · ◦B1 whose stable and unstable manifolds
are the lines R × {0} and {0} × R, respectively; and

3. the angle between the stable and unstable spaces of 0̄ for BN ◦ · · · ◦ B1 ◦ BM ◦ · · · ◦ BN+1

is less than β.

We fix ε > 0 and β > 0 associated to η and α, and let K be the constant which bounds the
basis transformation maps, as discussed above. We choose L given by Lemma 5.5, N = L, a
periodic orbit γn with period πn larger thatN+L, and a point x ∈ γn such that 2 ‖DfN (x)·ux‖ >
‖DfN (x) · vx‖. Finally, we fix M = πn > N + L.

By an arbitrarily small C1- perturbation of f in a small neighborhood of γn, one can assume
that f is linear in a neighborhood of each point of γn. One defines ai = af i−1(x) and bi = bf i−1(x),
for i ∈ {1, . . . ,M}. By construction, these numbers verify the hypotheses of Lemma 5.5. The
lemma yields some diffeomorphisms ϕi of R2. Notice that the conclusions of the lemma remain
true if we conjugate all the diffeomorphisms ϕi by a common homothety. Hence we can assume
that the supports of the ϕi’s are contained in an arbitrarily small neighborhood of 0̄ ∈ R2.
Consequently, using the local coordinates around the points of γn, one can consider each ϕi as
a diffeomorphism of S coinciding with the identity outside a small neighborhood of f i−1(x).
Denote by g the diffeomorphism coinciding with f outside the neighborhood of γn, with f ◦ ϕi

in the neighborhood of f i−1(x) for i ∈ {1, . . . ,M − 1}, and with ϕM ◦ f in the neighborhood of
fM−1(x) = f−1(x).

We verify now that g satisfies the properties in the proposition with q = fN (x), provided
that we choose the support of the ϕi small enough:

• g coincides with f on the orbit γn;

• by the choice of ε, the diffeomorphisms g belongs to U ;

• by the choice of β, the angle between the invariant spaces of DgM at fN(x) is smaller
than α: just note that in the basis {ufN (x), vfN (x)} this differential has the expression
BN ◦ · · · ◦ B1 ◦BM ◦ · · · ◦ BN+1, the assertion follows from Lemma 5.5. (3);

• recall that one can take the support of the ϕi arbitrarily small; Lemma 5.5. (2) asserts
that the local invariant manifolds at x of g coincide with those of f (after linearization of
f along γn), in a neighborhood of x whose size does not depend on the support of the ϕi;
and

• consider two points xs, xu such that xs (resp. xu) is a transverse intersection point of the
local stable (resp. unstable) manifold of x for f with the unstable (resp. stable) manifold
of the orbit of p for f . If the support of the perturbation ϕi of the identity is small enough,
the positive orbit of xu (resp. the negative orbit of xs) for f and for g coincide. As a
consequence x (and then q) is homoclinically related to p for g.

This completes the proof of the proposition. 2

Proof of Lemma 5.5: In order to get small angles between the stable and unstable bundles
the proof follows Mañé’s arguments (see [M2]) which deals with matrices. However, in order
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to control the local invariant manifolds, we need to adapt these arguments using perturbations
with compact support.

Let Φ be the matrix

Φ =

(
1

1+ ε
2

0
0 1 + ε

2

)
.

This matrix is ε-close to the identity.
Denote by Di, i ∈ {1, . . . ,M−1}, the matrix defined by Di = Ai ◦(Φ−1) if i ∈ {2, . . . , L−1},

Di = Ai ◦ Φ for i ∈ {N + 1, . . . ,M − 2}, and Di = Ai in the other cases. The Di’s are diagonal

matrices
(
αi 0
0 βi

)
verifying:

• 2
∣∣∣
∏N

i=1 αi

∣∣∣ > (1 + ε
2)2(L−2)

∣∣∣
∏N

i=1 βi

∣∣∣;

• |α| < |β|, where α =
∏M

i=1 αi and β =
∏M

i=1 βi.

One defines ϕ1 as a diffeomorphism on the form (x, y) 7→ (x+ ψ(x, y), y), where ψ : R2 → R
has support in the unit ball, ψ(0, 0) = 0, ‖Dψ(x, y)‖ < ε at each point (x, y), and ∂

∂yψ(0, 0) = ε.
Consider the image of the vertical axis {0} × R by DM ◦ · · · ◦D1 ◦ ϕ1. This is a graph over

the second coordinate, which is mapped on the vertical axis {0} × R by a diffeomorphism ϕ̃M

of the form (x, y) 7→ (x+ θ(y), y), where θ(y) = −αψ(0, y
β ). The function θ has support in the

interval [−|β|, |β|] and the modulus of its derivative |Dθ(y)| is less that |αβ | ε ≤ ε.
This allows us to build a diffeomorphism ϕM , coinciding with the identity outside some

compact set and with ϕ̃M on DM ◦ · · · ◦D1 ◦ ϕ1({0} × R), which is ε- C1- close to the identity.
We define B1 = A1 ◦ϕ1 and BM = ϕM ◦AM . Notice that, by construction, 0̄ is a hyperbolic

fixed point of BM ◦DM−1 ◦ · · · ◦D2 ◦B1, whose stable and unstable manifolds are the horizontal
and vertical axes, respectively. As a consequence, 0̄ is a hyperbolic fixed point of DN ◦ · · · ◦
D2 ◦ B1 ◦ BM ◦ DM−1 ◦ · · · ◦ DN+1 whose invariant manifolds are the images of the axes by
DN ◦ · · · ◦D2 ◦ B1. It follows that its invariant directions are generated by the vectors

u = (1, 0) and v = (1, vy) = (1,
∏N

i=1 βi

ε
∏N

i=1 αi

).

Note that the modulus of vy is bounded by 2
ε (1 + ε

2 )−2(L−2), which is arbitrarily small for large
L: the angle between u and v is therefore smaller than β.

The family B1,D2, . . . ,DM−1, BM satisfies all the announced properties in the lemma, except
that the Di are linear maps and their supports are not compact. For i ∈ {2, . . . ,M − 1}, we
choose ϕi with compact support, of the form (x, y) 7→ (λ(x)x, λ−1(y) y), coinciding with Φ (for
i ∈ {N +1, . . . ,M −1}) or Φ−1 (for i ∈ {2, . . . , N}) on a very large ball Γ centered at the origin,
and whose derivative at each point is ε- close to the identity. We now let, for i = 2, . . . ,M − 1,
Bi = Ai ◦ ϕi.

Taking the ball Γ large enough, one verifies that 0̄ is a hyperbolic fixed point of BM ◦ · · · ◦B1

whose stable and unstable manifolds are the lines R×{0} and {0}×R, respectively: the images
B1({0} ×R), D2 ◦B1({0} ×R), . . . , DM−1 ◦ · · · ◦D2 ◦B1({0} × R) of the vertical axis coincide
with the vertical axis outside a compact domain; one simply chooses Γ large enough to contain
this compact domain.

Now the family ϕi, i ∈ {1, · · · ,M}, satisfies all the announced properties. 2
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5.3 Proof of Theorem 3

Let f be a diffeomorphism of a compact surface and p a hyperbolic periodic saddle whose
homoclinic class H(p, f) admits no dominated splitting. Fix some ε > 0 and α = ε

8 . By
Proposition 5.4, there is an ε- perturbation g1 of f (coinciding with f in a neighborhood of the
orbit of p), such that there is a periodic saddle q of g1 homoclinically related to p such that the
angle between the invariant manifolds of q is smaller than α. Proposition 5.1 now yields an ε-
perturbation g of g1 (coinciding with g1, therefore with f , in a neighborhood of the orbit of p)
with a homoclinic tangency associated to p. So we obtain an arbitrarily small C1- perturbation
g of f with a homoclinic tangency associated to p, concluding the proof of Theorem 3.

6 Proof of the other results

Proof of Proposition 1.3: Let f be a diffeomorphism of a compact surface. Assume that
there is some hyperbolic set Λ of f which locally generically presents some tangency: there is
a C1- open neighborhood U of f such that for every g in a residual subset of U the stable and
the unstable manifolds of the continuation Λg of Λ are tangent at some point x. Notice that
x belongs to W s

T (Λg) ∩W u
T (Λg) for some integer T > 0. Consider, for T ∈ N, the set FT of

diffeomorphisms g ∈ U having a tangency between the local invariant manifold of size T of Λg.
These sets FT are closed and their union, for T ∈ N, is a residual subset in U . One deduces that
the union of the interiors of the sets FT is a dense open subset of U : that is, there are robust
tangencies for diffeomorphims close to f . 2

Proof of Proposition 1.4: Recall that T is the C1-open set of diffeomorphisms admitting
a persistent tangency associated to some hyperbolic periodic saddle and that Trob ⊂ T is the
open subset of diffeomorphisms admitting a robust tangency associated to some hyperbolic set.
We denote by T∞ the set T \ Trob.

Let O = {On} be a countable basis of open sets of S and F the (countable) family of
the closures of finite unions of sets in O. For each V ∈ F , one defines UV as the set of
diffeomorphisms f for which the maximal invariant set Λ(V, f) of f in V is hyperbolic. This set
is open: let f be in UV and g a diffeomorphism C1- close to f . Then Λ(V, g) is contained in
a small neighborhood of Λ(V, f) and hence it is hyperbolic. Let VV be the C1- interior of the
complement of UV . The open set UV ∪ VV is dense in Diff1(S).

For each V ∈ F and each integer L > 0, we denote by U trans
V,L the set of diffeomorphisms

f ∈ UV such that the local stable and local unstable manifolds of Λ(V, f) of size L are transverse.
We will use the following lemma whose proof we postpone.

Lemma 6.1. Each U trans
V,L is open and dense in UV \ Trob.

By this lemma, each set U trans
V,L ∪ VV is open and dense in (Diff1(S) \ Trob). Thus the

intersection of this countable family (for V ∈ F and L ∈ N) is a residual subset G of (Diff1(S) \
Trob). We define GT∞ as the residual subset of T∞ obtained as the intersection of G with T∞.

Let f ∈ GT∞ and Λ be a hyperbolic set of f . There exists V ∈ F such that the maximal
invariant set Λ(V, f) contains Λ and is hyperbolic. Thus the diffeomorphism f belongs to UV .
Moreover, by our choice of GT∞, for each L, the local invariant manifolds of Λ(V, f) of size L are
transverse. Consequently the (global) invariant manifolds of Λ ⊂ Λ(V, f) are transverse. This
completes the proof of the proposition. 2
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Proof of Lemma 6.1: Let f be a diffeomorphism, Λ a hyperbolic set of f , and U a neigh-
borhood of f of diffeomorphisms g such that the hyperbolic continuation Λg of Λ is defined.
For each integer L > 0, we denote by U trans

Λ,L the set of diffeomorphisms g ∈ U such that the
local stable and local unstable manifolds of Λg of size L are transverse. This set is open in
U (by continuity of the local invariant manifolds). Moreover, it is also dense in U \ Trob: any
diffeomorphism g in the interior of U \ U trans

Λ,L admits a robust tangency associated to Λg (thus
it belongs to Trob).

Let us come to the proof of the lemma: we consider V ∈ F , an integer L > 0, and some
f ∈ UV \ Trob. We choose a small neighborhood V ′ ∈ F of Λ(V, f) such that the maximal
invariant set Λ = Λ(V ′, f) is contained in a small neighborhood of Λ(V, f), and hence it is
hyperbolic. There is a small neighborhood U 0 of f such that for any g ∈ U 0 the hyperbolic
continuation Λg of Λ is defined.

We claim that there exists a small neighborhood U ⊂ U 0 of f such that for any g ∈ U
the set Λ(V, g) is contained in Λg. By upper-semi-continuity of Λ(V, f), any orbit O in Λ(V, g)
is a pseudo-orbit (with arbitrarily small jumps if g is close enough to f) of Λ(V, f). Now, by
the shadowing lemma (see for example [Y]), this orbit is shadowed by an (unique) orbit O′

of f contained in V ′, that is, an orbit of Λ. The orbit O ∈ Λ(V, g) is shadowed by the orbit
O′ ∈ Λ and so, by definition and unicity of the continuation of Λ (see [Y]), it is an orbit of the
continuation Λg of Λ. We have proved that Λ(V, g) ⊂ Λg for g close to f .

By the argument above, for each integer L > 0, the set U trans
Λ,L is dense in U \ Trob. For

each diffeomorphism g ∈ U trans
Λ,L , since Λ(V, g) is contained is Λg, the local invariant manifolds

of Λ(V, g) of size L are transverse, so that g belongs also to U trans
V,L . This proves the density of

U trans
V,L in UV \ Trob.

Let us prove now the openness. We consider f in U trans
V,L \ Trob and choose a small neigh-

borhood V ′ ∈ F of V such that the maximal invariant set Λ = Λ(V ′, f) is contained in a small
neighborhood of Λ(V, f). Hence Λ is hyperbolic and its local invariant manifolds of size L are
transverse (each local manifold of Λ is C1-close to a local manifold of Λ(V, f)). Thus there exists
a small neighborhood U of f such that for each g ∈ U the hyperbolic continuation Λg of Λ is
defined, contains the maximal invariant set Λ(V, g) (see the arguments above), and the local
invariant manifolds of size L of Λg are transverse. As a consequence, U is contained in U trans

V,L ,
which proves the openness and ends the proof of the lemma. 2

Proof of Corollary 2: Consider the residual set G1 of Diff1(S) obtained as the intersection
of the following residual sets of Diff1(S): G0, given by Theorem 2, G4 given by Proposition 2.16,
G2 given by Proposition 2.12, and the residual set of Kupka-Smale diffeomorphisms.

Consider f ∈ G1 and a (hyperbolic) periodic point p of f whose homoclinic class H(p, f)
is non-isolated in R(f). This homoclinic class coincides with the chain-recurrence class of p,
by Proposition 2.12. By Proposition 2.16, there exists a neighborhood U of f such that for
any g ∈ G1 ∩ U the homoclinic class of pg coincides with the chain-recurrence class of pg and is
not isolated. By Theorem 2, for any g ∈ G1 ∩ U the homoclinic class of pg has no dominated
splitting. By Theorem 3, there are diffeomorphisms g̃ arbitrarily C1- close to g such that pg̃

admits a homoclinic tangency. This yields the density in U of diffeomorphisms exhibiting a
homoclinic tangency associated to the continuation of p, thus concluding the proof. 2

Proof of Theorem 1: Consider the open set W = Diff1(S) \H ∪ T and let G0 and G1 be the
residual subsets built in Theorem 2 and Corollary 2. Consider f ∈ W∩G0∩G1 and a hyperbolic
periodic point p of f . If the homoclinic class of p is non-isolated then, by the definition of G1, f
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presents a persistent homoclinic tangency associated to p, contradicting f /∈ T . Consequently,
the homoclinic class of p is isolated and is thus a hyperbolic basic piece, by the definition of G0.

We denote by GW the set of diffeomorphisms f ∈ W ∩ G0 ∩ G1 for which each periodic
point is hyperbolic and the set of periodic points is dense in the chain-recurrent set R(f). This
set is residual in W by Theorem 2.2. Assume that the number of homoclinic classes of such a
diffeomorphisms f ∈ GW is finite. As the homoclinic classes are compact and dense in R(f),
one gets that R(f) is the union of these homoclinic classes, hence of finitely many basic sets.
This shows that f satisfies the Axiom A and the no-cycle condition, contradicting f /∈ H. So for
f in GW the number of homoclinic classes is infinite and each homoclinic class is a hyperbolic
basic piece. 2

We conclude this paper with a discussion of the conjectures formulated in the introduction.

Proposition 6.2. Conjectures 3 and 4 are equivalent.

Proof: We first assume that Conjecture 3 is satisfied so that the open set Trob is dense in T .
By Theorem 1, the open set H ∪W ∪ Trob is dense in Diff1(S). We consider a diffeomorphism
f in this dense open set such that for any hyperbolic set the stable and the unstable manifolds
are transverse. By definition, f does not belong to Trob so that f ∈ H∪W. In either case all of
the homoclinic classes of f are hyperbolic.

We now assume that Conjecture 4 is satisfied: there exists a residual subset G ⊂ Diff1(S) of
diffeomorphisms f such that, if for any hyperbolic set of f its invariant manifolds are transverse,
then all the homoclinic classes of f are hyperbolic. We can assume that this set G is contained in
the residual set G0 given by Theorem 2: that is, hyperbolic homoclinic classes of diffeomorphisms
in G are (robustly) isolated.

We can also assume that the generic diffeomorphism f is such that, for every (hyperbolic) pe-
riodic point p of f , the continuation H(pg, g) of the homoclinic class H(p, f) varies continuously
under small C1- perturbations g of f (see Remark 2.15).

We shall prove that GT∞∩G is empty. Suppose, by contradiction, that there is f ∈ GT∞∩G.
By definition of GT∞, for each hyperbolic set of f its invariant manifolds are transverse, so every
homoclinic class is hyperbolic, by definition of G. This also implies that every homoclinic class
H(p, f) is isolated. Therefore, there are a C1- neighbourhood W of f and a neighbourhood U
of H(p, f) such that the map g 7→ H(pg, g) is continuous and H(pg, g) is hyperbolic and equal
to the maximal invariant set of g in U .

We claim that this implies that every diffeomorphism g ∈ W exhibits no tangencies associated
to pg. Arguing by contradiction, assume that there is g ∈ W such that pg has a homoclinic
tangency x. First, due to the hyperbolicity, the point x does not belong to the homoclinic class
H(pg, g). As this set is the maximal invariant set in U , this implies that we can take x 6∈ U .
Unfolding this tangency, we obtain an explosion of the homoclinic class of pg, contradicting that
this class is contained in U .

This contradicts the existence of a persistent tangency for some hyperbolic periodic point of
f . We deduce that T∞ is empty (since G ∩ GT∞ is residual in T∞) so that Trob is dense in T ,
which is Conjecture 3 2
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