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Abstract. We give necessary and sufficient conditions for the existence of symmet-

ric equilibrium without ties in interdependent value auctions, with multidimensional

independent types and no monotonic assumptions. In this case, non-monotonic equi-

libria might happen. When the necessary and sufficient conditions are not satisfied,

there are ties with positive probability. In such case, we are still able to prove the

existence of pure strategy equilibrium with an all-pay auction tie-breaking rule. As a

direct implication of these results, we obtain a generalization of the Revenue Equiva-

lence Theorem. From the robustness of equilibrium existence for all-pay auctions in

multidimensional setting, an interpretation of our results gives a new justification to

the use of tournaments in practice.
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1. Introduction

The received literature on pure strategy equilibria of single-object auctions is mainly

restricted to the setting of unidimensional types and monotonic utilities. Although

recent efforts have been made to treat the case of multidimensional types (see McAdams

(2003), for instance), the monotonicity assumption is still maintained.

In dealing with multidimensional types, this is obviously restrictive. To see why,

consider the auction of a tract of land to construct a building. The private information

regards 1) the bidder’s capability to construct residential buildings, 2) the bidder’s
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capability to construct commercial buildings and 3) how crowded will be the neighbor-

hood. For a bidder with high capability to construct a commercial building, to learn

that the place will be crowded is good news, while this is bad news for a firm with

good capabilities in constructing just residential buildings. If the information has the

features of interdependent (or common) value setting, then non-monotonicities might

arise.1

In other words, to develop a satisfactory theory of equilibria with multidimensional

types, it is necessary to take into account the possibility of non-monotonic utility

functions.

However, even in the unidimensional case, non-monotonic auctions are problematic.

To see why, consider a symmetric first-price auction between two buyers with inde-

pendent types where the object is worth ui (t) = v (ti, t−i) = α+ ti+ βt−i to bidder
i.

The received theory ensures the existence of a monotonic pure strategy equilibrium

only if β > 0. See Milgrom and Weber (1982), Maskin and Riley (2000) and Athey

(2001). If β < 0, we only know that there exists an endogenously defined tie-breaking

rule that guarantees the existence of mixed strategy equilibrium (see Jackson, Simon,

Swinkels and Zame (2002), henceforth JSSZ).

That the case β < 0 is problematic can be seen through particular examples. Indeed,

if α = 5, β = −4 and the distribution is uniform on [0, 1], this is exactly example 1

of JSSZ. If α = 3, β = −2 and types assume values 0 or 1 with probabilities 2
3
and

1
3
, respectively, it is example 3 of Maskin and Riley (2000). Both cases are counterex-

amples to the existence of equilibrium, even with special tie-breaking rules. Maskin

and Riley (2000) show that there is no equilibrium for their example neither under

the standard tie-breaking rule (that assigns the object randomly to tying bidders), nor

under the Vickrey auction tie-breaking rule, defined as “if a tie occurs for the high bid,

a Vickrey auction is conducted among the high bidders”. JSSZ make the claim, cor-

rected in Jackson, Simon, Swinkels and Zame (2004), that there is no type-independent

tie-breaking rule ensuring the existence of equilibrium for their example.

Some questions arise from the contrast between the theoretical results for β > 0

and β < 0: For which set of β the standard tie-breaking rule is sufficient to ensure

the existence of equilibrium? Is there any negative β such that the equilibrium is

unique? Is it possible to define a specific tie-breaking rule for all β? For which set

1In the private value case, one can summarize the information of each bidder to the expected value

of the object only. Thus, the value can be the type itself and, hence, monotonic.
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of β there is no equilibrium in pure strategy? What about the other auction formats:

how the negativeness of β impacts the equilibrium existence for them? Is the Revenue

Equivalence Theorem still valid for β < 0?

The framework of this paper includes JSSZ’s example as a special case. Our re-

sults provide the following answers to the above questions: If β > −1, there exists
equilibrium in pure strategies under the standard tie-breaking rule. If we adopt an

all-pay auction tie-breaking rule, that consists in conducting an all-pay auction among

tying bidders in the case of a tie, then there exists a pure strategy equilibrium for

all β (provided α > max {0,−β}, otherwise the object would have negative values).
Moreover, the all-pay auction tie-breaking rule works for all standard type of auctions

and the equilibria obtained under it obey the Revenue Equivalence Theorem. We also

prove that there is a unique equilibrium if β > −1, but there are multiple equilibria
otherwise.

It is important to note that the all-pay auction tie-breaking rule is type-independent,

in the sense that it does not require private information. This does not contradict

the example of Jackson et. al. (2004), that does not have equilibrium with type-

independent tie-breaking rule. The reason is that in this example there is an uncertainty

about the number of objects in the auction, while we consider only standard auctions,

that is, with a fixed number of objects.

Our results hold for symmetric auctions with independent non-atomic types, for a

wide class of auction formats where bidders have unitary demands (first-price, second-

price, all-pay, war of attrition).2 Moreover, we impose no restriction on the dimension

of the set of types and make no monotonic assumptions about the value of the object.

All the answers provided above for the specific example are given in a general setting (of

weakly separable utilities – see assumption H3 in section 5). Of course, the condition

for the equilibrium existence is somewhat more complex for the general case, but it is

still easy to verify.

From the equilibrium existence for all-pay auctions, an interpretation of our results

can give a new justification to the use of tournaments in practice. Indeed, tournaments

(for job or research) are well-modeled as all-pay auctions. We prove that the existence

of equilibrium for these kind of auctions requires weaker assumptions than other kind

of auction mechanisms, because they better reveal information. If we are in a situation

2The non-atomicity is a standard but crucial assumption for our method. Thus, example 3 of

Maskin and Riley (2000) does not satisfy our assumptions.
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where the revelation of information is crucial for a strategically stable allocation of the

product, then our results say that all-pay auctions perform better.

It is interesting to observe that situations where tournaments are routinely conducted

are exactly those where the information is multidimensional and can be non-monotonic

for the players. For instance, the better capacity for conducting a research depends on

a multidimensional vector of characteristics: technical knowledge and abilities, experi-

ence, organizational and financial structures, creativity, motivation and even honesty.

Such a complex information environment requires good mechanisms for revelation of

information, such as all-pay auctions, implementable via tournaments.

Our results are based on what we call indirect auctions, described in subsection 1.1

below. However, one can understand the main findings of this paper in section 2, where

we describe them in a simpler set up. The rest of the paper is organized as follows.

In section 3, we present the model. Section 4 formally presents the indirect auction.

Section 5 develops the theory for general auctions, obtaining necessary and sufficient

conditions for the existence of equilibrium. Section 6 particularizes to the case of weakly

separable utilities and gives a concise condition for equilibrium existence. Moreover,

the all-pay auction tie-breaking rule is introduced and the equilibrium existence proved.

As a corollary, we obtain the Revenue Equivalence Theorem. Section 7 concludes with

a discussion about the limitations of our results and reviews the contributions of the

paper in light of the related literature. All proofs are collected in appendices.

1.1. The Indirect Auction. For standard auctions, high bids correspond to higher

probabilities of winning. If a bidding function b (·) is fixed and followed by all partic-
ipants in a symmetric auction, we can associate to each bid (and thus, to each type),

the probability of winning. All types that bid in the same manner under b (·) have the
same probability of winning. This allows us to introduce the concept of conjugation.

If b (t) = b (s) and, hence, t and s have the same probability of winning, we say that t

and s are conjugated.

Sometimes in the literature, what we call conjugation is named reduced form: “The

function relating a bidder’s type to his probability of winning is the reduced form of the

auction.” (Border, 1991, p. 1175).3 Therefore, what we will call indirect auction can

be also called reduced form auction. The papers about reduced form auctions analyze

problems related to the characterization and existence of optimal auctions. Hence, the

auction is treated, as in Myerson (1981), only by considering the probability of winning

3See also Matthews (1984) and Chen (1986).
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and the payments. In turn, our problem is to find the equilibrium for fixed auction

rules. Moreover, our indirect auction is not equivalent to the direct one. Thus, it is

not merely a reduced form of the auction. (See remarks after Theorem 1 in section 4).

Because of these differences and in the attempt not to confuse terms, we decided to

use a different terminology.

This terminology comes from the Taxation Principle which allows us to implement

direct truthful mechanism through some convenient indirect one.4 In our case, we are

implementing the equilibrium in the auction using an indirect auction obtained from

the reparametrization of types through the probability of winning.

As stated, this idea seems to be unpromising at first sight, since the probability

of winning will be different for each different bidding function that we begin with.

Moreover, if we do not previously fix a bidding function, no conjugation can be defined.

To overcome these problems, we define conjugations (without using bidding func-

tions) as a suitable reparametrization of types. Once conjugations are defined, we can

define the Indirect Auction: an auction with the same format of the direct one (for

instance, a first-price auction if the original auction is a first-price auction) between

just two players with independent signals, uniformly distributed on [0, 1]. This makes

the analysis of equilibrium existence easier.

This method allows us to deal with non-monotonic bidding in equilibrium. Indeed,

we give examples where bidders’ types are multidimensional and the values are non-

monotonic (see sections 4 and 5). An important part of the method is the necessary

condition (i) in Theorem 1, which says that types of a bidder choosing the same bid

have the same marginal benefit. A similar property was derived by Araujo and Moreira

(2000) for the (monopolistic) principal-agent screening problem where non-monotonic

optimal contracts emerge.

2. The main results in a simpler framework

Assume that there are just two bidders in an auction for a single object. Bidder i

has a L dimensional signal ti ∈ S = ΠLl=1

h
tl, t

l
i
and there is a non-atomic measure µ

on S. The signals are drawn independently from the same distribution. The value of

the object to bidder 1 is v (t1, t2) = c · t1+ k · t2+ d and for bidder 2 is v (t2, t1), where

4See Guesnerie (1998).
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c, k ∈ RL, c 6= 0 and d ∈ R. The auction can be a first-price, a second-price, an all-pay
auction or a war of attrition.5

Let us assume that inf(t1,t2)∈S×S v (t1, t2) > 0 (for instance, it is sufficient to take d
sufficiently large).

Let us define, for each ti ∈ S, the sets S (ti) = {s ∈ S : c · s 6 c · ti} – which will be

the set of types that type ti defeats – and S0 (ti) = {s ∈ S : c · s = c · ti} – the set of

types that tie with ti. We say that a strategy b : S → R is regular if the distribution of
bids that it induces is absolutely continuous and strictly increasing (so that b is never

constant nor have gaps in its range). Observe that a regular strategy is not necessarily

continuous or monotonic.

We will use the all-pay auction tie-breaking rule: in the case of a tie, we conduct

an all-pay auction among the tying bidders and the allocation and payment are given

by this last auction. If there is another tie in the second auction, we split the object

randomly. Nevertheless, this will occur with zero probability.

For the first-price (F), second-price (S), all-pay auctions (A) and war of attrition

(W), consider, respectively, the following functions:

b (ti) =
1

µ (S (ti))

Z
S(ti)

[(c+ k) · z + d]µ (dz) ; (F)

b (ti) = c · ti + k · E
£
s|s ∈ S0 (ti)

¤
+ d; (S)

b (ti) =

Z
S(ti)

[(c+ k) · z + d]µ (dz) ; (A)

b (ti) =

Z
S(ti)

[(c+ k) · z + d]
1− µ (S (z)) µ (dz) . (W)

We have the following results:

Theorem A (Necessary and Sufficient Condition for Equilibrium Existence): A

symmetric pure strategy equilibrium in regular strategies for the first-price (F), second-

price (S), all-pay auction (A) or war of attrition exists if and only if the respective

functions defined above satisfy

b (ti) 6 b (t0i)⇔ S (ti) ⊆ S (t0i)⇔ c · ti 6 c · t0i(M)

5In a first price auction, the winner pays his bid and the looser pays nothing. In a second-price

auction, the winner pays the looser’s bid and the looser pays nothing. In an all-pay auction, every

bidder pays their bids, no matter if they win or not. In a war of attrition, every bidder pays the

looser’s bid, no matter if they win or not. (The last definition is valid only in the case of two players.)
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In particular, it always exists for all-pay auctions and war of attrition. Moreover, if b

satisfies condition (M), it is the unique symmetric pure strategy equilibrium in regular

strategies for its corresponding game.

Theorem B (Equilibria with ties): Assume that we use all-pay auction tie-breaking

rule. Then there always exists a symmetric equilibrium in pure strategies for the four

kind of auctions above. If condition (M) above is not satisfied, there are multiple pure

strategy equilibria.

Theorem C (Revenue Equivalence Theorem): If the bidders follow the equilibrium

strategies specified in Theorem B, the expected payment for a bidder with type ti is

the same for the four kind of auctions above and given by:

p (ti) =

Z
S(ti)

[(c+ k) · z + d]µ (dz) .

Observe that Theorem C does not require condition M, that is, it remains valid even

if there are ties with positive probability and, hence, multiple equilibria. In this case,

all equilibria specified by Theorem B give the same expected payment.

Theorems A, B and C are particular cases of Theorems 3, 4 and 5, respectively.

3. The Model

There are N bidders in an auction of L < N homogenous objects, but each bidder

is interested in just one object. Player i (i = 1, ..., N) receives a private information,

ti, possibly multidimensional, and chooses a bid bi ∈ B ≡ {bOUT} ∪ [bmin,+∞), where
bmin > bOUT is the minimal valid bid and if bi = bOUT , bidder i does not participate in

the auction and gets a payoff of 0.

Let t = (ti, t−i) be the profile of all signals and b = (bi, b−i), the profile of submitted
bids. Let b−i(m) be the m-th order statistic of (b1, ..., bi−1, bi+1, ..., bN), that is, b

−i
(1) >

b−i(2) > ... > b−i(N−1). Since there are L objects, the value that determines the winning

and loosing events for bidder i is b(−i) ≡ max
n
bmin, b

−i
(L)

o
. That is, the bidder i receives

an object if bi > b(−i) and none if bi < b(−i). If the tie-breaking rule is not explictly
mentioned, we assume that ties (bi = b(−i)) are broken by the standard tie-breaking rule,
that is, the object(s) are randomly divided among the tying bidders. More specifically,



8 ALOISIO ARAUJO, LUCIANO I. DE CASTRO, AND HUMBERTO MOREIRA

the payoff of bidder i is given by

ui (t, b) =


v (ti, t−i)− pW

¡
bi, b(−i)

¢
, if bi > b(−i)

−pL ¡bi, b(−i)¢ , if bi < b(−i)
v(ti,t−i)−bi

m
, if bi = b(−i)

where v is the value of the object for all bidders, pW and pL are the payments made in

the events of winning and losing, respectively, and m is the reason between the number

of tying bidders and the number of objects in the tie.

Our setting is given by the following assumptions:

(H0) The types are independent and identically distributed in the non-atomic proba-

bilistic space (S,Σ, µ). The value function v : S×SN−1 → R+ is a measurable function
(with respect to the product σ−fields), its range is the compact interval [v, v] ⊂ R+
and it is symmetric in its last N − 1 arguments, that is, if t0−i is a permutation of t−i,
v
¡
ti, t

0
−i
¢
= v (ti, t−i).

The restrictive aspect of (H0) is the symmetry. The others are usually assumed in

Auction Theory (although independence is sometimes relaxed to affiliation). Neverthe-

less, our assumption about the type space is very weak, because we assume just that

it is a non-atomic probabilistic space.

The specific auction format is determined by pW and pL. We will consider alterna-

tively, two cases. The first one, embodied in (H1)-1 below, cover first-price auctions,

for instance. The second case is defined by (H1)-2 and covers second price auctions,

among other more exotic formats.

(H1) For j = W or L, pj (·, ·) > 0, pj (bOUT , ·) = 0, ∂1p
j > 0, pj (·, bOUT ) =

pj (·, bmin), pj is differentiable over (bmin,∞) × (bmin,∞), pL (bmin, b) = pL (bmin, b0) for
all b and b0 and one of the two conditions below is satisfied:
(H1)-1: ∂1p

W (·) > 0 or ∂1pL (·) > 0 or
(H1)-2: ∂1p

W = ∂1p
L ≡ 0 and ∂2

¡
pW − pL¢ > 0.

Observe that assumption (H1) is rather weak. It covers virtually all kind of standard

single-object auctions or multi-unit auctions with unitary demands, and allows the use

of entry fees. Some examples are:

(F) First-price auctions: pW
¡
bi, b(−i)

¢
= bi and p

L
¡
bi, b(−i)

¢
= 0.

(S) Second-price auctions: pW
¡
bi, b(−i)

¢
= b(−i) and pL

¡
bi, b(−i)

¢
= 0.



NON-MONOTONIC AUCTIONS 9

(A) All-pay auctions: pW
¡
bi, b(−i)

¢
= bi and p

L
¡
bi, b(−i)

¢
= bi.

(W) War of attrition: pW
¡
bi, b(−i)

¢
= b(−i) and pL

¡
bi, b(−i)

¢
= bi.

An active reserve price, that is, bmin that excludes some bidders, makes the statement

of our equilibrium results more complex. So, we will postpone the analysis of this case

to Appendix B and through the paper we will make use of the following assumption:

(H2) v, pW , pL and bmin are such that no bidder plays bOUT , that is, no bidder prefers

to stay out of the auction.

We denote the auction described above by (S, µ, v). Observe that we make no restric-

tion about the dimension of S. Also, we are considering just symmetric auctions. Thus,

throughout the paper, when we talk about a strategy, we always mean a symmetric

one. Under these assumptions we will introduce a new approach to prove existence of

equilibria in auctions.

4. The Indirect Auction

In the subsection 4.1, we describe the basic element of our method: the conjugation.

In subsection 4.2, the indirect auction is defined and its basic properties derived.

4.1. Conjugations. We will be interested in regular bidding functions as defined be-

low:

Definition 1: A bounded measurable function b : S → R is regular if the c.d.f.

Fb (c) ≡ Pr {s ∈ S : b (s) < c}

is absolutely continuous and strictly increasing in its support, [b∗, b∗].

From the fact that Fb (·) is absolutely continuous we conclude that Fb (c) = Pr

{s ∈ S : b (s) 6 c}. Let S denote the set of regular functions. Observe that S contains
non-monotonic bidding functions. It is formed by functions b that do not induce ties

with positive probability (because Fb is absolutely continuous) and that do not have

gaps in the support of the bids (because Fb is increasing).
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If a bidding function b ∈ S is fixed, let P̃ b denote the c.d.f. of the maximum bid of

the opponents, that is, we define the transformation P̃ b : R+ → [0, 1] by:

P̃ b (c) = (Pr {ti ∈ S : b (ti) < c})N−1(1)

= Pr
©
t−i ∈ SN−1 : b (tj) < c, j 6= i

ª
.

By the definition of S, P̃ b is strictly increasing and its image is the whole interval [0, 1].
Now, we will denote by P b : S → [0, 1] the composition P b = P̃ b ◦ b. Thus, for a

fixed strategy b ∈ S, followed by all players, P b (ti) is the probability of player i of type
ti wins the auction:

P b (ti) = Pr
©
t−i ∈ SN−1 : b(−i) (t−i) < b (ti)

ª
(2)

= Pr
©
t−i ∈ SN−1 : b (tj) 6 b (ti) ,∀j 6= i

ª
.

The following observation is important: from the symmetry required by (H0), the

above function does not depend on i and P b (ti) S P b (tj) if and only if b (ti) S b (tj).
Obviously, two players have the same probability of winning if and only if they play

the same bids. Thus, we have the following:©
t−i ∈ SN−1 : b(−i) (t−i) < b (ti)

ª
=
©
t−i ∈ SN−1 : P b(−i) (t−i) < P b (ti)

ª
,

where P b(−i) (t−i) ≡ maxj 6=i P b (tj). The equality of these events and (2) imply that
P b (ti) = Pr

©
t−i ∈ SN−1 : P b(−i) (t−i) < P b (ti)

ª
.

This observation will allow us to define conjugations without mentioning bidding func-

tions. This is important to the statement of our results. We have the following:

Definition 2: A conjugation for the auction (S, µ, v) is a measurable and surjective

function P : S → [0, 1] such that for each i = 1, ... N ,

P (ti) = Pr{t−i ∈ SN−1 : P(−i) (t−i) 6 P (ti)} = [Pr{tj ∈ S : P (tj) < P (ti) , j 6= i}]N−1 .
(3)

Observe that in the above definition, we do not need to mention the strategy b ∈ S.
It is also clear from the previous discussion that definition 2 is not empty, that is, for

any regular function b ∈ S there exists a conjugation defined by (2) that satisfies the
above definition.
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Observe also that, since the range of P is [0, 1], we have, for all c ∈ [0, 1],
Pr
©
t−i ∈ SN−1 : P(−i) (t−i) < c

ª
= c.(4)

The above equation will be important in the sequel. It simply means that the distri-

bution of P(−i) (t−i) is uniform on [0, 1].

Given b ∈ S, equation (2) defines just one conjugation compatible with it. On
the other hand, given a conjugation P , any function b ∈ S that is an increasing

transformation of P is compatible with P . To see this, suppose that there is an

increasing function h : [0, 1]→ R+, such that b (ti) = h (P (ti)) for µ−almost all ti ∈ S.
Then,

P (ti) = Pr {t−i : P (tj) < P (ti) ,∀j 6= i}
= Pr {t−i : h (P (tj)) < h (P (ti)) ,∀j 6= i}
= Pr {t−i : b (tj) < b (ti) ,∀j 6= i} .

That is, given a conjugation P , there are many functions b ∈ S compatible with it. In
particular, b = P is a bidding function compatible with P .

4.2. Indirect Auctions. We proceed to define the indirect auction
³
S̃, µ̃, ṽ

´
related

to the direct auction (S, µ, v). The relation between them is given by the conjugation

P : S → [0, 1]. If the direct type of a player is ti ∈ S, the indirect type will be P (ti).
So, S̃ is just [0, 1]. Each direct strategy b : S → R corresponds to an indirect strategy
b̃ : [0, 1] → R, such that the direct strategy will be the composition of the indirect
strategy and the conjugation, that is, b = b̃ ◦ P , where P = P b. What is this indirect
strategy? Remember that P b = P̃ b ◦ b and P̃ b is increasing. So, given b, if we take
the indirect strategy as b̃ ≡

³
P̃ b
´−1

, then b = b̃ ◦ P , as we want. On the other hand,
if it is given an indirect strategy b̃ and a conjugation P , we have the associated direct

strategy b = b̃ ◦ P . So we have just to define the indirect payoffs:

Definition 3: Fix a conjugation P for an auction (S, µ, v). The indirect utility

function of bidder i associated to this conjugation is ṽ : [0, 1]2 → R, given by

ṽ(x, y) ≡ E[v(ti, t−i)|P (ti) = x, P(−i)(t−i) = y].(5)

Now, fix a conjugation P and define the following function:

Π̃ (x, c) ≡ E [Π (ti, c) |P (ti) = x] ,(6)
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where, Π (ti, c) is the interim payoff of the direct auction. The notation should suggest

to the reader that Π̃ (x, c) will be the interim payoff of the indirect auction. Indeed,

we have the following:

Proposition 1: Assume (H0). Given b ∈ S, consider the corresponding conjuga-
tion P = P b (defined by (2)) and the indirect bidding function b̃ =

³
P̃ b
´−1

. Alterna-

tively, given a conjugation P and an indirect bidding function b̃, let b = b̃ ◦ P be the
corresponding direct bidding function. Thus,

(i)

Π̃ (x, c) =

Z b̃−1(c)

0

h
ṽ (x,α)− pW

³
c, b̃ (α)

´i
dα−

Z 1

b̃−1(c)
pL
³
c, b̃ (α)

´
dα.(7)

(ii) Assume that P is such that for all s with P (s) = x, and for all x, y ∈ [0, 1],
ṽ (x, y) = E[v(t)|P (ti) = x, P(−i)(t−i) = y] = E[v(t)|ti = s, P(−i)(t−i) = y].(8)

Then, for all ti such that P (ti) = x and for all c ∈ B,
Π̃ (x, c) = Π (ti, c) .(9)

Proof: See Appendix A.¥

Observe that, because of (7), Π̃ (x, c) is formally equivalent to the interim payoff

of an auction between two bidders, with signals uniformly distributed on [0, 1], where

the opponent is following the strategy b̃ (·) and the (common-value) utility function is
given by ṽ (x,α). So, we define the indirect auction as follows:

Definition 4: Given an auction (S, µ, v) and a conjugation P for it, the associated

indirect auction is an auction between two players with independent types uniformly

distributed on [0, 1] and where the utility function is ṽ defined by (5). The indirect

auction is denoted by
³
S̃, µ̃, ṽ

´
where µ̃ is the Lebesgue measure in S̃ = [0, 1].

The reader should keep in mind that the indirect auction is just an auxiliary and

fictitious auction that will help in the analysis of the “direct” one. It is clear through

definitions 1-4 how a conjugation relates the direct and the indirect auction. Obviously,

a function b̃ : [0, 1] → R+ is equilibrium of the indirect auction if for almost all x ∈
[0, 1], Π̃

³
x, b̃ (x)

´
> Π̃ (x, c), ∀c ∈ B = {bOUT} ∪ [bmin,+∞).
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5. Necessary and Sufficient Conditions for Regular Equilibria

The results and definitions of the two previous subsections allow us to show that

the existence of a direct equilibrium implies the existence of the indirect one (Theorem

1, below). Conversely, (with an extra relatively weak assumption of consistency of

payoffs) the existence of equilibrium in indirect auctions implies the existence in direct

ones (Theorem 2).

Theorem 1 (Necessary Conditions): Assume (H0)-(H2). If there is a pure strategy

equilibrium b ∈ S for the direct auction (S, µ, v) and there exists ∂bΠ (·, ·) at the point
(s, b (s)) for all s such that b (s) ∈ (b∗, b∗), then:
(i) the associated conjugation P = P b (given by (2)) satisfies the following property:

if s ∈ S is such that P (s) = x, then6

ṽ (x, x) = E[v(ti, t−i)|P (ti) = x, P(−i)(t−i) = x] = E[v(ti, t−i)|ti = s, P(−i)(t−i) = x];
(10)

(ii) the indirect bidding function b̃ =
³
P̃ b
´−1

, where P̃ b is given by (1), is the

increasing equilibrium of the indirect auction.

Moreover, if ṽ is continuous (i.e., if it has a continuous representative), then:

(iii) (H1)-1 implies that b̃ is differentiable and

b̃0 (x) =
ṽ (x, x)− pW

³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
Eα

h
∂1pW

³
b̃ (x) , b̃ (α)

´
1[b̃(x)>b̃(α)] + ∂1pL

³
b̃ (x) , b̃ (α)

´
1[b̃(x)<b̃(α)]

i ,(11)

and (H1)-2 implies that

ṽ (x, x)− pW
³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
= 0;(12)

(iv) the expected payment of a bidder with type ti is given by

p (ti) =

Z P (ti)

0

ṽ (α,α) dα;

6This condition is related to an analogous one derived by Araujo and Moreira (2000) for the

screening problem and Araujo and Moreira (2001) for signaling model. In these papers, the violation

of the single crossing property leads to non-monotonicity.
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(v) for all x and y ∈ [0, 1],Z x

y

[ṽ (x,α)− ṽ (α,α)] dα > 0.(13)

Proof: See Appendix C.¥

Theorem 1 says that if a multidimensional auction has a regular equilibrium, then

it can be reduced to a unidimensional auction with two players (the indirect one).

However, the reader should note that such reduction is non-trivial and that the indirect

auction is not equivalent to the direct one. The indirect auction is a “fictitious” game,

where each bidder is facing up a “fictitious” player, the “opponent”, that does not

correspond to a real player. So, the dimension reduction is meant in this particular

sense.

The expression in condition (iv) does not depend on the specific format of the pay-

ment rules, pW and pL, but it does depend on the conjugation. For the class of auctions

considered in the next section, we are able to prove that the conjugation is unique and

the Revenue Equivalence Theorem holds. On the other hand, condition (iv) plays an

important role to prove the existence of equilibrium in the next result.

Theorem 2 is a kind of converse of Theorem 1. The main difference is that we do

not require ṽ to be continuous and we need condition (i)’, which is slightly stronger

than condition (i) in Theorem 1.

Theorem 2 (Sufficient Conditions): Assume (H0)-(H2). Consider a direct auction

(S, µ, v), a conjugation P and its associated indirect auction
³
S̃, µ̃, ṽ

´
. Assume that

(i)’ for all s ∈ S such that P (s) = x, and all y ∈ [0, 1],

ṽ (x, y) = E[v(ti, t−i)|P (ti) = x, P(−i)(t−i) = y] = E[v(ti, t−i)|ti = s, P(−i)(t−i) = y];
(14)

(ii) for all x and y ∈ [0, 1],Z x

y

[ṽ (x,α)− ṽ (α,α)] dα > 0;

(iii) there is an increasing function b̃, such that

p̃ (y) ≡
Z y

0

pW
³
b̃ (y) , b̃ (α)

´
dα+

Z 1

y

pL
³
b̃ (y) , b̃ (α)

´
dα =

Z y

0

ṽ (α,α) dα,
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where p̃ (P (ti)) = p (ti) is the expected payment of a bidder of type ti.

Then, b̃ is the equilibrium of the indirect auction and b = b̃ ◦ P is the equilibrium

of the direct auction. Moreover, if ṽ is continuous, there exists ∂bΠ (s, b (s)) for all s

(which implies that all conditions of Theorem 1 are satisfied).

Proof: See Appendix C.¥

Remark 1: For the four specific formats, namely, the first-price auction (F), second-

price auction (S), all-pay auction (A) and war of attrition (W), the function b̃ is given,

respectively, by

(F) b̃ (x) =
1

x

Z x

0

ṽ (α,α) dα(15)

(S) b̃ (x) = ṽ (x, x)(16)

(A) b̃ (x) =

Z x

0

ṽ (α,α) dα(17)

(W) b̃ (x) =

Z x

0

ṽ (α,α)

1− α
dα(18)

Condition (iii) reduce to the requirement that the function b̃ above is increasing. In

particular, the equilibrium may exist for an all-pay auction, for instance, but not for a

first-price auction.

Remark 2: Although natural, condition (i)’ can be still too restrictive. We need

it in order to apply Proposition 1 and reach the conclusion that for all ti such that

P (ti) = x and for all c ∈ R, we have: Π̃ (x, c) = Π (ti, c). Indeed, condition (i)’ is just

the assumption (8) and Π̃ (x, c) = Π (ti, c) is the conclusion (9) in Proposition 1. (9)

is used to conclude that the equilibrium of the indirect auction is equilibrium of the

direct auction. Thus, instead of assuming condition (i)’ above, it would be sufficient to

require the (necessary) condition (i) of Theorem 1 and that (9) is valid. For instance,

when v (ti, t−i) is given by
PK

k=1 fk (ti) gk (t−i), condition (i) is sufficient to have (9)
and Theorem 2 is valid with the (necessary) condition (i) in the place of the condition

(i)’.

Theorem 2 reduces the problem of equilibrium existence to find a conjugation that

meets requirements (i)’, (ii) and (iii). In the next section we treat a still general case
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(weakly separable auctions) where such conjugation can be easily defined. Before this,

we give two examples where the assumptions of the next section are not satisfied.

These examples illustrate a kind of heuristics for the existence problem. In example

1, we have a monotonic equilibrium and also a U-shaped one, which shows that the

conjugation is not unique. In example 2, there is no monotonic equilibrium, but there

is a bell-shaped equilibrium. Another example where Theorem 2 can be applied is an

example provided by Jehiel, Meyer-ter-Vehn, Moldovanu and Zame (2004).

Example 1: Consider a symmetric first-price auction with two bidders, types uni-

formly distributed on [0, 1] and utility function given by

v(ti, t−i) = ti +
¡
3− 4ti + 2t2i

¢
t−i.

Observe that ∂tiv (ti, t−i) = 1−4t−i+4tit−i can be negative. Thus, the received theory
cannot be applied. Nevertheless, there exists a monotonic equilibrium. Indeed, in this

case, the conjugation will be given by P (ti) = ti and we obtain

ṽ(x, y) = x+
¡
3− 4x+ 2x2¢ y.

ṽ clearly satisfies condition (i)’ of Theorem 2. Condition (ii) follows from the fact that

x > y implies

Z x

y

[ṽ(x, z)− ṽ(z, z)] dz = (x− y)2
6

£
3 + 3x2 − 8y + 3y2 + x (−4 + 6y)¤ > 0.

Condition (iii) is also satisfied, because the function

b̃ (x) =
1

x

Z x

0

ṽ (z, z) dz =
x (24− 16x+ 3x2)

12

is increasing. Clearly, the above function satisfies condition (iv). Thus, there exists a

monotonic equilibrium by Theorem 2.

Nevertheless, this is not the unique equilibrium. If we assume that there exists a

U-shaped equilibrium, the conjugation can be expressed by P (ti) = |c (ti)− ti|, where
c (ti) is the type that bids as ti (see Figure 1). Observe that c ◦ c (ti) = ti. Condition
(i) of Theorem 1 requires that

s+
¡
3− 4s+ 2s2¢ s+ c (s)

2
= c (s) +

¡
3− 4c (s) + 2c (s)2¢ s+ c (s)

2
,
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Figure 1. Equilibrium bidding function in Example 1.

that is,

s− c (s) = [s− c (s)] [4− 2c (s)− 2s] s+ c (s)
2

,

which simplifies to [s+ c (s)] [2− s− c (s)] = 1 ⇒ s + c (s) = 1. Then, c (s) = 1 − s
and P (s) = |1− 2s|. This gives the expression:

ṽ (x, y) =
1

2
+
1

4

"
3− 4

µ
1− x
2

¶
+ 2

µ
1− x
2

¶2
+ 3− 4

µ
1 + x

2

¶
+ 2

µ
1 + x

2

¶2#
=
5 + x2

4

and condition (i)’ and (ii) are easily seen to be satisfied. Also, condition (iii) and (iv)

are satisfied, since

b̃ (x) =
1

x

Z x

0

ṽ (z, z) dz =
5

4
+
x2

12

is increasing. Then, b (s) = 5
4
+ (1−2s)2

12
is a direct equilibrium, plotted in Figure 1.

Observe that no tie rules are needed in this case, because ties occur with zero prob-

ability. However, for each equilibrium bid, exactly two types pool and have the same

probability of winning.

In Appendix D, we treat a slightly more general case, where the conjugation is more

difficult to find than in this example.¥
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Figure 2. Equilibrium bidding function in Example 2.

Example 2: Consider again a symmetric first-price auction with two bidders and

signals uniformly distributed in [1.5, 3] such that the value of the object is given by

v (ti, t−i) = ti
¡
t−i − ti

2

¢
. In Appendix D, we show that this auction does not have

monotonic regular equilibria, but there is a bell-shaped equilibrium as shown in Figure

2.¥

Example 1 shows that it is possible for a standard auction to have multiple equilibria.

Example 2 suggests that the correct conjugation can fail to exist – at least with a

fixed shape (that we began assuming). Thus, one would be interested in cases where

it is possible to ensure the uniqueness of the equilibrium and where it is possible to

find explicitly the conjugation. We do this under the context of assumption H3, to be

presented in the next subsection.

6. Equilibrium Existence of Weakly Separable Auctions

Theorem 2 teaches us that the question of equilibrium existence is solved if we are

able to find the proper conjugation. In examples 1 and 2 of the previous section

we have shown cases where the conjugations could be obtained. However, there we

assumed some features of the conjugation that are not necessary and we were able to

find the correct conjugation for those settings. Now we will work in a setting where

a conjugation always exists: the weakly separable auctions. These are the auctions

satisfying the following assumption:
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(H3) (Weak Separability). v (ti, t−i) is such that if v (ti, t−i) < v (t0i, t−i) for some t−i
then v

¡
ti, t

0
−i
¢
< v

¡
t0i, t

0
−i
¢
for all t0−i. Moreover, if C ⊂ R has zero Lebesgue measure,

then µ{s ∈ S : v1 (s) ∈ C} = 0, where
v1 (s) ≡ E [v (ti, t−i) |ti = s]

is the expected value of the object for bidder with type s.

Assumption (H3) is restrictive, but it is valid in many economic meaningful cases.7

Of course, private values are included in (H3).

Under (H3), we can explicitly define the conjugation:

P (ti) ≡ Pr
©
t−i ∈ SN−1 : v1 (tj) < v1 (ti) , j 6= i

ª
.(19)

Moreover, we can give a necessary and sufficient condition for the equilibrium ex-

istence of the direct auction: that the function b̃ that implies the correct expected

payment is increasing. More precisely, we have the following:

Theorem 3 (Necessary and Sufficient Condition For Equilibrium Existence): As-

sume (H0)-(H3). Let P be defined by (19) and let ṽ be given by (5) for this P . There

exists an equilibrium b ∈ S if there exists an increasing function b̃ that satisfiesZ y

0

pW
³
b̃ (y) , b̃ (α)

´
dα+

Z 1

y

pL
³
b̃ (y) , b̃ (α)

´
dα =

Z y

0

ṽ (α,α) dα.(20)

If this is the case, the equilibrium of the direct auction is given by b = b̃ ◦ P and the
expected payment of a bidder of type s is given by

p (s) =

Z P (s)

0

ṽ (α,α) dα.(21)

Additionally, if ṽ is continuous, then there exists an equilibrium b ∈ S and there exists
∂bΠ (s, b (s)) for all s if and only if there exists an increasing function b̃ that satisfies

the following:

• For (H1)-1, b̃ is differentiable and

b̃0 (x) =
ṽ (x, x)− pW

³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
Eα

h
∂1pW

³
b̃ (x) , b̃ (α)

´
1[b̃(x)>b̃(α)] + ∂1pL

³
b̃ (x) , b̃ (α)

´
1[b̃(x)<b̃(α)]

i ;
7Theorem 3 of Debreu (1960) implies that if S is connected and v satisfies (H3), then v (ti, t−i) can

be written as h
¡
u1 (ti) + u

2 (t−i)
¢
, where h is an increasing function. In this case, (H3) would also

imply that u1 (ti) does not assume a value with positive probability.
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with initial condition
R 1
0
pL
³
b̃ (0) , b̃ (α)

´
dα = 0;

• For (H1)-2, b̃ is continuous and satisfies, for all x ∈ (0, 1),
ṽ (x, x)− pW

³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
= 0.

Moreover, if there is a unique b̃ that satisfies such properties, the equilibrium of the

direct auction in regular pure strategies is also unique.

Proof: See Appendix C.¥

Remark 3: As explained in the comments after Theorem 1, if a multidimensional

auction has a regular equilibrium, it can always be reduced (in a non-trivial way) to a

one dimension auction (the indirect auction). So, for obtaining equilibrium existence,

we have to consider auctions that can be “reduced”. This is what assumption H3 allows

us to explicitly do. It still encompasses cases where such reduction is not trivial, as we

show in examples 3 and 4 below. The reduction of the dimension of types is not a nov-

elty in auction theory. While studying the efficiency of auctions, Dasgupta and Maskin

(2000) use a condition close to H3 and Jehiel, Moldovanu and Stacchetti (1996) made

such reduction for revenue maximization. Nevertheless, to show equilibrium existence

in auctions, one cannot use only H3 or the Dasgupta and Maskin’s condition, since the

received theory would require the monotonicity assumption of ṽ on the reparameterized

types. As we show in examples 3 and 4, this is not always possible. So, an important

feature of Theorem 3 is that it does not require ṽ to be monotonic.

Example 3 (Spectrum Auction):8 Consider a first-price auction of a spectrum

license. The license covers two periods of time:

(1) In the first period, the regulator lets the winner explore its monopoly power. Let

t1i be the estimative of bidder i of the monopolist surplus in this first period. Of course,

the true surplus will be better approximated by (t11 + ...+ t
1
N)/ N . If the bidder i (a

firm) wins the auction, it has to invest t2i , a privately known amount, to build the

network that will support the service. So, in the first period, the license gives to the

firm

t11 + ...+ t
1
N

N
− t2i .

8This example is more complex, but formally similar to example 5 of Dasgupta and Maskin (2000).
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(2) In the second period, the regulator makes an estimate of the operational costs of

the firm. The regulator cannot observe the true operational cost, t3i , which is a private

information of the firm. Nevertheless, the regulator has a proxy that is a sufficient

statistic for the mean operational cost of all participants in the auction, (t31 + ...+ t
3
N)/

N . The regulator will fix a price that will give zero profit for a firm with the mean

operational costs.9 So, in the second period, the license gives to the winner

t31 + ...+ t
3
N

N
− t3i .

So, the value of the object is given by

v (ti, t−i) =
t11 + ...+ t

1
N

N
− t2i +

t31 + ...+ t
3
N

N
− t3i .

Let the signals ti = (t
1
i , t

2
i , t

3
i ), i = 1, ..., N, be independent. Observe that the problem

cannot be reduced to a single dimension. Indeed, if we summarize the private infor-

mation by, say, si = t1i /N − t2i + t3i (1/N − 1), we lose the information about t1i and
t3i that are needed for the value function of bidders j 6= i. Also, the model cannot be
reparameterized to an increasing one. If we try to put −t3i in the place of t3i , then the
dependence of v (ti, t−i) on the signals t3j will be decreasing. So, the received theory
does not ensure the existence of pure strategy equilibrium for this case. Nevertheless,

assumption (H3) is trivially satisfied. In Appendix D, we assume the ti = (t1i , t
2
i , t

3
i )

are independent and uniformly distributed on [s1, s1] × [s2, s2] × [s3, s3], with s1, s2,

s3 > 0 and we show that a sufficient condition for the existence of equilibrium in pure
strategy is

s1

N
− s2 − s3N − 1

N
− 1 > 0.

The derivation in Appendix D indeed provides necessary and sufficient conditions for

the existence of equilibrium.¥

Example 4 (Job Market): We model the job market for a manager as an auction

among competing firms, where the object is the job contract. It is natural to assume

that the manager has a multidimensional vector of characteristics, m = (m1, ..., mk).

For the sake of simplicity, we assume that firms learn such characteristics through in-

terviews and curriculum analysis. Each firm has a position to be filled by the manager,

9We assume that the regulator is institutionally constrained to follow such a procedure, so the

optimality of this regulation is not an issue here.
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with specific requirements for each dimension of the characteristics. For instance, if

dimension 1 is ability to communicate and the position is to be the manager of a pro-

duction section, there is level of desirability of this ability. An overly communicative

person may not be good. The same goes for the other characteristics. A bank may

desire a sufficiently (but not exaggeratedly) high level of risk loving or audacity on

the part of the manager, while a family business may desire a much lower level. Even

efficiency or qualification can be desirable in different levels. Sometimes, the rejection

of a candidate is explained by over-qualification. Therefore, let ti = (t
1
i , ..., t

K
i ) be the

value of the characteristics desired by the firm.

Since firms are competitors, then if one hires the employee, the other will remain with

a vacant position, at least for a time.10 In this way, the winning firm also benefits from

the fact that its competitors have a vacant position – and, then, are not operating

perfectly well. The higher the abilities required for the job, the more the competitor

suffers.11 So, the utility in this auction is as

v (ti, t−i) =
KX
k=1

akmk −
KX
k=1

bk
¡
tki −mk

¢2
+
X
j 6=i

KX
k=1

cktkj ,

where ak is the level of importance of characteristic k of the manager, bk > 0 represents

how important is the distance from the desired level tki of the characteristic k, and c
k

is the weight of the benefit that firm i receives from the fact that the competitors

are lacking
P

j 6=i t
k
j of the ability k. As in the previous example, we cannot simplify

this model to a unidimensional monotonic model. In Appendix D we analyze the case

where there is just one dimension (K = 1), 2 players (N = 2) and types are uniformly

distributed on [0, 1], b = b1 > 0. We show that when m1 = m > 1/2, there exists a

pure strategy equilibrium in regular strategies if and only if

c ≡ c1 > max
½
2b (m− 2)

3
,
2b (1− 2m) (1 +m)

3

¾
10This model works only for non-competitive job markets. In other words, the buyers (the con-

tracting firms) have no access to a market with many homogenous employees to hire. This is implicit

when we model it as an auction. So, this is the reason why a firm that does not contract the manager

suffers – it is not possible to find a suitable substitute instantaneously.
11If firms act in a oligopolistic market, it is possible to justify such externality through the fact

that the vacant position influences the quality of the product delivered by the firms and, hence,

the equilibrium in this market. Externalities are an important issue in Auction Theory. See Jehiel,

Moldovanu and Stacchetti (1996).
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Figure 3. Equilibrium bidding function in Example 4.

and when m < 1/2, if and only if

c 6 min
½
2b (m+ 1)

3
,
2b (1− 2m) (1 +m)

3

¾
.

Observe that for both cases the value c = 0 ensures the existence of equilibrium. This

is expected, since it corresponds to a private value auction. For a = b = 1/5, c = 1/20

and m = 1/3, the equilibrium bidding function is shown in Figure 3.¥

Now, we can return to the example given in the introduction. Theorem 3 gives the

conditions for the equilibrium existence.

Example 5 (JSSZ, example 1): Let us consider a first price auction with two bid-

ders, independent types uniformly distributed on [0, 1]. Let v1 (ti) = ti and v
2 (t−i) =

α + βt−i. It is clear that P (ti) = ti in this case and ṽ (x, y) = α + x + βy. So,

ṽ (x, x) = α + (1 + β)x and

b̃ (x) =
1

x

Z x

0

ṽ (z, z) dz =
1

x

·
αx+

(1 + β)x2

2

¸
= α+

(1 + β)x

2
,

which is increasing only if β > −1. Observe that for b̃ (·) > 0, it is necessary α >
− (1 + β)x/2, otherwise negative bids have to be allowed.¥

The example above is used by JSSZ to show that equilibrium may fail to exist under

the standard tie-breaking rule. They then provide a general existence result based on

endogenously defined tie-breaking rules.
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Instead of an endogenous rule, consider the following all-pay auction tie-breaking

rule: if a tie occurs, conduct an all-pay auction among the tying bidders. If another

tie occurs, split randomly the object.12,13

We show now that the all-pay auction tie-breaking rule ensures the existence of

equilibrium for all auctions that we are considering.

Theorem 4 (Equilibrium Existence with ties): Assume (H0) - (H3) and that the

all-pay auction tie-breaking rule is adopted. If there is a absolutey continuous function

b̃, not necessarily increasing, such thatZ y

0

pW
³
b̃ (y) , b̃ (α)

´
dα+

Z 1

y

pL
³
b̃ (y) , b̃ (α)

´
dα =

Z y

0

ṽ (α,α) dα,

then there exists a pure strategy equilibrium.

Proof: See Appendix C.¥

The function b̃ mentioned in the statement of Theorem 4 is not necessarily the

equilibrium. If it is decreasing, as in example 5, it will not be the equilibrium.

Remark 4: The main ingredients in the proof of Theorem 4 are the payment

expression and the fact the bidding function of an all-pay auction is always increasing.

This is so because in the all-pay auction, the bid

b̃ (x) =

Z x

0

ṽ (α,α) dα

is exactly the expect payment, which implies (20). Since v is positive by (H0), ṽ is

positive which implies that b̃ is increasing. Thus, an auction that has an increasing b̃,

as the war of attrition, can be also used as the tie-breaking mechanism.

Example 5 (cont.): With the all-pay auction tie-breaking rule, the equilibrium of

Example 5 is given, if β 6 −1, by the bid strategy b1 (x) = b̄, ∀x ∈ [0, 1], in the first
price auction, where b̄ ∈ £α+ 1+β

2
,α
¤
, and the bid strategy

b2 (x) = αx+
1 + β

2
x2

for the tie-breaking (all-pay) auction.¥
12Observe that in the tie-breaking auction, bids and payments may be less than in the first auction.
13Maskin and Riley (2000) used a similar tie-breaking rule. They propose to conduct a second price

(Vickrey) auction in the case of a tie.
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Remark 5: When b̃ is not increasing, there are types that are not ordered correctly

(as in Example 5). This can be understood as a failure of b̃ in correctly revealing the

information that each bidder possesses. One can say that the tie-breaking rule has

exactly the role of revealing information, by sorting the types. Thus, Theorem 4 can

be interpreted as saying that all-pay auctions (and war of attrition) are better mech-

anisms for revealing information than first-price and second-price auctions. This can

be another way of justifying the use of research tournaments in practice, since research

tournaments are theoretically modeled as all-pay auctions. Indeed, the characteristics

needed to compete for a research is very intricate: it is needed information not only on

the technical capabilities, but also on discipline, honesty, creativity, etc. Our results

show that all-pay auctions perform better in the task of revealing (multidimensional)

information and should be preferred in situations where the determination of the best

competitor is difficult, as occurs in most tournaments.14,15

The reader should note that Theorem 4 does not claim the uniqueness of equilibrium.

Indeed, if b̃ is not increasing, there are many equilibria. There are two sources for this

multiplicity.

The first source is that under the all-pay auction tie-breaking rule, any level of the

bid in the range where b̃ is not increasing can be chosen to be the level of the tie. This

is shown in the Figure 4. For instance, any a0 can be chosen between x0 and x1. Once

one of the three elements ak, bk or ck is determined, so are the other two. However,

these possibilities lead to the same expected payment and payoff for each bidder in the

auction.

Another point is that the tie-breaking rule is not unique, in general. It can be shown,

for instance, that for cases where b̃ is decreasing (as in example 1 of JSSZ) and for some

specifications of v, there is a continuum of tie-breaking rules (like that defined by JSSZ

for their example 1), which ensures the existence of equilibrium. Nevertheless, these

tie-breaking rules imply different expected revenues.

14Standard explanations for the use of tournaments in research also appeals to the role of informa-

tion. See, for instance, Taylor (1995, p. 872): “Contracting for research is often infeasible because

research inputs are unobservable and research outcomes cannot be verified by a court”. Our point is

somewhat different, but obviously related to this explanation. The comparison among the information

revealed by different auctions is the novelty.
15Obviously, these observations are valid only under the context of assumptions (H0)-(H3). It is

a matter for future research to determine the range of validity of the existence ensured by all-pay

auction tie-breaking rule.
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ak ck 

bk 

x0 x1 y0 y1 

z1 

z0 

Figure 4. Possible specifications for the level of the tie.

The multiplicity of equilibria is in contrast with the “ironing principle” usual in

Contract Theory, which gives a unique solution (see, for instance, Guesnerie and Laffont

(1984). The uniqueness of the solution through the ironing principle comes from a

Lagrangian condition that must be satisfied by the contract, which comes from the

principal’s problem. Here, we do not have the maximization function of the principal.

Thus, there is no additional condition that would fix the level of tieing bids.

The reader may observe that the expression of the payment in Theorem 3 depends

only on the conjugation, which is fixed for all kind of auctions. Also, the payment

is exactly the same under the all-pay auction tie-breaking rule. Thus, we have the

following:

Theorem 5 (Revenue Equivalence Theorem): Assume (H0) - (H3) and that the

all-pay auction tie-breaking rule is adopted. If the bidders follow the symmetric equi-

librium specified by Theorem 4, then, the expected revenue is the same for any format

of the auction.

Proof: See Appendix C.¥

7. Conclusion

Now we will briefly highlight what are the most important contributions of this paper

and discuss possible extensions.
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7.1. The Contributions. Our contributions can be summarized as follows:

• Equilibrium Existence in the Multidimensional Setting – We prove the existence

of pure strategy equilibrium with no monotonic assumption but with independence

of types and symmetry. Working in a monotonic setting, McAdams (2003) gen-

eralizes Athey (2001)’s method to multidimensional types and actions and apply

this to prove the existence of pure strategy equilibrium of multi-unit asymmetrical

uniform price auctions with independent types. He requires two nonprimitive con-

ditions, quasi-supermodularity and single-crossing. (See the details in McAdams

(2003).) JSSZ give the existence for multidimensional games, including cases with

dependence, while we require independence. Jackson and Swinkels (2005) show

the existence of equilibria for a large class of multidimensional private value auc-

tions. They allow asymmetries, dependence of signals and multi-units, but the

existence is given in mixed strategies. JSSZ and Jackson and Swinkels (2005)

ensure the existence of equilibrium in mixed strategies, while our results are in

pure strategies.

• Equilibrium Existence in Non-Monotonic Settings – We are not aware of any

general non-monotonic equilibrium existence results in pure strategies.16 Zheng

(2001), Athey and Levin (2001) and Ewerhart and Fieseler (2003) present cases

where non-monotonicity arises. Our method develops a theory to deal with the sit-

uations where the usual monotonicity is not fulfilled. Araujo and Moreira (2000)

use a similar method for the screening problem without the single crossing prop-

erty and Araujo and Moreira (2001) extend it to signaling model.

• Uniqueness of Equilibrium –We are able to ensure the uniqueness of equilibrium

in the symmetric interdependent values auctions that satisfy assumption H3, ex-

tending the well known equilibrium uniqueness of unidimensional and monotonic

auctions.

• Necessary and Sufficient Conditions for the Existence of Equilibrium without Ties
– The results of JSSZ do not allow one to distinguish in which cases a special

tie-breaking is needed. Our approach clarifies, under assumption H3, whether

ties occur with positive probability (and there is a potential need for special tie-

breaking rules).

16Papers that provide existence in distributional (mixed) strategies can treat non-monotonic set-

tings as well.
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• All-Pay Auction Tie-Breaking Rule – When there is a need for a tie with pos-

itive probability, we are able to offer an exogenous tie-breaking rule, which is

implemented through an all-pay auction. Moreover, the equilibrium that the

rule implements is in pure strategies. For private value auctions, Jackson and

Swinkels (2005) show that the equilibrium is invariant for any trade-maximizing

tie-breaking rule. Nevertheless, this does not need to hold for the interdependent

values auctions that we treat here.

• Information Revelation – In the sense made precise by Remark 5, we show that

all-pay auction and war of attrition are better mechanisms to reveal information

than first-price and second-price auctions.

• Revenue Equivalence Theorem – We have generalized the Revenue Equivalence

Theorem (Theorem 5) to multidimensional types and non-monotonic utilities.

Furthermore, Theorem 2 and Appendix B show that there is a deep connection

between the revenue equivalence and the existence of equilibrium. Riley and

Samuelson (1981) and Myerson (1981) establish that revenue equivalence is a

consequence of the equilibrium behavior. Proposition 5 and Corollary 1 in Ap-

pendix B show that the revenue equivalence is also sufficient for the existence of

equilibrium (if an extra condition is satisfied).

Thus, our results have clarified some aspects of the equilibrium existence problem in

auctions. The theory shows that, under assumption H3, there is no additional difficult

in working with the more general setting of multidimensional types and non-monotonic

utilities besides those difficulties already present in the unidimensional setting.17 More-

over, this approach allows the equilibrium bidding functions to be expressed in a simple

manner. This is so because the equilibrium bidding function of a general auction can

be expressed by the equilibrium bidding function of an auction with two bidders and

types uniformly distributed on [0, 1].

7.2. Limitations of the Method. Our theory makes two important assumptions:

independence of the types and symmetry.

The generalization of this approach for dependent types involves some difficulties,

because the conjugation would depend in a complicated way on types. It is worth

17Theorem 3 shows that the non-existence of the equilibrium comes from the non-monotonicity of

the indirect bidding function. This can also occur in an unidimensional setting, although it can be

more natural in multidimensional models.
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remembering that the problem with dependence is not specific to our approach. Jack-

son (1999) gives a counter-example for the equilibrium existence of an auction with

bidimensional affiliated types. Fang and Morris (2003) also obtain negative results,

not only for the existence of equilibrium but also for the revenue equivalence.

On the other hand, asymmetry does not seem to impose severe restriction on the

existence of equilibrium. We believe that the approach of the indirect auction can be

adapted to this case, although not in a straightforward way. If this can be done, it is

unlikely that we will obtain simple expressions as in this paper.

Another limitation of our theory is that it is applied only to auctions with unitary

demand. The risk neutrality does not seem to be a fundamental assumption, although

complications can arise in extending the approach for risk aversion.

Finally, the relaxation of assumption H3 is an obvious direction to pursue, although

H3 seems to encompass many important economical examples.

Appendix A - Proof of the Basic Results

We will need the following result, which was proved, in a more general setting, by

de Castro (2004).

Lemma 1 (Payoff Characterization):– Assume (H0)-(H2). Fix b (·) ∈ S. The
bidder i’s payoff can be expressed by

Π(ti, bi, b (·)) = Πi(ti, b∗) +
Z
(b∗,bi)

∂biΠ(ti,β, b (·))dβ,

where ∂biΠ(ti, β, b (·)) exists for almost all β with

∂biΠ(ti,β, b (·)) = E
h
−∂1pW

¡
β, b(−i) (t−i)

¢
1[β>b(−i)(t−i)] − ∂1p

L
¡
β, b(−i) (t−i)

¢
1[β<b(−i)(t−i)]

i
+E[v (ti, t−i)− pW (β,β) + pL (β,β) |b(−i) (t−i) = β]fb(−i) (β) .

a.e., where b(−i) (t−i) ≡ maxj 6=i b (tj) .
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Proof: Let us define b(−i) (t−i) ≡ maxj 6=i b (tj). Since bi = b(−i) (t−i) with probabil-
ity zero, we have

Π(ti, bi, b (·)) =

Z
SN−1

£
v(ti, t−i)− pW

¡
bi, b(−i) (t−i)

¢¤
1[bi>b(−i)(t−i)]

Y
j 6=i
µ (dtj)

+

Z
SN−1

£−pL ¡bi, b(−i) (t−i)¢¤ 1[bi<b(−i)(t−i)]Y
j 6=i
µ (dtj) .

Take a sequence an → b−i , i.e., a
n < bi (the other case is analogous). We want to prove

that there exists limn→∞Dn (bi) / (bi − an) for almost all bi, where

Dn (bi) = Π(ti, bi, b (·))−Π(ti, an, b (·)).

In the sequel, we will omit the measure
Q
j 6=i µ (dtj) and the terms t−i. We have:

Dn (bi) =

Z £
v(ti, ·)− pW

¡
bi, b(−i) (·)

¢¤
1[bi>b(−i)(·)]

+

Z £−pL ¡bi, b(−i) (·)¢¤ 1[bi<b(−i)(·)]
−
Z £

v(ti, ·)− pW
¡
an, b(−i) (·)

¢¤
1[an>b(−i)(·)]

−
Z £−pL ¡an, b(−i) (·)¢¤ 1[an<b(−i)(·)]

=

Z £
v(ti, ·)− pW

¡
bi, b(−i) (·)

¢
+ pL

¡
an, b(−i) (·)

¢¤
1[bi>b(−i)(·)>an]

+

Z £−pW ¡bi, b(−i) (·)¢+ pW ¡an, b(−i) (·)¢¤ 1[an>b(−i)(·)]
+

Z £−pL ¡bi, b(−i) (·)¢+ pL ¡an, b(−i) (·)¢¤ 1[bi<b(−i)(·)]
Let us call the three last integrals as D1

n (bi), D
2
n (bi) and D

3
n (bi), respectively. Since

pW and pL are differentiable, we have

lim
n→∞

D2
n (bi)

bi − an = − lim
n→∞

Z
pW
¡
an, b(−i) (·)

¢− pW ¡bi, b(−i) (·)¢
bi − an 1[bi>b(−i)(·)]

= −
Z

∂1p
W
¡
bi, b(−i) (·)

¢
1[bi>b(−i)(·)]
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and

lim
n→∞

D3
n (bi)

bi − an = − lim
n→∞

Z
pL
¡
an, b(−i) (·)

¢− pL ¡bi, b(−i) (·)¢
bi − an 1[an<b(−i)(·)]

= −
Z

∂1p
L
¡
bi, b(−i) (·)

¢
1[bi<b(−i)(·)].

everywhere. So, if bi > b∗, the Fundamental Theorem of Calculus gives

D2
0 (bi) = D

2
0 (b∗) +

Z
(b∗,bi)

−∂1pW
¡
α, b(−i) (·)

¢
1[bi>b(−i)(·)]dα(22)

and

D3
0 (bi) = D

3
0 (b∗) +

Z
(b∗,bi)

−∂1pL
¡
α, b(−i) (·)

¢
1[bi<b(−i)(·)]dα.(23)

Now, define the measure ρ over R+ by

ρ (V ) ≡
Z
SN−1

£
v(ti, t−i)− pW

¡
bi, b(−i) (t−i)

¢
+ pL

¡
bi, b(−i) (t−i)

¢¤
1[b(−i)(t−i)∈V ].

Observe that, since b ∈ S, ρ is absolutely continuous with respect the Lebesgue measure
λ. We have

lim
n→∞

D1
n (bi)

bi − an = lim
n→∞

ρ ([an, bi))

bi − an = lim
an→bi

½
ρ ([an, bi))

λ ([an, bi))

¾
=
dρ

dλ
(bi) ,

where dρ
dλ
(.) is the Radon-Nikodym derivative of ρ with respect to λ. Indeed, the

existence of such limit is ensured by Theorem 8.6 of Rudin (1966) for almost all bi,

that is,

λ

µ½
bi : @ lim

an→bi

½
ρ ([an, bi))

λ ([an, bi))

¾¾¶
= 0.

It is easy to see that the Radon-Nikodym derivative dρ
dλ
(bi) is simply

E[v (ti, t−i)− pW (β, β) + pL (β,β) |b(−i) (t−i) = β]fb(−i) (β) ,

where fb(−i) (β) is the Radon-Nikodym derivative of the distribution of maximum bids,R
1[b(−i)(t−i)∈V ]. Moreover, Theorem 8.6 of Rudin says that

ρ ((b∗, bi)) =
Z
(b∗,bi)

dρ

dλ
(α) dα.(24)

Thus, (22), (23) and (24) imply that

Π(ti, bi, b (·)) = Π(ti, b∗) +
Z
(b∗,bi)

∂biΠ(ti, β, b (·))dβ,
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where

∂biΠ(ti,β, b (·)) = E
h
−∂1pW

¡
β, b(−i) (t−i)

¢
1[β>b(−i)(t−i)] − ∂1p

L
¡
β, b(−i) (t−i)

¢
1[β<b(−i)(t−i)]

i
+E[v (ti, t−i)− pW (β,β) + pL (β, β) |max

j 6=i
b (tj) = β]fb(−i) (β) .

This concludes the proof.¥

Proof of Proposition 1: Let us introduce the following notation:

Π+ (ti, c) =

Z £
v (ti, ·)− pW

¡
c, b(−i) (·)

¢¤
1[c>b(−i)(·)]Πj 6=iµ (dtj)

Π− (ti, c) =
Z
pL
¡
c, b(−i) (·)

¢
1[c<b(−i)(·)]Πj 6=iµ (dtj) ,

Π̃+,− (φi, c) ≡ E
£
Π+,−i (ti, c) |P (ti) = φi

¤
.

Let us begin with the proof for Π̃+i and Π+i . Let us denote the conditional expectation

by

gti,c (α) ≡ E £v (ti, t−i)− pW ¡c, b(−i) (t−i)¢ |P b(−i) (t−i) = α
¤
.(25)

The event
£
c > b(−i) (t−i)

¤
occurs if and only if

h
P̃ b (c) > P b(−i) (t−i)

i
occurs. Then, we

have

Π+ (ti, c) =

Z
gti,c

¡
P b(−i) (t−i)

¢
1h
P̃ b(c)>P b

(−i)(t−i)
iΠj 6=iµ (dtj) .

Now we appeal to Lemma 2.2, p. 43, of Lehmann (1959). This lemma says the

following: if R is a transformation and if µ∗ (B) = µ (R−1 (B)), thenZ
R−1(B)

g [R (t)]µ (dt) =

Z
B

g (α)µ∗ (dα) .

In our case, R = P b(−i) and µ
∗ ([0, c]) = µ∗ ([0, c)) = τ−i

³¡
P b
¢−1
(−i) ([0, c))

´
= Pr{t−i ∈

SN−1 : P b (tj) < c} = c, by (4). So, µ∗ is exactly the Lebesgue measure, and we have

Π+ (ti, c) =

Z P̃ b(c)

0

gti,c (α) dα.(26)
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From this and the definition of Π̃+, we have

Π̃+ (φi, c) = E

"Z P̃ b(c)

0

gti,c (α) dα|P b (ti) = φi

#

=

Z P̃ b(c)

0

E
£
gti,c (α) |P b (ti) = φi

¤
dα

=

Z P̃ b(c)

0

h
ṽ (φi,α)− pW

³
c, b̃ (α)

´i
dα,

where the second line comes from a interchange of integrals (Fubbini’s Theorem) and

the last line comes from independency and the definition of ṽ (φi,α) and g
ti,c (α) (see

(5) and (25)). Also from the fact that b̃ =
³
P̃ b
´−1

, we can substitute P̃ b to obtain

Π̃+ (φi, c) =

Z b̃−1(c)

0

h
ṽ (φi,α)− pW

³
c, b̃ (α)

´i
dα.(27)

Now, we can repeat the above procedures with Π− (φi, c) and obtain:

Π̃− (φi, c) =
Z 1

b̃−1(c)
pL
³
c, b̃ (α)

´
dα.(28)

Adding up, that is, putting Π̃ (φi, c) = Π̃+ (φi, c)− Π̃− (φi, c), we obtain the interim
payoff of the indirect auction. This concludes the proof of the first part.

For the second part, observe that the equality (8) implies that for all ti such that

P b (ti) = P
b (s) = x,

E
£
gti,c (α) |P b (ti) = x

¤
= E

£¡
v (ti, t−i)− pW

¡
c, b(−i) (t−i)

¢¢ |P b (ti) = x, P b(−i) (t−i) = α
¤

= E
£¡
v (ti, t−i)− pW

¡
c, b(−i) (t−i)

¢¢ |ti = s, P b(−i) (t−i) = α
¤

= E
£¡
v (s, t−i)− pW

¡
c, b(−i) (t−i)

¢¢ |P b(−i) (t−i) = α
¤

= gs,c (α) .



34 ALOISIO ARAUJO, LUCIANO I. DE CASTRO, AND HUMBERTO MOREIRA

Then,

Π̃+ (x, c) = E

"Z P̃ (c)

0

gti,c (α) dα|P b (ti) = x
#

=

Z P̃ (c)

0

E
£
gti,c (α) |P b (ti) = x

¤
dα

=

Z P̃ (c)

0

gs,c (α) dα

= Π+ (s, c) ,

where the last line comes from (26). Obviously, the same can be done for Π− and Π̃−.
So, the proof is complete.¥

Appendix B - Indirect Auction Equilibria

In this appendix, we will analyze auctions between two players, with independent

types uniformly distributed on [0, 1]. Since this is the setting of the indirect auction,

we will use notation consistent with that, although the results of this appendix are

independent from the results of section 4. For (i,−i) = (1, 2) or (2, 1) let

ũi (x, b) =


ṽ (xi, x−i)− pW (bi, b−i) , if bi > b−i
−pL (bi, b−i) , if bi < b−i
ṽ(xi,x−i)−bi

2
, if bi = b−i

be the ex-post payoff. Recall that the bids are in B = {bOUT} ∪ [bmin,+∞), where
bOUT < bmin. We will assume:

(H0)’ The types are independent and uniformly distributed on [0, 1]. ṽ is positive,

measurable and bounded.

Let S̃ be the set of non-decreasing functions b̃ : [0, 1] → {bOUT} ∪ [bmin,+∞), such
that there exists x ∈ [0, 1] satisfying the following: b̃ ([0, x)) = {bOUT} and b̃ is strictly
increasing in (x, 1]. For a function b̃ ∈ S̃, let b∗ = inf{b̃ (x) > bmin : x ∈ [0, 1]} and
b∗ = sup{b̃ (x) > bmin : x ∈ [0, 1]}.
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The interim payoff for a bidder of (indirect) type x who bids β > bmin and faces an
opponent following b̃ ∈ S̃ is

Π̃
³
x,β, b̃

´
=

Z b̃−1(β)

0

h
ṽ (x,α)− pW

³
β, b̃ (α)

´i
dα−

Z 1

b̃−1(β)
pL
³
β, b̃ (α)

´
dα,(29)

where b̃−1 (β) = inf
n
x ∈ [0, 1] : b̃ (x) > β

o
∈ [0, 1]. Let us also define

p̃
³
β, b̃
´
=

Z b̃−1(β)

0

pW
³
β, b̃ (α)

´
dα+

Z 1

b̃−1(β)
pL
³
β, b̃ (α)

´
dα.

Remember that (H1) requires that pL (bmin, b) = pL (bmin, b
0) for all b and b0 and

pW (·, bOUT ) = pW (·, bmin). Thus, if α < x⇒ b̃ (α) 6 bmin, the expression of p̃
³
bmin, b̃

´
can be simplified toZ b̃−1(bmin)

0

pW (bmin, bmin) dα+

Z 1

b̃−1(bmin)
pL (bmin, bmin) dα.

We will assume the following:

(H2)’ There exists x0 ∈ [0, 1] such that
(i) x0 = 0 and for all x ∈ [0, 1],

R x
0
ṽ (x,α) dα >

R x
0
pW (bmin, bmin) dα+

R 1
x
pL (bmin, bmin) dα;

or

(ii) Z x0

0

ṽ (x0,α) dα =

Z x0

0

pW (bmin, bmin) dα+

Z 1

x0

pL (bmin, bmin) dα

and x < x0 < y impliesZ x

0

ṽ (x,α) dα 6
Z x0

0

ṽ (x0,α) dα 6
Z y

0

ṽ (y,α) dα.

Note that (H2)’-(i) corresponds to the original assumption (H2). In (H2)-(ii), the

type x0 represents the type who will bid the minimum bid bmin. This type necessar-

ily receives a zero expected payoff, because it must be indifferent between the non-

participation and participation. The inequalities in (H2)’-(ii) represent a weak mono-

tonicity condition, that allows to conclude that types below x0 do not have incentives

to bid bmin or above, because the value of the object will be not greater than their

expected payments.
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We have the following:

Proposition 2: Assume (H0)’, (H1)-1, that is, ∂1p
W (·) > 0 or ∂1p

L (·) > 0 and

(H2)’. Let b̃ ∈ S̃ be an equilibrium of the indirect auction, increasing on (x0, 1). Then,
b̃ is continuous on (x0, 1). Moreover, if ṽ is continuous in the second variable, then b̃ is

differentiable on (x0, 1) and satisfies

b̃0 (x) =
ṽ (x, x)− pW

³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
Eα

h
∂1pW

³
b̃ (x) , b̃ (α)

´
1[b̃(x)>b̃(α)] + ∂1pL

³
b̃ (x) , b̃ (α)

´
1[b̃(x)<b̃(α)]

i .(30)

Proof: The proof is an adaptation of part of the proof of Theorem 2 of Maskin

and Riley (1984).18 Suppose that player −i follows b̃. The interim payoff of player i

with (indirect) type xi is

Π̃(xi, bi, b̃ (·)) =

Z h
ṽ(xi, x−i)− pW

³
bi, b̃ (x−i)

´i
1[bi>b̃(x−i)]dx−i

−
Z
pL
³
bi, b̃ (x−i)

´
1[bi<b̃(x−i)]dx−i.

If b̃ is discontinuous, there exists x∗ > x0, with

lim sup
x<x∗

b̃ (x) < lim inf
x>x∗

b̃ (x) .

Consider bidders x+εi that bids β+ε = b̃
¡
x+εi
¢
= lim infx>x∗ b̃ (x) + ε and x−εi that bids

β−ε = b̃
¡
x−εi
¢
= lim supx<x∗ b̃ (x)− ε. We will prove that, for ε > 0 sufficiently small,

the bid β−ε is better than β+ε for a bidder with type x+εi . This will be the contradiction.

The event
h
β+ε > b̃ (x−i)

i
is arbitrarily close to

h
β−ε > b̃ (x−i)

i
. So, the difference of

expected utilitiesZ
ṽ(x+εi , x−i)1[β+ε>b̃(x−i)]dx−i −

Z
ṽ(x+εi , x−i)1[β−ε>b̃(x−i)]dx−i

=

Z
ṽ(x+εi , x−i)1[β+ε>b̃(x−i)≥β−ε]dx−i

is arbitrarily small. On the other hand, the difference of expected payments is

18Since our assumptions are different from theirs, we will reproduce the proof with details.
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−
Z h

pW
¡
β+ε, b (x−i)

¢
1[β+ε>b̃(x−i)] + p

L
¡
β+ε, b (x−i)

¢
1[β+ε<b̃(x−i)]

i
dx−i

+

Z h
pW
¡
β−ε, b (x−i)

¢
1[β−ε>b̃(x−i)] + p

L
¡
β−ε, b (x−i)

¢
1[β−ε<b̃(x−i)]

i
dx−i

=

Z £¡
pW
¡
β−ε, b (x−i)

¢− pW ¡β+ε, b (x−i)¢¢¤ 1[β−ε>b̃(x−i)]dx−i
+

Z £
pL
¡
β−ε, b (x−i)

¢− pL ¡β+ε, b (x−i)¢¤ 1[β−ε<b̃(x−i)]dx−i + r
=

Z Z β+ε

β−ε
−∂1pW (z, b (x−i)) 1[β−ε>b̃(x−i)]dx−i

+

Z Z β+ε

β−ε
−∂1pL (z, b (x−i)) 1[β−ε<b̃(x−i)]dx−i

+r

where r denotes the integrals over the event
h
β+ε > b̃ (x−i) > β−ε

i
. Observe that the

sum of the two integrals is negative and bounded away from zero, because ∂1p
W (·) > 0

or ∂1p
L (·) > 0. So, it is not optimal for bidder x+εi to bid β+ε and this contradicts b̃

to be an equilibrium. So, b̃ is continuous.

Now, assume that ṽ is continuous in its second variable. We want to prove that b̃ is

differentiable.

To fix ideas, choose y > x. We have

Π̃(x, b̃ (x) , b̃ (·))− Π̃(x, b̃ (y) , b̃ (·))

=

Z x

0

h
ṽ (x,α)− pW

³
b̃ (x) , b̃ (α)

´i
dα−

Z 1

x

pL
³
b̃ (x) , b̃ (α)

´
dα

−
Z y

0

h
ṽ (x,α)− pW

³
b̃ (y) , b̃ (α)

´i
dα+

Z 1

y

pL
³
b̃ (y) , b̃ (α)

´
dα

=

Z y

x

h
−ṽ (x,α) + pW

³
b̃ (y) , b̃ (α)

´
− pL

³
b̃ (y) , b̃ (α)

´i
dα

+

Z x

0

h
pW
³
b̃ (y) , b̃ (α)

´
− pW

³
b̃ (x) , b̃ (α)

´i
dα

+

Z 1

x

h
pL
³
b̃ (y) , b̃ (α)

´
− pL

³
b̃ (x) , b̃ (α)

´i
dα.
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Since the first integrand is continuous, by the mean value theorem, there exists x∗

between x and y such thatZ y

x

h
−ṽ (x,α) + pW

³
b̃ (y) , b̃ (α)

´
− pL

³
b̃ (y) , b̃ (α)

´i
dα

= (y − x)
h
−ṽ (x, x∗) + pW

³
b̃ (y) , b̃ (x∗)

´
− pL

³
b̃ (y) , b̃ (x∗)

´i
Since pW and pL are differentiable and b̃ is continuously increasing, there exist xW and

xL between x and y such that, for j =W,L,Z x

0

h
pj
³
b̃ (y) , b̃ (α)

´
− pj

³
b̃ (x) , b̃ (α)

´i
dα

=
h
b̃ (y)− b̃ (x)

i Z x

0

∂1p
j
³
b̃
¡
xj
¢
, b̃ (α)

´
dα.

Thus, since Π̃(x, b̃ (x) , b̃ (·))− Π̃(x, b̃ (y) , b̃ (·)) > 0, we have, since y > x,

b̃ (y)− b̃ (x)
y − x >

h
ṽ (x, x∗)− pW

³
b̃ (y) , b̃ (x∗)

´
+ pL

³
b̃ (y) , b̃ (x∗)

´i
R x
0
∂1pW

³
b̃ (xW ) , b̃ (α)

´
dα+

R 1
x
∂1pL

³
b̃ (xL) , b̃ (α)

´
dα
.(31)

Analogously, interchanging x and y, and using Π̃(y, b̃ (y) , b̃ (·))− Π̃(y, b̃ (x) , b̃ (·)) > 0,
with y > x, we obtain, the existence of x̂, x̂W and x̂L in [x, y] such that

b̃ (y)− b̃ (x)
y − x 6

h
ṽ (y, x̂)− pW

³
b̃ (x) , b̃ (x̂)

´
+ pL

³
b̃ (x) , b̃ (x̂)

´i
R y
0
∂1pW

³
x̂W , b̃ (α)

´
dα+

R 1
y
∂1pL

³
x̂L, b̃ (α)

´
dα
.(32)

(If x > y, we obtain reverse inequalities.) When we make y → x, the right hand side

in (31) and (32) both converge to

ṽ (x, x)− pW
³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
Eα

h
∂1pW

³
b̃ (x) , b̃ (α)

´
1[b̃(x)>b̃(α)] + ∂1pL

³
b̃ (x) , b̃ (α)

´
1[b̃(x)<b̃(α)]

i .
So, b̃ is differentiable at x ∈ (x0, 1) and b̃0 (x) is equal to the expression above.¥

Proposition 3: Assume (H0)’, (H1)-2, (H2)’ and that ṽ is continuous. Let b̃ ∈ S̃
be an equilibrium of the indirect auction, increasing on (x0, 1). Then, b̃ is continuous

on (x0, 1) and

ṽ (x, x)− pW
³
b̃ (x) , b̃ (x)

´
+ pL

³
b̃ (x) , b̃ (x)

´
= 0,∀x ∈ (x0, 1) .(33)
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Proof: The proof is based on the proof of Theorem 3 of Maskin and Riley (1984).

Given b, b0, let us define the function h as

h (z) ≡ pW (b, z)− pL (b0, z) .
Since ∂1p

W = ∂1p
L ≡ 0 and ∂2

¡
pW − pL¢ > 0, h does not depend on b or b0 and is

differentiable and increasing.

By contradiction, assume that (33) is false, that is, there exists x∗ ∈ (x0, 1) such
that

ṽ (x∗, x∗) > h
³
b̃ (x∗)

´
.(34)

(The other case will be considered later.) Because ṽ is continuous and b̃ is increasing,

for sufficiently small δ > 0, we have

ṽ (x∗ − δ, x∗ − δ) > h
³
b̃ (x∗)

´
> h

³
b̃ (x∗ − δ)

´
.

Since the set of discontinuity points of b̃ is enumerable, we may assume that (34)

holds for a point x∗ where b̃ is continuous. Thus, for sufficiently small ε and δ > 0,

∀α ∈ [x∗, x∗ + ε],

ṽ (x∗,α) > h
³
b̃ (x∗) + δ

´
> h

³
b̃ (α)

´
.

Consider the following difference:

Π̃(x∗, b̃ (x∗ + ε) , b̃ (·))− Π̃(x∗, b̃ (x∗) , b̃ (·))

=

Z x∗+ε

0

h
ṽ (x∗,α)− pW

³
b̃ (x∗ + ε) , b̃ (α)

´i
dα−

Z 1

x∗+ε
pL
³
b̃ (x∗ + ε) , b̃ (α)

´
dα

−
Z x∗

0

h
ṽ (x∗,α)− pW

³
b̃ (x∗) , b̃ (α)

´i
dα+

Z 1

x∗
pL
³
b̃ (x∗) , b̃ (α)

´
dα

=

Z x∗+ε

x∗

h
ṽ (x∗,α)− h

³
b̃ (α)

´i
dα > 0

where we used the property ∂1p
W = ∂1p

L ≡ 0 in order to obtain the last equality. This
contradicts the optimality of b̃ (x∗) for x∗.

Analogously, if we assume that there is a x∗ ∈ (x0, 1) such that ṽ (x∗, x∗) < h
³
b̃ (x∗)

´
and that x∗ is a point of continuity of b̃, we have for ε > 0 sufficiently small,

Π̃(x∗, b̃ (x∗) , b̃ (·))− Π̃(x∗, b̃ (x∗ − ε) , b̃ (·))

=

Z x∗

x∗−ε

h
ṽ (x∗,α)− h

³
b̃ (α)

´i
dα < 0.
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This completes the proof of (33). So, we have

b̃ (x) = h−1 (ṽ (x, x)) ,(35)

which shows that b̃ is continuous. Moreover, b̃ is increasing if and only if x 7−→ ṽ (x, x)

is also increasing.¥

We have the following:

Lemma 2: Assume (H0)’, (H1), (H2)’ and that ṽ is continuous. Let b̃ ∈ S̃ be an equi-
librium of the indirect auction, increasing on (x0, 1). Then Π̃

³
x, β, b̃

´
is differentiable

in β on (b∗, b∗).
Proof: Under (H1)-1, Proposition 2 implies that b̃ is differentiable and, since b̃ is

increasing on (x0, 1), b̃
−1 is differentiable on (b∗, b∗). We also have ṽ is continuous and

pW and pL differentiable. Thus, one can easily see from (29) that ∂βΠ̃
³
x,β, b̃

´
and

∂βΠ̃
³
x,β, b̃

´
= ṽ

³
x, b̃−1 (β)

´
− pW (β,β)− pL (β,β)

−
Z b̃−1(β)

0

∂1p
W
³
β, b̃ (α)

´
·
h
b̃−1 (β)

i0
dα−

Z 1

b̃−1(β)
∂1p

L
³
β, b̃ (α)

´
·
h
b̃−1 (β)

i0
dα.

Under (H2)-2, we have ∂1p
W (·, ·) = ∂1p

L (·, ·) = 0 and again there exists ∂βΠ̃
³
x,β, b̃

´
,

with

∂βΠ̃
³
x,β, b̃

´
= ṽ

³
x, b̃−1 (β)

´
− pW (β,β)− pL (β, β) .

The lemma is proved.¥

Now, we want to consider cases where b̃ is not monotonic, because this is exactly the

setting of Theorem 4. To treat non-increasing b̃, we define the following:

Modified Auction: Fix a function b̃. The bidder submits a type y ∈ [0, 1]. In
any event, the payment is determined as if the bidder has submitted the bid b̃ (y). The

bidder wins against opponents who announce types below y and loses against opponents

who announce types above y. If there is a tie, the object is given with probability 1/2

for each bidder.

Observe that if b̃ is increasing, the modified auction is a standard auction if all

bidders follow b̃. If b̃ is not increasing, the difference is that the winning events are
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not determined by b̃ but by the announced type y. The rule of the modified auction

implies the following interim payoff:

Π̂ (x, y) =

( R y
0

h
ṽ (x,α)− pW

³
b̃ (y) , b̃ (α)

´i
dα− R 1

y
pL
³
b̃ (y) , b̃ (α)

´
dα, if y > x0

0 if y < x0

We can simplify the above expression to

Π̂ (x, y) =

( R y
0
ṽ (x,α) dα− p̂ (y) , if y > x0

0 if y < x0
(36)

where

p̂ (y) ≡
( R y

0
pW
³
b̃ (y) , b̃ (α)

´
dα+

R 1
y
pL
³
b̃ (y) , b̃ (α)

´
dα, if y > x0

0, if y < x0

We have the following:

Proposition 4 (Payment Rule): Assume (H0)’, (H1) and (H2)’ and that ṽ is

continuous. If truth-telling is equilibrium for the modified auction, then:

p̂ (y) =


p̂ (x0) +

R y
x0
ṽ (α,α) dα, if y > x0R x0

0
ṽ (x0,α) dα, if y = x0

0, if y < x0

(37)

Proof: In case (H1)-1, b̃, pW and pL are differentiable on (x0, 1). Thus, p̂ and Π̂

are also differentiable. So, for every y ∈ (x0, 1), we have

p̂0 (y) = ∂y

½Z y

0

ṽ (x,α) dα− Π̂ (x, y)

¾
= ṽ (x, y)− ∂yΠ̂ (x, y) .

Truth-telling is always optimal if

Π̂ (x, x)− Π̂ (x, y) > 0.(38)

Under (H1)-1, this is equivalent toZ x

y

∂yΠ̂ (x,α) dα > 0

if x, y > x0. Also, if x, y > x0, ∂yΠ̂ (x, y) |y=x must be zero, so that
∂yΠ̂ (x, y) |y=x= 0⇒ p̂0 (x) = ṽ (x, x) .(39)
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Indeed, these are simply the second- and the first-order conditions, respectively. So,

for y > x0,

p̂ (y) =

Z y

x0

ṽ (α,α) dα+ p̂ (x0) .

Now, let us turn to (H1)-2. Since b̃ is only continuous, p̂ is not necessarily differen-

tiable. Nevertheless, if y > x0,

p̂ (y) =

Z y

0

pW
³
b̃ (y) , b̃ (α)

´
dα+

Z 1

y

pL
³
b̃ (y) , b̃ (α)

´
dα

=

Z y

x0

h
pW
³
b̃ (y) , b̃ (α)

´
− pL

³
b̃ (y) , b̃ (α)

´i
dα+ p̂ (x0)

=

Z y

x0

h
³
b̃ (α)

´
dα+ p̂ (x0)

=

Z y

x0

ṽ (α,α) dα+ p̂ (x0) .

Observe that the expression above is exactly the same of case 1. For y < x0, the

payment is zero. For y = x0, p̂ (y) is obtained from (??):Z x0

0

ṽ (x0,α) dα−
Z x0

0

pW
³
b̃ (x0) , b̃ (α)

´
dα+

Z 1

x0

pL
³
b̃ (x0) , b̃ (α)

´
dα = 0.

So, the proposition is proved.¥

Now, we turn to the equilibrium existence. We will not assume that ṽ is continuous.

Instead, we assume only the validity of the payment expression (37).

Proposition 5 (Equilibrium). Assume (H0)’, (H1), (H2)’ and (37). Then, truth-

telling is equilibrium of the modified auction if and only if, for all (x, y) ∈ [0, 1] ×
[0, 1]\[0, x0)× [0, x0),

R x
y
[ṽ (x,α)− ṽ (α,α)] dα > 0, if x, y > x0R x

x0
[ṽ (x,α)− ṽ (α,α)] dα+ R x0

0
[ṽ (x,α)− ṽ (x0,α)] dα > 0, if x > x0 > y

0 >
R y
x0
[ṽ (x,α)− ṽ (α,α)] dα+ R x0

0
[ṽ (x,α)− ṽ (x0,α)] dα if y > x0 > x

(40)
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Proof. Given (37), the optimality condition for truth-telling, namely Π̂ (x, x) −
Π̂ (x, y) > 0, is equivalent toZ x

0

ṽ (x,α) dα−
Z x

x0

ṽ (α,α) dα− p̂ (x0)

−
Z y

0

ṽ (x,α) dα+

Z y

x0

ṽ (α,α) dα+ p̂ (x0)

=

Z x

y

[ṽ (x,α)− ṽ (α,α)] dα > 0(41)

if x, y > x0. The other cases are similar.¥

As we have said before, if b̃ is increasing, the modified auction is just the original

(unmodified) auction. Thus, we have:

Corollary 1. Assume (H0)’, (H1), (H2)’ and that b̃ is increasing on (x0, 1) and

implies (37). If (40) holds, then b̃ is equilibrium of the indirect auction.

Observe that Proposition 5 and Corollary 1 does not require ṽ to be continuous.

Appendix C - Proofs of the Theorems

Proof of Theorem 1.

(i) If b ∈ S, it defines a conjugation P b by (2). The bid b (ti) = β is optimal for

bidder ti against the strategy b (·) of the opponents. This, the fact that ∂bΠ (s, b (s))
= 0 and Lemma 1 in Appendix A imply that

E
£
v (ti, ·) |ti = s, b(−i) (t−i) = β

¤
= pW (β, β)− pL (β,β)−

Et−i

h
∂bip

W1[bi>b(−i)] + ∂bip
L1[bi<b(−i)]

i
fb(−i) (β)

.

Observe that the right-hand side does not depend on s (it depends on it only by the

fact that β = b (s) is the optimum bid for such bidder). Thus, the left-hand side has

to be the same for all s that are bidding the same bid in equilibrium, which implies

that (10) holds.

(ii) If b (ti) maximizes Π (ti, c) for ti, and P (t
0
i) = P (ti) , then b (t

0
i) = b (ti). Then,

b (ti) maximizes Π̃ (P (t
0
i) , c) for all t

0
i such that P (t

0
i) = P (ti), from the definition
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of Π̃ (P (ti) , c) given by (6). In other words, b̃ (x) =
³
P̃ b
´−1

(x) = b (P−1 (x)) is the
equilibrium of the indirect auction.

If ṽ is continuous, we appeal to the results of Appendix B. Propositions 2 and 3

prove (iii), Proposition 4 proves (iv) and Proposition 5 gives (v).¥

Proof of Theorem 2. Corollary 1 of Appendix B proves that conditions (ii) and

(iii) are sufficient for b̃ to be the equilibrium of the indirect auction. Now, Proposition

1 proves that condition (i)’ implies that for all s such that P (s) = x, Π̃ (x, c) = Π (s, c)

(see (9)). Now, if we put b (s) = b̃ (P (s)), then

Π (s, b (s)) = Π̃
³
P (s) , b̃ (P (s))

´
and

Π (s, c) = Π̃ (P (s) , c) .

But this is sufficient to show the equilibrium existence in the direct auction, since b̃ is

the equilibrium in the indirect auction, which implies that

Π̃
³
P (s) , b̃ (P (s))

´
> Π̃ (P (s) , c) ,

for all c ∈ R. If ṽ is continuous, Lemma 2 in Appendix B shows that Π̃ (x, c) is

differentiable at all c ∈ R. This concludes the proof.¥

Through the proof of Theorem 3, we will make successive use of the following fact:

Lemma 3. Assume (H1), (H2) and (H3). For any σ−field Ξ on SN−1, we have

∃t−i : v (s0, t−i) > v (s, t−i)
⇔ ∀t−i : v (s0, t−i) > v (s, t−i)
⇔ E [v (ti, t−i) |ti = s0,Ξ] > E [v (ti, t−i) |ti = s,Ξ] , a.s.

Proof. (H3) gives the first equivalence. By (H2), v is continuous over a compact.

So, if ∀t−i : v (s0, t−i) > v (s, t−i), there is δ > 0 so that d (t−i) ≡ v (s0, t−i) − v (s, t−i) −
δ > 0 for all t−i. Then, for any Ξ, E [d (t−i) |Ξ] > 0 almost surely.19 This implies that
E[v (ti, t−i) | ti = s0,Ξ] > E[v (ti, t−i) | ti = s,Ξ], a.s. On the other hand, E[v (ti, t−i) |
ti = s

0,Ξ] > E[v (ti, t−i) | ti = s,Ξ] a.s. implies that ∃t−i : v (s0, t−i) > v (s, t−i).¥
19See, for instance, Kallenberg (2002), Theorem 6.1, p. 104.
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Proof of Theorem 3. Equilibrium Existence. If we define P by (19), it is a

conjugation. Let us prove that it satisfies condition (i)’ of Theorem 2. If for some x, y

and s, such that P (s) = x, we have

ṽ (x, y) = E[v(ti, t−i)|P (ti) = x, P(−i)(t−i) = y] < E[v(ti, t−i)|ti = s, P(−1)(t−i) = y],
then, for at least one t−i and s0, P (s0) = x, v (s, t−i) > v (s0, t−i). But then, by
(H3), v (s, t−i) > v (s0, t−i) for all t−i which implies v1 (s) > v1 (s0) and P (s) > P (s0),
a contradiction with the assumption that P (s) = P (s0) = x. So, condition (i)0 is
satisfied.

Let us prove condition (ii) of Theorem 2. If x > y, for all ti and t
0
i such that

P (t0i) = x and P (ti) = y, we have v (t
0
i, t−i) > v (ti, t−i) for all t−i, by (H3). Then, for

all z ∈ [0, 1] ,
ṽ (x, z) ≡ E £v (ti, t−i) |P (ti) = x, P(−i) (t−i) = z¤

> E
£
v (ti, t−i) |P (ti) = y, P(−i) (t−i) = z

¤
= ṽ (y, z) .

Then, if y < α < x, ṽ (x,α)− ṽ (α,α) > 0 and we have:Z x

y

[ṽ (x,α)− ṽ (α,α)] dα > 0.

Now if x < α < y, we have ṽ (x,α) − ṽ (α,α) < 0 so that condition (ii) is satisfied.

Since our assumption is the condition (iii) of Theorem 2, this implies the existence of

equilibrium, with the equilibrium bidding function given by b = b̃ ◦ P .

Sufficiency. Conditions (i)’ and (ii) of the Theorem 2 was shown in the first part,

above. Proposition 4 in appendix B proves condition (iii) of Theorem 2. Then, there

exists a equilibrium b = b̃ ◦P. Since ṽ is continuous, Theorem 2 shows the existence of
∂bΠ (s, b (s)) for all s.

Necessity . According to Theorem 1, given a b ∈ S, the associated conjugation P b
(given by (2)) is such that for all s ∈ ¡P b¢−1 (x),

E[v(ti, t−i)|P b(ti) = x, P b(−i)(t−i) = x] = E[v(ti, t−i)|ti = s, P b(−i)(t−i) = x].
If P b (s) = P b (s0) and there is some t−i such that v(s, t−i) < v (s0, t−i), Lemma 3
implies that

E[v(ti, t−i)|ti = s, P b(−i)(t−i) = x] < E[v(ti, t−i)|ti = s0, P b(−i)(t−i) = x],
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which contradicts the previous equality between the conditional expectations. We

conclude that

P b (s) = P b (s0)⇒ v (s, t−i) = v (s0, t−i) for all t−i.(42)

Let us define ṽ1 (x) as E
£
v (ti, t−i) |P b (ti) = x

¤
and prove that it is non-decreasing.

Suppose by absurd that there exist x and y, x > y, such that ṽ1 (x) < ṽ1 (y).

First, we claim that for all ti and t
0
i such that P

b (ti) = x and P
b (t0i) = y, we have

v (ti, t−i) < v (t0i, t−i) for all t−i. Otherwise, v (ti, t−i) > v (t0i, t−i) for some t−i and, by
(H3), v

¡
ti, t

0
−i
¢
> v

¡
t0i, t

0
−i
¢
for all t0−i. Then, Lemma 3 and (42) would imply that

ṽ1 (x) = E
£
v (ti, t−i) |P b (ti) = x

¤
> E

£
v (ti, t−i) |P b (ti) = y

¤
= ṽ1 (y), a contradiction

with our (absurd) assumption. Thus, the claim is proved.

This claim and Lemma 3 imply that

ṽ (x, z) ≡ E £v (ti, t−i) |P b (ti) = x, P b(−i) (t−i) = z¤
< E

£
v (ti, t−i) |P b (ti) = y, P b(−i) (t−i) = z

¤
= ṽ (y, z) ,

for all z ∈ [0, 1], a.s. Thus, Z x

y

[ṽ (x,α)− ṽ (y,α)] dα < 0.

By condition (v) of Theorem 1, we also have thatZ x

y

[ṽ (y,α)− ṽ (α,α)] dα 6 0.

Summing up these two integrals, we obtainZ x

y

[ṽ (x,α)− ṽ (α,α)] dα < 0,

which contradicts condition (v) of Theorem 1. This contradiction establishes that

x > y ⇒ ṽ1 (x) > ṽ1 (y).
Suppose now that there exists x > y such that ṽ1 (x) = ṽ1 (y). Then, the mono-

tonicity of ṽ1 (just proved) gives

∀φ ∈ [y, x] , ṽ1 (φ) = ṽ1 (x) = ṽ1 (y) .(43)

Let S0 =
n
s ∈ S : b̃ (y) 6 b (s) < b̃ (x)

o
. From (2), for all s ∈ S0, P b (s) ∈ [y, x]. Then,

(42) and (43) imply that s ∈ S0 ⇒ v1 (s) = ṽ1 (x). Assumption (H3) requires that

µ (S0) = 0. Observe that S0 = A\B, where A ≡
n
s ∈ S : b (s) < b̃ (x)

o
and B =
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s ∈ S : b (s) < b̃ (y)

o
. But then, µ (A) = µ (B). However, from the definition of b̃ as

the inverse of P̃ b, we have the following:

0 < x− y = P̃ b
³
b̃ (x)

´
− P̃ b

³
b̃ (y)

´
= (µ (A))N−1 − (µ (B))N−1 ,

which is a contradiction. So, we have proved that x = P b (s0) > P b (s) = y implies

v1 (s0) = ṽ1 (x) > ṽ1 (y) = v1 (s) and P b (s0) = P b (s) implies v1 (s0) = v1 (s). In other
words, P b (s0) S P b (s) if and only if v1 (s0) S v1 (s) which allows us to conclude that

P b (ti) = Pr
©
t−i ∈ T−i = SN−1 : v1 (tj) < v1 (ti) , j 6= i

ª
,

as we have defined in (19). In other words, the conjugation is unique.

Now, ṽ and b̃ in Theorem 1 are exactly those defined in the statement of Theorem

3. So, Theorem 1 implies the claims about b̃.

Uniqueness. Since ṽ is continuous, Propositions 2 and 3 in Appendix B says that

any equilibrium b̃ satisfy the conditions given. If there is just one b̃ that satisfy such

conditions, then the equilibrium of the indirect auction is unique. Since the previous

step (necessity) shows that the conjugation is unique, the equilibrium of the direct

auction is unique.¥

Proof of Theorem 4. If b̃ is strictly increasing, then b = b̃ ◦P is an equilibrium of
direct auction, by Theorem 3.

So, we have to show that an equilibrium exists if b̃ is not increasing. For future

use, remember that in the first part of the proof of Theorem 3, we have established

conditions (i)’ and (ii) of Theorem 2 and that

x > y ⇒ ṽ (x, z) > ṽ (y, z) ,∀z ∈ [0, 1] .(44)

Let us define b (x) = supα∈[0,x] b̃ (α). As we discussed after the statement of Theorem
4, this is just one of the possible specification for the equilibrium bidding function.

The only exception is when the tie is to occur including the highest bidder. In such a

case, it is mandatory to have the bid of tying bidders following the above definition.

The reason will become clear in the sequel.

Remember that b̃ is absolutely continuous. Then, there is an enumerable set of

intervals [ak, ck] where b (x) is constant. Let bk ≡ b (x) for x ∈ [ak, ck]. (See Figure 5.)
Therefore, there is a tie among the indirect types in [ak, ck] for the bidding function

b. Let bk be the specified bid for indirect types in [ak, ck], that is, b ([ak, ck]) = {bk}.
The tie is solved by an all-pay auction among tying bidders.
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x

bid
b(x)

a1 c1 a2 a3 c3 c2 

b1 

b2 

b3 

Figure 5. Indirect Equilibrium Bidding Function

The unique information that bidders have for the second auction is that there is a

tie in bk, that is, P(−i) (t−i) ∈ [ak, ck].
By the definition of P in (19), P(−i) satisfies the following:

Pr
¡©
t−i ∈ SN−1 : P(−i) (t−i) < x

ª |P(−i) (t−i) ∈ [ak, ck]¢ = x− ak
ck − ak .

So, in the tie-breaking auction, the (direct) type ti of bidder i is competing against

players tj in the set {s ∈ S : P (s) ∈ [ak, ck]} and the equilibrium is to bid the increasing
function20

b̃2 (x) =
1

ck − ak

Z x

ak

ṽ (α,α) dα.

Indeed, from condition (ii) of Theorem 2, we have that

1

ck − ak

·Z x

ak

ṽ (x,α) dα−
Z x

ak

ṽ (α,α) dα

¸
> 1

ck − ak

·Z y

ak

ṽ (x,α) dα−
Z y

ak

ṽ (α,α) dα

¸
for any x, y ∈ [ak, ck].

20It is increasing because ṽ is positive.
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Thus, in the whole auction, the bidder of indirect type x ∈ [ak, ck] who follows the
strategy b (x) and, in case of a tie, the above strategy, will receive the expected payoffZ ak

0

[ṽ (x,α)− ṽ (α,α)] dα+ (ck − ak)
½

1

ck − ak

Z x

ak

[ṽ (x,α)− ṽ (α,α)] dα
¾

=

Z x

0

[ṽ (x,α)− ṽ (α,α)] dα

Deviation in the second auction is suboptimal. By deviating from b, but bidding in the

range of b, that is, bidding b (y) 6= b (x), he will get

Π̃i
¡
x, b (y)

¢
=

Z y

0

[ṽ (x,α)− ṽ (α,α)] dα,

if b (y) is not a bid with positive probability. This cannot be profitable by condition

(ii). If it is a bid with positive probability, the second stage will be again an all-pay

auction, where the bidder cannot improve its payoff, again by condition (ii).

Now, if x bids β < infx∈[0,1] b (x), then his payoff will beZ 1

0

pL
¡
β, b (α)

¢
dα 6 0,

because pL 6 0. Therefore, this deviation cannot be profitable.
If x bids β > supx∈[0,1] b (x) = b̃ (x) > b̃ (1), for some x. Since ∂1p

W (·) > 0,

pW
¡
β, b (z)

¢
> pW

³
b̃ (1) , b (z)

´
. Then,Z 1

0

pW
¡
β, b (α)

¢
>
Z 1

0

pW
³
b̃ (1) , b (α)

´
dα =

Z 1

0

ṽ (α,α) dα.

Then, the payoff of the bidder with indirect type x that bids β will beZ 1

0

£
ṽ (x,α)− pW ¡β, b (α)¢¤ dα

6
Z 1

0

[ṽ (x,α)− ṽ (α,α)] dα

=

Z x

0

[ṽ (x,α)− ṽ (α,α)] dα+
Z 1

x

[ṽ (x,α)− ṽ (α,α)] dα

<

Z x

0

[ṽ (x,α)− ṽ (α,α)] dα,

where the last inequality comes from (44). Thus, the deviation to β is unprofitable.

In Theorem 3, we also proved condition (i)’. Then, the equilibrium in the indirect

auction gives the equilibrium for the direct one.¥
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Proof of Theorem 5. If y is an indirect type that is not involved in ties, the

payment is given by

Z y

0

pW
³
b̃ (y) , b̃ (α)

´
dα+

Z 1

y

pL
³
b̃ (y) , b̃ (α)

´
dα =

Z y

0

ṽ (α,α) dα.

If x ∈ [ak, ck], in the notation of the previous proof, the expected payment of x will beZ ak

0

ṽ (α,α) dα+ (ck − ak)
½

1

ck − ak

Z x

ak

ṽ (α,α) dα

¾
=

Z x

0

ṽ (α,α) dα.

So, if the equilibrium specified in the proof of Theorem 4 is followed, the expected

payment does not depend on the auction format.¥

Appendix D - Proofs for the Examples

Generalization of Example 1.

As in Example 1, consider a symmetric auction with two bidders whose utility func-

tions are given by:

v(ti, t−i) = ti + α(ti)t−i

where α : [0, 1] → R and ti is uniformly distributed on [0, 1]. If there are only two
pooling types, that is, types which bid the same for each equilibrium bidding, then,

for each i and t, the respective pooling type of t, ϕ = ϕ(t), in a symmetric equilibrium

(b∗, b∗) satisfies the condition (i) of Theorem 1:

t+ α(t)E[t2|b∗(t) = b∗(t2)] = ϕ+ α(ϕ)E[t2|b∗(t) = b∗(t2)].
Since E[t2|b∗(t) = b∗(t2)] = (t + ϕ)/2, because of the symmetry and the uniform

distribution, then ϕ is the implicit solution of

(t+ ϕ)(α(ϕ)− α(t)) = 2(t− ϕ).

Claim. Assume the following conditions:

(i) α is differentiable, decreasing and convex such that α(0)− α(v̄) = 2;

(ii) α0 is strictly convex and α0(x) ≥ −1/x for all x ∈ (0, 1];
Then there exists an U-shaped symmetric equilibrium.

Proof. Define the conjugation

P (t) =
ϕ(t)− t
2

.
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It is easy to see that P is decreasing.

Define

ev(x, y) ≡ E [v(t1, t2)|P (t1) = x, P (t2) = y]
=

x+ ϕ (x)

2
+

α(x) + α (ϕ (x))

2

y + ϕ (y)

2

Observe that v(t1, t2) is of the form
P2

k=1 fk (ti) gk (t−i). Therefore, by Remark 2 and
Theorem 2, the bidding function is an equilibrium if

x > y ⇒ ev(x, y) > ev(y, y).
Dividing by (y + ϕ(y))/2, we rewrite the above condition as

x+ ϕ(x)

y + ϕ(y)
+

α(x) + α(ϕ(x))

2
> 1 + α(y) + α(ϕ(y))

2
(45)

For each w ∈ (0, 1], define gw(z) = z
w
+ α(z), for z ∈ [w, 1]. It is easy to see that g

is non-decreasing (because g0w(z) =
1
w
+ α0(z) > 1

w
− 1

z
> 0). Let y and w = y+ϕ(y)

2
be

fixed and take x > y. Since α is convex,
x+ ϕ(x)

y + ϕ(y)
+

α(x) + α(ϕ(x))

2
> x+ ϕ(x)

y + ϕ(y)
+ α

µ
x+ ϕ (x)

2

¶
= gw

µ
x+ ϕ (x)

2

¶
,

if x + ϕ (x) > y + ϕ (y). So, to show (45), it is enough to show that t + ϕ(t) is

non-increasing in t or, equivalently, ϕ0(t) ≤ −1.
The implicit derivative of ϕ with respect to t is:

ϕ0 (t) =
α(t)− α(ϕ (t)) + (t+ ϕ (t))α0(t) + 2
α(ϕ (t))− α(t) + (t+ ϕ (t))α0(ϕ) + 2

.

If ϕ0 (t) 6 −1, then the numerator and denominator of the fraction above should have
opposite sign. Without loss of generality (because ϕ ◦ ϕ(t) = t), we can assume that
the denominator is negative and ϕ > t. Thus,

ϕ0(t) 6 −1⇔ α0(t) + α0(ϕ)
2

> α(ϕ)− α(t)

ϕ− t .

Since α0 is a convex function, for the inequality above be attended it is enough to show

α0
µ
t+ ϕ

2

¶
≥ α(ϕ)− α(t)

ϕ− t = − 2

t+ ϕ

where the equality comes from the implicit definition of ϕ. However, this last equality

is true because α0(x) ≥ −1/x for all x ∈ (0, 1]. ¥
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Figure 6. Equilibrium bidding function in Example 1.

Proof of the claims in Example 2.

First, let us show that there is no monotonic equilibria for this auction. By con-

tradiction, assume that there is an increasing equilibrium bidding function. Then,

P (ti) =
ti−1.5
1.5

and condition (i)’ is trivial. We have

ṽ (x, y) = (1.5x+ 1.5)

·
1.5y + 1.5− 1.5x+ 1.5

2

¸
=
9 (x+ 1) (2y − x+ 1)

8
.

Thus, the necessary condition (ii) is not satisfied, because x > y implies

Z x

y

[ṽ(x,α)− ṽ(α,α)] dα = −3 (x− y)
3

8
< 0.

Thus, there is no monotonic equilibrium.

Now, we will show that there are multiple equilibria non-monotonic for this auction.

Assume that there exists a bell-shaped equilibrium and that, for each x, there are two

types, f (x) and g (x) , such that P (ti) = x =
3−g(x)+f(x)−1.5

1.5
, which implies that g (x) =

f (x)+ 1.5 (1− x). (See Figure 6).
Condition (i)’ requires
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f (x)

µ
f (y) + g (y)

2
− f (x)

2

¶
=
f (x) + g (x)

2

µ
f (y) + g (y)

2

¶
− f

2 (x) + g2 (x)

4

⇔ f (y) + g (y)

2

·
f (x)− f (x) + g (x)

2

¸
=
f (x)2 − g (x)2

4

⇔ f (y) + g (y)

2
=
f (x) + g (x)

2

Then, f (y) + g (y) is a constant, and we have f (x) = k + 3/4x. Since f (0) = 1.5,

k = 1.5. We obtain:

ṽ (x, y) =
f (x) + g (x)

2

µ
f (y) + g (y)

2

¶
− f

2 (x) + g2 (x)

4

=

µ
9

4

¶2
− (3/2 + 3/4x)

2 + (3− 3/4x)2
4

=

µ
9

4

¶·
1 +

x

4
− x

2

8

¸
,

which satisfies condition (ii) because it is increasing in x on [0, 1]. Condition (iii) and

(iv) are also satisfied, since

b̃ (x) =
1

x

Z x

0

ṽ (α,α) dα =
3 (24 + 3x− x2)

32

is increasing on [0, 1].¥

Proof for Example 3 - Spectrum Auction

Let us assume that ti = (t1i , t
2
i , t

3
i ) are independent and uniformly distributed on

[s1, s1] × [s2, s2] × [s3, s3], with s1, s2, s3 > 0. We have

v1
¡
t1i , t

2
i , t

3
i

¢
=
t1i
N
− t2i −

N − 1
N

t3i +
N − 1
2N

h¡
s1
¢2 − ¡s1¢2 + ¡s3¢2 − ¡s3¢2i

Let us denote by v1 the expression in the first line above, that is,

v1
¡
t1i , t

2
i , t

3
i

¢
=
t1i
N
− t2i −

N − 1
N

t3i .

The conjugation P and the c.d.f. P̃ are given by:

P
¡
t1i , t

2
i , t

3
i

¢
=
£
Pr
©¡
s1, s2, s3

¢
: v1

¡
s1, s2, s3

¢
< v1

¡
t1i , t

2
i , t

3
i

¢ª¤N−1
.
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and

P̃ (k) =

·
Pr

½¡
s1, s2, s3

¢
: v1

¡
s1, s2, s3

¢
+
N − 1
2N

h¡
s1
¢2 − ¡s1¢2 + ¡s3¢2 − ¡s3¢2i < k¾¸N−1 .

We can reparameterize the problem so that

P̃ (k) =
£
Pr
©
(x, y, z) ∈ [0, 1]3 : ax+ by + cz < l (k)ª¤N−1 ,

where a = (s1 − s1) /N > 0, b = − (s2 − s2) < 0, c = − (N − 1) (s3 − s3) /N < 0 and

l (k) = k − s
1

N
+ s2 +

N − 1
N

s3 − N − 1
2N

h¡
s1
¢2 − ¡s1¢2 + ¡s3¢2 − ¡s3¢2i .

It is elementary to obtain that, for a uniform distribution on [0, 1]3 and a > 0, b < 0,

c < 0 and k > b+ c,

Pr
©
(x, y, z) ∈ [0, 1]3 : ax+ by + cz < lª = (l − b− c)3

6abc
.

So,

P̃ (k) =
[l (k)− b− c]
(6abc)N−1

3(N−1)

and

ṽ (x, y) =

½
P̃−1 (x)− N − 1

2N

h¡
s1
¢2 − ¡s1¢2 + ¡s3¢2 − ¡s3¢2i¾ y

+E

"P
j 6=i
¡
t1j + t

3
j

¢
N

|max
j 6=i

P (tj) = y

#
.

The candidate for the equilibrium on the first-price indirect auction is

b̃ (x) =
1

x

Z x

0

ṽ (α,α) dα,

which is differentiable, with b̃0 (x) = [ṽ (x, x)− x] /x. Then, Theorem 3 tells us that

there exists an equilibrium in regular pure strategies for this auction if and only if

ṽ (x, x)− x =
½
P̃−1 (x)− N − 1

2N

h¡
s1
¢2 − ¡s1¢2 + ¡s3¢2 − ¡s3¢2i− 1¾x

+E

"P
j 6=i
¡
t1j + t

3
j

¢
N

|max
j 6=i

v1 (tj) = P̃
−1 (x)

#
> 0.
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Depending on the values of sn, sn, for n = 1, 2, 3, the above expression can be positive or

negative. If it is always positive, b̃ is increasing and it is the equilibrium of the indirect

auction. In the other case, there is no equilibrium without ties. For instance, a sufficient

condition for the existence of equilibrium in pure strategy is s
1

N
− s2− s3N−1

N
− 1 > 0.¥

Proof for Example 4 - Job Market

We assume that there are two players with unidimensional signals uniformly dis-

tributed on [0, 1] and that m ∈ [0, 1], b > 0. Following the method given by Theorem
3, we first obtain

v1 (ti) = am+
c

2
− b (ti −m)2 .

We will consider two cases.

First case: m 6 1/2. We have

P (ti) =


1− 2m+ 2ti, if 0 6 ti < m
1− 2ti + 2m, if m 6 ti < 2m
1− ti, if 2m 6 ti 6 1.

So,

ṽ (x, y) =


am+ c (1− y)− b (1− x−m)2 , if 0 6 x, y < 1− 2m
am+ c (1− y)− b

4
(1− x)2 , if 0 6 y < 1− 2m 6 x 6 1

(a+ c)m− b (1− x−m)2 , if 0 6 x < 1− 2m 6 y 6 1
(a+ c)m− b

4
(1− x)2 , if 1− 2m 6 x, y 6 1.

Now, it is easy to obtain, for x < 1− 2m,

b̃ (x) =
1

x

Z x

0

£
am+ c (1− y)− b (1− y −m)2¤ dy,

= am+ c− b (1−m)2 − x
hc
2
+ b (m− 1)

i
− b
3
x2,

which is increasing if c 6 2b(m+1)
3

. For x > 1− 2m,
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b̃ (x) =
1

x

½
1

6
(1− 2m) £6am+ 3c (1 + 2m)− 2b ¡1−m+m2

¢¤
+

Z x

1−2m

·
(a+ c)m− b

4
(1− y)2

¸
dy

¾
⇒ b̃ (x) =

(1− 2m) [2c− b (1− 2m)]
4x

+m (a+ c)− b
4
+
b (3x− x2)

12

whose derivative can be simplified to

b̃0 (x) = −(1− 2m) [2c− b (1− 2m)]
4x2

+
b (3− 2x)

12
.

Since the term x2 (3− 2x) is increasing, the bidding function will be increasing if and
only if b̃0 (1− 2m) > 0, that is,

c 6 2b (1− 2m) (1 +m)
3

.

We conclude that in the case of m < 1/2, there exists a pure strategy equilibrium in

regular strategies if and only if

c 6 min
½
2b (m+ 1)

3
,
2b (1− 2m) (1 +m)

3

¾
.

Second case: m > 1/2. We have

P (ti) =


ti, if 0 6 ti < 2m− 1,
1− 2m+ 2ti, if 2m− 1 6 ti < m
1− 2ti + 2m, if m 6 ti 6 1

and

ṽ (x, y) =


am+ cy − b (x−m)2 , if 0 6 x, y < 2m− 1
am+ cy − b

4
(1− x)2 , if 0 6 y < 2m− 1 6 x 6 1

(a+ c)m− b (x−m)2 , if 0 6 x < 2m− 1 6 y 6 1
(a+ c)m− b

4
(1− x)2 , if 2m− 1 6 x, y 6 1.

For x < 2m− 1,
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b̃ (x) =
1

x

Z x

0

£
am+ cy − b (y −m)2¤ dy,

= am− bm2 + x
³ c
2
+ bm

´
− b
3
x2,

which is increasing in the considered interval if and only if c > 2
3
b (m− 2).

For x > 2m− 1,

b̃ (x) =
−2c (2m− 1)− b (2m− 1)2

4x
+
12 (a+ c)m− b (3− 3x+ x2)

12

which gives

b̃0 (x) =
2c (2m− 1) + b (2m− 1)2

4x2
+
b (3− 2x)

12
.

Following the same procedure of the first case, b̃0 (x) > 0,∀x ∈ [2m− 1, 1] if and only
if

c > −2b (2m− 1) (1 +m)
3

.

We conclude that, if m > 1/2, there exists a pure strategy equilibrium in regular

strategies if and only if

c > max
½
2

3
b (m− 2) , 2b (1− 2m) (1 +m)

3

¾
.

¥
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